A measurement of prompt photon-pair production in proton-proton collisions at s = 13 TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb−1. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of pT,γ1(2)> 40 (30) GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system. [Figure not available: see fulltext.].

Measurement of the production cross section of pairs of isolated photons in pp collisions at 13 TeV with the ATLAS detector

Barberis D.;Gagliardi G.;Parodi F.;Sannino M.;Schiavi C.;Sforza F.;DI BELLO, FRANCESCO ARMANDO
2021-01-01

Abstract

A measurement of prompt photon-pair production in proton-proton collisions at s = 13 TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb−1. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of pT,γ1(2)> 40 (30) GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system. [Figure not available: see fulltext.].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1077398
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 8
social impact