Bare titania and metal-promoted TiO2 catalysts were employed in the treatment of nitrates, which are ubiquitous pollutants of wastewater. The results show that the process can be carried out under visible light (from a white light LED lamp) and, in the best case, 23.5% conversion of nitrate was obtained over 4 h with full selectivity towards N2 by employing 0.1 mol% Ag/TiO2 prepared by flame spray pyrolysis. Moreover, the performance was worse when testing the same catalysts with tap water (11.3% conversion), due to the more complex composition of the matrix. Finally, it was found that photoreduction of nitrate can be effectively performed in combination with photo-oxidation of ammonium without loss in the activity, opening up the possibility of treating highly polluted wastewater with a single process. The latter treatment employs the two contaminants simultaneously as electron and holes scavengers, with very good selectivity, in a completely new process that we may call Photo-Selective Catalytic Reduction (Photo-SCR).
Photocatalytic Reduction of Nitrates and Combined Photodegradation with Ammonium
Ramis, Gianguido;
2022-01-01
Abstract
Bare titania and metal-promoted TiO2 catalysts were employed in the treatment of nitrates, which are ubiquitous pollutants of wastewater. The results show that the process can be carried out under visible light (from a white light LED lamp) and, in the best case, 23.5% conversion of nitrate was obtained over 4 h with full selectivity towards N2 by employing 0.1 mol% Ag/TiO2 prepared by flame spray pyrolysis. Moreover, the performance was worse when testing the same catalysts with tap water (11.3% conversion), due to the more complex composition of the matrix. Finally, it was found that photoreduction of nitrate can be effectively performed in combination with photo-oxidation of ammonium without loss in the activity, opening up the possibility of treating highly polluted wastewater with a single process. The latter treatment employs the two contaminants simultaneously as electron and holes scavengers, with very good selectivity, in a completely new process that we may call Photo-Selective Catalytic Reduction (Photo-SCR).File | Dimensione | Formato | |
---|---|---|---|
Catalysts (2022) 12, 321-337..pdf
accesso aperto
Tipologia:
Documento in versione editoriale
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.