In this paper, we investigate the potential of a family of efficient filters—the Gray-Code Kernels (GCKs)—for addressing visual saliency estimation with a focus on motion information. Our implementation relies on the use of 3D kernels applied to overlapping blocks of frames and is able to gather meaningful spatio-temporal information with a very light computation. We introduce an attention module that reasons the use of pooling strategies, combined in an unsupervised way to derive a saliency map highlighting the presence of motion in the scene. A coarse segmentation map can also be obtained. In the experimental analysis, we evaluate our method on publicly available datasets and show that it is able to effectively and efficiently identify the portion of the image where the motion is occurring, providing tolerance to a variety of scene conditions and complexities.

On the Use of Efficient Projection Kernels for Motion-Based Visual Saliency Estimation

Nicora E.;Noceti N.
2022-01-01

Abstract

In this paper, we investigate the potential of a family of efficient filters—the Gray-Code Kernels (GCKs)—for addressing visual saliency estimation with a focus on motion information. Our implementation relies on the use of 3D kernels applied to overlapping blocks of frames and is able to gather meaningful spatio-temporal information with a very light computation. We introduce an attention module that reasons the use of pooling strategies, combined in an unsupervised way to derive a saliency map highlighting the presence of motion in the scene. A coarse segmentation map can also be obtained. In the experimental analysis, we evaluate our method on publicly available datasets and show that it is able to effectively and efficiently identify the portion of the image where the motion is occurring, providing tolerance to a variety of scene conditions and complexities.
File in questo prodotto:
File Dimensione Formato  
pubmed-zip/versions/1/package-entries/fcomp-04-867289/fcomp-04-867289.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1106553
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact