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HIGHER SYZYGIES ON SURFACES WITH NUMERICALLY TRIVIAL CANONICAL BUNDLE

DANIELE AGOSTINI, ALEX KÜRONYA, AND VICTOR LOZOVANU

1. INTRODUCTION

The aim of this paper is to understand higher syzygies of polarized surfaces with trivial canonical bundles. More
concretely, for a polarized surface (X ,L) with KX = 0 over the complex numbers, we establish a tight connection
between property (Np) for (X ,L) and the (non)existence of certain forbidden subvarieties of X . Our results unify
the main statement of [24], and the classical theorem of Saint-Donat [27] on complete linear series on K3 surfaces,
which hints at a beautiful interplay between the local and global geometry of the surface.

In the current context syzygies of projective embeddings have entered the stage after the seminal work of Green
[15], and have become an active area of research ever since. From a geometric point of view, it has been observed
that projective normality of an embedding and the conditon of the homogeneous ideal of the embedding being
generated by quadrics can be seen as the first elements of an increasing sequence of positivity properties, namely
the cases p = 0 and p= 1 for property (Np). The arising conjectures of Green and Lazarsfeld energized the subject,
which then has become an important topic in algebraic geometry to this day. For some of the highlights we refer to
[11,29,30] and the book [2]. The last years have witnessed a new line of research which focuses on the asymptotic
behaviour of Koszul cohomology groups (see [12] and the references therein).

Our guiding principle is that in the case of a polarized surface (X ,L) with KX ≡ 0 and (L2)≫ 0, one can expect
an equivalence between the vanishing of certain Koszul cohomology groups of low degree for (X ,L), and the non-
existence of elliptic curves of low L-degree on X passing through a very general point of X . In addition, we will
link the equivalence to the local positivity of (X ,L) at a very general point, which we will measure in terms of
Seshadri constants.

With this in mind, the main result of this article is the following.

Theorem A. Let p be a natural number, X a smooth projective surface over the complex numbers with trivial

canonical bundle, and L an ample line bundle on X with (L2)> 5 · (p+2)2. Then the following are equivalent.

(1) (X ,L) satisfies property (Np).
(2) There is no smooth elliptic curve F ⊆ X (through a very general point of X) with 1 6 (L ·F) 6 p+ 2 and

(F2) = 0.

(3) The Seshadri constant at a very general point x satisfies ε(L;x)> p+2.

Remark 1.1. The parentheses in condition (2) amount to the fact that if there is a single smooth elliptic curve with
(L ·F) 6 p+ 2, then there is one passing through a very general point with the same property. This is clear for
abelian surfaces since we can move the curve with translations, and for K3 surfaces it is a classic application of
Riemann-Roch: see for example [4, Proposition VIII.13].

We will prove Theorem A in Section 3, where we will observe in addition that the constant 5 can be much
improved in the K3 case. By setting p = 0 and p = 1, we will recover Saint-Donat’s results when (L2) > 10.
Beside the by now classical theory of Koszul cohomology, our argument relies on recent work of Aprodu and

1

http://arxiv.org/abs/1703.10203v1


2 DANIELE AGOSTINI, ALEX KÜRONYA, AND VICTOR LOZOVANU

Farkas [1], where Green’s conjecture for smooth curves on K3 surfaces is verified, and earlier work of Serrano
[28].

Going further, we establish an similar result for Enriques surfaces; this time however our result is conditional
on the Green–Lazarsfeld secant conjecture for curves (for a precise statement see Conjecture 5.1).

Theorem B. Let p be a natural number, X an Enriques surface over the complex numbers, and L an ample

and globally generated line bundle on X such that (L2) > 4(p+ 2)2. Assume that the Green–Lazarsfeld secant

conjecture holds for a general curve in |L|. Then the following are equivalent

(1) L has property Np.

(2) there is no effective and reduced divisor F with (F2) = 0 such that 1 6 (E ·L)6 p+2.

We prove Theorem B as Theorem 5.4 in Section 5 by reducing to the one-dimensional case using Koszul
cohomology. Our argument is supported by results of Knutsen and Lopez [22] on linear series on Enriques surfaces.

Remark 1.2. We believe that the lower bound (L2)> 5(p+2)2 in Theorem A can be improved to (L2)> 4(p+2)2.
This is true for K3 surfaces as a consequence of the more precise estimates of Theorem 4.5, so that the question
remains open for abelian surfaces. This would also be the optimal bound for abelian surfaces: if p = 0, then by
work of Barth [3], a general polarized abelian surface (X ,L) of type (2,4) (in particular with (L2) = 16) does not
have property N0, at the same time such a surface does not contain elliptic curves.

The more accurate results of Theorem 4.5 and Proposition 3.5 establish Theorem A for polarized K3 surfaces.
As an easy consequence of Theorem 4.5 we also get a characterization of property (Np) for ample line bundles
of type L⊗m, with m > p, along the lines of Mukai’s conjecture. The case of abelian surfaces follows from [24,
Theorem 1.1] and Proposition 3.5.

About the organization of the article: In Section 2 we establish the necessary preliminaries, collect a few useful
statements about Koszul cohomology and property (Np) in general. In Section 3 we discuss property (Np) on
surfaces, and among others we prove the equivalence of (2) and (3) of Theorem A. Section 4 is devoted to the
proof of Theorem A and some consequences, note again that the results here usually provide estimates on (L2) that
are considerably stronger than the ones in Theorem A. Section 5 hosts the proof of Theorem B.

Acknowledgements. We are grateful to Giuseppe Pareschi, Angelo Lopez, Klaus Hulek, Gavril Farkas, and An-
dreas Leopold Knutsen for helpful conversations. The first author was supported by the grant IRTG 1800 of the
DFG.

2. PRELIMINARIES

We work over the complex numbers, every variety is connected, smooth, and projective, unless otherwise men-
tioned. We recall that for a polarized variety (X ,L) and an arbitrary point x ∈ X , the Seshadri constant of L at x is
defined to be

ε(L;x)
def
= inf

x∈C⊆X

(L ·C)

multx(C)
.

If the infimum is achieved by some curve C ⊆ X , then we call C a Seshadri exceptional curve.
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2.1. Koszul cohomology. Let V be a vector space of dimension n and S = Sym•V the graded symmetric algebra
over V . Then for any finitely generated graded S-module M we have an unique (up to isomorphism) minimal

graded free resolution:
0 −→ Fn −→ Fn−1 −→ ·· · −→ F1 −→ F0 −→ M −→ 0

where the Fp are graded free S-modules of finite rank. We can write

Fp =
⊕

q∈Z

Kp,q(M;V )⊗C S(−p−q)

for certain finite dimensional vector spaces Kp,q(M;V ) which are called the Koszul cohomology groups of M w.r.t
V . The name Koszul cohomology comes from the fact that they can be computed as the middle cohomology of the
Koszul complex [15]:

∧p+1V ⊗Mq−1 →∧pV ⊗Mq →∧p−1V ⊗Mq+1 v1 ∧ ·· ·∧ vp ⊗m 7→
p

∑
i=1

(−1)i+1v1 ∧ ·· ·∧ v̂i ∧ ·· ·∧ vp ⊗ vi ·m

We will need later to compare Koszul cohomology with respect to two different vector spaces. More specifically,
suppose that we have a short exact sequence of vector spaces

0 −→U −→V −→W −→ 0 ,

and a finitely generated graded Sym•(W )-module M. Then M has also a Sym•(V )-module structure, and we can
compare the Koszul cohomologies computed with respect to W and V .

Lemma 2.1. In the above situation, we have a non-canonical isomorphism

Kp,q(M;V )∼=

p⊕

i=0

∧p−iU ⊗Ki,q(M;W )

In particular Kp,q(M;W )⊆ Kp,q(M;V ).

Proof. Fix a splitting V = U ⊕W . Then ∧pV =
⊕p

i=0∧
p−iU ⊗∧iW and the Koszul complex behaves well w.r.t

this splitting: indeed, since U ⊆ Ann(M) we see that

u1 ∧ ·· ·∧up−i ∧w1 ∧ ·· ·∧wi ⊗m 7→ u1 ∧ ·· ·∧up−i ∧

(
i

∑
k=0

(−1)k+1 ∧w1 ∧ ·· ·∧ ŵk ∧ ·· ·∧wi ⊗wk ·m

)

thus, the Koszul complex of (M;V ) splits and Koszul cohomology splits as well. The last statement follows by
taking i = p. �

In the geometric setting, let X be an irreducible projective variety of positive dimension, F a coherent sheaf

on X and L a globally generated ample line bundle on X . We denote by S
def
= Sym•H0(X ,L) the homogeneous

coordinate ring of the space P(H0(X ,L)) and by ΓX(F ,L) =
⊕

q∈Z H0(X ,F ⊗qL) the module of sections of F .
Then ΓX(F ,L) has a natural structure of a finitely generated graded S-module so that we can take the Koszul
cohomology groups

Kp,q(X ,F ,L) := Kp,q(ΓX(F ,L);H0(X ,L))

Kp,q(X ,L) := Kp,q(X ,OX ,L)

Property (Np) for polarized varieties (X ,L) has been introduced by Green and Lazarsfeld in [17].

Definition 2.2 (Property (Np)). In the above situation, we say that (X ,L) has property Np if Ki,q(X ,L) = 0 for all
i 6 p and q > 2.
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Remark 2.3. Property (Np) means that the resolution is as simple as possible in the first p steps:

· · · → S(−p−1)⊕kp → S(−p)⊕kp−1 → ··· → S(−2)⊕k1 → S → ΓX(OX ,L)→ 0

with ki ∈ N. In particular, property (N0) coincides with projective normality, and property (N1) means that the
embedding is projectively normal and that the homogeneous ideal is generated by quadrics.

2.2. Syzygies on curves. Canonically polarized curves are an important and much studied case. In this situation,
we expect that property (Np) is determined by the Clifford index of the curve.

Definition 2.4 (Clifford index). Let C be a smooth, irreducible, projective curve of genus g > 4. We define the
Clifford index of C as

Cliff(C) = min
{

deg(L)−2h0(X ,L)+2 |L ∈ Pic(C),h0(C,L)> 2,h1(C,L)> 2
}

Moreover, if C is a smooth curve of genus 2 or 3, we define the Clifford index of C to be zero if the curve is
hyperelliptic and one otherwise.

Generalizing some classical results about canonical curves, Green [15] proposed the following.

Conjecture 2.5 (Green). Let C be a smooth, irreducible, projective curve of genus g > 2. Then (C,ωC) has

property Np if and only if p < Cliff(C).

This conjecture is open in general, but it has been proven for general curves by Voisin [29,30] using K3 surfaces.
Building on her work, Aprodu and Farkas [1] verified the conjecture for every smooth curve on any K3 surface.

3. PROPERTY (Np) ON SURFACES

This section contains general results about property (Np) on surfaces. Let X be a smooth projective surface, L

an ample and globally generated line bundle on X . Then the evaluation map on global sections gives rise to the
exact sequence

0 −→ ML −→ H0(X ,L)⊗OX −→ L −→ 0 ,

where ML is a locally free, it is called the syzygy bundle of L.

As pointed out in the introduction, we intend to characterize property (Np) on surfaces via the non-existence of
certain low degree curves. In one direction we one can detect failure of property Np on surfaces by restricting to
curves.

Proposition 3.1. Let X be a smooth projective surface, L an ample and globally generated line bundle on X and

p > 0 be some nonnegative integer. Suppose that there is a reduced effective divisor F ⊆ X of arithmetic genus

pa(F)> 1 such that (L ·F)6 p+2. Then (X ,L) does not have property Np.

Proof. We can clearly suppose F to be connected, otherwise we can restrict to a subdivisor. First we claim that
h0(F,OF(L))6 (L ·F): by Riemann-Roch, we get that

h0(OF(L)) = (L ·F)+1−h1(OF)+h1(OF(L))

and recalling that OF(KX +F) is dualizing on F , we can rewrite this as

h0(OF(L)) = (L ·F)+1−h0(OF(KX +F))+h0(OF(KX +F −L))

so that the claim is equivalent to h0(OF(KX +F − L)) 6 h0(OF(KX +F))− 1. To show this, we observe that
h0(OF(KX +F)) = pa(F) > 1, so that there exists a nonzero section in H0(F,OF(KX +F)): since F is reduced,
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there exists a point p ∈ F where the section does not vanish, and since L is globally generated, we can find a curve
C ∈ |L| that intersects F transversally and passes through p. Taking cohomology in the short exact sequence

0 → OF(KX +F −L)→ OF(KX +F)→ OC∩F (KX +F)→ 0

we get an exact sequence

0 → H0(OD(KX +F −L))→ H0(OF(KX +F))→ H0(OC∩F(KX +F))

and since the last map is nonzero by construction we see that h0(OF(KX +F −L))6 h0(OF(KX +F))−1.

The rest of the proof goes as in the proof of [24]Theorem 4.1: suppose now that (X ,L) has property Np, then in
particular L is very ample, so that we can consider X as an embedded surface X ⊆ PN . Let Λ be the linear space
spanned by F . By definition Λ is the projectivization of the image of the restriction map H0(X ,L)→ H0(F,OF(L)),
hence

dimΛ 6 h0(F,OF(L))−1 6 (L ·F)−1 6 p+1

By sheafifying the minimal free resolution of ΓX(OX ,L) we get a resolution of sheaves on PN :

0 → En → En−1 → ··· → E1 → E0 → OX → 0 Ep =
⊕

q

Kp,q(X ,L)⊗OPN(−p−q)

and if we restrict this resolution to Λ, we get a complex

0 → En|Λ → En−1|Λ → ··· → E1|Λ → E0|Λ → OX∩Λ → 0 Ep|Λ =
⊕

q

Kp,q(X ,L)⊗OΛ(−p−q)

which is exact at OX∩Λ and everywhere exact outside X ∩Λ, which has dimension at most one, as X ⊆ PN is
nondegenerate. Since (X ,L) has property Np, we know that Ki,q(X ,L) = 0 for all 0 6 i 6 p, q > 2 and in particular
we obtain that H i(Λ,Ei|Λ) = 0 for all i > 0 and 0 6 p 6 dimΛ− 1. Hence using [19, Lemma 1.6] we get that
H1(X ∩Λ,OX∩Λ) = 0. Since F is a subscheme of X ∩Λ, we have an exact sequence

0 → IF/X∩Λ → OX∩Λ → OF → 0

and taking cohomology we see that H2(X ∩Λ,IF/X∩Λ) = 0, because X ∩Λ has dimension one. Then, it follows
that H1(F,OF) = 0, which is absurd because pa(F)> 1. �

The following is a general condition under which property (Np) for a polarized surface (X ,L) is inherited by
curves in X .

Proposition 3.2. Let X be a surface, L an ample and globally generated line bundle on X. Let F ⊆ X be a smooth

curve such that

(1) H1(X ,L−F) = H1(X ,2L−F) = 0.

(2) H2(X ,L−F) = 0.

(3) Ki,0(X ,KX +F,L) = H0(X ,∧iML ⊗ (KX +F)) = 0 for all i = h0(X ,L)− p−2.

If (X ,L) has property (Np), then so does (F,OF(L)).

Proof. Observe first that conditions (1) and (2) together imply that OX(−F) is 3-regular with respect to L in the
sense of Castelnuovo-Mumford, it follows in particular that H1(X ,qL−F) = H2(X ,qL−F) = 0 for all q > 1.
Assume that (X ,L) satisfies property Np, and consider the short exact sequence

0 −→ OX(−F)−→ OX −→ OF −→ 0 .
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This induces to an exact sequence of graded Sym• H0(X ,L)-modules

0 −→ ΓX(OX(−F),L)−→ ΓX(OX ,L)−→ M −→ 0

where M is a graded module such that Mq = H0(F,OF(qL)) for all q > 1. In particular, from the description of
the Kp,q via the Koszul complex, we see that K j,q(F,OF(L);H0(X ,L)) = K j,q(M;H0(X ,L)) for all q > 2, so that, if
we can prove K j,q(M;H0(X ,L)) = 0 for all j 6 p,q > 2, we are done thanks to Lemma 2.1. Using the long exact
sequence in Koszul cohomology [15, Corollary 1.d.4], arising from the above sequence and the assumption that
(X ,L) has property (Np), we see that K j,q(M;H0(X ,L)) ⊆ K j−1,q+1(X ,−F,L) and we claim that this latter group
is zero. When q > 3 this follows from the regularity of OX(−F) with respect to L [2, Proposition 2.37]. If q = 2
we can use Green’s duality theorem for Koszul cohomology (see [15, Theorem 2.c.6]), which gives

K j−1,3(X ,−F,L)∨ = Kh0(X ,L)− j−2,0(X ,KX +F,L) ,

To conclude, we observe that H0(KX +F −L) = H2(L−F) = 0 thanks to condition (2), and looking at the Koszul
complex we immediately see that K j,q(X ,KX +F,L) = 0 for all j 6 0. Then [13, Proposition 1.9] shows that
condition (3) implies the vanishing Kh0(X ,L)− j−2,0(X ,KX +F,L) for all j 6 p. �

Remark 3.3. To check condition (3) we can sometimes use the stability considerations for the bundle ML. Assum-
ing that ML is slope stable with respect to L, the vanishing that we want is implied by

(
c1(∧

h0(X ,L)−p−2ML ⊗ (KX +F)) ·L
)

< 0 .

If we denote by r = h0(X ,L)−1 the rank of ML and i = h0(X ,L)− p−2, then the intersection number on the left
is computed as follows:

c1(∧
iML ⊗ (KX +F)) ·L = c1(∧

iML) ·L+

(
r

i

)
((KX +F) ·L) =

(
r−1
i−1

)
c1(ML) ·L+

(
r

i

)
((KX +F) ·L)

=−

(
r−1
i−1

)
(L2)+

(
r

i

)
((KX +F) ·L) =−

(
r−1
i−1

)[
(L2)−

r

i
((KX +F) ·L)

]

=−

(
r−1
i−1

)[
(L2)−

h0(X ,L)−1
h0(X ,L)− p−2

((KX +F) ·L)

]

In particular, condition (3) in Proposition 3.2 is satisfied, if ML is slope stable with respect to L, and

(h0(X ,L)− p−2) · (L2) > (h0(X ,L)−1) · ((KX +F) ·L) .

As an illustration of this technique, we prove the following extension of Proposition 3.1:

Proposition 3.4. Let X be a K3 surface, an abelian surface or an Enriques surface, and L an ample and globally

generated line bundle such that (L2) > 3p+ 6 (if K3), (L2) > 3p+ 14 (if abelian) or (L2) > 3p+ 7 (if Enriques).

Suppose there exists a smooth curve F ⊆ X of genus two with (L ·F)6 p+4 , then (X ,L) does not satisfy property

(Np).

Proof. Suppose that (X ,L) satisfies property (Np), in particular L is very ample. We start with computing h0(F,OF(L)).
Since OF(L) is very ample, we must have (L ·F) > 3, so that Riemann–Roch gives h0(F,OF(L)) = (F ·L)− 1 6

p+3. Since L is ample, we have H1(X ,L) = 0 by Kodaira vanishing. Consider then the exact sequence

0 → H0(X ,L−F)→ H0(X ,L)→ H0(F,OF(L))→ H1(X ,L−F)→ 0 .

We see that if H1(X ,L−F) 6= 0, then the image of the restriction map on global sections has dimension at most
h0(F,sOF(L))− 1 6 p+ 2, hence we are done using the same proof as in Proposition 3.1. Therefore, we can
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assume without loss of generality that H1(X ,L−F) = 0. Now we try to check the conditions of Lemma 3.2: if
C ∈ |L| is a smooth curve then we can look at the short exact sequence

0 → OX(L−F)→ OX(2L−F)→ OC(2L−F)→ 0 .

We see that ((2L−F) ·L)> (L2), so that Riemann-Roch implies H1(C,OC(2L−F))= 0, and then H1(X ,L−F)= 0
gives H1(X ,2L−F) = 0 as well. Serre duality and (L · (L−F))> 0 imply that we have H2(X ,L−F) = 0.

Thus, we are left with checking that condition (3) of Lemma 3.2 holds. One way to verify this according to
Remark 3.3 is to show that the syzygy bundle ML is stable. Note that under the conditions in the statement we have
the inequality

(h0(X ,L)− p−2) · (L2) > (h0(X ,L)−1) · (F ·L) ,

The stability condition on ML was proved in [6], hence, by Lemma 3.2 (F,OF(L)) has property (Np). However
a line bundle of degree d 6 p+ 4 on a hyperelliptic curve of genus at least 2 can never satisfy (Np) by [18,
Theorem 2]. �

Finally, we establish the equivalence between (2) and (3) of Theorem A on abelian and K3 surfaces under a
light numerical condition.

Proposition 3.5. Let X be a surface with KX = 0 and L an ample line bundle on X with (L2) > 8
7(p+ 2)2 for a

given natural number p. Then conditions (2) and (3) in Theorem A are equivalent.

Proof. The implication (3) =⇒ (2) follows immediately from the definition of the Seshadri constant; therefore,
it remains to deal with the converse implication. Let x ∈ X be a very general point. If the Seshadri constant is
maximal, i.e. ε(L;x) =

√
(L2), then (3) follows from the given lower bound on (L2). Assume that ε(L;x) is

submaximal, then there exists a curve F ⊆ X with m
def
= multx(F)> 1 giving the Seshadri constant ε(L;x). If m = 1

and (L ·F) 6 p+ 2, then the Hodge index theorem yields (F2) 6 0. However, since x ∈ X was chosen to be very
general, it does not lie on any negative curve, in particular we obtain that (F2) = 0. Now, we can assume F to be
irreducible and reduced, and if X is an abelian surface F must be also smooth, since there are no rational curves on
X . If instead X is a K3 surface, we can again suppose that F is smooth via [4, Proposition VIII.13]. In both cases,
we get to a contradiction of condition (2), therefore, either m = 1 and (L ·F)> p+3, or m > 2.

In the first case condition (3) is immediate, so we can assume that m > 2. First, note that X is not uniruled, and
then [23, Theorem 2.1] implies that

(F2) > m2 −m+2 .

Next, the definition of the Seshadri constant and the Hodge index theorem imply the sequence of inequalities

ε(L;x)2 =
(L ·F)2

m2
>

(L2) · (F2)

m2
>

8
7
(p+2)2

(
m2 −m+2

m2

)
> (p+2)2 ,

where the last inequality is valid for any m > 1. In particular, ε(L;x)> p+2, which yields (3). �

4. HIGHER SYZYGIES ON K3 SURFACES

We devote this section to the proof of Theorem A. First we present a stronger variant of the equivalence between
(1) and (2) in Theorem A for K3 surfaces. The fundamental principle here is that Koszul cohomology for K3
surfaces can be reduced to curves:
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Lemma 4.1. Let (X ,L) be a polarized K3 surface, with L ample and globally generated. Let C ∈ |L| be any smooth

curve, then

Kp,q(X ,L)∼= Kp,q(C,ωC) for all p,q

Proof. This follows from a general Lefschetz theorem for Koszul cohomology (see [2, Theorem 2.20]) together
with the fact that H1(X ,Lq) = 0 for all q > 0, since we are on a K3 surface. �

Moreover, we know from results of Aprodu-Farkas that Green’s conjecure holds for every smooth curve on any
K3 surface, so that we have:

Corollary 4.2 (Aprodu–Farkas). Let (X ,L) be a polarized K3 surface with L ample and globally generated. Then

(X ,L) has property Np if and only if for one (or any) smooth curve C ∈ |L| one has p < Cliff(C).

Then, it becomes important to study the Clifford index of curves on K3 surfaces. For example, we know that
for a smooth curve C we have Cliff(C) ∈ {gon(C)− 2,gon(C)− 3}. In the K3 case one can make a very precise
distinction (see [21, Proposition 8.6]):

Proposition 4.3. Let (X ,L) be a K3 surface, with L big and globally generated. Suppose that for all smooth curves

C ∈ |L| one has Cliff(C) = gon(C)−3. Then L ∼= OX(2D+Γ), where D ⊆ X is an effective divisor and Γ ⊆ X is a

smooth curve such that:

(D2)> 1 (Γ2) =−2 (Γ ·D) = 1

In this case, for any smooth curve C ∈ |L| we have

Cliff(C) = (D2)−1 gon(C) = (D2)+2

Remark 4.4. In particular, we see that the line bundle L described in the above proposition is not ample, since
(L ·Γ) = 2(D ·Γ)+ (Γ2) = 0.

Theorem 4.5. Let X be a K3 surface and L be an ample line bundle on X. Then

(a) If (L2)> 1
2(p+4)2 then conditions (1) and (2) in Theorem A are equivalent.

(b) If (L2)> 1
4(p+6)2, then the conditions (1) and (2) in Theorem A are equivalent with the exception of the case

when there exists a smooth genus two curve F on X such thata 1 6 (L ·F)6 p+4.

Remark 4.6. If f : X → P2 is a cover of degree 2 branched over a generic sextic, then Pic(X)≃ Pic(P2), by [5].
In particular, there is no elliptic fibrations on X and condition (2) in theorem A holds for L = f ∗(OP2(m+ 2)).
However, by Proposition 3.1, the pair (X ,L) satisfies (N2m−1) but not (N2m).

Proof of Theorem 4.5. In both cases the implication (1) =⇒ (2) in Theorem A is proved under less restrictive
hypotheses in Proposition 3.1. Now we address the converse implication.

(a) Suppose that (X ,L) does not have property Np. Since L is ample, we know from Remark 4.4 that there exists
a smooth curve C ∈ |L| with Cliff(C) = gon(C)−2. Then Corollary 4.2 implies that Cliff(C)6 p which is the same
as gon(C) 6 p+ 2. Now, we could proceed in various ways: for example it is easy to conclude the proof using a
result of Green–Lazarsfeld from [16], or Knutsen’s [21, Theorem 1.3], but we would like to use an extension result
due to Serrano, since in principle it could be applied also on other surfaces, whereas the other results we mentioned
are specific to the K3 case.

So, by definition of gonality, there exists a map f : C → P1 of degree deg f 6 p+ 2. Then [28, Theorem 3.1]
implies that f extends to a morphism f : X → P1: the general fiber F of f is a smooth elliptic curve and by
construction we have that (L ·F) = (C ·F) = deg f 6 p+2.
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(b) As before, if (X ,L) does not have property Np, then there is a smooth curve C ∈ |L| with a map f : C → P1

with degree d = gon(C) 6 p+ 2. The difference from case (a) is that due to the weaker numerical constraint,
[28, Theorem 3.1] does not apply. Instead, we will make use of another result by Serrano [28] that requires some
extra work. Let x ∈ P1 be a general point, then the fiber f−1(x) = {Px

1 , . . . ,P
x
d} consists of d distinct points. In the

course of the proof of [28], Serrano shows that there exists a non-trivial effective divisor Fx and a Q-effective Px on
X with C = Fx +Px satisfying

0 6 a
def
= (F2

x ) < b
def
= (P2

x ), a 6 d 6 (p+2), 0 < e
def
= (Fx ·Px)6 d ,

and Px
1 , . . . ,P

x
e ⊆ C ∩Fx. Moreover, since H1(X ,OX) = 0, it follows from [28, Theorem 3.9] that the effective

divisor Fx can be chosen to be irreducible and that infinitely many of them are in the same linear equivalence class,
as x ∈ P1 vare and to remain in the same linear series while x ∈ P1 varies. In particular Fx is globally generated by
[27, Theorem 3.1], and we can assume that Fx is smooth.

Then, if a = 0 we see that Fx is a smooth elliptic curve such that (Fx ·L) = (F2
x )+ (FX ·Px) 6 p+ 2. If instead

a > 0, then the Hodge index theorem implies that e2 > ab, thus by our hypotheses we get

1
4
(p+6)2 < (C2) = a+b+2e 6 a+

e2

a
+2e 6 a+

d2

a
+2d 6 a+

(p+2)2

a
+2(p+2).

Now we observe that a 6 d 6 (p+2) and the function f (a) = a+(p+2)2/a+2(p+2) is decreasing for 0 < a 6

(p+ 2). Then, the above inequality implies a 6 3 and since the intersection form on a K3 surface is even it must
be (F2

x ) = 2. Then Fx is a smooth genus two curve such that (C ·Fx)6 p+4. �

Using this result it is straightforward to give a characterization of property (Np) for ample line bundles of type
L⊗m with m > p, in the spirit of Mukai’s conjecture. In particular this gives an extension of results of Gallego and
Purnaprajina [14].

Corollary 4.7. Let X be a K3 surface and L an ample line bundle, then (p+3) ·L has property (Np).

Proof. Let M = (p+ 3) ·L: then M is globally generated [27] and (M2) = (p+ 3)2(L2) satisfies the condition of
Theorem 4.5 (a). Hence M fails to have property (Np) if and only if there exists a smooth elliptic curve E ⊆ X such
that (E ·M)6 p+2, but (E ·M) = (p+3)(L ·E)> p+3. �

For simplicity of exposition, in the next cases we restrict ourselves to the case when p > 2, since properties (N0)
and (N1) are taken care of by Saint-Donat’s Theorem [27].

Corollary 4.8. Let X be a K3 surface, L an ample line bundle and p > 2 an integer. Then (p+2) ·L has property

(Np) if and only if there is no smooth elliptic curve E ⊆ X such that (L ·E) = 1.

Proof. Let M = (p+ 2) ·L: then M is globally generated [27] and we see that the self-intersection (M2) = (p+

2)2(L2) satisfies the condition of Theorem 4.5 (a). Hence M fails to have property (Np) if and only if there exists
an elliptic curve E ⊆ X such that (E ·M)6 p+2, which is equivalent to (E ·L) = 1. �

Corollary 4.9. Let X be a K3 surface, L an ample line bundle and p > 2 an integer. If (L2)> 4, or (L2) = 2 and

p > 2, then (p+1) ·L has property (Np) if and only if there is no smooth elliptic curve E ⊆ X such that (E ·L) = 1.

Moreover, if (L2) = 2, then 3 ·L does not have property (N2).

Proof. Suppose (L2)> 4 or (L2) = 2 and p > 2. Then M = (p+1) ·L is globally generated [27], and (M2) satisfies
the condition of Theorem 4.5 (a). Hence M fails property (Np) if and only if there is a smooth elliptic curve E ⊆ X

such that (M ·E)6 p+2. But since p > 0, this is equivalent to (L ·E) = 1. Now, suppose that (L2) = 2: we need
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to show that 3 ·L does not have property N2. Thanks to Lemma 4.1 and Corollary 4.2 this is equivalent to showing
that for a smooth curve C ∈ |3 ·L| we have Cliff(C)6 2. So, let C be such a curve and consider the exact sequence

0 → OX(−2L)→ OX(L)→ OC(L)→ 0.

Taking cohomology we see that h0(C,OC(L)) = h0(X ,L) = 3 and h1(C,OC(L)) = h2(X ,2L) = 6, so that Cliff(C)6
(C ·L)−2h0(C,OC(L))+2 = 3(L2)−4 = 6−4 = 2. �

Corollary 4.10. Let X be a K3 surface and L an ample line bundle and p > 2 an integer.

(1) if (L2) > 4 and p > 2, or (L2) = 2 and p > 4, then p ·L has property (Np) if and only if there is no smooth

elliptic curve E ⊆ X such that (E ·L) = 1.

(2) if (L2)> 6 then 2 ·L has property (N2) if and only if there is no smooth elliptic curve E ⊆X such that (E ·L)6 2.

(3) in the other cases p ·L does not have property (Np).

Proof. (1) Set M = p ·L. Then M is globally generated [27] and (M2) satisfies the condition of Theorem 4.5 (a).
Hence M fails property Np if and only if there is a smooth elliptic curve E ⊆ X such that (E ·M)6 p+2. But
since p > 2, this is equivalent to (E ·L) = 1.

(2) Set M = 2 ·L. Then M is globally generated [27] and (M2) satisfies the condition of Theorem 4.5 (a). Hence M

fails property N2 if and only if there is a smooth elliptic curve E ⊆ X such that (E ·M)6 4, which is equivalent
to (E ·L)6 2.

(3) The remaining cases are when (L2) = 4 and p = 2 or when (L2) = 2 and p = 2,3,4. In all these cases, we can
show that p ·L does not have property (Np) reasoning as in the previous Corollary.

�

Proof of Theorem A. The proof is an immediate consequence of Proposition 3.5, Theorem 3.4, and Theorem 4.5
in the K3, and [24, Theorem 1.1] in the case of abelian surfaces. �

5. ENRIQUES SURFACES

We give here a result analogous to Theorem A on Enriques surfaces. To do this, we will assume the Green–
Lazarsfeld secant conjecture for certain curves on Enriques surfaces, which we state for the sake of reference.

Conjecture 5.1 (Green–Lazarsfeld secant conjecture). Let C be a smooth curve of genus g, L a line bundle of

degree degL > 2g+1+ p−2h1(C,L)−Cliff(C). Then L has property (Np) if and only if it is (p+1)-very ample.

On Enriques surfaces a result of Knutsen and Lopez [22] gives us some control over the Clifford index. In order
to state their result, we introduce some notation. Let L be a globally generated line bundle on X , and set

φ(L)
def
= inf{|(F ·L)| | F ∈ Pic(X), (F2) = 0, F 6≡ 0}

µ(L)
def
= inf{(B ·L)−2 | B ∈ Pic(X), (B2) = 4, φ(B) = 2, B 6≡ L} .

Theorem 5.2 ([22], Corollary 1.2). Let L be a globally generated line bundle on an Enriques surface X and let C

be a general curve in |L|. Then

Cliff(C) = min

{
2φ(L)−2,µ(L)−2,

⌊
(L2)

4

⌋}



HIGHER SYZYGIES ON SURFACES WITH NUMERICALLY TRIVIAL CANONICAL BUNDLE 11

Remark 5.3. In the definition of φ(L) we can actually suppose that F is effective. Indeed, if F is a divisor with
(F2) = 0 then Riemann-Roch gives h0(F)− h1(F)+ h0(KX −F) = 1, hence if F is not effective then KX −F is
effective, but then |((KX −F) ·L)|= |− (F ·L)|= |(F ·L)|.

Theorem 5.4. Let X be an Enriques surface and L an ample and globally generated line bundle on X such that

(L2)> 4(p+2)2. Assume that Conjecture 5.1 holds for a general curve in |L|. Then the following are equivalent

(1) L has property Np.

(2) there is no effective and reduced divisor F with (F2) = 0 such that 1 6 (F ·L)6 p+2.

Proof. Assume first that there exists an effective and reduced divisor F with (F2) = 0 such that 1 6 (F ·L)6 p+2.
Then we know that L does not have property (Np) by Proposition 3.2.

Conversely, suppose that there is no reduced effective divisor F with (F2) = 0 and 1 6 (F ·L) 6 p+ 2 and let
C be a general smooth curve in |L|. It is easy to see that the restriction maps H0(X ,qL) → H0(C,OC(qL)) are
surjective for all q > 0, and then it follows as in Lemma 4.1 that (X ,L) has property (Np) if and only if (C,OC(L))
does. We will assume the Green–Lazarsfeld secant conjecture on C.

First we show that the line bundle OC(L) satisfies Green–Lazarsfeld condition on the degree. It is easy to check
that OC(L) = OC(KC +η), where η is torsion bundle of orderexactly two. In particular, if we write g for the genus
of C, we have deg(OC(L)) = 2g− 2 and h1(C,OC(L)) = 0. Hence, the Green–Lazarsfeld condition is equivalent
to Cliff(C)> p+3.

Suppose now that Cliff(C)6 p+2. Since (L2)> 4(p+2)2, we observe that ⌊ (L
2)

4 ⌋> (p+2)2 > (p+2), hence,

by Theorem 5.2, there must exist either an effective and nontrivial divisor F with (F2) = 0 and (F ·L) 6 p+4
2 , or

a divisor B with (B2) = 4 and (L ·B) 6 p+ 4. However, the second possibility does not happen because if B is a
divisor with (B2) = 4 then

(B ·L)>
√
(B2)

√
(L2)> 4(p+2)> p+4 .

For the first possibility, suppose that there is an effective divisor such that (F2) = 0 and (F ·L) 6 p+4
2 . Observe

that p+4
2 6 (p+ 2), so that if we can take F to be reduced, we are done. First we observe that for every effective

divisor F ′ 6 F , it must be that (F ′2)6 0: indeed, if (F ′2)> 1, then
(

p+4
2

)2

> (L ·F)2 > (L ·F ′)2 > (L2)(F ′2)> 4(p+2)2 ,

which is impossible. Hence, if F has a reduced subdivisor F ′ 6 F with (F ′2)> 0, we are done.

If this does not happen, then every connected component of the support of F is a tree of smooth rational curves.
We can clearly reduce to the case when the support is connected, so that we can write F = n1C1+ · · ·+nrCr where
the ni are positive integers and the Ci are smooth rational curves with (C2

i ) = −2, and, if j 6= i then (Ci ·C j) = 1 if
j = i−1, i+2, and (Ci ·C j) = 0 otherwise. Then we see that

−(F2) =
r

∑
i=1

2n2
i −2n1n2 −2n2n3 + · · ·−2nr−1nr = n2

1 +
r−1

∑
i=1

(ni −ni+1)
2 +n2

r > 0 ,

so that (F2) = 0 cannot happen.

Next, we show that OC(L) is (p+ 1)-very ample. Suppose that it is not, and let Z ⊆ C be a zero-dimensional
subscheme of minimum length ℓ 6 p+ 2 such that H0(C,OC(L)) → H0(C,OC(L)⊗OZ) is not surjective. In
particular, since L is globally generated, we must have ℓ > 2. Then, by [21, Proposition 3.7], there exists an
effective divisor D on X , containing Z for which (L ·D)6 (D2)+ ℓ6 2ℓ.
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However since D contains Z, we see that (L ·D) = (C ·D)> ℓ, hence (D2) > 0. Suppose that (D2) > 1. Then
we have

4(p+2)2
> 4ℓ2

> (L ·D)2
> (L2)(D2)> 4(p+2)2 ,

which is impossible, so it must be (D2) = 0 and consequently, (L ·D)6 ℓ6 p+2.

�
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