Let G be a simple Lie group of real rank one, with Iwasawa decomposition KA \bar N and Bruhat big cell NMA\bar N: Then the space G/MA \bar N may be (almost) identified with N and with K /M, and these identifications induce the (generalised) Cayley transform C : N \to K /M. We show that C is a conformal map of Carnot–Caratheodory manifolds, and that composition with the Cayley transform, combined with multiplication by appropriate powers of the Jacobian, induces isomorphisms of Sobolev spaces on N and on K/M. We use this to construct uniformly bounded and slowly growing representations of G.

The Cayley transform and uniformly bounded representations

ASTENGO, FRANCESCA;
2004

Abstract

Let G be a simple Lie group of real rank one, with Iwasawa decomposition KA \bar N and Bruhat big cell NMA\bar N: Then the space G/MA \bar N may be (almost) identified with N and with K /M, and these identifications induce the (generalised) Cayley transform C : N \to K /M. We show that C is a conformal map of Carnot–Caratheodory manifolds, and that composition with the Cayley transform, combined with multiplication by appropriate powers of the Jacobian, induces isomorphisms of Sobolev spaces on N and on K/M. We use this to construct uniformly bounded and slowly growing representations of G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/209687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact