This study proposes a Content-Based Image Medical Retrieval (CBIMR) system for lung cancer subtypes, integrating the TNM staging system. We employed YOLOv8, achieving top performance with a precision of 0.961, recall of 0.945, and mAP at 0.5 of 0.971. The model also provided high accuracy in retrieving similar cases across cancer groups and stages. This approach enhances diagnostic accuracy and interpretability, addressing challenges in current deep-learning algorithms for medical imaging.

Integrating YOLO for Advanced Content-Based Image Retrieval in Lung Cancer Imaging

Alaa Wehbe;Hawraa Hotiet;Irene Minetti;
2024-01-01

Abstract

This study proposes a Content-Based Image Medical Retrieval (CBIMR) system for lung cancer subtypes, integrating the TNM staging system. We employed YOLOv8, achieving top performance with a precision of 0.961, recall of 0.945, and mAP at 0.5 of 0.971. The model also provided high accuracy in retrieving similar cases across cancer groups and stages. This approach enhances diagnostic accuracy and interpretability, addressing challenges in current deep-learning algorithms for medical imaging.
File in questo prodotto:
File Dimensione Formato  
Integrating YOLO for Advanced Content-Based Image Retrieval in Lung Cancer Imaging.zip

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 1.03 MB
Formato Zip File
1.03 MB Zip File   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1241435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact