The microbiota, the host-associated community of microbes, play important roles in health status and whole body homeostasis of all organisms, including marine species. In bivalves, the microbiota composition has been mainly investigated in adults, whereas little information is available during development. In this work, the microbiota composition of the first larval stages of Mytilus galloprovincialis was evaluated by 16S rRNA gene-based profiling, at 24 and 48 hours post fertilization in comparison with those of eggs and sperm. The main genera detected in both larvae (Vibrio, Pseudoalteromonas, Psychrobium, Colwellia) derived from eggs. However, a clear shift in microbiota was observed in developing larvae compared to eggs, both in terms of core microbiome and relative abundance of different genera. The results provide a first insight into the composition of the microbial communities associated with gametes and early larvae of mussels. Moreover, the impact on larval microbiome of estrogenic chemicals that potentially affect Mytilus early development, 17βestradiol-E2, Bisphenol A-BPA and Bisphenol F-BPF (10 μg/L), was investigated. Exposure to estrogenic chemicals leads to changes in abundance of different genera, with distinct and common effects depending on the compound and larval stage. Both potential pathogens (Vibrio, Arcobacter, Tenacibaculum) and genera involved in xenobiotic biotransformation (Oleispira, Shewanella) were affected. The effects of estrogenic compounds on larval microbiome were not related to their developmental effects: however, the results address the importance of evaluating the impact of emerging contaminants on the microbiota of marine invertebrates, including larval stages, that are most sensitive to environmental perturbations.

Insight Into the Microbial Communities Associated With First Larval Stages of Mytilus Galloprovincialis: Possible Interference by Estrogenic Compounds

T. Balbi;L. Vezzulli;L. Canesi
2020-01-01

Abstract

The microbiota, the host-associated community of microbes, play important roles in health status and whole body homeostasis of all organisms, including marine species. In bivalves, the microbiota composition has been mainly investigated in adults, whereas little information is available during development. In this work, the microbiota composition of the first larval stages of Mytilus galloprovincialis was evaluated by 16S rRNA gene-based profiling, at 24 and 48 hours post fertilization in comparison with those of eggs and sperm. The main genera detected in both larvae (Vibrio, Pseudoalteromonas, Psychrobium, Colwellia) derived from eggs. However, a clear shift in microbiota was observed in developing larvae compared to eggs, both in terms of core microbiome and relative abundance of different genera. The results provide a first insight into the composition of the microbial communities associated with gametes and early larvae of mussels. Moreover, the impact on larval microbiome of estrogenic chemicals that potentially affect Mytilus early development, 17βestradiol-E2, Bisphenol A-BPA and Bisphenol F-BPF (10 μg/L), was investigated. Exposure to estrogenic chemicals leads to changes in abundance of different genera, with distinct and common effects depending on the compound and larval stage. Both potential pathogens (Vibrio, Arcobacter, Tenacibaculum) and genera involved in xenobiotic biotransformation (Oleispira, Shewanella) were affected. The effects of estrogenic compounds on larval microbiome were not related to their developmental effects: however, the results address the importance of evaluating the impact of emerging contaminants on the microbiota of marine invertebrates, including larval stages, that are most sensitive to environmental perturbations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1017161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact