Effects related to alkali metal doping and grain boundaries have puzzled the chalcopyrite photovoltaics community for a long time. This study is the first to report reversible oxidation of grain boundaries in CuInSe 2 thin films. The phenomenon is observed in sodium-doped films, but not in undoped ones. Cathodoluminescence imaging, secondary ion mass spectrometry and Kelvin probe force microscopy analyses are performed on CuInSe 2 thin films before and after exposure to vacuum. The findings suggest the existence of yet unidentified solid-gas equilibria. Resolving the nature of such reactions will provide new insights into the mechanism of alkali metal doping and passivation in chalcopyrite solar cells.

Evidence of Reversible Oxidation at CuInSe2 Grain Boundaries

Diego Colombara;
2019-01-01

Abstract

Effects related to alkali metal doping and grain boundaries have puzzled the chalcopyrite photovoltaics community for a long time. This study is the first to report reversible oxidation of grain boundaries in CuInSe 2 thin films. The phenomenon is observed in sodium-doped films, but not in undoped ones. Cathodoluminescence imaging, secondary ion mass spectrometry and Kelvin probe force microscopy analyses are performed on CuInSe 2 thin films before and after exposure to vacuum. The findings suggest the existence of yet unidentified solid-gas equilibria. Resolving the nature of such reactions will provide new insights into the mechanism of alkali metal doping and passivation in chalcopyrite solar cells.
2019
978-1-7281-0494-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1008257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact