Brainstem dysfunctions are very common in Multiple Sclerosis (MS) and are a critical predictive factor for future disability. Brainstem functionality can be explored with blink reflexes, subcortical responses consisting in a blink following a peripheral stimulation. Some reflexes are already employed in clinical practice, such as Trigeminal Blink Reflex (TBR). Here we propose for the first time in MS the exploration of Hand Blink Reflex (HBR), which size is modulated by the proximity of the stimulated hand to the face, reflecting the extension of the peripersonal space. The aim of this work is to test whether Machine Learning (ML) techniques could be used in combination with neurophysiological measurements such as TBR and HBR to improve their clinical information and potentially favour the early detection of brainstem dysfunctionality. HBR and TBR were recorded from a group of People with MS (PwMS) with Relapsing-Remitting form and from a healthy control group. Two AdaBoost classifiers were trained with TBR and HBR features each, for a binary classification task between PwMS and Controls. Both classifiers were able to identify PwMS with an accuracy comparable and even higher than clinicians. Our results indicate that ML techniques could represent a tool for clinicians for investigating brainstem functionality in MS. Also, HBR could be promising when applied in clinical practice, providing additional information about the integrity of brainstem circuits potentially favouring early diagnosis.

Brainstem dysfunctions are very common in Multiple Sclerosis (MS) and are a critical predictive factor for future disability. Brainstem functionality can be explored with blink reflexes, subcortical responses consisting in a blink following a peripheral stimulation. Some reflexes are already employed in clinical practice, such as Trigeminal Blink Reflex (TBR). Here we propose for the first time in MS the exploration of Hand Blink Reflex (HBR), which size is modulated by the proximity of the stimulated hand to the face, reflecting the extension of the peripersonal space. The aim of this work is to test whether Machine Learning (ML) techniques could be used in combination with neurophysiological measurements such as TBR and HBR to improve their clinical information and potentially favour the early detection of brainstem dysfunctionality. HBR and TBR were recorded from a group of People with MS (PwMS) with Relapsing-Remitting form and from a healthy control group. Two AdaBoost classifiers were trained with TBR and HBR features each, for a binary classification task between PwMS and Controls. Both classifiers were able to identify PwMS with an accuracy comparable and even higher than clinicians. Our results indicate that ML techniques could represent a tool for clinicians for investigating brainstem functionality in MS. Also, HBR could be promising when applied in clinical practice, providing additional information about the integrity of brainstem circuits potentially favouring early diagnosis.

Machine learning for exploring neurophysiological functionality in multiple sclerosis based on trigeminal and hand blink reflexes

Biggio, Monica;Bove, Marco;
2022-01-01

Abstract

Brainstem dysfunctions are very common in Multiple Sclerosis (MS) and are a critical predictive factor for future disability. Brainstem functionality can be explored with blink reflexes, subcortical responses consisting in a blink following a peripheral stimulation. Some reflexes are already employed in clinical practice, such as Trigeminal Blink Reflex (TBR). Here we propose for the first time in MS the exploration of Hand Blink Reflex (HBR), which size is modulated by the proximity of the stimulated hand to the face, reflecting the extension of the peripersonal space. The aim of this work is to test whether Machine Learning (ML) techniques could be used in combination with neurophysiological measurements such as TBR and HBR to improve their clinical information and potentially favour the early detection of brainstem dysfunctionality. HBR and TBR were recorded from a group of People with MS (PwMS) with Relapsing-Remitting form and from a healthy control group. Two AdaBoost classifiers were trained with TBR and HBR features each, for a binary classification task between PwMS and Controls. Both classifiers were able to identify PwMS with an accuracy comparable and even higher than clinicians. Our results indicate that ML techniques could represent a tool for clinicians for investigating brainstem functionality in MS. Also, HBR could be promising when applied in clinical practice, providing additional information about the integrity of brainstem circuits potentially favouring early diagnosis.
2022
Brainstem dysfunctions are very common in Multiple Sclerosis (MS) and are a critical predictive factor for future disability. Brainstem functionality can be explored with blink reflexes, subcortical responses consisting in a blink following a peripheral stimulation. Some reflexes are already employed in clinical practice, such as Trigeminal Blink Reflex (TBR). Here we propose for the first time in MS the exploration of Hand Blink Reflex (HBR), which size is modulated by the proximity of the stimulated hand to the face, reflecting the extension of the peripersonal space. The aim of this work is to test whether Machine Learning (ML) techniques could be used in combination with neurophysiological measurements such as TBR and HBR to improve their clinical information and potentially favour the early detection of brainstem dysfunctionality. HBR and TBR were recorded from a group of People with MS (PwMS) with Relapsing-Remitting form and from a healthy control group. Two AdaBoost classifiers were trained with TBR and HBR features each, for a binary classification task between PwMS and Controls. Both classifiers were able to identify PwMS with an accuracy comparable and even higher than clinicians. Our results indicate that ML techniques could represent a tool for clinicians for investigating brainstem functionality in MS. Also, HBR could be promising when applied in clinical practice, providing additional information about the integrity of brainstem circuits potentially favouring early diagnosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1103044
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact