Unmanned Aerial Vehicles (UAVs) popularity is increased in recent years, and the domain of application of this new technology is continuously expanding. However, although UAVs may be extremely useful in monitoring contexts, the operational aspects of drone patrolling services have not yet been extensively studied. Specifically, patrolling and inspecting with UAVs different targets distributed over a large area is still an open problem, due to battery constraints and other practical limitations. In this work, we propose a deterministic algorithm for patrolling large areas in a pre- or post-critical event scenario. The autonomy range of UAVs is extended with the concept of Social Drone Sharing: citizens may offer their availability to take care of the UAV if it lands in their private area, being thus strictly involved in the monitoring process. The proposed approach aims at finding optimal routes in this context, minimizing the patrolling time and respecting the battery constraints. Simulation experiments have been conducted, giving some insights about the performance of the proposed method.

Social Drone Sharing to Increase the UAV Patrolling Autonomy in Emergency Scenarios

Morando L.;Recchiuto C.;Sgorbissa A.
2020-01-01

Abstract

Unmanned Aerial Vehicles (UAVs) popularity is increased in recent years, and the domain of application of this new technology is continuously expanding. However, although UAVs may be extremely useful in monitoring contexts, the operational aspects of drone patrolling services have not yet been extensively studied. Specifically, patrolling and inspecting with UAVs different targets distributed over a large area is still an open problem, due to battery constraints and other practical limitations. In this work, we propose a deterministic algorithm for patrolling large areas in a pre- or post-critical event scenario. The autonomy range of UAVs is extended with the concept of Social Drone Sharing: citizens may offer their availability to take care of the UAV if it lands in their private area, being thus strictly involved in the monitoring process. The proposed approach aims at finding optimal routes in this context, minimizing the patrolling time and respecting the battery constraints. Simulation experiments have been conducted, giving some insights about the performance of the proposed method.
2020
978-1-7281-6075-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1031652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact