This study aimed to produce, characterize and purify a protease from Aspergillus heteromorphus URM0269. After production by solid fermentation of wheat bran performed according to a central composite design, protease was characterized in terms of biochemical, kinetic, and thermodynamic parameters for further purification by chromatography. Proteolytic activity achieved a maximum value of 57.43 U/mL using 7.8 g of wheat bran with 40 % moisture. Protease displayed high stability in the pH and temperature ranges of 5.0-10.0 and 20-30 °C, respectively, and acted optimally at pH 7.0 and 50 °C. The enzyme, characterized as a serine protease, followed Michaelis-Menten kinetics with a maximum reaction rate of 140.0 U/mL and Michaelis constant of 11.6 mg/mL. Thermodynamic activation parameters, namely activation Gibbs free energy (69.79 kJ/mol), enthalpy (5.86 kJ/mol), and entropy (-214.39 J/mol.K) of the hydrolysis reaction, corroborated with kinetic modeling showing high affinity for azocasein. However, thermodynamic parameters suggested a reversible mechanism of unfolding. Purification by chromatography yielded a protease purification factor of 7.2, and SDS-PAGE revealed one protein band with a molecular mass of 14.7 kDa. Circular dichroism demonstrated a secondary structure made up of 45.6 % α-helices. These results show the great potential of this protease for future use in the industrial area.
Valorization of agro-industrial residues using Aspergillus heteromorphus URM0269 for protease production: Characterization and purification
Converti, Attilio;
2024-01-01
Abstract
This study aimed to produce, characterize and purify a protease from Aspergillus heteromorphus URM0269. After production by solid fermentation of wheat bran performed according to a central composite design, protease was characterized in terms of biochemical, kinetic, and thermodynamic parameters for further purification by chromatography. Proteolytic activity achieved a maximum value of 57.43 U/mL using 7.8 g of wheat bran with 40 % moisture. Protease displayed high stability in the pH and temperature ranges of 5.0-10.0 and 20-30 °C, respectively, and acted optimally at pH 7.0 and 50 °C. The enzyme, characterized as a serine protease, followed Michaelis-Menten kinetics with a maximum reaction rate of 140.0 U/mL and Michaelis constant of 11.6 mg/mL. Thermodynamic activation parameters, namely activation Gibbs free energy (69.79 kJ/mol), enthalpy (5.86 kJ/mol), and entropy (-214.39 J/mol.K) of the hydrolysis reaction, corroborated with kinetic modeling showing high affinity for azocasein. However, thermodynamic parameters suggested a reversible mechanism of unfolding. Purification by chromatography yielded a protease purification factor of 7.2, and SDS-PAGE revealed one protein band with a molecular mass of 14.7 kDa. Circular dichroism demonstrated a secondary structure made up of 45.6 % α-helices. These results show the great potential of this protease for future use in the industrial area.File | Dimensione | Formato | |
---|---|---|---|
A457.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.