Based on the RILEM Technical Committee 274‐TCE work, this paper is a discussion of the remaining engineering challenges faced by earthen architecture. The assessment of earth material performances requires the development of appropriate procedures and standards. This is discussed in particular for the characterisation, hygrothermal behaviour, mechanical behaviour, and durability of earth materials. One other important challenge, since one of the main advantages classically put forward, is its ecological performance, is a proper assessment of life cycle assessment of earth materials, elements and buildings. Moreover, the paper develops why the approach to earthen construction must be different compared to the dominant construction materials, to preserve its ability to contribute to the ecological transition in the construction sector. In particular, the needs of using local soils, with an architectural approach coping with the limits of the materials, and developing an architectural optimisation to preserve the earthen materials multifunctionality rather than selecting a sole property to be maximised. Lastly, the findings of the paper can be used to develop a holistic approach to earthen construction to foster the development of new earthen architecture projects.

An overview of the remaining challenges of the RILEM TC 274‐TCE, testing and characterisation of earth‐based building materials and elements

Gallipoli D.;
2021-01-01

Abstract

Based on the RILEM Technical Committee 274‐TCE work, this paper is a discussion of the remaining engineering challenges faced by earthen architecture. The assessment of earth material performances requires the development of appropriate procedures and standards. This is discussed in particular for the characterisation, hygrothermal behaviour, mechanical behaviour, and durability of earth materials. One other important challenge, since one of the main advantages classically put forward, is its ecological performance, is a proper assessment of life cycle assessment of earth materials, elements and buildings. Moreover, the paper develops why the approach to earthen construction must be different compared to the dominant construction materials, to preserve its ability to contribute to the ecological transition in the construction sector. In particular, the needs of using local soils, with an architectural approach coping with the limits of the materials, and developing an architectural optimisation to preserve the earthen materials multifunctionality rather than selecting a sole property to be maximised. Lastly, the findings of the paper can be used to develop a holistic approach to earthen construction to foster the development of new earthen architecture projects.
File in questo prodotto:
File Dimensione Formato  
Fabbri, Morel, Aubert, Bui, Gallipoli et al. (2021).PDF

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1081986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact