We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C1 extension theorem by Whitney [8] to Banach spaces.

Linear Lipschitz and C1 extension operators through random projection

Di Marino S.;
2021-01-01

Abstract

We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C1 extension theorem by Whitney [8] to Banach spaces.
File in questo prodotto:
File Dimensione Formato  
extproj.pdf

accesso chiuso

Descrizione: Preprint del paper
Tipologia: Documento in Pre-print
Dimensione 612 kB
Formato Adobe PDF
612 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1037241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact