Thermal annealing plays a key role in optimizing the properties of amorphous optical coatings. In the field of gravitational wave detection (GWD), however, the effects of annealing protocols on the interferometry mirror coatings have been explored primarily by ex post analysis. As a result, the dynamics of the coatings properties during annealing is still poorly known, potentially leading to suboptimal performance. Here, using real-time, in situ spectroscopic ellipsometry (SE) we have tracked the refractive index and thickness of a titania-tantala coating during controlled annealing. We have tested the material and the annealing protocol used in current GWD mirrors. The annealing cycle consisted of a heating ramp from room temperature to 500 degrees C, followed by a 10-h plateau at the same temperature and the final cooling ramp. SE measurements have been run continuously during the entire cycle. Significant variations in the thickness and refractive index, which accompany the coating structural relaxation, have been recorded during the heating ramp. These variations start around 200 degrees C, slightly above the deposition temperature, and show an increased rate in the range 250 degrees C-350 degrees C. A smaller, continuous evolution has been observed during the 10-h high-temperature plateau. The results offer suggestions to modify the current annealing protocol for titania-tantala coatings, for example by increasing the time duration of the high-temperature plateau. They also suggest an increase in the substrate temperature at deposition. The approach presented here paves the way for systematic, real-time investigations to clarify how the annealing parameters shape the properties of optical coatings, and can be leveraged to define and optimize the annealing protocol of new candidate materials for GWD mirrors.

Monitoring the evolution of optical coatings during thermal annealing with real-time, in situ spectroscopic ellipsometry

Colace, Stefano;Samandari, Shima;Caminale, Michael;Gemme, Gianluca;Canepa, Maurizio;Magnozzi, Michele
2024-01-01

Abstract

Thermal annealing plays a key role in optimizing the properties of amorphous optical coatings. In the field of gravitational wave detection (GWD), however, the effects of annealing protocols on the interferometry mirror coatings have been explored primarily by ex post analysis. As a result, the dynamics of the coatings properties during annealing is still poorly known, potentially leading to suboptimal performance. Here, using real-time, in situ spectroscopic ellipsometry (SE) we have tracked the refractive index and thickness of a titania-tantala coating during controlled annealing. We have tested the material and the annealing protocol used in current GWD mirrors. The annealing cycle consisted of a heating ramp from room temperature to 500 degrees C, followed by a 10-h plateau at the same temperature and the final cooling ramp. SE measurements have been run continuously during the entire cycle. Significant variations in the thickness and refractive index, which accompany the coating structural relaxation, have been recorded during the heating ramp. These variations start around 200 degrees C, slightly above the deposition temperature, and show an increased rate in the range 250 degrees C-350 degrees C. A smaller, continuous evolution has been observed during the 10-h high-temperature plateau. The results offer suggestions to modify the current annealing protocol for titania-tantala coatings, for example by increasing the time duration of the high-temperature plateau. They also suggest an increase in the substrate temperature at deposition. The approach presented here paves the way for systematic, real-time investigations to clarify how the annealing parameters shape the properties of optical coatings, and can be leveraged to define and optimize the annealing protocol of new candidate materials for GWD mirrors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1212015
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact