We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C1 extension theorem by Whitney [8] to Banach spaces.
Linear Lipschitz and C1 extension operators through random projection
Di Marino S.;
2021-01-01
Abstract
We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C1 extension theorem by Whitney [8] to Banach spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
extproj.pdf
accesso chiuso
Descrizione: Preprint del paper
Tipologia:
Documento in Pre-print
Dimensione
612 kB
Formato
Adobe PDF
|
612 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.