Making use of atomic force microscopy (AFM) —known as the state-of-the-art technology for handling matter on an atomic and molecular scale—, this paper describes the use of a nanotechnology technique for characterizing properties of polymeric materials. AFM measurement on two materials (polyamide and polystyrene) allowed to compare the performance of two distinct multi-asperity adhesion models based on the JKR (Johnson-Kendall-Robert) and DMT (Derajaguin- Muller-Toporov) theories, when assessing the Young’s Modulus (modulus of elasticity) of the investigated materials. Experimental results confirm that the JKR model processed through a MatLab algorithm produces more reliable results of the Young’s Modulus than the DMT model built-in in the AFM software.

Nanotechnology measurements of the Young's modulus of polymeric materials

OMAR GINOBLE Pandoli;
2021-01-01

Abstract

Making use of atomic force microscopy (AFM) —known as the state-of-the-art technology for handling matter on an atomic and molecular scale—, this paper describes the use of a nanotechnology technique for characterizing properties of polymeric materials. AFM measurement on two materials (polyamide and polystyrene) allowed to compare the performance of two distinct multi-asperity adhesion models based on the JKR (Johnson-Kendall-Robert) and DMT (Derajaguin- Muller-Toporov) theories, when assessing the Young’s Modulus (modulus of elasticity) of the investigated materials. Experimental results confirm that the JKR model processed through a MatLab algorithm produces more reliable results of the Young’s Modulus than the DMT model built-in in the AFM software.
File in questo prodotto:
File Dimensione Formato  
2021_JPhysConfSeries_Nanotechnology measurements of the Young's modulus of polymeric materials.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1099423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact