We propose an efficient estimation technique for the automatic selection of locally-Adaptive Total Variation regularisation parameters based on an hybrid strategy which combines a local maximum-likelihood approach estimating space-variant image scales with a global discrepancy principle related to noise statistics. We verify the effectiveness of the proposed approach solving some exemplar image reconstruction problems and show its outperformance in comparison to state-of-The-Art parameter estimation strategies, the former weighting locally the fit with the data [4], the latter relying on a bilevel learning paradigm [8, 9].

Adaptive parameter selection for weighted-TV image reconstruction problems

Calatroni L.;
2020-01-01

Abstract

We propose an efficient estimation technique for the automatic selection of locally-Adaptive Total Variation regularisation parameters based on an hybrid strategy which combines a local maximum-likelihood approach estimating space-variant image scales with a global discrepancy principle related to noise statistics. We verify the effectiveness of the proposed approach solving some exemplar image reconstruction problems and show its outperformance in comparison to state-of-The-Art parameter estimation strategies, the former weighting locally the fit with the data [4], the latter relying on a bilevel learning paradigm [8, 9].
File in questo prodotto:
File Dimensione Formato  
Calatroni_2020_J._Phys.__Conf._Ser._1476_012003.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1229216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact