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Introduction

The problem of approximating a function from a set of discrete measurements

has been extensively studied since the seventies [13; 14; 43; 98; 136; 143]

and it is so common in applications that it is a cross-cutting theme in many

areas including inverse problems and machine learning. Further, this problem

has been considered by the mathematical literature under many different

formal assumptions, ranging from direct to indirect measurements, from

deterministic to statistical noise hypotheses, from known to unknown statistical

noise distributions. This Ph.D. Thesis proposes a theoretical analysis of the

problem of function approximation, first within a completely general setting

and then focusing on a specific class of problems where measurements are

distributed according to a Poisson law. Finally, as far as applications are

concerned, in this Thesis we consider two problems in solar physics, i.e. a

forecasting problem, where the aim is the prediction of solar storms using

images of the magnetic field on the sun, and an image reconstruction problem

for solar flares based on inverse diffraction and background estimation.

Contribution and related works

Our theoretical analysis proposes a formalization of the function approxima-

tion problem which allows dealing with inverse problems and supervised

kernel learning as two sides of the same coin. The proposed formalization

takes into account arbitrary noisy data (deterministically or statistically de-

fined), arbitrary loss functions (possibly seen as a log-likelihood), handling

1



Introduction

both direct and indirect measurements. The core idea of this part relies on the

analogy between statistical learning and inverse problems. One of the main

evidences of the connection occurring across these two areas is that regulariza-

tion methods, usually developed for ill-posed inverse problems, can be used

for solving learning problems. In particular, when a kernel is given and the

loss function is the squared loss, spectral regularization methods have been

used [84; 148]. Furthermore, spectral regularization convergence rate analyses

provided in these two areas, share the same source conditions but are carried

out with either increasing number of samples in learning theory or decreasing

noise level in inverse problems. Even more in general, regularization via

sparsity-enhancing methods is widely used in both areas and it is possible to

apply well-known `1-penalized methods for solving both learning and inverse

problems (see e.g. [62; 68; 131]). Therefore, the fact that learning and inverse

problems can be solved using analogous regularization methods, the sparsity

concept can be applied to both problems with different purposes, and similar

convergence rate analyses are provided in the literature, beg the question of to

what extent these two problems are similar and which are the key points of the

connection. In this work, we analyze such a connection at three levels: (1) at

an infinite dimensional level, we define an abstract function approximation

problem from which the two problems can be derived; (2) at a discrete level,

we provide a unified formulation according to a suitable definition of sam-

pling; and (3) at a convergence rates level, we provide a comparison between

convergence rates given in the two areas, by quantifying the relation between

the noise level and the number of samples.

In the second part of this Thesis, we focus on a specific class of problems

where measurements are distributed according to a Poisson law. In this

case the loss function is the Kullback Leiber (KL) divergence [129]. As this

divergence is not Lipschitz continuous, regularization methods in this case

usually require proximal calculus theory and the resulting algorithms need

much more computational time with respect to the square loss case. In this part

we provide a data-driven, asymptotically unbiased, and globally quadratic

2
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approximation of the Kullback-Leibler divergence. This approximation is

inspired by the results in [152] and, roughly speaking, it holds for large

count amounts. The main advantage is the possibility to treat the Maximum

Likelihood estimation problem for Poisson data as a data-driven reweighted

`2 norm minimization problem. Such a global quadratic approximation of

the KL divergence leads to define a new method for solving sparse Poisson

regression problems, named PRiL for Poisson Reweighed Lasso, which works

as a Lasso-type method [68; 134] with the same computational cost of a

standard minimization of an `2 data fitting term plus an `1 regularization term.

By analyzing the statistical properties of this new method we prove that it

is a consistent estimator. Moreover, we propose an adaptive version of this

method, named APRiL (Adaptive Poisson Reweighted Lasso), by following

the theory of adaptive `1 methods in [156] and we prove that this adaptive

version performs variable selection in a consistent manner. We also assess

in applications the theoretical properties of these methods evaluating their

performances on both (synthetic) learning and inverse problems.

In the third part of the Thesis, we apply these sparsity-enhancing methods

to two problems in solar physics: the problem of forecasting solar flares

(learning application) and the desaturation problem of solar flare images

(inverse problem application). Solar flares are the most explosive phenomena

in the heliosphere, releasing a huge amount of electromagnetic radiation at all

wavelengths and, in this way, triggering the whole space weather connection.

The full comprehension of solar flare physics is still an open issue. Solar flares

originate from magnetically active regions on the Sun. However, not all active

regions give rise to solar flares and the nature of the prediction is intrinsically

probabilistic.

For the first problem of interest, we apply the `1-penalized method pro-

posed in this Thesis to predict if an active region originates solar flares. The

challenge of solar flare prediction benefits by an intelligent computational anal-

ysis of physics-based features extracted from active regions from data provided

by Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics
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Observatory (SDO). The training phase of the algorithm is therefore based on

an historical dataset of magnetic features of active regions labeled with some

information about flare occurrences. The central goal of this application is to

exploit the above mentioned `1-penalized algorithm to predict occurrences of

solar flares on the basis of how many flares are originated by an active region:

in this case the labels are reasonably Poisson distributed. This represents an

advantage with respect to using labels with unknown distribution. The use

of a sparsity-enhancing method is not only devoted to solar flares prediction

but it also permits to identify the most predictive features. Relevant features

are most likely associated to crucial physical processes and the knowledge of

these features has hardware implications: instruments that accurately observe

the most predictive features are probably more worthwhile designing.

The second application concerns the restoration problem of Extreme Ultra-

Violet (EUV) solar flare images recorded by a second instrument on board

SDO, the Atmospheric Imaging Assembly (AIA). SDO/AIA is probably the

most powerful instrument for EUV solar imaging ever conceived, opening new

crucial windows on the comprehension of how the solar magnetic fields release

the huge amount of energy they store. This telescope has an unprecedented

spatial resolution observing a 41 arcmin field of view in ten EUV and UV

channels, with 0.6-arcsec pixels and 4096× 4096 Charged Coupled Devices

(CCDs) [80]. Such a spatial resolution requires very small pixels, which are

more likely affected by saturation effects with increasing incoming photon flux.

Saturation includes two phenomena: primary saturation refers to the fact that,

for intense incoming flux, CCD pixels lose their ability to accommodate addi-

tional charge; blooming, or secondary saturation, names the fact that primary

saturation causes charge to spill into their neighbors. The resulting overall

artifact appears as a bright region in the image surrounded by diffraction

fringes and this phenomenon usually happens when intense solar flares occur

and it makes such images unusable for scientific purposes. Image saturation

has been an issue for several instruments in solar astronomy, mainly at EUV

wavelengths. However, with the launch of AIA, image saturation has become
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a big data issue, involving around 105 frames of the impressive dataset the

telescope has been providing every year since February 2010. In this part of

the work, we developed a new method for desaturating AIA images, called

Sparsity-Enhancing DESAT (SE-DESAT), based on the `1-penalized method

proposed in this Thesis. Sparsity in this context is conceived in the pixel

space: this is for the fact that the saturated region of an image has a relatively

small support with respect to the entire image. By promoting sparsity of

the solution on the pixel space the proposed method performs segmentation

and reconstruction of the saturated region simultaneously. Such a feature,

together with the capability to estimate the background, enables the proposed

method to desaturate several consecutively deteriorated frames recorded dur-

ing long-lasting intense solar storms, like the one occurred on September 10,

2017. This makes this method superior to the existing one, developed in [149]

and called DESAT, which has the limitation to need an a priori estimate of the

background, usually not available when strong saturation effects occur for a

whole time series of images.

Plan of the Thesis

In the following we report a summary of each chapter of the Thesis.

In Chapter 2 we analyze the connection between learning and inverse prob-

lems at an infinite dimensional level. An inverse problem can be formulated as

a function approximation problem given an operator A and a data y. On the

other hand, a learning problem consists in finding a function which explains

the input-output relation from a given set of samples. Both these problems can

be subsumed under an abstract common approximation problem. In particular

the key instrument to define such a common approximation problem is the

notion of Reproducing Kernel Hilber Space (RKHS). Indeed, the hypothesis

space in learning problems is a RKHS and at the same time the range of a

bounded operator is provided with a RKHS structure in a natural way.

In Chapter 3 we analyze the connection at a discrete dimensional level
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providing a unified formulation of the two problems. Once the common RKHS

approximation problem is defined we build a sampling operator which allows

us to derive from such an infinite dimensional problem different discrete

problems such as learning and discrete inverse problems. The peculiarity of

this sampling operator is that it can take into account different natures of

samples: in learning problems, data are usually assumed to be given as the

result of a stochastic process whose underlying distribution is unknown, whereas

in discrete inverse problems, data are assumed to be given according to a

deterministic scheme, at least for the independent variables and even when

the dependent variables are assumed to be drawn in a stochastic manner,

the underlying distribution is supposed to be known. Finally, we discuss the

conditions for the convergence of the discrete problem formulation (being it

either deterministic or stochastic) to the infinite dimensional one.

In Chapter 4 we analyze the convergence rates of spectral regularization

providing a comparison between the ones computed with respect to the number

of samples and the ones computed with respect to the noise level in order

to quantify the differences. In the literature, regularization methods have

been studied in these two contexts providing error convergence rates under

the same Holder-type source condition: in the context of ill-posed inverse

problems, convergence rates for spectral regularization depending on the noise

level δ have been known for years [2; 43]; in the context of learning results on

optimal convergence rates depending on the number of samples n are more

recent [9; 17; 30; 81; 102; 114; 127; 144; 148]. The question that naturally arises

is whether the above rates are comparable and, if it is the case, which relation

occurs between δ and n for quantifying the difference between optimal rates in

the two contexts. We provide a comparison defining the relation between δ and

n and considering an hybrid estimator [87; 139] which allows us to compare

the rates given in the two settings.

In Chapter 5 we provide sparsity-enhancing methods for Poisson data to

use in both learning and inverse problems applications. Lasso-type methods

(i.e. `1-penalized methods) are widely used both in inverse problems as image

6



Introduction

reconstruction problems, where usually images are compressed in suitable

basis where few coefficients are non zero; and in learning applications, where

the most predictive variables have to be selected. Poisson noise is common in

both fields especially when data represents counts. The fidelity term charac-

terizing the `1-penalized methods with Poisson data is usually represented

by the KL divergence. Therefore, first we provide an asymptotically unbiased

globally quadratic approximation of KL, which leads to the definition of new

`1-penalized methods, called PRiL and APRiL. These novel methods can take

advantage from the fast algorithms developed for those `1-penalized methods

that have the least square functional as the fidelity term. We prove theoretical

consistent properties of these estimators and we show their effectiveness on

both learning and image reconstruction experiments.

In Chapter 6 we introduce the problem of solar flares forecasting. The

prediction of solar flares is one of the key questions of heliophysics since

solar flares are the primary drivers of space weather. Many observational and

machine learning studies confirmed the important role that magnetic field

properties in active regions play for the prediction of solar flares. In particular,

we addressed the issue of both predicting the occurrence of solar flares and

identifying the most predictive features using Lasso-type methods as PRiL and

APRiL. Since these are supervised learning algorithms they need a training

phase. We trained the methods on datasets where the labeling is not only

the occurrence of solar flares but also other tasks such as the number of the

originated flares which are reasonably assumed to be affected by Poisson noise.

Chapter 7 is devoted to an image reconstruction problem and presents a

new method for restoring solar images affected by saturation and diffraction

effects. We propose a formalization of the saturation process which takes into

account both primary saturation and blooming effects and we formulate the

desaturation problem as a linear inverse problem between Hilbert spaces in

which the forward operator encodes both the diffraction effects of light rays and

the conservation of the photon-induced charge in the CCD. The fact that the

diffraction effects visible over the background solar activity come from a subset
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of saturated pixels (i.e. the primary saturated ones) is translated in a sparsity

constraint in the pixel domain. Moreover, the solar activity background is

estimated iteratively by means of an alternating minimization algorithm. We

compare the results of our algorithm with the ones of the existing DESAT

method [137], showing the performances of the two approaches for both

synthetic data and strongly saturated real observations. Furthermore, we apply

the new method to desaturate images related to the solar storm on September

10, 2017: in this case DESAT cannot be used for the lack of a reliable estimate

of the background. The new method works without any need of a priori

information on the image background and therefore can be applied even for

desaturation of several consecutively deteriorated frames recorded during

long-lasting intense solar storms. This peculiar methodological property could

make this algorithm a possible tool for the realization of an automatic pipeline

for the processing of the whole AIA data archive.
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Chapter 1

Learning and inverse problems

from a function approximation

point of view

Inverse problems are typically ill-posed in the sense of Hadamard [64] and

the regularization theory has been developed in order to provide a family of

approximated solutions of an inverse problem. Formally, the goal of solving a

linear inverse problem is to recover a function f such that

y = A f (1.1)

given the data y and A a linear operator. For estimating f one can consider to

have noisy infinite dimensional data, e.g. yδ such that ‖yδ − y‖ ≤ δ, or, more

realistically, a finite set of noisy samples {y1, . . . yn} taken at points {x1, . . . xn}.
On the other hand, in supervised learning we have a quantitative (or

categorical) outcome which we want to predict from a set of features. We

have a disposal a training set of data in which we know the outcome and the

features: from the training set we want to build an estimator or a prediction

model which will be able to predict the outcome when a new feature is given.

In other words, the aim of supervised learning is to find a function g from a

set of examples {(Xi, Yi)}n
i=1 randomly drawn from an unknown probability
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distribution ρ, such that g has to explain the relationship between input and

output, i.e.

Yi ∼ g(Xi) (1.2)

for all i = 1, . . . , n and g(x) has to be a good estimate of the output when a

new input x is given. Learning algorithm such as the regularized least square

algorithm is used to avoid overfitting and infer stability in the solution in order

to assure the generalization property [22; 36].

One of the main evidences of the connection occurring across supervised

learning and inverse problems is the conceptual analogy between learning

algorithms and regularization ones. In this Chapter, first we recall the main

ingredients of linear inverse problems (section 1.1.1) and supervised learning

(section 1.1.2) and we provide an overview about the main works concerning

the connection between these two fields (section 1.1.3). After that, in section

1.2 we provide the connection at the infinite dimensional level from a function

approximation point of view: the fact that the range of a bounded linear oper-

ator is provided with a Reproducing Kernel Hilbert Space (RKHS) structure in

a natural way (see [78]) allows us to describe the two problems as the same

approximation problem in functional spaces. Here, we define the approxi-

mation in a RKHS as an optimization problem. In particular, by introducing

a non-linear generalization of the Moore-Penrose inverse, we prove that the

solution of an approximation problem in a RKHS can always be associated

with a solution of a certain inverse problem. Conversely, we prove that the

set of solutions of a class of inverse problems corresponds to the solution of

a certain approximation problem in a RKHS. This set is defined up to the

action of the unitary group. The same relation applies between Tikhonov-type

solutions of approximation and inverse problems.

1.1 Introduction to learning and inverse problems

The concept of inverse problems has to come after the definition of the direct

problem, which has to be thought of as a mathematical model describing
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a particular process. Inverse problems [13; 43; 58] consist in reconstructing

causes from observed effects: they have wide application in many fields as

in medical imaging, signal processing, geophysics and they are common in

astrophysics since the quantities of interest cannot be observed directly.

On the other hand, statistical learning [32; 51; 140] has conquered a central

role in many areas of sciences, finance and industry and, as the name suggests,

it is based on a phase of learning, called also training, in order to be able to

generalize and so to predict from new inputs.

In the following we formally introduce inverse problems and learning

problems.

1.1.1 Linear inverse problems

Let H1 and H2 be two Hilbert spaces and A be a bounded linear operator

A : H1 → H2.

Definition 1. The inverse problem associated with the operator A consists in finding

f ∈ H1 satisfying the equation

A f = y (1.3)

given y ∈ H2.

Usually the inverse problem is ill-posed in the sense of Hadhamard, which

means that the solution could not exist, could not be unique or could not

depend continuously on the data. Therefore, the problem is addressed by

searching for the Moore-Penrose generalized solution, denoted as f †. Formally,

we have the following definition

Definition 2. Let P=(A)y ∈ =(A), where =(A) denotes the range of the operator A

and P=(A) the projection on the closure of the range of A. Let MA be the set of the

least-square solutions, i.e.

MA := arg min
f∈H1
‖y− A f ‖2

H2
. (1.4)
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The Moore-Penrose generalized solution f † is defined as

f † := arg min
f∈MA

‖ f ‖H1 . (1.5)

With the introduction of the Moore-Penrose generalized solution, the ex-

istence is restored by solving the least square problem min f∈H1 ‖y− A f ‖2
H2

(provided that the projection on the closure of the range of A of the data y be-

longs to the range of A) and the uniqueness is restored by taking the minimal

norm solution of the least square problem. However, the generalized solution

does not depend continuously on the data and this is a problem since only a

noisy version yδ of the data is available, where δ > 0 represents the noise level.

Such a problem is addressed by using some regularization methods such as

Tikhonov-type regularization methods, which lead to minimize the following

functional

‖yδ − A f ‖2
H2

+ λΩ( f ), (1.6)

where λ is the regularization parameter and Ω( f ) is the penalty term needed

to regularize the solution. In the case of the Tikhonov-type regularization we

take the penalty term with the following form

Ω( f ) := ψ(‖ f ‖H1), (1.7)

where ψ : [0,+∞) → R+ is a continuous convex and strictly monotonically

increasing real-valued function. The usual Tikhonov regularization is presented

with the special choice ψ(‖ f ‖H1) = ‖ f ‖2
H1

. Therefore, the usual Tikhonov

regularization leads to the following optimization problem

min
f∈H1
‖yδ − A f ‖2

H2
+ λ‖ f ‖2

H1
. (1.8)

The regularization parameter λ has to create a trade off between the residual

term (or fidelity term, i.e. the first term of the minimization functional in

equation (1.6)) and the penalty term (the second term of the minimization

functional in equation (1.6)). The parameter λ has to be chosen such that the
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reconstruction error given by

‖ f λ
δ − f †‖H1 (1.9)

is small, where f λ
δ represents the regularized solution. In detail, λ (which

depends on the noise level δ and the data yδ) is selected in such a way that the

convergence of the regularized solution to the generalized solution holds, i.e.

lim
δ→0
‖ f λ

δ − f †‖H1 = 0, (1.10)

for any data yδ.

1.1.2 Learning from examples

The aim of supervised learning is to find a function g from a set of examples

which are randomly drawn from a fixed but unknown probability distribution

such that g explains the relationship between input and output and it satisfies

the generalization property which means that it has to provide a good estimate

of the output when a new input is given. Formally, we give the following

definition.

Definition 3. Let

Zn := {(X1, Y1), . . . , (Xn, Yn)} (1.11)

be a finite set of samples, which are drawn independently identically distributed (i.i.d.)

according to a given (but unknown) probability distribution ρ on Z = X ×Y where

X ⊆ Rp, with p > 0, and Y ⊆ R: X and Y represent the so-called input and output

spaces, respectively. X and Y can be assumed to be compact spaces and ρ admits the

following factorization

ρ(X, Y) = ρ(Y|X)ν(X) (1.12)

where ν is the marginal distribution on X and ρ(·|X = x) is the conditional distri-

bution on Y for almost all x ∈ X . Given the set of samples Zn, the aim is to find a

function ĝ : X → R, called estimator, such that ĝ(X) is a good estimate of the output
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when a new input X is given.

Given a measurable function g, the ability of g to describe the distribution

ρ is measured by the expected risk defined as

Rρ(g) =
∫
X×Y

V(Y, g(X)) dρ(X, Y) , (1.13)

where V is called loss function and V(Y, g(X)) measures the cost paid by

replacing the true label Y with the estimate g(X). A common choice of loss

function is the square loss V(Y, g(X)) = (Y − g(X))2. In such a case the

regression function, defined as

gρ(X) =
∫
Y

Ydρ(Y|X) (1.14)

is the minimizer of the expected risk in equation (1.13) (over all measurable

functions), i.e. it can be seen as an ideal estimator of the unknown distribution

ρ . However only the set Zn is available and therefore learning is performed

by minimizing over an hypothesis space HK (which is usually a Reproducing

Kernel Hilbert Space (RKHS) [29]) the empirical risk given by

RZn(g) =
1
n

n

∑
i=1

V(Yi, g(Xi)) . (1.15)

Therefore, in the case of square loss the empirical risk minimizer is the least

square estimator, defined as follows.

Definition 4. Under the same hypothesis in Definition 3, the least square estimator

ĝ†, is defined as follows

ĝ† = arg min
g∈HK

1
n

n

∑
i=1

(Yi − g(Xi))
2. (1.16)

From a numerical point of view the solution of the minimization prob-

lem (1.16) is not stable and therefore, following the approach of Tikhonov

regularization, it is useful to introduce a penalty term in order to stabilize
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the solution. Therefore, the regularized problem consists in minimizing the

following penalized functional

RZn(g) + λΩ(g) , (1.17)

where λ is the regularization parameter and Ω represents the penalty term. In

the case of the Tikhonov-type regularization we take the penalty term with the

following form

Ω(g) := ψ(‖g‖HK), (1.18)

where ψ : [0,+∞) → R+ is a non-decreasing convex function. The usual

Tikhonov regularization is presented with the special choice ψ(‖g‖HK) =

‖g‖2
HK

. The algorithm generated by using Tikhonov regularization in this

context of learning theory is the well-known regularized least-square algorithm,

which consists in the following optimization problem

min
g∈HK

1
n

n

∑
i=1

(Yi − g(Xi))
2 + λ‖g‖2

HK
. (1.19)

The regularization parameter λ has to yield a trade off between the fitting term

(to avoid overfitting) and the stabilizer term. In detail, λ has to be chosen such

that the learning algorithm is consistent, which means that the discrepancy,

measured as

Rρ(ĝλ
n)− inf

g∈HK
Rρ(g), (1.20)

is small in probability, where ĝλ
n represents the estimator, that is the minimizer

of the penalized functional in equation (1.17). In the case of square loss, simple

computations show that

Rρ(ĝλ
n)− inf

g∈HK
Rρ(g) = ‖ĝλ

n − PHK gρ‖2
L2(X ,ν), (1.21)

where PHK denotes the projection on the closure of HK in L2(X , ν). As we

have seen that in inverse problems setting the convergence results are given in
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terms of the reconstruction error, in this case the convergence results are given

in terms of the prediction error ‖ĝλ
n − PHK gρ‖2

L2(X ,ν). This error (which is a

random variable since it depends on observations) is estimated in probability

or in expectation: in detail, the regularization parameter λ (which depends on

n and Zn) is selected in such a way that

lim
n→∞

Eρ⊗n(‖ĝλ
n − PHK gρ‖2

L2(X ,ν)) = 0, (1.22)

where ρ⊗n indicates the distribution tensor product (see [17] and references

therein).

1.1.3 Overview of the connection between learning and in-

verse problems

One of the main evidences of the connection occurring across learning and

inverse problems is that regularization methods, such as Tikhonov regular-

ization (as we have already mentioned in the previous sections) or spectral

regularization (as we will see in details in Chapter 3), which have been devel-

oped in the inverse problems theory can be used for solving learning problems

[84; 148]. More in general, a classical approach relies on the concept of vari-

ational regularization [11, 24]. It combines knowledge about how data is

generated in the forward operator with a regularization functional that en-

codes prior knowledge about the solution to be reconstructed. As we will see

in Chapter 4, when solutions admit a sparse representation it is possible to

apply variational regularization, e.g. `1-penalized methods, for solving both

learning and inverse problems [62]. On the other hand, a recent trend is to

use neural networks, a common tool for learning problems, for solving inverse

problems, in particular in imaging applications [1; 92].

In the literature several authors proposed to solve learning problems by

using regularization techniques originally developed for inverse problems,

offering a glimpse of the connection between supervised learning and inverse

problems [33; 56; 79; 94; 126; 128; 144]. In recent years, a rigorous formalization
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of this connection between supervised learning and linear inverse problems

has been proposed according to two strategies: the first considers the learning

problem as an instance of an inverse one (see e.g. [38; 84]) whereas the

second introduces a bounded operator in the model equation of the statistical

learning and it is known as inverse learning (see e.g. [17; 86; 114]). The

first strategy interprets a learning problem as an inverse one in which the

forward operator is an inclusion of the hypothesis space HK into the Hilbert

space of square integrable functions L2(X , ν). Its main objective is to draw

a connection between consistency in kernel learning and regularization in

inverse problems offering a full connection in the case of square loss. On the

other hand, the second strategy considers inverse problems from a statistical

estimation perspective highlighting the fact that statistical inverse problems can

be thought of as learning problems starting from indirect data. In particular,

in this case the observations are modeled as follows

Yi = gρ(Xi) + εi, i = 1, . . . , n with gρ = A fρ (1.23)

where A is a uniformly bounded operator and εi are independent centered

noise variables. Furthermore, under appropriate probabilistic source condi-

tions, error rates are provided for both the predictive error ‖A f̂ λ
n − A fρ‖2

L2(X ,ν)

and the estimation (or reconstruction) error ‖ f̂ λ
n − fρ‖2

H1
. The latter one is

studied in inverse problems theory, especially in the case that f̂ λ
n is a spectral

regularized estimator. The operator A encodes the information contained in

the feature map introduced in supervised kernel learning. Indeed, when A is

uniformly bounded the range of A ia a RKHS [78]. This is the key point to in-

terpret learning and inverse problems from a common function approximation

perspective.

18



1.2 A common function approximation problem

1.2 A common function approximation problem

In order to outline the connection at the infinite dimensional level two in-

gredients are necessary: the definition of a suitable function approximation

problem in Reproducing Kernel Hilbert Spaces (RKHSs) and the definition

of a non-linear generalization of the Moore-penrose solution in the context

of inverse problems between Hilbert spaces. Once these two ingredients are

provided we show the connection between approximation problems in RKHSs

and classes of inverse problems (up to the action of the unitary group).

1.2.1 Approximation problem in RKHSs

RKHSs arise in a number of areas, including statistical machine learning

theory, approximation theory, generalized spline theory and inverse problems

[33; 75; 107]. The general theory of RKHSs was developed by [6]. The usual

definition of a RKHS is given for a Hilbert space of functions, as follows:

Definition 5. Let H be a Hilbert space of real valued functions on a non-empty set X .

H is said a reproducing kernel Hilbert space if for all x ∈ X the evaluation functional

Lx : f ∈ H → Lx( f ) := f (x) is continuous.

An important characterization of RKHSs, which can be even considered as

an alternative definition, is the following:

Definition 6. K : X ×X → R is a reproducing kernel of a Hilbert space H if for all

f ∈ H, f (x) = 〈 f , Kx〉H, where Kx := K(x, ·) ∈ H, ∀ x ∈ X .

We recall some well known facts. The kernel K : X ×X → R is a symmetric

positive definite function, where positive definite means that for each set of

points {xi}n
i=1 in X and set of real numbers {ai}n

i=1,

n

∑
i,j=1

aiajK(xi, xj) ≥ 0. (1.24)
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If K is continuous then each g ∈ HK is continuous. If it is assumed further that

κ := sup
x∈X

√
K(x, x) < ∞, (1.25)

then, for the reproducing property, for each x ∈ X and for each g ∈ HK

|g(x)| = |〈g, Kx〉HK | ≤ ‖g‖HK‖Kx‖HK = ‖g‖HK

√
K(x, x), (1.26)

which implies that

‖g‖∞ ≤ κ‖g‖HK . (1.27)

This means that convergence in ‖ · ‖HK implies the uniform convergence.

The definition of RKHS is not restricted to function spaces but allows us to

consider reproducing kernels K defined on X ×X , where X is a Borel set. For

function spaces X shall be R or C, but in general it can be a countable set or a

finite set [6] (e.g. a pixel space) . This perspective takes to see the reproducing

kernel K as function of two variables (x, x′), which can be continuous variables,

e.g. x, x′ ∈ R, or can be represented by indexes (i, j), e.g. countable variables

i, j ∈N or finite discrete variables i, j ∈ {1, . . . , n}. In the latter case, the kernel

K is an infinite or finite matrix.

We now define the approximation problem in a RKHS as the problem of

finding the closest element of the RKHS to a given one.

Definition 7. Let y be the element to approximate in a given Hilbert space H2 and

let HK ⊆ H2 be a RKHS with reproducing kernel K. We define the solution of the

approximation problem as the minimizer of a functional Ry : H2 → R over the RKHS

HK, i.e.

gRy := arg min
g∈HK

Ry(g). (1.28)

The idea is that Ry(g) measures the discrepancy between y and g. We

require that Ry(g) ≥ 0 for all g ∈ H2, and Ry(g) = 0 iff g = y. Under these

hypotheses, if y ∈ HK the existence and uniqueness are assured by requiring

that Ry is strictly convex. Otherwise, if y /∈ HK the existence and uniqueness

are assured either by requiring that
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1.2 A common function approximation problem

a) Ry is lower semicontinuous, strictly convex and coercive with respect to

the norm ‖ · ‖H2 and HK ⊆ H2 is closed, or

b) Ry is lower semicontinuous, strictly convex and coercive with respect to

the norm ‖ · ‖HK .

A typical example is Ry(g) = ‖y− g‖2
H2

with HK closed in H2.

1.2.2 Non-linear generalization of the Moore-Penrose solution

We consider the setting of inverse problems described in section 1.1.1. There-

fore, given a data y ∈ H2 and a bounded linear operator A : H1 → H2 the aim

is to find a function f such that the equation (1.3) is satisfied. We recall that

the ill-posedness of inverse problems leads to the definition of the generalized

solution, denoted by f †, which can be seen, from a variational point of view,

as the minimal norm solution of the least squares problem (see Definition 2).

This variational form can be generalized by minimizing the functional Ry as

follows

MA,Ry := arg min
f∈H1

Ry(A f ) (1.29)

and take the minimum norm solution. Hereafter, we refer to MA,Ry as the

set of the Ry-minimum solutions. When at least an Ry-minimum solution

fRy exists, MA,Ry is the affine subspace given by fRy + Ker(A), where Ker(A)

denotes the nullspace of A.

Definition 8. Consider the inverse problem in equation (1.3). f †
Ry
∈ H1 is called the

Ry-generalized solution of the inverse problem (1.3) if it is the Ry-minimum solution

(see equation (1.29)) with minimum norm, i.e.

f †
Ry

= arg min
f∈MA,Ry

‖ f ‖H1 . (1.30)

As in section 1.2.1 we require that Ry(g) ≥ 0 for all g ∈ H2, and Ry(g) = 0

iff g = y. We discuss some hypotheses which assure the existence and

uniqueness of the Ry-generalized solution. Under these hypotheses, if y ∈
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1.2 A common function approximation problem

=(A) the existence and uniqueness are assured by requiring that Ry is strictly

convex. Otherwise, if y /∈ =(A) the existence and uniqueness are assured

either by requiring that

a) Ry is lower semicontinuous, strictly convex and coercive with respect to

the norm ‖ · ‖H2 and =(A) ⊆ H2 is closed, or

b) f ∈ H1 7→ Ry(A f ) is lower semicontinuous, strictly convex and coercive

with respect to the norm ‖ · ‖H1 .

When Ry is different from the least squares functional, this procedure

provides a generalization of the so-called Moore-Penrose generalized solu-

tion. Such a generalization is needed to develop the equivalence between

approximation problems in RKHSs and classes of linear inverse problems. We

introduce it in the next paragraph.

1.2.3 Approximation in RKHSs and inverse problems

We show the equivalence between an approximation problem in a RKHS and

an inverse problem by proving that there is a natural correspondence of the

solutions of the two problems. We make use of the following:

Assumption 1. Let H1 be a real separable Hilbert space and H2 be a real Hilbert

space on a Borel space X . For all x ∈ X and for all f ∈ H1 there exists a constant

c > 0 such that

|A f (x)| ≤ c‖ f ‖H1 . (1.31)

The assumption 1 together with the Riesz’s representation theorem implies

that for all x there exists an element φx ∈ H1 such that

(A f )(x) = 〈 f , φx〉H1 (1.32)

and

‖φx‖H1 = ‖Ax‖H∗1 ≤ c, (1.33)
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1.2 A common function approximation problem

where Ax : H1 → R has to be intended as Ax( f ) = (A f )(x) for each f ∈
H1 and ‖ · ‖H∗1 represents the norm in the dual space H∗1 , i.e. ‖Ax‖H∗1 :=

sup‖ f ‖H1
≤1 |A f (x)|. Moreover, it is well known that the range of the operator

A is a RKHS (e.g. see [6; 78; 132]). The following proposition is an adaptation

of this result to our context.

Proposition 1. =(A) equipped with the norm

‖g‖HK = min{‖w‖H1 : w ∈ H1 s.t g(x) = 〈w, φx〉H1 , x ∈ X}

is a RKHS with kernel

K :X ×X → R

(x, r)→ K(x, r) := 〈φx, φr〉H1 .
(1.34)

We remark that K by definition is a positive semi-definite kernel over X
and φ represents the feature map on the feature space H1. Furthermore, we

have

=(A) = span{Kx, x ∈ X}.

Moreover, we emphasise that conditions usually required on a reproducing

kernel and on its associated RKHS are satisfied: HK is separable since H1 is

separable and A is a partial isometry from H1 to =(A), and for all x ∈ X
K(x, x) ≤ c2 since K(x, x) = 〈φx, φx〉H1 = ‖φx‖2

H1
and inequality (1.33) applies.

Now we introduce the restriction of A to the space orthogonal to its

nullspace and we prove the main result of this section which identifies the

solutions of the two problems gRy and f †
Ry

as defined in equations (1.28) and

(1.30), respectively. We denote with Ã the restriction operator, i.e.

Ã := A|Ker(A)⊥ : Ker(A)⊥ → =(A). (1.35)

By definition, Ã admits the inverse operator Ã−1.

Theorem 1. Let gRy be the solution of the approximation problem in the RKHS

HK with kernel K defined in equation (1.28). Let f †
Ry

be the solution of the inverse
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1.2 A common function approximation problem

problem defined in equation (1.30) with the operator A defined in equation (1.32). If ∀
x, x′ ∈ X K(x, x′) = 〈φx, φx′〉H1 , we have

f †
Ry

= Ã−1gRy . (1.36)

Proof. By hypothesis we have the following identification =(A) = HK intended

as RKHSs. Thanks to this identification the hypotheses on Ry in problems (1.28)

and (1.30) (see sections 1.2.1 and 1.2.2) are exactly the same: the equivalence

of hypotheses a) is straightforward; the hypotheses b) are equivalent as the

coercivity of Ry with respect to the norm ‖ · ‖HK corresponds to the coercivity

of f 7→ Ry(A f ) with respect to the norm ‖ · ‖H1 . Let gRy be the solution of the

problem (1.28) and let f̃ := Ã−1gRy . Then for all f ∈ H1 we have

Ry(A f ) ≥ min
g∈=(A)

Ry(g) = Ry(gRy) = Ry(A f̃ ) , (1.37)

i.e. f̃ is solution of problem (1.29). Furthermore, by definition of Ã−1, f̃ ∈
Ker(A)⊥ and therefore f̃ is the solution of (1.30), that is f̃ = f †

Ry
.

Two remarks about this result are mandatory.

1) Under assumption 1, given an inverse problem described by a linear

operator A (characterized by a map φ), it is always possible to associate

with it an approximation problem in the RKHS HK with kernel K defined

by the map φ, i.e. K(x, x′) = 〈φx, φx′〉H1 for all x, x′ ∈ X .

2) Given an approximation problem in the RKHS HK with kernel K, it is

always possible to associate with it a feature map φ : x ∈ X → φx ∈ H1,

where H1 is a Hilbert space and such that K(x, x′) = 〈φx, φx′〉H1 for all

x, x′ ∈ X . In such a way we define F = span{φx , x ∈ X}, which is

the feature space, and an inverse problem whose operator A is given in

equation (1.32). By construction we have the identification between the

feature space and the orthogonal of the null space of the operator, i.e.

F = Ker(A)⊥. In the case that K is a continuous reproducing kernel, the

Mercer theorem [95; 96; 97] gives us the way to describe the feature map
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1.2 A common function approximation problem

φ and the feature space is `2, whereas in the general case (when K is not

necessarily continuous) we can consider the canonical feature map, that

is φ : x ∈ X → φx ∈ HK where ∀ x ∈ X φx = Kx.

From the second remark the feature map associated with a given kernel K is

determined up to the action of unitary group on H1, i.e.

K(x, x′) = 〈φx, φx′〉H1 = 〈Uφx, Uφx′〉H1 , (1.38)

for each unitary operator U acting on H1. In particular, we can define an

equivalence relation ∼ on H1 using the left action of the unitary group U . Let

f , f ′ ∈ H1

f ∼ f ′ ⇐⇒ ∃ U ∈ U | f ′ = U f . (1.39)

We can also define an equivalence ∼X between feature maps. Let φ, φ′ ∈ HX1

φ ∼X φ′ ⇐⇒ φx ∼ φ′x , ∀ x ∈ X . (1.40)

Then, we define the map

K : HX1 −→ RX×X

φ 7−→ Kφ

with Kφ(x, x′) = 〈φx, φx′〉H1 and where HX1 denotes functions X → H1 and

RX×X denotes functions X ×X → R. Therefore, from equations (1.38) and

(1.40) we have a bijection

HX1 / ∼X ←→ =(K) ⊂ RX×X

φ̄ ←→ Kφ ,

where φ̄ is the class induced by the equivalence relation ∼X in (1.40). We

denote with Aφ the operator defined in equation (1.32). We have

gRy = Aφ f †
Ry

= Aφ′( f †
Ry
)′,
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1.2 A common function approximation problem

where φ ∼X φ′ and f †
Ry
∼ ( f †

Ry
)′. Then we also have a bijection

H1/ ∼ ←→ HK

f †
Ry
←→ gRy

stating that, for any Ry satisfying conditions of problem (1.28) (or equivalently

(1.30)) and for any y ∈ H2, the class of Ry-generalized solutions f †
Ry

corre-

sponds to the solution gRy of the approximation problem in the RKHS HK

defined in equation (1.28). Let us now fix an element y ∈ H2 and a functional

Ry. For each K ∈ =(K) we define the function TRy(K) := gRy which maps

the kernel K to the solution of the approximation problem in a RKHS defined

in equation (1.28). In the same way, for each φ ∈ HX1 we define the function

H†
Ry
(φ) := f †

Ry
which maps the feature map φ to the Ry-generalized solution

of the inverse problem defined in (1.30). Then, for each class φ, we can define

a map H†
Ry

: HX1 / ∼X→ H1/ ∼ as follows

H†
Ry
(φ) := π(H†

Ry
(φ)) , (1.41)

where φ is a representer of φ and π is the quotient map with respect to

the equivalence relation ∼ in (1.39). Furthermore, we denote with πX the

quotient map with respect to the equivalence relation ∼X defined in (1.40).

This definition is well-posed since it does not depend on the choice of the

representer φ. We can summarize this discussion with the commutative

diagram in Figure 1.1. In synthesis, when an approximation problem in

a RKHS is provided with a feature map, it is equivalent to a linear inverse

problem. If a feature map is not given, we can associate with the approximation

problem in a RKHS as many inverse problems as feature maps (and so features

spaces) which give rise to the same kernel.
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1.2 A common function approximation problem

φ ∈ HX1 φ ∈ HX1 / ∼X

Kφ ∈ =(K)

f †
Ry
∈ H1 f †

Ry
∈ H1/ ∼

gRy ∈ HK

πX

K
H†

Ry

1−1

H†
Ry

TRy

π

Aφ 1−1

Figure 1.1: Commutative diagram summarizing the equivalence between
approximation in a RKHS and linear inverse problems.

1.2.4 Tikhonov-type solutions of approximation in RKHSs and

inverse problems

When y is corrupted by noise, the inverse problem needs to be addressed in a

different way as the Ry-generalized solution f †
Ry

may not exist or it may not

depend continuously on the data. A well-known strategy common to both

approximation and inverse problems is Tikhonov regularization [43]. It allows

us to find solutions of the problem which depend continuously on the data by

re-stating the approximation problem in RKHS HK defined in equation (1.28)

as follows

ĝRy,λ = arg min
g∈HK

Ry(g) + λΩ(g), (1.42)

and the inverse problem associated to the operator A given data y defined in

equation (1.30) as follows

f̂Ry,λ = arg min
f∈H1

Ry(A f ) + λΩ( f ) . (1.43)

In these generalized Tikhonov regularization schemes Ry is usually called

the data fidelity term, Ω is the penalty term and λ > 0 is the regularization

parameter. The purpose of the penalty term is to induce stability and to allow
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1.2 A common function approximation problem

the incorporation of a priori information about the desired solution according

to the magnitude of the parameter λ. In this context we assume that the

penalty term has the following form

Ω(h) := ψ(‖h‖H) , (1.44)

where ψ : [0,+∞) → R+ is a continuous convex and strictly monotonically

increasing real-valued function, h is an element of a Hilbert space H and ‖ · ‖H
denotes its norm. Now we show that the result of Theorem 1 can be extended

to the case of Tikhonov regularized solutions f̂Ry,λ and ĝRy,λ.

Theorem 2. Under the same assumptions of Theorem 1 we have

f̂Ry,λ = Ã−1 ĝRy,λ . (1.45)

Proof. As in the proof of the Theorem 1 we have the identification =(A) = HK

as RKHSs and the hypotheses on functionals to minimize in equations (1.42)

and (1.43) are the same. Let f̃ := Ã−1 ĝRy,λ. By definition of Ã−1, f̃ ∈ Ker(A)⊥

and so ‖ĝRy,λ‖HK = ‖ f̃ ‖H1 . For all f ∈ H1 we have

Ry(A f ) + λψ(‖ f ‖H1) ≥ min
g∈=(A)

Ry(g) + λψ(‖g‖Hk)

= Ry(ĝRy,λ) + λψ(‖ĝRy,λ‖Hk)

= Ry(A f̃ ) + λψ(‖ f̃ ‖H1)

(1.46)

i.e. f̃ is solution of problem (1.43). This concludes the proof.

As in the case of Ry-generalized solutions, we have a commutative diagram

for Tikhonov regularized solutions. The diagram has exactly the same shape

of the one shown in Figure 1.1 but arrows and nodes refer to the solution of

problems in equations (1.42) and (1.43). In particular, we have to replace: T†
Ry

with the function TRy,λ(K) := ĝRy,λ which maps the kernel K to the Tikhonov

solution in equation (1.42); H†
Ry

with the function HRy,λ(φ) := f̂Ry,λ which

maps the feature map φ to the Tikhonov solution in equation (1.43); H†
Ry

with

28



1.2 A common function approximation problem

φ ∈ HX1 φ ∈ HX1 / ∼X

Kφ ∈ =(K)

f̂Ry,λ ∈ H1 f̂Ry,λ ∈ H1/ ∼

ĝRy,λ ∈ HK

πX

K
HRy ,λ

1−1

HRy ,λ

TRy ,λ

π

Aφ 1−1

Figure 1.2: Commutative diagram summarizing the connection between
Tikhonov-type solutions of the approximation in a RKHS and linear inverse
problems.

the map HRy,λ defined as in equation (1.41) by substituting H†
Ry

with HRy,λ;

f †
Ry

with f̂Ry,λ, which is the class of Tikhonov solutions corresponding to the

Tikhonov solution of the approximation problem in the RKHS represented by

Kφ.
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Chapter 2

A unified formulation for learning

and inverse problems

In this Chapter we provide a uniform formulation for applied inverse prob-

lems such as supervised learning or discrete inverse problems. Once the

connection between approximation problems in RKHSs and inverse problems

at the infinite dimensional level is established, the unified formulation needs

the definition of a general sampling operator which allows us to derive dif-

ferent applied estimation problems from the same abstract approximation

problem in RKHSs by suitably choosing the parametrization of the sampling

operator. Therefore a general sampling operator has to take into account both

deterministic and stochastic samples (section 2.1), providing an extension of

the sampling operator defined in [126]. By means of this sampling operator,

we show that supervised learning and discrete inverse problems are closely

related to each other, both of which being able to be subsumed under the same

infinite dimensional approximation problem.

Finally, for the sake of completeness, in section 2.3 we provide a discussion

of the arguments used to prove convergence of discrete solutions to the ideal

solutions in both statistical and deterministic settings. Finally, we make use

of the equivalence between approximation in RKHSs and inverse problems

(provided in Chapter 1) to show that the Representer Theorem [118], a well-
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2.1 Sampling operator

known result in statistical learning theory applies to inverse problems, too.

2.1 Sampling operator

The purpose of this section is to show that applied problems, such as discrete

inverse problems, interpolation problems and statistical (inverse) learning,

despite appearing different, can be thought of as instances of the approximation

problem in a RKHS in Definition 7. To this end, we introduce a suitable

discretization operator mapping the infinite dimensional data y to a finite

number of samples together with a specific form of the functional Ry. The

idea of the discretization operator is to consider, in place of the data y, a set of

samples {(Xi, Yi)}n
i=1 statistically or deterministically related to y. In this way

we will retrieve the formulation of various applied problems by minimizing

the empirical form of the ideal functional Ry. To realize the discretization

operator, i.e. a map from H2 to a sample space, we proceed as follows.

Definition 9 (V-characteristic of a distribution ρ̃). Let us consider the set P of

all possible Borel probability distributions over a compact space Y ⊆ R. We define the

function FV : P → R as follows

FV(ρ̃) := arg min
w∈R

∫
Y

V(Y, w) dρ̃(Y), (2.1)

where V is called loss function in the statistical learning terminology [116].

The function FV is defined provided that V : Y ×R → [0,+∞) is mea-

surable and integrable with respect to the first variable and V(Y, ·) is lower

semicontinuous, strictly convex and coercive ∀ Y ∈ Y . Given a function V,

FV(ρ̃) can represent a characteristic of the distribution ρ̃, we show in the follow-

ing some examples. Let Z be a random variable with probability distribution

ρ̃,

• if V is the square loss usually used in regression problems, i.e. V(Y, w) =

(w− Y)2, or V is the Kullback-Leibler divergence, then FV(ρ̃) = E(Z),

i.e. is the expected value;
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2.1 Sampling operator

• if V is the square loss usually used in classification problems, i.e. V(Y, w) =

(1−Yw)2 then FV(ρ̃) = E(Z)/E(Z2);

• if V is the absolute value loss, i.e. V(Y, w) = |w− Y| then FV(ρ̃) is the

median of the distribution ρ̃.

We now want to define a map from R to P , roughly speaking an inverse of FV .

Definition 10 (Distributions with a given V-characteristic). We introduce an

application

ϑ : R→ P

z→ ρ̃z,
(2.2)

mapping z ∈ R in a distribution ρ̃z such that FV ◦ ϑ = id. Given a function y, ϑ

maps y(x) to a distribution ρ̃y(x) such that y(x) is the characteristic of ρ̃y(x) for each

x ∈ X .

Therefore we define the following sampling operator.

Definition 11 (Sampling operator). Let S(n)
x̄,ϑ be defined as follows

S(n)
x̄,ϑ : H2 → Yn

y→ (Yi)i=1,...,n

(2.3)

where each Yi is drawn from the distribution ρ̃y(xi)
:= ϑ(y(xi)) and the set of points

x̄ = {x1, . . . , xn} ⊂ X can be either given a priori (in a deterministic manner) or

drawn from a probability distribution ν over X .

Once V is fixed, for any chosen sampling S(n)
x̄,ϑ let us consider the functional

defined as

Ry(g) :=
∫
X×Y

V(Y, g(X))dρ̃y(X)(Y)dν(X) (2.4)

which depends on ν and ϑ as well as on y and on V.

Henceforth, we consider the approximation problem in a RKHS (see Defi-

nition 7) with functional Ry given in equation (2.4). By applying S(n)
x̄,ϑ to the
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data y, we now show that we can retrieve the formulation of different applied

problems according to whether ρ and ν are known or not and, if they are

known, according to their specific explicit form. In general, when just a finite

set of sample is known, Zn = {(xi, Yi)}n
i=1, all these problems are addressed

by minimizing the following empirical form of the functional, i.e.

RZn(g) :=
1
n

n

∑
i=1

V((S(n)
x̄,ϑ (y))i, g(xi)) . (2.5)

We summarize the construction of this section in the following

Proposition 2. Consider the following equivalent minimization problems

arg min
g∈HK

Ry(g) and arg min
f∈MA,Ry

‖ f ‖H1 , (2.6)

where A is a linear operator satisfying assumption 1 (see Chapter 1), Ry is the

functional defined in equation (2.4) and MA,Ry is defined in equation (1.29). Consider

the sampling operator S(n)
x̄,ϑ (see Definition 11), where ϑ is given in Definition 10. The

two problems in equation (2.6) reduce to the following two empirical problems

ĝ(n)R = arg min
g∈HK

RZn(g) and ( f̂ (n)R )† = arg min
f∈MA,RZn

‖ f ‖H1 . (2.7)

where RZn is defined as

RZn(g) =
1
n

n

∑
i=1

V(Yi, g(Xi)), (2.8)

MA,RZn
is the set of solutions minimizing the functional f 7→ RZn(A f ) and Zn is

the set of samples generated by applying the sampling operator S(n)
x̄,ϑ to y.

The advantage of this result consists in the following:

Remark 1. According to the choice of the parameters x̄ and ϑ in the sampling operator

we retrieve the following cases.

1) Statistical kernel learning:
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– the elements xi of x̄ are given at random according to a distribution ν;

– ρ̃y(xi)
= ϑ(y(xi)) = ρ(·|X = xi), i.e. it is the conditional distribution

with respect to X = xi.

In this case ν and ρ(·|X) are considered to be unknown.

2) Statistical inverse problems with random matrix design:

– same hypotheses of the first case with the substantial difference that ν and

ρ(·|X) are considered to be (at least partially) known.

3) Statistical inverse problems with fixed matrix design:

– the elements xi of x̄ are given not at random;

– ρ̃y(xi)
= ϑ(y(xi)) = ρ(·|X = xi), i.e. it is the conditional distribution

with respect to X = xi.

In this case a natural choice of the loss V is given by the Maximum Likelihood

approach according to ρ (see section 2.2).

4) Deterministic inverse problems:

– the elements xi of x̄ are given not at random;

– ρ̃y(xi)
= ϑ(y(xi)) = δ(· − y(X)|X = xi).

In this case the samples Yi are the values of the function y, or a noisy version yδ,

at the points xi.

In a machine learning problem the samples can be view as the result of a

sampling process which takes place upstream of the definition of the problem

itself, or in any way, independently of the will of the learner. It is indeed

formalized as an empirical process in accordance with an unknown distribution.

On the contrary, in an inverse problem the discretization usually takes place

downstream of the problem: for example, in the case of an industrial device,

it can be defined during the design phase or determined even later, after

the signal acquisition, as a variable to be optimized in the inversion process.
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Incidentally, we notice that in learning problems a given point can be sampled

more than once whereas in inverse problems each sample x ∈ X is usually

taken once.

We remark that for learning problems formulation given in Proposition

2 differs from the classical one where the samples are given without any

discretization process. In the classical formulation the crucial hypothesis is that

the samples are drawn independently and identically distributed according to

a distribution ρ(·, ·) and there is no need to introduce from the beginning ν

and the conditional distribution ρ(·|·). However, these last two distributions

are the result of the factorization of ρ. In the classical version, y is introduced

after ρ, it depends on the choice of V and it is the V-characteristic of the

distribution ρ (in the sense of Definition 9) representing the parameter to

learn. We remark that, in this case, thanks to the factorization property

ρ(X, Y) = ρ(Y|X)ν(X) the functional Ry in equation (2.4) coincides with

the expected risk Rρ defined in equation (1.13), and the V-characteristic to

learn y, given by y(x) = FV(ρ(·|X = x)), is the minimizer of the expected

risk (over all measurable functions). The crucial point is that ρ is unknown.

In contrast, when ρ is known, which is usually the case of discrete inverse

problems (with both random and fixed matrix design), the loss function V can

be chosen in a natural way by means of the Maximum Likelihood approach.

Table 2.1 summarizes the main sampling schemes corresponding to different

applications.

Table 2.1: Discretization schemes.

sampling S(n)
x̄,ϑ

ρ(·|·) and ν unknown x̄ given and ρ(·|·) (partially) known

direct learning interpolation
inverse inverse learning discrete inverse problems

From a numerical point of view, solving the empirical problems in (2.7)
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needs regularization. This is achieved by adding a penalty term as follows

ĝ(n)R,λ := arg min
g∈HK

RZn(g) + λψ(‖g‖HK) (2.9)

and

f̂ (n)R,λ := arg min
f∈H1

RZn(A f ) + λψ(‖ f ‖H1) , (2.10)

where λ > 0 is the regularization parameter and the function ψ : [0,+∞)→ R+

is a non-decreasing convex function (see Chapter 1). This formulation is

known as Tiknonov regularization in inverse problems and structural risk

minimization in statistical learning [43; 140]. The general discrete minimization

problem in equation (2.5), as well as problems in equation (2.7), depends on

the set of points Zn but not on their statistical or deterministic origin, i.e. it

does not depend on the specific choice of x̄ and ϑ. For this reason, the solutions

of the discretized problems have been indicated with the notation ĝ(n)R , ( f̂ (n)R )†,

ĝ(n)R,λ and f̂ (n)R,λ regardless the nature of the samples Zn. In this respect, we give

the following:

Corollary 1. Given Zn a set of samples, let A : H1 → H2 be a bounded linear

operator between Hilbert spaces, which satisfies assumption 1. Let φ the feature map

of A (see equation (1.32)). By assuming that ∀ x, x′ ∈ X K(x, x′) =< φx, φx′ >H1 ,

where K is the reproducing kernel of HK we have that

( f̂ (n)R )† = Ã−1 ĝ(n)R and f̂ (n)R,λ = Ã−1 ĝ(n)R,λ , (2.11)

where Ã−1 is the inverse of the restriction of A in equation (1.35). Furthermore, the

solutions ĝ(n)R and ĝ(n)R,λ correspond to the set of solutions {U( f̂ (n)R )† | U ∈ U} and

{U f̂ (n)R,λ | U ∈ U}, respectively, where we remind that U is the set of unitary operators

on H1.

This result is valid for any choice of x̄ and ϑ, i.e. independently of the

discretization scheme. The proof is omitted since it is a straightforward

application of Theorems 1 and 2.
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2.2 Maximum likelihood approach

2.2 Maximum likelihood approach

We consider discretized problems , as instance a discretized inverse problem

characterized by a linear bounded operator A, as follows

Yi = (A f )(xi), i = 1, . . . , n, (2.12)

where x1, . . . , xn are n points deterministically identified, and for each i ∈
{1, . . . , n}we know the sample Yi from a given probability distribution ρ(Y|X =

xi). The main difference with respect to the learning framework is that here

the probability distribution ρ(·|·) is known and the quantity to be determined

is the parameter f which characterizes the distribution ρ(·|·). For this kind of

problem the standard approach is the so-called Maximum Likelihood (ML)

estimation [13; 73; 133; 142]. We denote with pA f (·|·) the conditional density.

In the Maximum Likelihood approach, the likelihood is introduced, which is

given by

LA f (Y, x) =
n

∏
i=1

pA f (Yi|xi), (2.13)

where Y and x denote the n-dimensional vectors which contain the samples

Yi and xi, respectively. Maximize the likelihood is equivalent to minimize the

following negative log-likelihood

JA f (Y, x) = −α1 log(LA f (Y, x)) + α2, (2.14)

where α1 > 0 and α2 are two suitable constants. Therefore, the problem is

addressed by solving

arg min
f∈H1

JA f (Y, x). (2.15)

The knowledge of the noise on data allows us to have an explicit form of JA f .

We show two examples.

• Gaussian additive noise: JA f (Y, x) = ∑n
i=1(Yi − (A f )(xi))

2 by a suitable

choice of α1 and α2. The ML coincides with the usual least square

minimization problem.
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• Poisson noise: JA f (Y, x) = ∑n
i=1 Yi log( Yi

(A f )(xi)
) + (A f )(xi)−Yi by a suit-

able choice of α1 and α2, i.e. JA f is the Kullback-Leibler divergence.

This problem can be formalized by means of the sampling operator S(n)
x̄,ϑ which

yields the sample set

Zn := {(x1, Y1), . . . , (xn, Yn)} , (2.16)

where ϑ(A f (x)) := ρA f (·|X = x), which is the conditional probability distri-

bution (associated with the conditional density pA f (·|x)). In the Maximum

Likelihood approach the choice of V is the following

V(Y, A f (x)) = − log pA f (Y|X = x) (2.17)

less than suitable constants. With this choice equation (2.5) takes the form

RZn(g) =
1
n

n

∑
i=1
− log(pA f (Yi|xi)) , (2.18)

which corresponds to the negative-log formulation of the Maximum Likelihood

approach.

2.3 Convergence

In the previous part we considered the ideal functional, defined as in equa-

tion (2.4), and its empirical form, in equation (2.5), and we considered the

variational problems consisting in minimizing the two functionals in order

to define the solution of the approximation/inverse problem and the one of

the associated discrete problem. For the sake of completeness we discuss the

convergence of the empirical functional defined in equation (2.5) to the ideal

one defined in equation (2.4) and the convergence of their respective mini-

mizers in the deterministic and statistical setting. In the case Zn is randomly

drawn the convergence is defined in terms of probabilities and the conditions
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are well established [102; 140]. However, if Zn is assumed to be generated

in a deterministic manner, the convergence is defined in terms of norms and

the theoretical tools for proving the convergence are slightly different. In-

deed, whereas in the statistical framework convergence is a consequence of a

straightforward application of the argmax continuous theorem [138], we show

that in the deterministic framework we need a result relying on the notion of

Γ-convergence [24].

2.3.1 Statistical setting

Consider a set of samples Zn = {(Xi, Yi)}n
i=1 drawn from a probability dis-

tribution as described in previous sections. We recall a classical theorem

ensuring the consistency of a sequence of arg max-estimators in an argmin

version suitable for our framework [138]. Let (H, d) be a metric space and (Fn)

be a sequence of random functions over H given a probability distribution ν.

Theorem 3 (Argmax continuous theorem). Let us suppose

sup
h∈H
|Fn(h)− F(h)| →P 0 , (2.19)

where F is a fixed function over H and for each ε > 0

inf
h∈H:d(h,h∗)≥ε

F(h) > F(h∗), (2.20)

where h∗ is the minimizer of F. Moreover, if Fn(h(n)) ≤ Fn(h∗) + oP(1), we have

h(n) →P h∗ (2.21)

where h(n) is the minimizer of Fn.

Whereas the second hypothesis is a property of the limit function F at

its minimum point h∗, which is assured when F is strictly convex, coercive

and lower semi-continuous, the first hypothesis in equation (2.19) requires the
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2.3 Convergence

uniform convergence of (Fn). When Fn takes the form of the empirical risk

(equation (2.5)) and F is given by equation (2.4) the condition in equation (2.19)

is satisfied if H is a uniform Glivenko-Cantelli class (uGC) [40], provided that

V has some Lipschitz property [99]. Then, we have the following

Corollary 2. Let HK be uGC. Let Ry be defined in equation (2.4) and let V be a

loss function as in section 2.1 with the additional Lipschitz property described in

[99]. Assume that V satisfies the following coercivity property: for each sequence

(gk) ⊆ HK such that ‖gk‖HK → ∞, as k → ∞ then V(Y, gk(X))→ ∞, as k → ∞,

for each Y ∈ Y and X ∈ X . Then as n→ +∞,

ĝ(n)R −→P gRy and ( f̂ (n)R )† −→P f †
Ry

, (2.22)

where ĝ(n)R and ( f̂ (n)R )† are defined in equation (2.7), gRy is the minimizer of Ry over

HK and f †
Ry

is the Ry-generalized solution in according to the definition in equation

(1.30), respectively.

Proof. Let us take Fn := RZn (where RZn is defined in equation (2.5)) and

F := Ry in Theorem 3. Condition in equation (2.19) is verified for the uGC

hypothesis on HK. Condition in equation (2.20) is verified thanks to the

hypothesis of uniqueness of the minimizer of Ry. Moreover, the sequence ĝ(n)R

satisfies RZn(ĝ(n)R ) ≤ RZn(gRy) + oP(1) as ĝ(n)R is the minimizer of RZn . Using

the connection between direct and inverse problems, (see Corollary 1) we have

the following equalities

‖ĝ(n)R − gRy‖HK = ‖A( f̂ (n)R )† − A f †
Ry
‖HK = ‖( f̂ (n)R )† − f †

Ry
‖H1 . (2.23)

This completes the proof.

Remark 2. The same convergence result of Corollary 2 applies for Tikhonov-type

regularized solutions, i.e. fixed λ > 0 we have that ĝ(n)R,λ and f̂ (n)R,λ defined in (2.9)

and (2.10) converge in probability to ĝRy,λ, and f̂Ry,λ, defined in (1.42) and (1.43),

respectively.
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2.3.2 Deterministic setting

Consider a set of samples Zn = {(xi, yi)}n
i=1 deterministically given, where

yi = y(xi) i = 1, . . . , n with y the infinite dimensional data. The convergence

in the deterministic case needs the use of the fundamental theorem of Γ-

convergence [24]. First, we recall the Γ-convergence definition for a given

sequence (Fn) of functions on a metric space (H, d) with respect to the distance

d.

Definition 12. The sequence (Fn) Γ-converges in H to a fixed function F if for all

h ∈ H the lim inf inequality holds, i.e. for all sequence hn such that d(hn, h)→ 0, as

n→ +∞

F(h) ≤ lim inf
n

Fn(hn) (2.24)

and the lim sup inequality holds, i.e. there exists a sequence hn such that d(hn, h)→ 0,

as n→ +∞ such that

F(h) ≥ lim sup
n

Fn(hn). (2.25)

In order to prove the Γ-convergence of a sequence we use the following

characterization of the equi-coerciveness of a sequence [34].

Lemma 1. (Fn) is an equi-coercive sequence ⇐⇒ there exists a lower semicontinuous

coercive function G such that Fn ≥ G on H, for each n ∈N.

We also exploit the following result which is a consequence of the funda-

mental theorem of Γ-convergence (see [25] for details).

Proposition 3. Let (Fn) be an equi-coercive sequence Γ-converging to F. Let hn be

a minimizer of Fn, and we assume F admits a unique point of minimum h. Then

hn → h, as n→ +∞, i.e. d(hn, h)→ 0, as n→ +∞.

We now prove the convergence of the minimizer of RZn to the one of

Ry over HK, where Ry is defined in equation (2.4) and V is strictly convex,

Lipschitz continuous with respect to the second variable and coercive in the
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sense of the definition given in Corollary 2. We remark that in the deterministic

case, assuming dν(x) = dx, the functional Ry reduces to

Ry(g) =
∫
X

V(y(x), g(x))dx. (2.26)

Results apply by considering the minimization problems over the RKHS HK

or the inverse problems with the operator A which satisfies assumption 1. In

both cases assumption 1 assures that the feature map associated to A or the

reproducing kernel K associated to HK is bounded (see Chapter 1).

Proposition 4. Let x1, . . . , xn ∈ X such that the sequence of points (xn) is dense in

X . Let (yn) be the set of samples, taken as the points yi = y(xi) i = 1, . . . , n. Let

Ry be defined in equation (2.26) and let RZn be defined in equation (2.8), with V a

Lipschitz continuous with respect to the second variable and coercive function. Then

the sequence (RZn) is an equi-coercive sequence and it Γ-converges to Ry taking the

metric space (HK, ‖ · ‖HK).

Proof. To prove the equi-coerciveness of the sequence (RZn), it is sufficient to

observe that RZn ≥ RZ1 for all n ∈ N where RZ1(g) = V(y1, g(x1)) and then

RZ1 is coercive and continuous for the hypothesis on V. Now we prove that

(RZn) Γ-converges to Ry. Without loss of generality we assume X = [0, 1]p.

Let g ∈ HK and let (gn) be a sequence converging to g, i.e. ‖gn − g‖HK → 0,

then we have the following inequality

∣∣RZn(gn)− Ry(g)
∣∣ ≤ ∣∣RZn(g)− Ry(g)

∣∣+ |RZn(gn)− RZn(g)| . (2.27)

The first term in the r.h.s. of equation (2.27) converges to 0 as n→ +∞ for the

definition of the Riemann integral and for the density of the points xi in X .

Now we prove that the second term in the r.h.s. of equation (2.27) converges

to 0. Under the assumption 1 we have that ‖Kxi‖HK ≤ c, ∀ xi, where c is a

fixed constant (see section 1.2.3). By using the Lipschitz continuity of V and
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the reproducing property of K we have the following inequalities

|RZn(gn)− RZn(g)| ≤ 1
n

n

∑
i=1
|V(gn(xi), yi)−V(g(xi), yi)| (2.28)

≤ 1
n

n

∑
i=1

σ|gn(xi)− g(xi)| ≤ cσ‖gn − g‖HK ,

where σ is the Lipschitz constant of V. Therefore, for each sequence (gn)n

converging to g there exists limn→+∞ RZn(gn) = R(g). Then (RZn) Γ-converges

to Ry.

Corollary 3. Under the assumptions of Proposition 4 and requiring that V is strictly

convex with respect to the second variable we consider ĝ(n)R and ( f̂ (n)R )† defined in

equation (2.7), gRy defined in equation (1.28) and f †
Ry

defined in equation (1.30). Then,

as n→ ∞

ĝ(n)R → gRy , and ( f̂ (n)R )† −→ f †
Ry

, (2.29)

where the convergence is uniform in HK and H1, respectively.

Proof. The convergence in HK follows from Propositions 3 and 4, by observing

that Ry admits a unique minimizer. The convergence in H1 follows from the

equality in equation (2.23).

Remark 3. The same convergence result of Corollary 3 applies for Tikhonov-type

regularized solutions, i.e. ĝ(n)Ry,λ and f̂ (n)Ry,λ converge to ĝRy,λ and f̂R,λ, respectively.

Such a result follows from the fact that (RZn + λψ(‖ · ‖HK)) is equi-coercive and Γ-

converges to Ry + λψ(‖ · ‖HK) which is a straightforward consequence of Proposition

4 and the fact that λψ(‖ · ‖HK) is continuous (see [24]).

Finally, as the convergence property of the RZn-generalized solution holds

regardless the discretization scheme we can summarize functionals, solutions,

convergence and discretization with the commutative diagrams shown in

Figure 2.1.

The vertexes of the rear side of the cube represent the four minimizing

functionals and the vertexes of the front side represent the corresponding
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RZn(A f ) Ry(A f )

( f̂ (n)R )† f †
Ry

RZn(g) Ry(g)

ĝ(n)R gRy

arg min

convergence

discretization

convergence

co
rr

es
po

nd
en

ce

Figure 2.1: A summary of the discretization and convergence results applied
to the approximation problems in a RKHS. Arrows indicate: from left to right
convergence processes; from right to left discretization processes in the rear
panel; from rear to front optimization processes; from top to bottom (and
viceversa) the correspondence between inverse and direct problems.

solutions. The empirical and ideal cases are shown on the left and right sides,

respectively. The arrows from left to right represent the convergence, whereas

the arrows from right to left, on the rear side, represent the discretization. The

arrows from rear to front show the minimizing process. In particular, along

horizontal arrows of the front side of the cube we show the convergence of the

empirical solutions to the ideal ones (Corollaries 2 and 3); along vertical arrows

we show the correspondence between solutions of approximation problems in

a RKHS and inverse problems (Theorem 1 and Corollary 1).

2.3.3 Representer theorem

The representer theorem and its generalizations prove that the regularized

solution ĝ(n)R,λ defined in equation (2.9) belongs to a finite dimensional subspace

of HK [118]. Under the assumption 1 on the linear operator A : H1 → H2, let

H(n)
K := span{Kx1 , . . . , Kxn} (2.30)
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and

H(n)
1 := span{φx1 , . . . , φxn}, (2.31)

be two finite dimensional subspaces H(n)
K ⊂ HK and H(n)

1 ⊂ H1, where φ and

K are related by the equation (1.34). Under the aforementioned conditions

on the loss function V and ψ (on which depends the penalty term), in the

statistical learning setting the representer theorem allows us to write

ĝ(n)R,λ =
n

∑
i=1

βiKxi , (2.32)

where βi ∈ R for all i ∈ {1, . . . , n} are appropriate coefficients. Thus, the

problem (2.9) can be re-formulated as follows

ĝ(n)R,λ := arg min
g∈H(n)

K

RZn(g) + λψ(‖g‖HK), (2.33)

where the optimization is performed on the finite dimensional subspace H(n)
K .

Clearly, Corollary 1 can be exploited to provide a representer theorem for f̂ (n)R,λ.

Proposition 5. The regularized solution f̂ (n)R,λ defined in equation (2.10) admits the

following representation

f̂ (n)R,λ =
n

∑
i=1

βiφxi , (2.34)

where βi ∈ R, for all i ∈ {1, . . . , n} are the same coefficients of equation (2.32).

Finally the problem (2.10) can be re-formulated as follows

f̂ (n)R,λ := arg min
f∈H(n)

1

RZn(A f ) + λψ(‖ f ‖H1), (2.35)

where H(n)
1 is defined in equation (2.31).

The major consequence of this result is that it is sufficient to determine

coefficients {β j}n
j=1 in order to solve both problems (2.33) and (2.35). For the
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sake of completeness, we report the explicitly computation of the coefficients

β j in the classical Tikhonov regularization case.

Example 1. Let us consider the Tikhonov regularization for a linear inverse problem

which is known as penalized least square approach in supervised learning. Under the

usual assumptions, we write the problem (2.9) as

ĝ(n)λ = arg min
g∈HK

1
n

n

∑
i=1

(Yi − g(Xi))
2 + λ‖g‖2

HK
, (2.36)

and the problem (2.10) as

f̂ (n)λ = arg min
f∈H1

1
n

n

∑
i=1

(Yi − A f (Xi))
2 + λ‖ f ‖2

H1
. (2.37)

Using the representer theorem and equation (2.11) the solution of the two problems

(2.36) and (2.37) is given by solving the following

β̂
(n)
λ = arg min

β∈Rn

1
n
‖Y−Kβ‖2

2 + λβTKβ, (2.38)

where Y is the n-dimensional vector Y = (Y1, . . . , Yn)T, and K is the n× n dimen-

sional matrix with entries Kij := K(Xi, Xj), for each i, j ∈ {1, . . . , n}. In such a case

the solution β̂
(n)
λ is given by

β̂
(n)
λ = (K + λnI)−1Y, (2.39)

where I is the n× n dimensional identity matrix. Therefore, solutions of problems

(2.36) and (2.37) are given respectively by

ĝ(n)λ = kT(K + λnI)−1Y, (2.40)

where k = (KX1 , . . . , KXn)
T, and

f̂ (n)λ = ΦT(K + λnI)−1Y, (2.41)
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where Φ = (φX1 , . . . , φXn)
T.

Analogously, the solutions ĝ(n)R and ( f̂ (n)R )† defined in equation (2.7) admit

a finite representation. This follows from the fact that ĝ(n)R can be seen as

the minimizer of the problem (2.33) with ψ = 0. Hence, at least a minimizer

has a finite representation as ψ is non-decreasing and it is unique as RZn is

strictly convex [5; 150]. In the next proposition we give a simple alternative

proof of the fact that ĝ(n)R and ( f̂ (n)R )† admit a finite representation based on

Γ-convergence.

Proposition 6. Let RZn be defined in equation (2.8), with V strictly convex, coercive

(as the definition in Corollary 2) and Lipschitz continuous function. The solution ĝ(n)R

defined in equation (2.7) admits the following representation

ĝ(n)R =
n

∑
j=1

αjKxj , (2.42)

where αj ∈ R, for all j ∈ {1, . . . , n} are appropriate coefficients.

Proof. Let λ > 0 and let ψ be a continuous convex and strictly increasing

real-valued function. Fixed n ∈N, the sequence (RZn + λψ(‖ · ‖HK))λ satisfies

the hypotheses of Proposition 3 and it Γ-converges to RZn as λ → 0. This

proves the convergence of minimizers, i.e. ĝ(n)R,λ → ĝ(n)R as λ→ 0, uniformly in

‖ · ‖HK for all n ∈ N, where ĝ(n)R,λ is defined in equation (2.9). Moreover, ĝ(n)R,λ

admits the following representation

ĝ(n)R,λ =
n

∑
j=1

βλ
j Kxj , (2.43)

where βλ
j ∈ R for all j ∈ {1, . . . , n}. Therefore, ∑n

j=1 βλ
j Kxj pointwise converges

to ĝ(n)R ∈ HK as λ → 0 and each βλ
j has to converge to some value β0

j . The

limit can be written as ∑n
j=1 β0

j Kxj and this shows that ĝ(n)R ∈ H(n)
K .

Corollary 4. Under assumptions of Proposition 6, consider ( f̂ (n)R )† defined in equation
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(2.7). Then ( f̂ (n)R )† admits the following representation

( f̂ (n)R )† =
n

∑
j=1

αjφxj , (2.44)

where αj ∈ R, for all j ∈ {1, . . . , n} are the same coefficients in equation (2.42).

The proof is a straightforward consequence of Proposition 6 and Corollary

1.
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Chapter 3

Convergence rates comparison

Convergence rates are studied in both learning and inverse problems theory.

In inverse problems theory convergence rates have been analyzed in the

infinite dimensional setting with decreasing noise level [43]. In this case

the noise is considered as a deterministic quantity and it is natural to study

the worst–case error. If the noise is modeled as a random quantity, the

convergence of estimators should be studied in statistical terms, e.g. computing

the expected mean square error [16]. In the discrete setting, they are studied

under both deterministic and statistical hypotheses, with increasing number

of samples. In the deterministic setting the proof techniques usually consist

in decomposing the error in two terms, i.e. the approximation term and the

noise amplification term, and in taking the worst-case error by computing an

upper bound. Analogously, in the statistical setting the proof techniques are

based on the bias-variance decomposition and one usually bounds the mean

square error (see [16] and references therein). On the other hand, more recent

convergence rates for learning algorithms have been established: they are

studied with increasing the number of samples and the proof techniques are

based on the use of concentration inequalities in order to establish upper, lower

and minmax bounds on the mean square error. However, the decomposition

of the error is slightly different from the usual one in the statistical setting. In

this Chapter, we focus on convergence rates for spectral regularization applied
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to infinite dimensional inverse problems and learning theory, with respect to

the noise level and the number of samples, respectively. A common thread

is the fact that convergence rates have been studied in both fields under the

same source conditions (the hypotheses on the sought solution) i.e. namely the

Holder-type source conditions, and on the model, i.e. the polynomial decay of

the linear operator [3]. Therefore, convergence rates have been provided with

respect to the smoothness parameter of the ideal solution (a priori assumption)

and to the parameter of the eigenvalue decay of the operator. The question

naturally arises whether the above rates are comparable and, if it is the case,

which relation occurs between δ and n for quantifying the difference between

optimal rates in the two contexts.

We answer to this question by making use of a statistical estimator with

the following two properties [87; 139]. First, it has the same upper rates of

the spectral regularization considered in statistical learning: our analysis of

the convergence rates of this estimator is based on the results in [16] where

a comprehensive study on the convergence rates with infinite dimensional

deterministic and stochastic noise is given. Second, the rates of this estimator

are related to the ones of the classical spectral regularization for deterministic

ill-posed inverse problems. Indeed, we prove that the expected error of this

estimator given n samples is an upper bound of the error of the spectral

regularization given the noise level δ, provided that a suitable relation between

n and δ holds true. This allows us to convert upper rates with respect to

the number of samples n to upper rates with respect to the noise level δ

and, conversely, lower rates depending on δ to lower rates depending on n.

Then, we compare optimal convergence rates obtained in the two contexts for

the class of spectral regularized algorithms and we quantify their difference

showing that they exactly match when the rank of the linear operator is finite.

However, we prove that, in general, they do not correspond to each other.

The proofs of results of the current Chapter are provided in section 3.7.
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3.1 Preliminaries

Both ill-posed inverse problems and statistical learning deal with a bounded

linear operator A: in inverse problems A is the operator to be (approximately)

inverted; in statistical learning A relates to the feature map (see Chapter 1)

and it is usually known as inverse learning [17] if A is not the canonical

inclusion. We consider the assumption 1 on the operator A, which we recall

in the following. Let X be a standard Borel space endowed with a measure

ν. Let H1 be a separable Hilbert space, H2 := L2(X , ν) and A be a bounded

linear operator A : H1 → H2. We assume that A is uniformly bounded, i.e.

there exists a constant c > 0 such that

|A f (x)| ≤ c‖ f ‖H1 , (3.1)

for all x ∈ X and for all f ∈ H1. This assumption leads to the implication that

for all x there exists an element φx ∈ H1 such that

(A f )(x) = 〈 f , φx〉H1 . (3.2)

Moreover, the range of A is a subset of L2(X , ν) and it is well known that it is a

RKHS with kernel K(x, x′) = 〈φx, φx′〉H1 (for details see Chapter 1). Therefore,

the adjoint operator A∗ : H2 → H1 of A takes the form

A∗g =
∫
X

g(x)φx dν(x) (3.3)

and the operator A∗A is given by

A∗A =
∫
X
〈·, φx〉H1φx dν(x). (3.4)

As the operator A∗A is self-adjoint and compact, there exists an orthonormal

basis consisting of eigenfunctions of A with real eigenvalues. Furthermore, the

operator A∗A is of trace class. The proofs of such properties can be found in

[37].
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Finally, for any set {X1, . . . , Xn} ⊂ X we consider the operator An : H1 →
Rn as follows

(An f )i := 〈 f , φXi〉H1 (3.5)

for i = 1, . . . , n and f ∈ H1. Its adjoint operator A∗n : Rn → H1 is given by

A∗nz =
1
n

n

∑
i=1

ziφXi for z ∈ Rn (3.6)

and the operator A∗n An : H1 → H1 is given by

A∗n An =
1
n

n

∑
i=1
〈·, φXi〉H1φXi . (3.7)

The assumption H2 := L2(X , ν) allows us to consider convergence rate results

in both inverse problems and statistical learning theory.

3.1.1 Spectral regularization

Let H1 and H2 be two Hilbert spaces and B be the space of bounded linear

operatorsH1 → H2. A spectral regularization is a map R : B×H2×R+ → H1

defined by

R(A, y, λ) := sλ(A∗A)A∗y, (3.8)

where A ∈ B, y ∈ H2, λ ∈ R+ and sλ denotes the regularization function

defined as follows.

Definition 13. The regularization (or filtering) function sλ for λ > 0 is defined on

the spectrum of A∗A, denoted by τ(A∗A), and satisfies the following properties:

1. there exists a constant D > 0 such that

sup
t∈τ(A∗A)

|tsλ(t)| ≤ D uniformly in λ > 0 , (3.9)
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2. there exists a constant E > 0 such that

sup
λ>0

sup
t∈τ(A∗A)

|λsλ(t)| ≤ E , (3.10)

3. there exists q > 0 called qualification of the method and constants Ca > 0 such

that

sup
t∈τ(A∗A)

|ta(1− tsλ(t))| ≤ Caλa ∀ λ > 0 and 0 ≤ a ≤ q. (3.11)

The idea of spectral regularization is to provide approximated solutions

of a linear operator equation with noisy data. Two typical examples are the

following.

• Tikhonov regularization: in this case the regularization function is given

by sλ(t) = (λ + t)−1 and the qualification is q = 1.

• Truncated singular value decomposition (or spectral cut-off): in this case

the regularization function is given by

sλ(t) =

1
t , if t ≥ λ

0 , if t < λ
(3.12)

and q is arbitrary.

Now we introduce the two main assumptions on the noise: the first is

usually considered in the study of ill-posed inverse problems whereas the

second has been considered in both the case of inverse problems and of

statistical (inverse) learning.
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3.1.2 Deterministic noise

Spectral regularization has been introduced in ill-posed inverse problems

theory to approximately solve

A f = y (3.13)

when y ∈ H2 is not known and only a noisy version yδ of the data is available.

The spectral regularized solution takes the form

f λ
δ := R(A, yδ, λ) = sλ(A∗A)A∗yδ . (3.14)

In this context the noisy data is infinite dimensional and the relation with the

exact data y is ‖yδ − y‖H2 ≤ δ for some δ > 0 representing the noise level. As

f λ
δ continuously depends on the data, it converges to the generalized solution

f †. The convergence rates are studied with respect to δ→ 0, i.e.

‖ f λ
δ − f †‖H1 ∈ O(δd) (3.15)

where λ = λ(δ) is such that d > 0.

3.1.3 Stochastic noise

In the context of supervised (inverse) learning the noise is formalized differ-

ently, as we have seen in Chapter 2. In this case, instead of knowing an infinite

dimensional noisy version of the data y, we assume to know a set of noisy

samples {(Xi, Yi)}n
i=1. In particular, one supposes that each (Xi, Yi) is indepen-

dently drawn from a given (but unknown) probability distribution ρ on X ×Y
where the input space X ⊆ Rp and the output space Y ⊆ R. We assume that ρ

satisfies the following factorization property ρ(X, Y) = ρ(Y|X)ν(X) where ν is

the marginal distribution on X and ρ(·|X = x) is the conditional distribution

on Y for almost all x ∈ X . We assume that the conditional expectation with
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respect to ρ(·|·) of Y given X is equal to

E(Y|X = x) = A f †(x) = y(x) (3.16)

and that the variance of the conditional probability is

Var(Y|X = x) = σ2 (3.17)

for ν-almost x ∈ X , where σ is a constant. We notice that this is the case where

the loss function in Chapter 2 is chosen such that the characteristic to estimate

of the unknown distribution is the mean (e.g. the loss function is the square

loss). Therefore, y is the regression function and it is assumed to be modeled

through the linear operator A (equation (3.16)). In this way the sought solution

to estimate is f †. In this setting, spectral regularization takes the form

f̂ λ
n,learn = R(An, y, λ) = sλ(A∗n An)A∗ny, (3.18)

where y = (Y1, . . . , Yn)T. The convergence rates of the estimator f̂ λ
n,learn are

studied with respect to n→ ∞ in expectation (or in probability), i.e

Eρ⊗n(‖ f̂ λ
n,learn − f †‖H1) ∈ O

(
1

nd′

)
, (3.19)

where λ = λ(n) is such that d′ > 0 and ρ⊗n indicates the distribution tensor

product.

3.2 Assumptions

In the following we give a brief review about the main results on convergence

rates for spectral regularized estimators in statistical learning theory and in

deterministic infinite dimensional inverse problems setting under the same

Holder-type source condition. In the statistical learning setting (Holder-type)

source conditions are expressed in terms of restrictions of the probability ρ(·|·)
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whereas in inverse problems they are formalized as direct requirements on the

form of the solution. The standard Holder-type source condition is

f † ∈ ω(r, R) := { f ∈ H1 : f = Brw, ‖w‖H1 ≤ R}, (3.20)

where B := A∗A, r > 0 and R > 0. In the statistical framework the equivalent

requirement is that ρ(·|·) has to be such that equation (3.16) holds and the

solution belongs to the set ω(r, R).

This assumption is common in both statistical learning and infinite di-

mensional deterministic inverse problems theory and it is interpreted as an

assumption on the smoothness of the sought solution. Furthermore, especially

in the statistical learning setting another assumption about the eigenvalue

decay of the operator B is considered in order to improve the convergence

rates. We assume that
c
jb ≤ τj ≤

d
jb (3.21)

where τj are the eigenvalues of B for each j ∈ N, j ≥ 1, d, c > 0 and b > 1.

In the inverse problems literature, such an eigenvalue decay assumption is

related to the so-called degree of ill-posedness of the inverse problem. In

the statistical framework this assumption is given as a requirement on the

probability ν which B depends on. Together with the first assumption, they

can be expressed in statistical learning as a single restriction on the probability

space by requiring that ρ belongs to a suitable subspaceM(r, R, b) representing

the class of models (for details see [17]). We will see in section 3.3 that this last

assumption on the eigenvalue decay can not improve the convergence rates

given in the deterministic infinite dimensional inverse problems setting, which,

instead, are independent from the eigenvalue decay assumptions [85].

3.3 Existing convergence rates

In Table 3.1 we report a summary about the convergence rates given in in-

verse learning and in deterministic ill-posed inverse problems for spectral
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regularization methods according to different assumptions on the operator A.

Whereas convergence rates for ill-posed inverse problems are independent of

the assumption on the operator A, these hypotheses are crucial to improve the

convergence rates in the case of statistical learning. First, assuming a polyno-

mial decay of the eigenvalues of the operator B = A∗A with exponent b > 1,

convergence rates improve and they become faster and faster as b increases.

When b goes to 1, the rate corresponds to the one obtained without assuming

any further condition to the eigenvalue decay. Second, assuming that just a

finite set of eigenvalues are nonzero, i.e. A has finite rank, convergence reaches

its faster rate. This rate is the limit rate achieved when b goes to infinity.

Indeed, this last case can be seen as the limit case of the request of the fastest

eigenvalue decay, i.e. the eigenvalues are "definitively zeros" (τj = 0 for j > Q,

where Q is the rank of A).

Table 3.1: Comparison of upper rates under the Holder-type source condition
in equation (3.20) in statistical learning and ill-posed inverse problems with
increasing n and decreasing δ, respectively.

Assumption on A Eρ⊗n(‖ f̂ λ
n,learn − f †‖H1) ‖ f λ

δ − f †‖H1

none
(

1
n

) r
2r+2

δ
2r

2r+1

eigenvalue decay (3.21)
(

1
n

) r
2r+1+ 1

b δ
2r

2r+1

finite rank
(

1
n

) r
2r+1

δ
2r

2r+1

3.4 A link between the number of samples n and

the noise level δ

The main difference between the study of the convergence rates in statisti-

cal learning and ill-posed inverse problems with deterministic noise lies in

the independent variable which the error depends on. Whereas for learning

problems the independent variable is the number of examples n, for inverse
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problems it is the noise level δ of infinite dimensional noisy data. The rela-

tion between the rates provided in these two settings under the same source

condition is not straightforward. It is evident that there is no direct transfor-

mation between n and δ. To establish such a relation we need to introduce the

following estimator

f̂ λ
n := sλ(A∗A)A∗ny. (3.22)

We refer to estimator in equation (3.22) as the hybrid estimator as it is halfway

between the spectral regularization for ill-posed problems and for statistical

learning: indeed, it is composed by the infinite dimensional term sλ(A∗A)

(which is in the definition of f λ
δ in equation (3.14)) and the term A∗ny (which

is in the definition of f̂ λ
n,learn in equation (3.18)). This estimator has been

introduced in [87; 139]. We are interested in this estimator as it has the

following two properties:

(i) the error given by this estimator is always larger than the error given

by the standard spectral regularized solution provided that a suitable

relation between n and δ holds true;

(ii) it has the same upper rates of the spectral regularized estimator f̂ λ
n,learn.

The first property allows us to convert upper convergence rates depending on

n to upper convergence rates depending on δ and viceversa, lower convergence

rates depending on δ to lower convergence rates depending on n (as we will

show in Theorems 4 and 5). The second property assures that this estimator in

terms of upper rate is the same as the spectral estimator in statistical learning

(as we will show in section 3.5)

The first property of the hybrid estimator f̂ λ
n is summarized in the follow-

ing:

Proposition 7. Consider the spectral regularized solution f λ
δ defined in equation

(3.14) and the hybrid estimator f̂ λ
n defined in equation (3.22). Let H1 be embedded in

the space of square integrable functions. Let us consider n samples identically and
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independently drawn according to a distribution ρ as in section 3.1.3. Let

ε(λ) :=
‖ f λ − f †‖H1

‖sλ(A∗A)A∗‖HS
(3.23)

where f λ := R(A, y, λ) = sλ(A∗A)A∗y and ‖ · ‖HS denotes the Hilbert Schmidt

norm. For each n ∈N there exists a function

∆(n, λ) =
1√

σ2

n + ε(λ)2 + ε(λ)

σ2

n
, (3.24)

such that for each 0 < δ ≤ ∆(n, λ) and infinite dimensional noisy data yδ such that

‖yδ − y‖H2 ≤ δ, the following inequality holds

‖ f λ
δ − f †‖2

H1
≤ Eρ⊗n

(
‖ f̂ λ

n − f †‖2
H1

)
. (3.25)

Conversely, for each δ > 0 there exists a function

N(δ, λ) =
σ2

δ2 + 2δε(λ)
(3.26)

such that for each n ∈N such that n ≤ N(δ, λ) inequality (3.25) applies.

Thanks to the result in Proposition 7 we can relate a given upper conver-

gence rate computed with respect to n (for the hybrid estimator f̂ λ
n ) to the one

computed with respect to δ (for the spectral regularized solution f λ
δ ). From

now on, in order to express asymptotic behaviors we make use of the Landau

symbols O, Ω and Θ.

Theorem 4. Let the upper rate of the hybrid estimator f̂ λ
n defined in equation (3.22)

be equal to n−α, as n→ ∞, for a given α > 0, i.e.

Eρ⊗n(‖ f̂ λ
n − f †‖2

H1
) ∈ O

(
1
n

)α

, (3.27)

for a given λ = λn = Θ (n−p), with p > 0 and ε(λ) = Θ (λγ), with γ > 0. Then

the upper rate of the estimator f λ
δ defined in equation (3.14) with respect to the noise
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level δ→ 0 is given by

‖ f λ
δ − f †‖2

H1
∈ O

(
δ

min
(

2α, α
1−pγ

))
, (3.28)

where yδ is such that ‖yδ − y‖H2 ≤ δ, and λ = λδ (is defined in Lemma 7 in the

section 3.7 of Proofs and it) has the following rate

λδ ∈ Θ
(

δ
min

(
2p, p

1−pγ

))
. (3.29)

Now we give the converse result on lower rates.

Theorem 5. Let the lower rate of the spectral regularized solution f λ
δ , defined in

equation (3.14), be equal to δα, as δ→ 0, for a given α > 0, i.e.

‖ f λ
δ − f †‖2

H1
∈ Ω(δα), (3.30)

where yδ is such that ‖yδ − y‖H2 ≤ δ, λ = λδ = Θ(δp∗), with p∗ > 0 and

ε(λ) = Θ(λγ), with γ > 0. Then the lower rate of the hybrid estimator f̂ λ
n defined in

equation (3.22) with respect to the number of samples n→ ∞ is given by

Eρ⊗n(‖ f̂ λ
n − f †‖2

H1
) ∈ Ω

(
n−max

(
α
2 , α

1+p∗γ

))
(3.31)

where λ = λn (is defined in Lemma 8 in section 3.7 of Proofs and) it has the following

rate

λn ∈ Θ
(

n−max
(

p∗
2 , p∗

1+p∗γ

))
. (3.32)

3.5 Upper rates of the hybrid estimator

We now present the result on the upper rates of the hybrid estimator f̂ λ
n

under the classical source condition in equation (3.20) and according to the

assumption on the operator A. If we do not make assumption on the singular

values of A, we have the following result.
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Lemma 2. Let f̂ λ
n be defined in equation (3.22) and let the model be described by

equations in (3.16) and (3.17). Under the source condition in equation (3.20) we have

Eρ⊗n(‖ f̂ λ
n − f †‖2

H1
) ∈ O

((
1
n

) 2r
2r+2
)

, (3.33)

with λ ∈ Θ
(
( 1

n )
1

2r+2

)
.

Under the hypothesis of the polynomial eigenvalue decay of A∗A we have

the following result.

Lemma 3. Let f̂ λ
n be defined in equation (3.22) and let the model be described by

equations in (3.16) and (3.17). Under the source conditions in equations (3.20) and

(3.21) we have

Eρ⊗n(‖ f̂ λ
n − f †‖2

H1
) ∈ O

((
1
n

) 2r
2r+1+ 1

b

)
, (3.34)

with λ ∈ Θ

(
( 1

n )
1

2r+1+ 1
b

)
.

Finally, in the case the operator A has finite rank we have the following:

Lemma 4. Let f̂ λ
n be defined in equation (3.22) and let the model be described by

equations in (3.16) and (3.17). Under the source condition in equation (3.20) and

under the hypothesis that the operator A∗A has finite rank (τj > 0 for all 0 < j ≤ Q)

we have

Eρ⊗n(‖ f̂ λ
n − f †‖2

H1
) ∈ O

((
1
n

) 2r
2r+1
)

, (3.35)

with λ ∈ Θ
(
( 1

n )
1

2r+1

)
.

We remark that the upper rates given in equations (3.34), (3.33) and (3.35)

are the same ones of the classical spectral estimator f̂ λ
n,learn defined in equation

(3.18) (see Table 3.1).
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3.6 Conversion of convergence rates

In section 3.5 we have shown that the estimator f̂ λ
n defined in equation (3.22)

has the same upper rates of the standard statistical learning estimator f̂ λ
n,learn

defined in equation (3.18) for the same choice of the sequence λn. This allows

us to use Theorem 4 to transform the upper rates depending on n in Table 3.1

to upper rates for the classical spectral regularization depending on δ. Let f λ
δ

be defined in equation (3.14) and γ be defined as in Theorem 4.

3.6.1 Upper rates

We now focus on the hybrid estimator and on its upper rates in the three cases

considered in section 3.5. We have the following results.

Corollary 5. Consider the hybrid estimator f̂ λ
n and its upper rates (Lemma 2, Lemma

3 and Lemma 4). Then, thanks to Theorem 4 for the spectral regularization solution

f λ
δ we have the following cases.

1. Under assumption in equation (3.20)

‖ f λ
δ − f †‖H1 ∈

 O
(

δ
2r

2r+2

)
, γ ≥ r + 1 and λ ∈ Θ

(
δ

2
2r+2

)
O
(

δ
r

2r+2−γ

)
, γ < r + 1 and λ ∈ Θ

(
δ

1
2r+2−γ

) . (3.36)

2. Under assumptions in equations (3.20) and (3.21)

‖ f λ
δ − f †‖H1 ∈


O

(
δ

2r
2r+1+ 1

b

)
, γ ≥ r + 1

2 +
1
2b and λ ∈ Θ

(
δ

2
2r+1+ 1

b

)

O
(

δ
r

2r+1+ 1
b−γ

)
, γ < r + 1

2 +
1
2b and λ ∈ Θ

(
δ

1
2r+1+ 1

b−γ

) .

(3.37)

3. Under assumption in equation (3.20) and assuming the rank of A∗A is finite

‖ f λ
δ − f †‖H1 ∈

 O
(

δ
2r

2r+1

)
, γ ≥ r + 1

2 and λ ∈ Θ
(

δ
2

2r+1

)
O
(

δ
r

2r+1−γ

)
, γ < r + 1

2 and λ ∈ Θ
(

δ
1

2r+1−γ

) . (3.38)
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In all these three cases, if γ is sufficiently large, the upper rates are inde-

pendent of γ. Otherwise, they are bounded from below by the γ-independent

upper rates. We remark that in the first two cases in equations (3.36) and (3.37)

the upper rates are always slower than the classical optimal one, i.e. O
(

δ
2r

2r+1

)
[43]. This rate can be achieved only in the case A∗A has finite rank (see equa-

tion (3.38)). The proof of Corollary 5 is omitted since it is a straightforward

application of Theorem 4, using results in Lemmas 2, 3 and 4.

3.6.2 Lower rates

Now we exploit Theorem 5 to convert the lower rate of the spectral regularized

solution f λ
δ in a lower rate depending on n for the hybrid estimator f̂ λ

n . As

shown in Table 3.1, the lower rate of f λ
δ depends only on the source condition

in equation (3.20) and it is independent of the eigenvalue decay of A∗A.

Therefore, under assumption in equation (3.20) we have the following:

Corollary 6. Consider the spectral regularized solution f λ
δ and its lower rate Ω

(
δ

2r
2r+1

)
,

achieved with λ = Θ
(

δ
2

2r+1

)
. Then, thanks to Theorem 5 for the hybrid estimator f̂ λ

n

we have

Eρ⊗n(‖ f̂ λ
n − f †‖H1) ∈


Ω
((

1
n

) r
2r+1
)

, γ ≥ r + 1
2 and λ ∈ Θ

((
1
n

) 1
2r+1
)

Ω
((

1
n

) r
r+γ+ 1

2

)
, γ < r + 1

2 and λ ∈ Θ

((
1
n

) 1
r+γ+ 1

2

) .

(3.39)

We remark that rates obtained in Corollary 6 are lower bounds of the

classical lower rates of the spectral regularized estimator f̂ λ
n,learn. The proof of

Corollary 6 is omitted since it is straightforward from Theorem 5.

In the case of Tikhonov regularization and truncated singular value decom-

position it is readily to prove that γ ≥ r + 1
2 . We show in Table 3.2 a summary

of the conversion of upper rates and lower rates in this case.
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Table 3.2: Conversion of convergence rates in the case γ = r + 1
2 under the

Holder-type source condition in equation (3.20).

Upper rates (from n to δ)

Assumption on A Hybrid λn λδ Spectral reg.

none
(

1
n

) r
2r+2

(
1
n

) 1
2r+2

δ
1

r+ 3
2 δ

r
r+ 3

2

eigenvalue decay (3.21)
(

1
n

) r
2r+1+ 1

b

(
1
n

) 1
2r+1+ 1

b δ
1

r+ 1
2
+ 1

b
δ

r
r+ 1

2+
1
b

finite rank
(

1
n

) r
2r+1

(
1
n

) 1
2r+1

δ
2

2r+1 δ
2r

2r+1

Lower rates (from δ to n)

Assumption on A Spectral reg. λδ λn Hybrid

none δ
2r

2r+1 δ
2

2r+1

(
1
n

) 1
2r+1

(
1
n

) r
2r+1

We remark that, in the finite rank hypothesis, the rates of the hybrid

estimator and the spectral regularization match each other and, in this case,

the number of samples n turns out to be inversely proportional to the noise

level δ2. However, this is not true if the rank of A∗A is not finite: in such a

case, convergence rates given in statistical learning are weaker than the ones

given for ill-posed deterministic inverse problems. Indeed, the conversion of

statistical learning rates yields slower rates than the classical δ
2r

2r+1 resulting

from the inverse problems theory [43]. The fact that learning rates are generally

slower should not be surprising: as the noise level δ goes to zero the assumption

‖y − yδ‖H2 ≤ δ implies that there exists a subsequence of noisy data that

converges to the exact data y on the set X almost everywhere; by contrast,

taking the set of samples {(Xi, Yi)}n
i=1 as n goes to infinity is an assumption

on the set {Xi}n
i=1 ⊂ X , which is at most countable.

Remark 4. It is worth noticing that the techniques to bound the errors in learning

and inverse problem settings in order to prove convergence rates are different: the
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errors are split in different ways and bounded with different techniques (in learning

theory concentration inequalities are exploited [9; 17; 115]). We showed that the

learning and inverse problems convergence rates coincide when the operator A has

finite rank. We give an alternative proof of the optimal learning upper rate under the

assumption that the input space is a discrete set, i.e. X is a set of a finite number Q

of elements. This case applies in learning problems with categorical variables (see e.g.

[51]). This case is equivalent to consider the case of finite rank: it is treated in [30]

and it corresponds to the case in which HK is finite dimensional, therefore the effective

dimension N (λ) ≤ Q and the rate is retrieved by taking b = +∞. In our alternative

proof, which we report for the sake of completeness in section 3.7 (proof of Proposition

8) we split the convergence error of learning in a more similar way to the one used in

the convergence error analysis in the inverse problem setting. The idea is to re-organize

the discrete data in order to write the spectral regularized estimator depending on the

sample average of the responses Yi: this procedure is possible under the discrete input

space hypothesis, equivalently under the hypothesis that A has finite rank. In this way

we highlight that the error between the spectral regularized estimator and the spectral

regularization applied on the true samples An f † can be bounded in expectation by a

term which is of the order
√

σ2

λn , i.e.

E(‖ f̂ λ
n,learn −R(An, An f †, λ)‖H1) ∈ O

(√
σ2

λn

)
. (3.40)

The corresponding error in the inverse problem setting between the spectral regularized

solution and the spectral regularization applied on the noise-free data y is bounded by

a term of the order δ√
λ

, i.e.

‖ f λ
δ −R(A, A f †, λ)‖H1 ∈ O

(
δ√
λ

)
. (3.41)

This confirms that δ is proportional to
√

σ2

n , where σ2

n represents the variance of the

sample average.
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3.7 Proofs

We prove Proposition 7, Theorems 4 and 5 and the upper convergence rates

given in Lemmas 2, 3 and 4.

The first property of the hybrid estimator depends on the fact that it can

be seen as an empirical version of the standard spectral regularization. To see

this, we now introduce a linear regularization operator family Lλ as follows.

We consider two positive and finite measures ν and µ. We suppose that H1

and H2 are Hilbert spaces of square integrable functions on T with respect

to the measure µ, L2(T , µ), and on X with respect to the measure ν, L2(X , ν),

respectively. Let the linear regularization operator family Lλ : H2 → H1 , with

λ > 0 be of the form

Lλy =
∫
X
`λ

x y(x) dν(x) , (3.42)

where `λ
x ∈ H1, `λ

x (t) := `λ(x, t) and `λ(·, t) ∈ H2 for each x ∈ X and for each

t ∈ T . Thanks to this last assumption the integral in equation (3.42) is finite.

Moreover, we assume supt∈T ‖`λ(·, t)‖H2 < +∞. Such an assumption implies

that Lλ is uniformly bounded and then for each y ∈ H2, Lλy is bounded

in supremum norm which assures that Lλy ∈ H1. We denote with Fλ the

regularized solution given by the linear regularization operator Lλ applied to

the noise free data y, i.e.

Fλ = Lλy , (3.43)

and with Fλ
δ the regularized solution given by the noisy data yδ, i.e.

Fλ
δ = Lλyδ , (3.44)

when ‖y− yδ‖H2 ≤ δ. We introduce the following estimator computed from a

set of discrete data as follows

F̂λ
n = Lλ

x y =
1
n

n

∑
i=1

`λ
Xi

Yi (3.45)

where x = (X1, . . . , Xn)T and y = (Y1, . . . , Yn)T denote the samples. We
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consider the model assumptions in equations (3.16) and (3.17). The spectral

regularization can be seen as a special case of the linear regularization Lλ

defined in equation (3.44) by setting

`λ
x = sλ(A∗A)φx, (3.46)

with x ∈ X . Indeed, hypotheses on `λ
x are satisfied since supt∈T ‖φ(·, t)‖H2 <

+∞. In this case we have

f λ
δ = Fλ

δ and f̂ λ
n = F̂λ

n . (3.47)

We start by proving an inequality which will be used in the proof of the

result in Proposition 7. In what follows, to make it easier the writing, we do

not write the subscript of the norms and we denote with E the mean computed

with respect to the measure ρ⊗n .

Lemma 5. Let F̂λ
n be defined in equation (3.45). Under assumptions in equations

(3.16) and (3.17) we have

E(‖F̂λ
n − f †‖2) ≥ σ2

n
‖Lλ‖2

HS + ‖Fλ − f †‖2, (3.48)

where ‖ · ‖HS denotes the Hilbert Schmidt norm.

Proof. Denote with εn the difference between the estimate F̂λ
n obtained with n

samples and the sought solution f †. For any t ∈ T we have

ε2
n(t) =

(
1
n

n

∑
i=1

`λ
Xi
(t)Yi − f †(t)

)2

=
1
n2

n

∑
i,j=1

`λ
Xi
(t)Yi`

λ
Xj
(t)Yj −

2
n

f †(t)
n

∑
i=1

`Xi(t)Yi + ( f †(t))2. (3.49)
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By integrating over Yn, we get

∫
Yn

ε2
n(t) dρ(·|·)⊗n =

1
n2

n

∑
i=1

(`λ
Xi
(t))2σ2 +

1
n2

n

∑
i,j=1

`λ
Xi
(t)`λ

Xj
(t) y(Xi)y(Xj)

− 2
n

f †(t)
n

∑
i=1

`λ
Xi
(t)y(Xi) + ( f †(t))2, (3.50)

where dρ(·|·)⊗n = dρ(Y1|X1) · · · dρ(Yn|Xn) and by using that ρ(·|·) is a proba-

bility measure on Y . Then, by integrating over X n we obtain

∫
X n

∫
Yn

ε2
n(t) dρ(·|·)⊗ndν⊗n =

σ2

n2

n

∑
i=1

∫
X
(`λ

Xi
(t))2dν(Xi)

+
1
n2

n2−n

∑
i=1

(∫
X
`λ

Xi
(t)y(Xi)dν(Xi)

)2

+
1
n2

n

∑
i=1

∫
X

(
`λ

Xi
(t)y(Xi)

)2
dν(Xi)

− 2
n

f †(t)
n

∑
i=1

∫
X
`λ

Xi
(t)y(Xi)dν(Xi) + ( f †(t))2

≥ σ2

n2

n

∑
i=1

∫
X
(`λ

Xi
(t))2dν(Xi)

+
1
n2

n2

∑
i=1

(∫
X
`λ

Xi
(t)y(Xi)dν(Xi)

)2

− 2
n

f †(t)
n

∑
i=1

∫
X
`λ

Xi
(t)y(Xi)dν(Xi) + ( f †(t))2

=
σ2

n

∫
X
(`λ

X(t))
2dν(X)

+
(

Fλ(t)
)2
− 2 f †(t)Fλ(t) + ( f †(t))2 , (3.51)

where we used that ν is a probability measure on X . Therefore, we have

E
(
‖F̂λ

n − f †‖2
)
≥

∫
T

σ2

n

∫
X
(`λ

X(t))
2 dν(X) +

(
Fλ(t)− f †(t)

)2
dµ(t)

=
σ2

n
‖Lλ‖2

HS + ‖Fλ − f †‖2 , (3.52)
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as required.

In the following we prove the result in Proposition 7.

Proof of Proposition 7. We start from the result of Lemma 5. Easy manipulation

of formula in equation (3.48) leads to√
E
(
‖F̂λ

n − f †‖2
)
≥ ∆(n, λ)‖Lλ‖HS + ‖Fλ − f †‖ (3.53)

where ∆(n, λ) is defined as in equation (3.24). For each δ > 0, let yδ such that

‖yδ − y‖ ≤ δ, then a simple calculation gives

‖Fλ
δ − f †‖ ≤ δ‖Lλ‖+ ‖Fλ − f †‖. (3.54)

Further, for each δ ≤ ∆(n, λ) we have√
E
(
‖F̂λ

n − f †‖2
)
≥ δ‖Lλ‖+ ‖Fλ − f †‖ (3.55)

as ‖ · ‖HS ≥ ‖ · ‖. From equations (3.54) and (3.55) we obtain ∀ δ ≤ ∆(n, λ)

‖Fλ
δ − f †‖2 ≤ E

(
‖F̂λ

n − f †‖2
)

(3.56)

for each yδ for which ‖yδ − y‖ ≤ δ.

Conversely, let δ > 0. For each n ≤ N(δ, λ), with N(λ, δ) defined by

equation (3.26) we have

δ ≤ ∆(n, λ) (3.57)

and so the thesis is proved.

Functions ∆(n, λ) and N(δ, λ) express the dependency between the noisy

level δ and the number of samples n. To make explicit this dependency we

need to specify the rate of convergence of λ→ 0 both considered as a function

of δ and n. For the sake of convenience, we introduce the following
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Notation 1. For any given λn we define

δ̃(n) := ∆(n, λn) . (3.58)

Conversely, for any given λδ we define

ñ(δ) := bN(δ, λδ)c , (3.59)

where the symbol b·c denotes the integer part.

Lemma 6. Let ε(λ) ∈ Θ(λγ), with γ ≥ 0. If λn ∈ Θ(n−p), with p > 0, then

δ̃(n) ∈ Θ
(

n−max( 1
2 ,1−pγ)

)
. (3.60)

If λδ ∈ Θ(δp∗), with p∗ > 0, then

ñ(δ) ∈ Θ
(

δ−min(2,p∗γ+1)
)

. (3.61)

Proof. The equation (3.60) follows from the definition of δ̃ and from hypotheses

λn ∈ Θ(n−p) and ε(λ) ∈ Θ(λγ). In the same way the equation (3.61) follows

from the definition of ñ and from hypotheses λδ ∈ Θ(δp∗) and ε(λ) ∈ Θ(λγ).

Lemma 7. Given λn there exists a unique λδ such that

δ̃ ◦ ñ = id=(δ̃), (3.62)

where id=(δ̃) indicates the identity on the set =(δ̃) = {δ > 0 | σ2

δ2+2δε(λδ)
∈N} and

Λn = Λδ ◦ δ̃, (3.63)

where Λn : N → R and Λδ : R → R are such that λn = Λn(n) and λδ = Λδ(δ).

Furthermore,

ñ ◦ δ̃ = idN. (3.64)

70



3.7 Proofs

Proof. The existence and uniqueness of λδ such that equations (3.62) and (3.63)

are verified follow by defining λδ := Λn(ñ(δ)). With straightforward calculus

it can be verified that equation (3.63) implies equation (3.64).

Similarly, we give the converse result.

Lemma 8. Given λδ, there exists a unique λn such that

ñ ◦ δ̃ = idN

and

Λδ = Λn ◦ ñ (3.65)

where we have used the same notation of Lemma 7. Furthermore,

δ̃ ◦ ñ = id=(δ̃). (3.66)

The proof is analogous to the one of Lemma 7 by defining λn = Λδ(δ̃(n)).

Now we prove the main theorems. In the following we prove the result in

Theorem 4.

Proof of Theorem 4. Given λn = Λn(n), we define λδ = Λδ(δ) according to

Lemma 7, so that equations (3.62) and (3.63) hold. The rate of λδ given in

equation (3.29) can be found by using the hypothesis λn = Θ(n−p) and Lemma

6. Now we prove equation (3.28). Thanks to Proposition 7 and Lemma 6, for

each λ > 0 and δ > 0 there exists ñ(δ) such that for all n ≤ ñ(δ)

‖Fλ
δ − f †‖2 ≤ E(‖F̂λ

n − f †‖2). (3.67)

Let n = ñ(δ), then

‖Fλ
δ − f †‖2 ≤ E(‖F̂λ

ñ(δ) − f †‖2). (3.68)
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Let λ = λδ. Then there exist n0 ∈N and M > 0 such that

‖Fλδ
δ − f †‖2 ≤ E(‖F̂Λδ(δ)

ñ(δ) − f †‖2) = E(‖F̂Λn(ñ(δ))
ñ(δ) − f †‖2) ≤ M

(
1

ñ(δ)

)α

,

(3.69)

for all ñ(δ) > n0. From equations (3.29) and (3.69), and by using Lemma 6 we

obtain

- if pγ ≥ 1
2 then λδ = Θ(δ2p), therefore from Proposition 7 we have

ñ(δ) ∈ Θ(δ2) and from equation (3.69) we obtain ‖Fλ
δ − f †‖2 ∈ O(δ2α)

- if pγ < 1
2 then λδ ∈ Θ

(
δ

p
1−pγ

)
, therefore from Proposition 7 we have

ñ(δ) ∈ Θ
(

δ
1

1−pγ

)
and from equation (3.69) we obtain ‖Fλ

δ − f †‖2 ∈

O
(

δ
α

1−pγ

)
.

This completes the proof.

We give the proof of the result in Theorem 5.

Proof of Theorem 5. The proof exploits a similar argument to the one used for

Theorem 4. Given λδ = Λδ(δ), by defining λn = Λn(n) according to Lemma

8, it can be proved that the rate of λn is given by equation (3.32). To prove

equation (3.31) one has to reverse the role of n and δ in the proof of Theorem

4 and use Proposition 7 and hypothesis in equation (3.30). In such a way one

obtains that for each n ∈N, there exist δ0 > 0 and M′ > 0 such that

E(‖F̂λn
n − f †‖2) ≥ ‖FΛδ(δ̃(n))

δ̃(n)
− f †‖2 ≥ M′(δ̃(n))α , (3.70)

for all δ̃(n) < δ0. The thesis follows from equations (3.32), (3.70) and Lemma

6.

Now we provide the proofs of upper rates of the hybrid estimator. We

remark that E(‖ f̂ λ
n − f †‖2) satisfies the bias-variance decomposition as follows

E(‖ f̂ λ
n − f †‖2) = B( f̂λ)

2 + E(‖ f̂λ −E( f̂λ)‖2), (3.71)
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where B( f̂λ) := ‖E( f̂ λ
n )− f †‖ is the bias term and E( f̂ λ

n ) = f λ. Under the

source condition in equation (3.20) the bias term can be bounded by

B( f̂λ) ≤ CrλrR, (3.72)

where Cr is the constant of the property in equation (3.11) of the regularization

function sλ. Hereafter, we consider r ≤ q, where q is the qualification of the

method. The estimation of the variance term needs more manipulations. In

detail, to bound the variance term we follow the argument given in [16] where

a more general mixed type noise model is considered and the stochastic part

of the noise is modeled as a Hilbert-space process. In particular we follow

the argument in the section 4.3 in [16]. We consider a Hilbert-space noise

process ε̃ such that A∗ε̃ = A∗ny− A∗A f †. The noise ε = σ̃ε̃, where σ̃ =
√

C√
n

with C a constant depending on the variance σ2, satisfies the assumption of

the Theorem 3 in [16]. Then, we have

E(‖ f̂ λ
n −E( f̂ λ

n )‖2) = E(‖sλ(A∗A)A∗σ̃ε‖2). (3.73)

In the following we provide proofs of results in Lemmas 2, 3 and 4. The proofs

mainly consist of bounding the term in equation (3.73) in different ways in

according to the hypothesis on the eigenvalue decay. We start to prove Lemma

2.

Proof of Lemma 2. From equation (3.73) we have

E(‖ f̂ λ
n −E( f̂ λ

n )‖2) ≤ C
n ∑

j:τj≥λ

s2
λ(τj)τj ≤

C
n

 sup
τj∈τ(A∗A)

s2
λ(τj)

 ∑
j:τj≥λ

τj

≤ C
n

E2

λ2 C′, (3.74)

where we have used the property in equation (3.9) of the regularization function

sλ and the fact that the operator A∗A is of trace class where C′ represents a

constant which bounds the trace norm of A∗A. Therefore, under assumption
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in equation (3.20) we obtain

E(‖ f̂ λ
n − f †‖2) ≤ C2

r λ2rR2 +
CE2C′

nλ2 . (3.75)

By balancing terms in the r.h.s. of equation (3.75) we have the thesis.

Now we prove the result in Lemma 3.

Proof of Lemma 3. Under assumption in equation (3.21) we have the following

bound

E(‖ f̂ λ
n −E( f̂ λ

n )‖2) = E(‖sλ(A∗A)A∗σ̃ε‖2) ≤ C
n

L
1

λ2

∫ λ

0
β−

1
b dβ =

C
n

L
1

λ1+ 1
b

,

(3.76)

where L is a constant which depends on D and E (see properties in equations

(3.9) and (3.10)) and constants in the assumption in equation (3.21). Therefore,

under assumption in equation (3.20) we obtain

E(‖ f̂ λ
n − f †‖2) ≤ C2

r λ2rR2 +
C
n

L
1

λ1+ 1
b

. (3.77)

By balancing terms in the r.h.s. of equation (3.77) we have the thesis.

Finally, we give the proof of Lemma 4.

Proof of Lemma 4. The variance term can be bounded as follows

E(‖ f̂ λ
n −E( f̂ λ

n )‖2) ≤ C
n ∑

j:τj≥λ

s2
λ(τj)τj (3.78)

≤ C
n

 sup
τj∈τ(A∗A)

sλ(τj)

 ∑
j:τj≥λ

sλ(τj)τj (3.79)

≤ C
n

Q
E
λ

 sup
τj∈τ(A∗A)

sλ(τj)τj

 ≤ C
n

E
λ

QD, (3.80)
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for the properties in equations (3.9) and (3.10) of the regularization function.

Therefore,

E(‖ f̂ λ
n − f †‖2) ≤ C2

r λ2rR2 +
CEQD

nλ
, (3.81)

by balancing terms in the r.h.s. of equation (3.81) we obtain the thesis.

For the sake of completeness we give an alternative proof of the known

result that the upper rate of the spectral regularized estimator in the finite

dimensional space case is O
(

n−
r

2r+1

)
under the Holder-type source condition

in equation (3.20).

Proposition 8. Let X be the input space consisting of a finite set of elements (Q

different elements), i.e. X = {x1, . . . , xQ} with xj ∈ Rp and xj 6= xj′ , for j 6= j′. Let

f̂ λ
n,learn be defined in equation (3.18) and let the model be described by equations in

(3.16) and (3.17). Under the source condition in equation (3.20) we have

E(‖ f̂ λ
n,learn − f †‖) ∈ O

((
1
n

) r
2r+1
)

, (3.82)

with λ ∈ Θ
((

1
n

) 1
2r+1
)

.

Proof. At first we notice that, in the case n > Q the samples Xi can be repeated.

We denote with h(l) the number of times that xl is repeated between the

samples (Xi)
n
i=1 and we denote with Y(l)

j the j-th response associated to the

feature xl, for j = 1, . . . , h(l). We can define Ȳ the Q-dimensional vector as

follows

Ȳ =


Ȳ1 := 1

h(1) ∑h(1)
j=1 Y(1)

j
...

ȲQ := 1
h(Q) ∑h(Q)

j=1 Y(Q)
j

 . (3.83)

Empirically, we can write the problem by considering the set of Q samples

(X(l), 1
h(l) ∑h(l)

j=1 Y(l)
j ) i.i.d., where X(l) is a deterministic variable (X(l) = xl with

probability equal to 1) and each Y(l)
j has distribution ρ(Y|xl) = ρ(Y|X(l))

(therefore Y(l)
j are i.i.d. for j = 1, · · · , h(l) and for l = 1, . . . , Q). An empirical
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distribution ν̂ can be associated to the set of samples in the following way: we

define f(l) := h(l)
n the frequency of the event Xi = xl . Therefore we can construct

the empirical measure ν̂ = ∑Q
l=1 f(l)δxl , which is a probability measure since it

satisfies ∑Q
l=1 f(l) = ∑Q

l=1
h(l)
n = 1.

We define the following operators which are associated to the set X . We

define Ax̄ : H1 → RQ,

(Ax̄ f )l = 〈 f , φxl〉H1 , (3.84)

for l = 1, . . . , Q, for f ∈ H1 and we define A∗x̄ : RQ → H1,

A∗x̄w =
Q

∑
l=1

wlφxl , (3.85)

for w ∈ RQ. Furthermore we define H as the Q×Q diagonal matrix which is

defined as

H = diag(f(1), · · · , f(Q)). (3.86)

With simple computations we have

A∗n An = A∗x̄HAx̄ and A∗ny = A∗x̄(HȲ). (3.87)

By defining

Ax :=
√

HAx̄ and Y :=
√

HȲ, (3.88)

where
√

H is the diagonal matrix with entries the square root of the matrix H,

we obtain

A∗n An = A∗x Ax and A∗ny = A∗xY. (3.89)

We remark that the operators Ax and A∗x are defined as follows

(Ax f )l = 〈 f ,
√

f(l)φxl〉H1 and A∗xw =
Q

∑
l=1

wl

√
f(l)φxl , (3.90)

for each l = 1, . . . , Q. Let f̂ λ
n,learn be the spectral regularized estimator defined
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in equation (3.18). From equation (3.87) we have the following equality

f̂ λ
n,learn = R(Ax, Y, λ) = sλ (A∗x Ax) A∗xY. (3.91)

We focus on giving an upper rate for the estimator f̂ λ
n,learn. Now we bound the

following error as follows

‖ f̂ λ
n,learn − f †‖H1 ≤ ‖ f̂ λ

n,learn − sλ(A∗x Ax)A∗x Ax f †‖+ ‖sλ(A∗x Ax)A∗x Ax f † − f †‖.
(3.92)

In the inverse problem terminology the first term in the r.h.s. of inequality (3.92)

is the approximation error and the second one is the propagation of the noise

in the regularization. For easy of writing we define f̂ †,λ
n := R(Ax, Ax f †, λ) =

sλ(A∗x Ax)A∗x Ax f †. We start by bounding the second term of the r.h.s. of

equation (3.92):

‖ f̂ †,λ
n − f †‖ = ‖ (sλ(A∗x Ax)A∗x Ax − I) f †‖ ≤ R‖rλ(A∗x Ax)Br‖, (3.93)

using the Holder-type source condition in equation (3.20) and where rλ(A∗x Ax) =

sλ(A∗x Ax)A∗x Ax − I. With simple computations we have

rλ(A∗x Ax)Br = rλ(A∗x Ax)(A∗x Ax)
r + rλ(A∗x Ax) (Br − (A∗x Ax)

r) . (3.94)

For the property in equation (3.11) of the regularization function the first term

of the r.h.s. of equation (3.94) is bounded as follows

‖rλ(A∗x Ax)(A∗x Ax)
r‖ ≤ Crλr. (3.95)

Now we focus on the second term of the r.h.s. of equation (3.94). We denote

B̂ := A∗x Ax. Then

‖rλ(B̂)(B̂r − Br)‖ ≤ ‖rλ(B̂)‖‖B̂r − Br‖ ≤ C0C′r‖B̂− B‖, (3.96)

where we have used the property in equation (3.11) of the regularization
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function and the result in Proposition 5.6 in [17] with C′r a suitable constant.

By remarking that B̂ = A∗n An and by using the result in Proposition 5.5 in [17]

we obtain that

E(‖B̂− B‖) ≤ 12c2
√

n
, (3.97)

where c is the constant in equation (3.1). Therefore, the term in equation (3.93)

can be bounded as follows

E(‖rλ(B̂) f †‖) ≤ RCrλr + RC0C′r
12c2
√

n
. (3.98)

Now we bound the first term of the r.h.s. of equation (3.92) as follows

‖ f̂ λ
n,learn − f̂ †,λ

n ‖2 = 〈 f̂ λ
n,learn − f̂ †,λ

n , A∗xsλ(A∗x Ax)(Y− Ax f †)〉 (3.99)

= 〈Ax( f̂ λ
n,learn − f̂ †,λ

n ), sλ(A∗x Ax)(Y− Ax f †)〉

≤ ‖Ax f̂ λ
n,learn − Ax f̂ †,λ

n ‖‖sλ(AxA∗x)‖‖Y− Ax f †‖.

Now we bound the following term

‖Ax f̂λ − Ax f̂ †,λ
n ‖ = ‖Axsλ(A∗x Ax)A∗x(Y− Ax f †)‖

= ‖AxA∗xsλ(AxA∗x)(Y− Ax f †)‖

≤ ‖AxA∗xsλ(AxA∗x)‖‖Y− Ax f †‖

≤ D‖Y− Ax f †‖, (3.100)

where we have used the property in equation (3.9) of the regularization func-

tion. By using the bound in equation (3.100) and the property in equation

(3.10) of the regularization function we obtain

‖ f̂ λ
n,learn − f̂ †,λ

n ‖2 ≤ D
E
λ
‖Y− Ax f †‖2. (3.101)
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We compute the following expectation

E(‖Y− Ax f †‖2) =
Q

∑
l=1

E

(√f(l)
1

h(l)
h(l)

∑
j=1

Y(l)
j − 〈 f

†,
√

f(l)φxl〉
)2

=
Q

∑
l=1

f(l)E

( 1
h(l)

h(l)

∑
j=1

Y(l)
j − 〈 f

†,
√

f(l)φxl〉
)2 .

By remarking that

Eρ(·|·)(Y
(l)
j |xl) = 〈 f †, φxl〉 = A f †(xl), (3.102)

Eρ(·|·)

(
1

h(l)
h(l)

∑
j=1

Y(l)
j |xl

)
= 〈 f †, φxl〉 = A f †(xl), (3.103)

Var

(
1

h(l)
h(l)

∑
j=1

Y(l)
j |xl

)
=

σ2

h(l)
(3.104)

and

E

(
1

h(l)
h(l)

∑
j=1

Y(l)
j

)
=

1
h(l)

h(l)

∑
j=1

E(Y(l)
j )

=
1

h(l)
h(l)

∑
j=1

∫
X

∫
Y

Y(l)
j dρ(Y(l)

j |xl)dν(xl)

=
1

h(l)
h(l)

∑
j=1

∫
X
〈 f †, φxl〉dν(xl)

= Ex∼ν(A f †(x)) = Ex∼ν(〈 f †, φx〉)
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then

E

( 1
h(l)

h(l)

∑
j=1

Y(l)
j − 〈 f

†, φxl〉
)2

=
∫
X

∫
Y

(
1

h(l)
h(l)

∑
j=1

Y(l)
j − 〈 f

†, φxl〉
)2

dρ(Y(l)
j |xl)dν(xl)

=
∫
X

Var

(
1

h(l)
h(l)

∑
j=1

Y(l)
j |xl

)
dν(xl)

=
σ2

h(l)
(3.105)

and

Q

∑
l=1

f(l)E

( 1
h(l)

h(l)

∑
j=1

Y(l)
j − 〈 f

†, φxl〉
)2 =

Q

∑
l=1

f(l)
σ2

h(l)
= Q

σ2

n
. (3.106)

Therefore,

E(‖ f̂ λ
n,learn − f̂ †,λ

n ‖2) ≤ D
E
λ

Q
σ2

n
(3.107)

and we obtain the following bound in expectation

E(‖ f̂ λ
n,learn − f †‖) ≤ RCrλr + 12c2RC0C′r

1√
n
+
√

DQ

√
E
λ

√
σ2

n
. (3.108)

By balancing terms in the r.h.s. of equation (3.108) we obtain the following

optimal upper rate

E(‖ f̂ λ
n,learn − f †‖) ∈ O

((
1
n

) r
2r+1
)

, (3.109)

with λ ∈ Θ
((

1
n

) 1
2r+1
)

.
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Chapter 4

A fast and consistent

sparsity-enhancing method for

Poisson data

In this Chapter we focus on Poisson data. This restriction can be read as a

particular choice of the loss function introduced in the previous Chapters. By

taking

V(Y, A f (X)) = Y log
Y

A f (X)
+ A f (X)−Y (4.1)

we implicitly assume, thanks to the Maximum Likelihood formulation, that

the noise on the data is distributed according to a Poisson law. Poisson noise

is quite common in inverse problems and particularly in imaging applications,

due to the quantum nature of the recorded light radiation. On the other hand,

it is relevant also in learning applications when the response variables are

counts. More in general, the objective of statistical learning is two-fold: (1)

ensuring a good estimation and (2) selecting the relevant variables. The first

objective means that the learning algorithm shall provide accurate predictions,

(in this regard the correct noise hypothesis could be crucial) and the second

one means that the algorithm shall identify the most relevant features, i.e.

those variables which play an important role for the prediction. Selecting the

most relevant variables is an issue also in inverse problems, e.g. in sparse
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signal recovery. In this case, the goal is to find the smallest number of elements

of a suitable basis to represent a signal: sparsity strategies apply to imaging

applications, e.g. in astronomy and medical imaging.

In sparse signal recovery with Poisson data a lot of attention has been

paid on fast and efficient optimization methods especially when the number

of data is high and therefore a large scale inverse problem has to be solved.

The penalized Maximum Likelihood approach in the context of Poisson noise

leads to the minimization of a penalized functional where the discrepancy

term is the well-known non-quadratic functional Kullback-Leibler divergence

(see section 2.2). Recent improvements have been focused on acceleration of

the usual proximal gradient methods requiring sophisticated optimization

techniques and first order approximations of the objective function [21; 46; 59;

60; 61; 67; 129].

On the other hand, in statistical learning a special effort has been provided

in promoting consistent variable selection and estimation. To this aim, one

of the most used strategy is to use the `1-penalty, i.e. the Lasso method [134]

which performs sign consistent selection under the so-called Irrepresentable

Condition [155]. A major step forward in this direction was the introduction

of the Adaptive Lasso, which guarantees variable selection consistency in the

case of Generalized Linear Models (GLMs) under less restrictive statistical

assumptions [156].

In this Chapter we propose a data-dependent global quadratic approxima-

tion of the Kullback-Leibler divergence enabling us to formulate simplified

Lasso and Adaptive Lasso estimators suitable for sparse Poisson regression.

We call them as Poisson Reweighted Lasso (PRiL) and Adaptive Poisson

Reweighted Lasso (APRiL). These estimators can be computed by taking

advantages of the fastest available algorithms, i.e. those developed for `1-

penalized least squares regression [10; 50; 52]. We prove that the adaptive

estimator satisfies the property of consistent variable selection. Finally we

show the performances of the proposed estimators both on a statistical learning

application (with synthetic data) and on a sparse signal recovery one (with
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4.1 Sparsity: a tool for learning and inverse problems

synthetic images).

The proofs of results of the current Chapter are provided in section 4.5.

4.1 Sparsity: a tool for learning and inverse prob-

lems

Sparsity has become a key concept in both statistical learning and inverse

problems. Roughly speaking, a sparse statistical model is one in which only

a relatively small number of parameters, called also predictors or features,

play an important role. In image reconstruction problems the idea is that the

information content of images is small compared to the number of pixels we

use to represent them. As a consequence images can be compressed on a

proper basis, in which few coefficients are non zero, i.e. they are sparse.

Promoting the sparsity of a solution would be ideally obtained by minimiz-

ing the `0 norm of the solution, which limits explicitly the number of non-zero

elements, represented on a suitable basis. However, such a regularization term

is non convex yielding combinatorial complexity. Since the relaxation to `p

norm with 0 < p < 1 leads again to a non-convex minimization problem, the

most common approximation is the `1 norm, which represents a good trade-off

between sparsity promotion and computational tractability.

In the following we introduce the `1-penalized method, known as Least

Absolute Shrinkage and Selection Operator (Lasso) [134] method and we show

one of its variation, the Adaptive Lasso [156]. In the last decade this approach

has been widely investigated, also thanks to the development of new efficient

algorithms for convex optimization [10].

4.1.1 Lasso and Adaptive Lasso: a reminder

Lasso is a regularization technique for simultaneous estimation and variable

selection. It was introduced by [134] as a technique for linear regression

and it has become a very attractive method [74; 155; 156], since its entire
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4.1 Sparsity: a tool for learning and inverse problems

regularization path can be computed efficiently [42; 52; 105; 147]. Lasso is

known as basis pursuit [31] in the context of signal processing. In the last

decade many Lasso-type methods have been proposed, including extensions or

variations of the classical Lasso (Fused Lasso [135], Group Lasso [151], Multi-

task Lasso [103], Trace Lasso [57] to mention a few). In the current section

we deal with a particular variation of Lasso which is the Adaptive Lasso

[157]. First we introduce the classical Lasso method in the usual setting of

linear regression models, according to the notations introduced in the previous

Chapters. In Chapter 2 we show that the conditional expectation E(Y|X) is

the ideal solution of the optimization problem consisting in minimizing the

expected risk characterized by a particular choice of the loss function (e.g. the

square loss). Therefore, the problem of regression is often stated as finding an

estimator ĝ : X → R, where X ⊆ Rp is the input space, which approximates

the function g†(x) = E(Y|X = x) from noisy samples. Therefore, given the

samples {(Xi, Yi)}n
i=1, we can assume that observations are modeled as follows

Yi = g†(Xi) + εi, (4.2)

where εi are independent centered noise variables for i = 1, . . . , n. Recalling

the feature maps introduced in Chapter 1, it can be assumed that g† admits

the following representation g†(x) = 〈 f †, φx〉H1 , with φx the feature map and

f † ∈ H1 the sought solution in a Hilbert space H1. In the particular case in

which H1 := Rp then g can be parameterized by a coefficient vector β∗, i.e.

g†(x) = 〈β∗, φx〉Rp = φT
x β∗. (4.3)

This case can be considered as an extension of the the usual linear regression

case, which is found by taking φx = x: in this case

g†(x) = 〈β∗, x〉Rp = xTβ∗. (4.4)
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4.1 Sparsity: a tool for learning and inverse problems

Therefore, the linear regression model can be described as

Yi = XT
i β∗ + εi, (4.5)

where εi are the noise components and they are usually assumed to be i.i.d.

with mean 0 and a fixed constant variance σ2 (e.g. standard Gaussian) and β∗

is a suitable vector of parameters. Without loss of generality, we assume that

the data are centered, in this way the intercept is not included in the regression

function, otherwise a constant intercept β∗0 is considered in the equation (4.5)

(Chapter 2 in [68]). The Lasso estimator is given by

β̂ = arg min
β∈Rp

1
2
‖Y− Xβ‖2

2 + λ‖β‖1, (4.6)

where Y is the vector containing the samples Yi and X is the matrix which has

XT
i as rows. The functional to minimize is the sum of two contributions: the

first is the residual term, which is in this case the least square functional, and

the second is the penalized term which is represented by the `1-penalty. The

`1-penalty is crucial to enhance sparsity in the solution and the regularization

parameter λ > 0 has the role to create a trade off between the two terms.

However, the variable selection provided by the Lasso method has been shown

to be consistent under certain conditions. In particular, it is sign-consistent

under the Irrepresentable condition [155], i.e. it is sign-consistent if and only if

the correlation between the relevant and irrelevant variables is low. Therefore,

in order to assure the variable selection consistency under less restrictive

assumptions the Adaptive Lasso has been introduced [156]. On the contrary

of the Lasso procedure, which forces coefficients to be equally penalized in

the `1-penalty, the idea of the adaptive approach is to introduce weights in

the `1-penalty which allow penalizing the coefficients in different ways. The

Adaptive Lasso is given by

β̂w = arg min
β∈Rp

1
2
‖Y− Xβ‖2

2 + λ
p

∑
j=1

wj|β j|, (4.7)
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4.2 Sparsity and Poisson data

where wj are the positive weights. The choice of the weights is an issue. They

have to be chosen such that consistency properties hold. Furthermore, the

Adaptive Lasso, with a suitable choice of weights, guarantees variable selection

consistency in the case of Generalized Linear Models (GLMs) [156].

4.2 Sparsity and Poisson data

Let us consider a Poisson random vector Y = (Y1, . . . , Yn)T made of indepen-

dently distributed components with mean µ∗ = (µ∗1 , . . . , µ∗n)
T, i.e.

Yi ∼ Poisson(µ∗i ), (4.8)

∀ i ∈ {1, . . . , n}. Suppose that the parameter µ∗i can be expressed as

µ∗i = h−1((Xβ∗)i), (4.9)

∀ i ∈ {1, . . . , n}, where h : R → R is an invertible function, X is the n× p

matrix wich has XT
i as rows for i ∈ {1, . . . , n} and β∗ = (β∗1, . . . , β∗p)

T is

a suitable vector of parameters. We denote with xij the (i, j)-entry of the

matrix X and we denote with xj = (x1j, . . . , xnj)
T the j-th column of X for

j ∈ {1, . . . , p}. In statistical estimation Y is called the response vector, X is

the predictor (or feature, or design) matrix, h is called the link function and

equation (4.9) describes the GLMs [93]. On the other hand, in signal recovery

Y represents the vector of noisy measurements of a given random signal and

X describes a linear signal formation process depending on the parameters β∗.

We assume that the true unknown vector β∗ is sparse. More formally, let us

denote by

A∗ := {j ∈ {1, . . . , p} : β∗j 6= 0}

the set of indexes corresponding to relevant variables of the model, namely

the active set, and with #A∗ its cardinality. We suppose that

q := #A∗ < p .
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4.2 Sparsity and Poisson data

In applications we consider q as being a substantially smaller fraction of p.

Such an assumption leads to the variable selection and estimation problem,

i.e. to compute a model with a small number of relevant variables with good

prediction capabilities [51]. The standard choice for h in the statistical learning

framework is the so-called canonical link function of the GLM theory, which is

the logarithm function h(z) := ln(z) in the case of Poisson data (see Chapter

3 in [135]). In this way, Poisson means are equal to the exponents of linear

predictors, i.e. µ∗ = exp(Xβ∗), taking positive values only.

In the case of Poisson regression with canonical link, an usual variable

selection method comes from extending the Adaptive Lasso to the GLMs,

suggesting the following estimator

β̂(n)(log link) := arg min
β

∑n
i=1 exp(Xβ)i −Yi(Xβ)i (4.10)

+λ ∑
p
j=1 wj|β j|,

where β ∈ Rp, λ is the positive regularization parameter, w = (wj)j=1,...,p is

the weights vector, which has the role of weighting the contribution of the

coefficients β j. This estimator can be derived from the adaptive `1-penalized

Maximum Likelihood approach (see section 2.2) applied to the Poisson GLM

with canonical log-link (equations (4.8) and (4.9)).

Another possible choice for h is the identity link, i.e. h(z) := id(z) under

the non-negativity constraint on z. This choice is natural in a large variety

of applications, e.g. in emission tomography and in astronomical image

reconstruction and deblurring, since the matrix X is able to describe a linear

transformation which approximates the physical signal formation process

[112; 130]. In the unconventional case of Poisson GLM with identity-link the

adaptive `1-penalized Maximum Likelihood approach leads to minimize the

following functional

β̂(n)(id link) := arg min
β∈C

n

∑
i=1

D((Xβ)i, Yi) + λ
p

∑
j=1

wj|β j|, (4.11)
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where

C = {β ∈ Rp : (Xβ)i > 0 ∀ i ∈ {1, . . . , n}} (4.12)

is the subset of feasible β solutions and D is the Kullback-Leibler divergence

[15] which is defined as

D(z, y) := y log
y
z
+ z− y, (4.13)

with z, y > 0 and D(z, 0) := z. The presence of such additional constraint

(Xβ)i > 0, ∀ i ∈ {1, . . . , n} can be a disadvantage of using the identity link.

Indeed, this can result in the need for much more computationally expensive

optimization methods. However, in applications the vector β∗ often contains

an offset parameter associated with a constant value predictor, which usually

makes the quantity Xβ substantially larger than zero. As a consequence

the solution of the problem is an interior point of the feasible solution set

(4.12). This offset is called “the intercept" in the statistical language and

“the background" in signal recovery. The choice of the adaptive weights is

put forward against different ways [20; 28]. For Poisson GLMs the use of

data-driven adaptive weights has been recently proposed: in [72] authors

adapted Lasso to work with Poisson data by means of a particular choice

of the adaptive weights, while in [71] authors proposed a choice based on

concentration inequalities for solving an adaptive problem arising from the

Poisson GLM with the canonical log link.

In [156] it has been proven that, by choosing the weights in an appropriate

manner, the estimator β̂(n)(log link) performs consistent variable selection and

estimation, under some mild regularity conditions where both X and Y are

thought of as random variables. Now we introduce an approximation of the

functional (4.11) which allows us to define an adaptive penalized reweighted

least squares method with the property to identify the exact relevant explana-

tory variables when the number of observations diverges in a deterministic

matrix design framework. At the same time, such an approximation over-

comes the need for expensive optimization methods such as the Iteratively
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Reweighted Least Squares (IRLS) commonly applied in the case of GLMs

[35; 39; 55].

4.3 Adaptive Poisson Reweighted Lasso

In this section we present two new `1-penalized methods for sparse Poisson re-

gression: Poisson Reweighted Lasso (PRiL) and Adaptive Poisson Reweighted

Lasso (APRiL). They are based on a globally quadratic approximation of the

Kullback-Leibler (KL) divergence and they enhance sparsity with a classical

`1-penalty and a weighted `1-penalty, respectively. We prove the theoreti-

cal properties of such proposed estimators and after we show a numerically

efficient approach to compute them.

4.3.1 Approximation of the Kullback-Leibler divergence

We now show a global quadratic approximation of the KL divergence and we

prove that such an approximation is an asymptotically unbiased estimator of

the KL divergence. Formally, we have the following

Theorem 6. Let y be a Poisson random variable with mean θ. For any z > 0 such

that |z − θ| ≤ c
√

θ, where c > 0 is constant (or even bounded from above when

θ → ∞) such that θ − c
√

θ > 0, we have

E

(
D(z, y)− 1

2
(y− z)2

y + 1

)
= O

(
1√
θ

)
, (4.14)

as θ → ∞.

The proof of Theorem 6 is given in the section 4.5 devoted to proofs of

the novel results in the current Chapter. Theorem 6 implies that for all i ∈
{1, . . . , n}, in a neighborhood of the exact values (Xβ∗)i, such an approximation

is more and more accurate with (Xβ∗)i → ∞. This approximation calls up to

the Anscombe transform [4]. Nonetheless, the substantial difference is that
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4.3 Adaptive Poisson Reweighted Lasso

the proposed approximation (4.14) is globally quadratic making its numerical

treatment extremely easier.

4.3.2 PRiL/APRiL estimators and properties

In view of the KL approximation given in section 4.3.1, we can introduce a

novel estimator on the basis of a positive weight vector w = {wj}j∈{1,...,p}, as

follows

β̂
(n)
(w,λ) := arg min

β∈C

1
2

n

∑
i=1

(Yi − (Xβ)i)
2

Yi + 1
+ λ

p

∑
j=1

wj|β j|, (4.15)

where λ is the regularization parameter. Therefore, functional in the r.h.s. of

equation (4.15) is an asymptotically unbiased estimator of the functional in

the r.h.s. of equation (4.11). We point out that the fit term in the r.h.s. of

equation (4.15) is a re-weighted least square functional and it can be written in

the following form: let Λ be the following n× n diagonal matrix

Λ = diag

(
1√

Y1 + 1
, . . . ,

1√
Yn + 1

)
, (4.16)

then
1
2

n

∑
i=1

(Yi − (Xβ)i)
2

Yi + 1
=

1
2

∥∥∥∥Y− Xβ√
Y + 1

∥∥∥∥2

2
=

1
2
‖Λ(Y− Xβ)‖2

2 , (4.17)

where the division and the square root of the vector in the second term have to

be intended as element-wise. In the case weights are all equal to 1, i.e. wj = 1

for any j, the estimator is the minimizer of a functional that we call “Poisson

Reweighted Lasso" (PRiL), which is defined as follows

β̂(n)(PRiL) := arg min
β∈C

1
2

n

∑
i=1

(Yi − (Xβ)i)
2

Yi + 1
+ λ1‖β j‖1, (4.18)

where λ1 denotes its regularization parameter. We prove in the following that

β̂(n)(PRiL) is a
√

n-consistent estimator, provided an appropriate asymptotics

of the regularization parameter λ1 is given. As we mentioned before, data-

90



4.3 Adaptive Poisson Reweighted Lasso

dependent choices of the weights wj in the case of Poisson problems have

been recently proposed in [66; 72] and are based on Poisson concentration

inequalities. In all cases the idea is to choose such weights in order to provide

the method with the asymptotic model selection consistency property. Inspired

by the choice in [157] for the adaptive elastic net, we introduce the following

weights

ŵj =
1(

|β̂(n)(PRiL)j|+
(

1
n

) 1
γ+δ
)γ , (4.19)

where γ and δ are strictly positive constants. The estimator in equation (4.15)

when provided with such weights is called “APRiL" for Adaptive Poisson

Reweighted Lasso and we denote it by β̂(n)(APRiL), defined as follows

β̂(n)(APRiL) := arg min
β∈C

1
2

n

∑
i=1

(Yi − (Xβ)i)
2

Yi + 1
+ λ

p

∑
j=1

ŵj|β j|, (4.20)

where ŵj are defined in (4.19). Now, the main goal is to prove that the

β̂(n)(APRiL) estimator has the model selection consistency property in the case

of Poisson data and under some assumptions on the matrix X. We assume

that:

(H1) the matrix XTΛ2X is positive definite, and

E

( 1
τmin(XTΛ2X)

)4
 ≤ 1

(bn)4 and

τmax(XTX) ≤ Bn

where τmin(A) and τmax(A) are the minimum and maximum eigenvalues

of the matrix A respectively, b and B are two strictly positive constants

(H2) limn→+∞
λ1√

n = 0

(H3) a) limn→+∞ λn
γ
2−1 = ∞, b) limn→+∞ λnδγ = ∞,

c) limn→+∞ λnδγ− 1
2 = 0
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(H4) there exists an L > 0 such that

max
j∈{1,...,p}

‖xj‖2 ≤ L.

Assumptions in (H1) involve the matrix X and the random variable Y. The

hypothesis concerning τmin implies that

E

(
τmin

(
XTΛ2X

n

))
≥ b (4.21)

which calls up to the assumption used by [157]. Assumption (H2) involves

the convergence rate of the regularization parameter λ1 whereas assumptions

described in (H3) involve the convergence rate of regularization parameter λ.

Assumption (H4) is necessary for consistent model selection and it is automat-

ically verified after the feature standardization/normalization procedure. In

the following theorem we give a general bound of the expected error for the

estimator (4.15).

Theorem 7. Assuming hypothesis (H1), then it exists a constant G < +∞, such that

E(‖β̂(n)
(w,λ) − β∗‖2

2) ≤
4λ2

√
E

((
∑

p
j=1 w2

j

)2
)
+ pGBn

(bn)2 . (4.22)

The proof of Theorem 7 is given in section 4.5. Such a bound takes into

account that weights can be random variables. In the case weights are constants

all equal to 1, the previous result boils down to the following

Corollary 7. Assuming hypothesis (H1) then

E(‖β̂(n)(PRiL)− β∗‖2) ≤
2λ1
√

p +
√

pGBn
bn

. (4.23)

It is worth observing that under assumption (H2) Corollary 7 implies that

β̂(n)(PRiL) is a
√

n-consistent estimator. We now consider the weights given

by equation (4.19). Although it is possible to have the consistent estimation
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property by letting λ goes to 0 fast enough, assumptions (H1)-(H4) do not

permit to conclude the consistency of the APRiL estimator. However, we

now prove that such assumptions make APRiL a variable selection consistent

estimator. We introduce the estimated active set

Â(n) = {j ∈ {1, . . . , p} : β̂(n)(APRiL)j 6= 0} (4.24)

of the estimator β̂(n)(APRiL). The model selection consistency property reads

lim
n→+∞

P(Â(n) = A∗) = 1 . (4.25)

Theorem 8. Under assumptions (H1), (H2), (H3), (H4) the APRiL estimator has the

model selection consistency property.

The proof of the Theorem (given in section 4.5) exploits the
√

n-consistency

property of the estimator β̂(n)(PRiL). This property underpins the choice of

the weights defined in equation (4.19).

It is worth noticing that the consistency property has different implications

depending on the application: for signal recovery problems, consistency is

computed against the increasing number of bins/pixels in which the signal is

measured, whereas for statistical learning it is evaluated against the increasing

number of available examples. For a detailed discussion on this topic see, for

example [38].

For the sake of completeness, we notice that a similar result can be obtained

in the case p = p(n) → ∞ provided that we replace hypotheses (H2) and

(H3) with suitable conditions on the convergence rate of the regularization

parameters λ1 and λ and we assume an upper bound on the asymptotic

behavior of p. We give the following

Proposition 9. Consider assumptions (H1), (H4) and the following

(H5) p = O(nc), with 0 ≤ c < 1
6(7−

√
37)

(H6) limn→+∞

√
p√

nη
= 0
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(H7) a) limn→+∞
λ1
√

p
nη = 0, b) limn→+∞

λ1nδ+ 1
γ−1

√
p = 0

(H8) a) limn→+∞ λnγδ− 1
2 p
√

p = 0, b) limn→+∞
λnδγ

pγ = ∞,

c) limn→+∞
λp
nηγ = 0,

where η := minj∈A∗ |β∗j |+
(

1
n

) 1
γ+δ

and δ + 1
γ < c+1

2 . Then the APRiL estimator

has the model selection consistency property.

The condition on c in hypothesis (H5) ensures the possibility to choose γ

and δ so that assumptions of the Proposition 9 are consistent. We remark that

such assumptions allow the non zero coefficients β∗j with j ∈ A∗ to vanish.

The proof of Proposition 9 is given in section 4.5.

4.3.3 Algorithm

The computation of the APRiL estimator can be performed by means of the

same numerically efficient algorithms developed for the solution of the Lasso

problem. We propose a numerical strategy which consists of two steps. First

we reweight the columns of the matrix X and the vector Y by left-multiplying

by Λ defined in equation (4.16). Second, following the approach proposed by

[156], we reweight the predictor matrix X for computing the adaptive solution.

These two steps need the computation of the solution of two Lasso problems.

In Algorithm 1 we outline the scheme of the procedure.

In many applications the presence of an offset - be it a regression intercept

or a constant background signal - makes the vector Xβ̂λ an interior point of

the feasible set C, i.e all its components are positive. Moreover, we notice that,

unlike the functional in equation (4.11) which is based on the KL divergence,

the proposed functional in equation (4.15) is meaningful for each β, even when

Xβ has negative components. In such cases, the constraint C can be neglected

during the optimization process and standard algorithms can be used in

place of sophisticated constrained techniques. Therefore, steps 3 and 6 of the

Algorithm 1 can be performed by solving the unconstrained Lasso problem.
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4.3 Adaptive Poisson Reweighted Lasso

Algorithm 1 APRiL estimator computation

1: Input: X, Y.
2: Data driven reweighting. Define

X̃ := ΛX Ỹ := ΛY,

where Λ is defined in equation (4.16).
3: Compute the regularization path

β̂λ1 = arg min
β∈C

1
2
‖Ỹ− X̃β‖2

2 + λ1

p

∑
j=1
|β j|

and select β̂λ1(PRiL) with λ1 according to a cross validation process.
4: Compute the adaptive weights ŵ as in formula (4.19).
5: Adaptive reweighting. Define ˜̃X so that

˜̃xj = x̃j/ŵj, ∀ j ∈ {1, . . . , p}.

6: Compute the regularization path

˜̂βλ = arg min
β∈C

1
2
‖Ỹ− ˜̃Xβ‖2

2 + λ
p

∑
j=1
|β j|

and select ˜̂βλ with λ according to a cross validation process.
7: Output: β̂λ(APRiL) is such that

β̂λ(APRiL)j = ( ˜̂βλ)j/ŵj ∀j ∈ {1, . . . , p}.

In this way, APRiL method can take advantage of numerically efficient solvers

and of the piece-wise linear form of the regularization path [42].
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4.4 Simulations: learning and sparse signal recovery

4.4 Simulations: learning and sparse signal recov-

ery

In this section we show two applications of the proposed methods. In the

first one, we apply them to some statistical learning test problems and in the

second one, we show that they can be successfully applied to wavelet-based

Poisson denoising and deblurring. One of the main difference between these

applications is that in the first case the model (or the link function) is not

known whereas in the second case it is a linear operator representing the

signal formation process. This leads us to make a performance comparison

between our methods and the Lasso techniques for GLMs with Poisson data

in the statistical learning application, and to check the performance of the

proposed method in the sparse signal recovery one.

4.4.1 Statistical learning application

We present a synthetic variable selection problem in order to compare the

proposed methods (PRiL and APRiL) with Lasso and Adaptive Lasso for

GLMs for Poisson data [156]: we refer to these last methods as GLM and

AGLM, respectively. The main goal of this synthetic experiment is to assess

the variable selection performance of the proposed methods as the number

of samples increases and its computational advantages when the number of

samples reaches the order of million. It is worth observing that in statistical

learning regression methods are based on a given data model (equation (4.9)),

i.e. on a particular choice of the link function. The standard method based

on GLM theory uses the log-link function (see equation (4.10)), which is the

canonical choice for Poisson data, whereas the proposed methods are based on

the identity-link. Therefore, in order to perform a comprehensive comparison

of the methods, we consider two sets of data generated according to the

log-link and the identity-link function based model, respectively. We are

interested in evaluating the performance of the APRiL method and the AGLM

method by applying them to both datasets. Furthermore, we test PRiL and
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GLM methods on the same datasets in order to compare performances also

of the non-adaptive methods. In particular, these two datasets are generated

according to the following assumptions. We fix p = 15 and q = #A∗ = 5. We

construct the n× p predictor matrix X for n = 125, 250, 500, so that each of its

columns is extracted by a p-dimensional normal multivariate distribution with

zero mean and covariance Σ with Σjr = ρ|j−r|, for j, r ∈ {1, . . . , p}. We assume

ρ = 0.5 and ρ = 0.75. We consider the following two cases:

1. Log-link dataset. We generate the data Y by using log-link function as

follows

Yi = Poisson(β∗0 exp((Xβ∗)i)), ∀ i ∈ {1, . . . , n}, (4.26)

where β∗ = (0.7,−0.5, 0.3,−0.4, 0.6, 0p−5)
T is the true coefficient vector

(0p−5 denotes the zero vector of dimension p− 5) and β∗0 is a suitable

constant intercept.

2. Identity-link dataset. We generate Y by using the identity-link function

as follows

Yi = Poisson((Xβ∗∗)i + β∗∗0 ), ∀ i ∈ {1, . . . , n}, (4.27)

where β∗∗ = (e0.7, e−0.5, e0.3, e−0.4, e0.6, 0p−5)
T is the true coefficient vector

and β∗∗0 is a suitable constant intercept.

In the second case we select the intercept in order to make each component

of the vector (Xβ∗∗)i + β∗∗0 positive. In the first case we tune the intercept

value so that data generated in the first case has about the same signal to noise

ratio of the data generated in the second case. Moreover, for each problem,

we generate 100 realizations of Poisson data and therefore we obtained 600

estimation problems (#n = 3 and #ρ = 2). For each one of these problems we

perform regression by means of PRiL, APRiL, GLM and AGLM methods.

The APRiL weights are parametrized according with the assumptions in

Theorem 8. In particular we use ŵj as defined in equation (4.19), and we fix

constants γ = 3 and δ = 1
8 . For what concerns AGLM defined in equation
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Table 4.1: Mean Square Error values obtained by averaging over 100 replicates
the results provided by GLM, AGLM, PRiL and APRiL methods for each
problem.

log-link dataset identity-link dataset

n 125 250 500 125 250 500

ρ = 0.5

GLM 4.1(±2) 10−4 2.1(±1.1) 10−4 7.2(±4.7) 10−5 6.2(±0.1) 10−1 6.2(±0.1) 10−1 6.3(±0.03) 10−1

AGLM-I 4.1(±2.1) 10−4 2.1(±1.2) 10−4 8(±5) 10−5 6.2(±0.1) 10−1 6.2(±0.1) 10−1 6.2(±0.1) 10−1

AGLM-II 3(±0.7) 10−3 4.1(±0.7) 10−3 2.2(±0.3) 10−3 6.3(±0.1) 10−1 6.3(±0.1) 10−1 6.3(±0.1) 10−1

PRiL 1.5(±0.6) 1.7(±0.6) 4.4(±0.5) 2.4(±0.4) 10−1 2.1(±0.3) 10−1 1.9(±0.2) 10−1

APRiL 1.5(±0.6) 1.8(±0.6) 4.4(±0.5) 2.4(±0.5) 10−1 2.1(±0.4) 10−1 1.9(±0.2) 10−1

ρ = 0.75

GLM 7(±4) 10−4 4(±3.1) 10−4 1.5(±0.9) 10−4 6.3(±0.1) 10−1 6.3(±0.1) 10−1 6.3(±0.03) 10−1

AGLM-I 7.3(±4.5) 10−4 4.1(±2.2) 10−4 1.4(±0.7) 10−4 6.3(±0.1) 10−1 6.3(±0.1) 10−1 6.3(±0.03) 10−1

AGLM-II 1.1(±0.2) 10−2 1.5(±0.2) 10−2 8.0(±0.7) 10−3 6.4(±0.1) 10−1 6.3(±0.05) 10−1 6.3(±0.05) 10−1

PRiL 2.8(±1.2) 5.7(±1) 8.6(±0.9) 2.7(±0.7) 10−1 2.3(±0.5) 10−1 2.1(±0.4) 10−1

APRiL 2.7(±1.2) 5.6(±1) 8.3(±1.2) 2.7(±0.7) 10−1 2.2(±0.5) 10−1 2.1(±0.4) 10−1

(4.10) we fix the weights according to the following two strategies.

1. First strategy [156]:

ŵj =
1

|β̂(MLE)j|γ̄
∀ j ∈ {1, . . . , p} , (4.28)

where β̂(MLE) is the Maximum Likelihood estimate in Poisson log-linear

regression model and γ̄ is a positive constant. We denote the resulting

algorithm by AGLM-I.

2. Second strategy [71]:

ŵj =
√

2γ̃ log pṼj +
γ̃ log p

3
max

i
|xij|, (4.29)

where Ṽj = V̂j +
√

2γ̃ log pV̂j maxi x2
ij + 3γ̃ log p maxi x2

ij, V̂j = ∑n
i=1 x2

ijYi

and γ̃ is a positive constant. In such a case the regularization parameter

has to be fixed equal to 1. We denote the resulting algorithm by AGLM-II.

For computing the solution of these optimization problems we use the glmnet
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(a) case ρ = 0.5 (b) case ρ = 0.75

Figure 4.1: Comparing distributions of TSS, fixing number of samples equal to
n = 125.

MATLAB package [52]. Moreover, in the case of PRiL, APRiL, GLM and

AGLM-I, we select the regularization parameter by means of the 10-fold Cross

Validation (CV) [49] implemented in the same package. We use the mean

squared error (MSE) for measuring the estimation accuracy of each solution.

In Table 6.4 we show MSE values for the algorithms. It is evident that the

algorithm based on the same model by which data have been generated

achieves a lower MSE. In other words, the GLM and AGLM methods perform

better when applied to the log-link dataset and the PRiL and APRiL methods

when applied to the identity-link dataset. Finally, the MSE provided by the

AGLM-II method is always smaller than the one obtained with AGLM-I.

Moreover, we compare the variable selection performance of the GLM,

AGLM, PRiL and APRiL methods by computing the confusion matrix which

represents matches and mismatches between predicted active variables and

exact ones. On the basis of the components of the confusion matrix, i.e. false

positives (FP), false negatives (FN), true positives (TP), and true negatives (TN),

we compute the True Skill Score (TSS) which is defined as the balance between

the true positive rate (or probability of detection) and the false alarm rate, i.e.

TSS =
TP

TP + FN
− FP

FP + TN
, (4.30)
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(a) case ρ = 0.5 (b) case ρ = 0.75

Figure 4.2: Comparing distributions of TSS, fixing number of samples equal to
n = 250.

(a) case ρ = 0.5 (b) case ρ = 0.75

Figure 4.3: Comparing distributions of TSS, fixing number of samples equal to
n = 500.

and ranges from −1 to 1. The optimal variable selection is obtained when the

TSS is 1 and a direct consequence of Theorem 8 is that the TSS value provided

by the APRiL estimator converges to one in probability as n goes to infinity.

For having a broader picture, for each method, in addition to the 10-fold

cross-validated solution, we compute the solution which maximizes the TSS

value along the regularization path, and we refer to it as the oracle solution.

Oracle solutions allow us to make a performance assessment of the algorithms
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(a) case ρ = 0.5 (b) case ρ = 0.75

Figure 4.4: Comparing distributions of TSS, fixing number of samples equal to
n = 125.

independently of the choice of the regularization parameter. Each box-plot in

Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 shows the TSS distribution obtained by

applying the algorithm written in the x-axis label to one hundred replicates

of Y. The first three figures contain the comparison between the adaptive

methods whereas the last three figures contain the comparison between the

non-adaptive methods. In Figures 4.1, 4.2 and 4.3 the first five box-plots refer

to the AGLM and APRiL algorithms applied to the log-link dataset (equation

(4.26)), whereas the second five box-plots refer to the algorithms applied to the

identity-link dataset (equation (4.27)). In Figures 4.4, 4.5 and 4.6 the first four

box-plots refer to the GLM and PRiL algorithms applied to the log-link dataset

(equation (4.26)), whereas the second four box-plots refer to the algorithms

applied to the identity-link dataset (equation (4.27)).

Some comments about variable selection results.

1. The TSS provided by oracle AGLM-I solutions is larger than the one

provided by the oracle APRiL solutions in all the experiments we per-

formed. This can be explained by the fact that AGLM-I method is based

on the maximization of the Poisson likelihood, which is the actual dis-

tribution used for generating data. Oracle solutions provided by the

APRiL method, which is based on an approximation of the Poisson
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(a) case ρ = 0.5 (b) case ρ = 0.75

Figure 4.5: Comparing distributions of TSS, fixing number of samples equal to
n = 250.

(a) case ρ = 0.5 (b) case ρ = 0.75

Figure 4.6: Comparing distributions of TSS, fixing number of samples equal to
n = 500.

log-likelihood, do not achieve the same performance.

2. The use of CV procedure for finding the regularization parameter reduces

the performance of the variable selection so that it does not seem to be

an efficient method in the case of small and moderately sized samples.

However, for large scale problems the regularization path is more stable

and the CV selects a solution closer to the oracle one [89]. In general,

TSS distributions corresponding to cross validated solutions are over-
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Table 4.2: Computation mean time in seconds.

Link Method time in s
n = 104 n = 5 104 n = 105 n = 5 105 n = 106

log AGLM 1.6 10−2 7.5 10−2 1.5 10−1 8.3 10−1 2.0
APRiL 9.6 10−4 5.0 10−3 1.0 10−2 6.1 10−2 1.3 10−1

identity AGLM 1.4 10−2 6.5 10−2 1.3 10−1 7.3 10−1 1.8
APRiL 9.7 10−4 5.1 10−3 1.1 10−2 6.2 10−2 1.3 10−1

dispersed and for each problem among the 100 replicates we can find

a variable selection with a very low TSS value. Moreover CV behaves

differently across algorithms. The striking fact is that the cross validated

APRiL solution tends to produce a better variable selection than the cross

validated AGLM-I one, overall in the case of smaller sized samples and

log-link dataset.

3. In general, the TSS provided by AGLM-II solutions is larger than the

one provided by cross-validated solutions. However, it is smaller than

the one provided by oracle AGLM-I solutions for both datasets, and

smaller than the one provided by oracle APRiL solutions in the case of

the identity-link dataset.

4. In such simulations the performances of PRiL method are similar to

the ones provided by APRiL and also the performances of GLM are

similar to the ones provided by AGLM-I. This is mainly due to two

factors: one is the fact that the correlation between predictors in the

design matrix is not strong enough to compromise the variable selection

property of non adaptivity methods and the other one is the fact that the

number of samples is not so large. However, in some cases the oracle

solutions provided by the adaptive methods are slightly better than the

ones provided by the non-adaptive methods.

We now compare performances of the methods in terms of MSE and TSS
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values. We note that, when the penalized criterion to be minimized is not

adapted to the dataset, MSE values, evaluating the estimation capabilities, do

not improve for AGLM, and deteriorate for APRiL with increasing n (see Table

6.4). At the same time, TSS values, evaluating the quality of variable selection,

tend to increase with increasing n, or, at least, they do not deteriorate (see

Figures 4.1, 4.2 and 4.3). Here, it is fundamental to note that the proposed

datasets differ in values, but they have the same support A∗, or, in other words,

relevant variables are common to both datasets despite they assume different

values. We can conclude that the use of the wrong model primarily affects the

quality of estimation (MSE) and it is of minor importance with regard to the

quality of variable selection (TSS). This is also confirmed by the fact that oracle

solutions (including AGLM-II) provide almost optimal TSS values in spite of

poor MSE values. Furthermore, we notice that the MSE values provided by

the adaptive methods are similar to the ones provided by the corresponding

non-adaptive methods: this is expected since the non adaptivity influences

only the variable selection property but not the estimation property. Obtained

results have been proven to be robust by varying the number of folds in the

cross validation analysis and the definition of the adaptive weights. In this

regard, we replicated the experiments introduced above by using the 5-fold

cross validation and by choosing the adaptive weights of the AGLM-I method

in a way analogous to the one described in equation (4.19) obtaining similar

outcomes.

Finally, we check the numerical efficiency of the AGLM and APRiL algo-

rithms. Following the above described setup, for each method we estimate

the required CPU time for computing a solution of the problem having fixed

the regularization parameter λ, for ρ = 0.5 and n = 104, 5 104, 105, 5 105, 106.

In Table 4.2 we show the computational time by reporting the mean time in

seconds to compute a solution of the regularization path. From Table 4.2 the

benefit in terms of computational efficiency provided by the use of the APRiL

method with respect to the AGLM method is evident. Indeed, in each case

the computational cost is shrunk by a factor of about 15. In addition, another
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advantage of the proposed method is that it does not suffer of convergence

issues which are instead well-known in the case of the Poisson regression

[88; 125].

4.4.2 Sparse signal recovery application

We present two simulated experiments in sparse signal recovery: the first is an

example of image denoising and the second is an example of image deblurring.

Formally, these problems are described by equation (4.27) with X := ΩΨ

where Ω represents the convolution with a given point-spread-function and Ψ

is the standard synthesis operator which decomposes a given image f on an

orthogonal wavelet basis {ψj}j∈{1,...,p}. The image to recover is characterized

by coefficients denoted by (β∗j )j∈{1,...,p}, i.e.

f ∗ =
p

∑
j=1

β∗j ψj. (4.31)

In both cases we consider 256× 256 images leading to large scale inverse

problems with size n = 65536. For the denoising application we generate a

compressed version of the “lena" image by thresholding its coefficients in the

wavelet basis and we use the resulting image as the “true" image to recover.

The true image is then represented by 17368 non-zero coefficients in the wavelet

basis (about 74% of sparsity) with a Relative Square Error (RSE) of about 0.001%

with respect to the original image. In this case the operator Ω is the identity.

For the deblurring application we used a medical image and we performed

the above described procedure for obtaining a “true" image represented by

10005 non-zero coefficients (about 85% of sparsity) corresponding to a RSE

value of about 0.003% with respect to its original version. The convolution

kernel of the operator Ω is a Gaussian function with σ = 1.5. We apply PRiL

and APRiL methods to both problems. Thanks to their particular form, we can

solve optimization problems by using an iterative forward-backward splitting

algorithm: we perform a gradient step with step-size τ = 1.5 and then we
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apply the soft thresholding operator in the wavelet domain. Iteration stops

when convergence is reached. The numerical optimization has been performed

by using the MATLAB Numerical Tours [109].

(a) Lena (b) Noisy (c) PRiL (d) APRiL

(e) MRI (f) Blurred and noisy (g) PRiL (h) APRiL

Figure 4.7: First row. Image denoising application: (a) true object, (b) noisy
image, (c) recovered image with PRiL method, (d) recovered image with APRiL
method. Second row. Image deblurring application: (e) true object, (f) blurred
and noisy image, (g) recovered image with PRiL method, (h) recovered image
with APRiL method.

In both examples we select the regularization parameter in order to maxi-

mize the Signal-to-Noise Ratio (SNR). We recall that SNR is one of the measure

used for evaluating the reconstruction image quality (Chapter 3 in [13]) and it

measures the ratio between the signal level and the noise. Figure 4.7 shows

the results in the case of denoising (first row) and deblurring (second row)

problems: for each example we show the true image, the noisy image, the best

recovered image with PRiL and APRiL method, respectively. In the deblurring

application the reconstructions provided by the two methods are very similar

to each other whereas in the denoising application APRiL introduces some

artifacts near the Lena’s left eye (fourth panel top row in Figure 4.7). Figure
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(a) Denoising application
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(b) Deblurring application

Figure 4.8: Comparison of SNRs as functions of λ between PRiL and APRiL
methods. Left panel: SNR in the image denoising application. Right panel:
SNR in the image deblurring application.

Table 4.3: Recovery performance results for image denoising and deblurring
applications, respectively.

denoising

Method RSE SNR in dB PSNR in dB confusion matrix

PRiL 0.09 % 22.14 27.85 TP = 11471 FN = 5897
FP = 17002 TN = 31166

APRiL 0.05 % 21.99 28.52 TP = 5668 FN = 11700
FP = 2257 TN = 45911

deblurring

Method RSE SNR in dB PSNR in dB confusion matrix

PRiL 0.08 % 19.57 31.57 TP = 8052 FN = 1953
FP = 17219 TN = 38312

APRiL 0.08 % 19.67 31.66 TP = 5420 FN = 4585
FP = 2684 TN = 52847

4.8 shows the SNR of the recovered images as a function of the regularization

parameter: in detail, we compare the SNR functions provided by the PRiL and

APRiL method in each of the two applications. As we expect, the regularization

parameter which maximizes the SNR function is different for each method:

in both applications the optimal regularization parameter of PRiL method is

smaller than the one of APRiL method. Therefore, if we choose the optimal
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regularization parameter for PRiL method and we use this choice to compute

the adaptive solution, the result provided by APRiL has a worse SNR. In Table

4.3 we show the following performance values: the RSE, the SNR and the Peak

SNR (PSNR). PSNR is a commonly used image quality measure: it expresses

the ratio between the power of the signal (the maximum possible value) and

the power of noise that affects the quality of the signal. In addition, in Table

4.3 we provide, for each problem, the confusion matrix showing how many

wavelet coefficients have been correctly recovered.

In both imaging applications, APRiL provides a smaller (or equal) RSE

value and a higher PSNR value than the ones provided by PRiL. The SNR value

provided by APRiL is higher in the deblurring application and it is smaller in

the denoising one than the SNR value provided by PRiL. Confusion matrices

show that APRiL provides a higher number of TN and a smaller number of FP,

but also a higher number of FN. However, most of such incorrectly estimated

coefficients have very small absolute value: indeed, they do not significantly

contribute to the signal formation. Whereas the PRiL method provides higher

number of TP, the sum of FN and FP is higher than the one provided by APRiL

method in both applications. As we expected, we notice that the adaptive

method tends to find more sparse solutions than the ones provided by the

PRiL method.

4.5 Proofs

This section is devoted to prove the main results of the current Chapter. We

prove Theorems 6, 7, 8, Corollary 7 and Proposition 9. In order to prove

Theorem 6, we start by proving the following

Lemma 9. Let y be a Poisson random variable with mean θ. Let z > 0 be such that

|z− θ| ≤ c
√

θ, where c is a positive constant smaller than
√

θ. Then

E

(
D(z, y)− 1

2
(y− z)2

z

)
= O

(
1
θ

)
, as θ → ∞. (4.32)
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Proof. Following [153] we obtain

D(z, k) =
1
2
(k− z)2

z
− 1

6
(k− z)3

z2 +
1
3
(k− z)4

z3 + kR3

(
k− z

z

)
,

where k ∈N and R3 is defined as follows

R3(ξ) =
∫ ξ

0

(t− ξ)3

(1 + t)4 dt,

where ξ ≥ −1. By computing the moments of the Poisson random variable y

centered in z we obtain

E

(
D(z, y)− 1

2
(y− z)2

z

)
= −1

6
θ − 3θr− r3

z2 (4.33)

+
1
3

3θ2 + 6θr2 − 4θr + θ + r4

z3 + E(θ),

where r := z− θ and

E(θ) = E

(
yR3

(
y− z

z

))
=

∞

∑
k=1

e−θθk

k!
kR3

(
k− z

z

)
.

To conclude we now prove that E(θ) = O(1
θ ). Following the idea of the proof

given in [153], we split the series into two parts: in the first ranging k between

0 and b z
2c and in the second one k ≥ b z

2c+ 1, where bχc denotes the integer

part of χ. We observe that for k from 1 to b z
2c, or equivalently ξ ∈ (−1,−1

2 ],

then

(1 + ξ)|R3(ξ)| ≤
1
e

. (4.34)

Since θs

s! = θs

Γ(s+1) is monotonically increasing for 0 ≤ s ≤ b θ+c
√

θ
2 c, using
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equation (4.34) and the Stirling formula we obtain∣∣∣∣∣∣
b z

2 c

∑
k=1

e−θθk

k!
kR3

(
k− z

z

)∣∣∣∣∣∣ ≤ 1
e

b z
2 c

∑
k=1

ze−θ θk

k!
(4.35)

≤ 1
e

b θ+c
√

θ
2 c

∑
k=1

ze−θ θk

k!
≤ 1

e

⌊
θ + c

√
θ

2

⌋
e−θ θb

θ+c
√

θ
2 c

b θ+c
√

θ
2 c!

z

≤ e−θ−1+b θ+c
√

θ
2 c

√
2π

(
θ

b θ+c
√

θ
2 c

)b θ+c
√

θ
2 c ⌊

θ + c
√

θ

2

⌋ 1
2

z .

Since θ+c
√

θ
2 − 1 ≤

⌊
θ+c
√

θ
2

⌋
≤ θ+c

√
θ

2 and θ⌊
θ+c
√

θ
2

⌋ > 1 for θ large enough, the

upper bound in inequality (4.35) can be bounded by

M(θ) :=
e
− 1

2 θ

(
1+2θ−1−cθ−

1
2−v log

(
2

v−2θ−1

))
(θv)

3
2

2
√

π
(4.36)

where v := 1 + cθ−
1
2 . Then M(θ) → 0 exponentially as θ → ∞. Now we

consider k ≥ b z
2c+ 1, or equivalently ξ > −1

2 . Since

|R3(ξ)| ≤ 4ξ4, (4.37)

we obtain ∣∣∣∣∣∣
∞

∑
k=b z

2 c+1

e−θθk

k!
kR3

(
k− z

z

)∣∣∣∣∣∣ ≤ 4
∞

∑
k=0

e−θθk

k!
k
(

k− z
z

)4

= 4E

(
(y− z)5

z4 +
(y− z)4

z3

)
= 4

3θ3 + 6θ2r2 − 16θ2r + 11θ2 + θ(r− 1)4

z4

≤ 4
(3 + 6c2)θ3 + 16cθ2

√
θ + 11θ2 + θ(c

√
θ + 1)4

(θ − c
√

θ)4
= O

(
1
θ

)
,
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where

E((y− z)5) = θ5 − 5θ4(z− 2) + 5θ3(2z2 − 6z + 5)

− 5θ2(2z3 − 6z2 + 7z− 3)

+ θ(5z4 − 10z3 + 10z2 − 5z + 1)− z5

E((y− z)4) = θ4 + θ3(6− 4z) + θ2(6z2 − 12z + 7)

+ θ(−4z3 + 6z2 − 4z + 1) + z4,

are the 5-th and 4-th moments of the Poisson random variable y centered in

z.

Proof of Theorem 6. By the triangular inequality we have∣∣∣∣E(D(z, y)− 1
2
(y− z)2

y + 1

)∣∣∣∣ ≤ ∣∣∣∣E(D(z, y)− 1
2
(y− z)2

z

)∣∣∣∣ (4.38)

+

∣∣∣∣E(1
2
(y− z)2

z
− 1

2
(y− z)2

y + 1

)∣∣∣∣ .

Then, to get the thesis, thanks to Lemma 9, it is sufficient to prove that

E

(
(y− z)2

z
− (y− z)2

y + 1

)
= O

(
1√
θ

)
, as θ → ∞. (4.39)

By writing the left hand side of the equation (4.39) as the difference between

the second moments of a Poisson variable centered in z and in z + 1, we obtain

1
z

E
(
(y− z)2

)
− 1

θ
E
(
(y− z− 1)2

)
+

1
θ

e−θ(z + 1)2

=
θ2 − 2θz + θ + z2

z
− θ2 − θ(2z + 1) + (z + 1)2 − (z + 1)2e−θ

θ
.
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By some manipulations and by using that |z− θ| ≤ c
√

θ we get∣∣∣∣E( (y− z)2

z
− (y− z)2

y + 1

)∣∣∣∣ ≤ e−θ

∣∣∣∣ (z + 1)2

θ

∣∣∣∣+ ∣∣∣∣ (θ − z)3

zθ

∣∣∣∣
+

∣∣∣∣ (θ − z)2

zθ

∣∣∣∣+ ∣∣∣∣3(θ − z)
θ

− 1
θ

∣∣∣∣
≤ e−θ (θ + c

√
θ + 1)2

θ
+

c3
√

θ − c

+
c2

θ − c
√

θ
+

3c√
θ
+

1
θ
= O

(
1√
θ

)
.

To prove Theorem 7 we need some preliminary results. We start by defining

ε := Y− Xβ∗. (4.40)

We observe that the components εi are independent random variables with

zero mean and Var(εi) = (Xβ∗)i, for all i ∈ {1, . . . , n}. Hereafter, for easy of

notation we suppress the superscript (n) from the estimators.

Lemma 10. There exists a constant G < +∞ such that

E
(
‖XTΛ2ε‖4

2

)
≤ p2G2(τmax(XTX))2. (4.41)

Proof of Lemma 10. We compute the term in the l.h.s. in equation (4.41). We

have

E
(
‖XTΛ2ε‖4

2

)
= E((DTXXTD)2) (4.42)

with D := Λ2ε. For the Singular Value Decomposition we can write

XXT = UTΣU ,

where U is an orthogonal matrix and Σ a diagonal matrix containing the

eigenvalues of XTX. We define H := UD = UΛ2ε. The i-th component of H is
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given by

Hi =
n

∑
l=1

uil
εl

Yl + 1
,

where uil represents the (i, l)-entry of the matrix U. Since εl
Yl+1 takes values

between −(Xβ∗)l and 1, we have that each component Hi takes values in a

compact subset [R, S]. Therefore, as H ∈ [R, S]n, the quadratic form (HTΣH)2

admits a maximum, i.e. there exists an H∗ such that (HTΣH)2 ≤ ((H∗)TΣH∗)2.

Then

E
(
‖XTΛ2ε‖4

2

)
= E((HTΣH)2) ≤ ((H∗)TΣH∗)2 (4.43)

≤ p2G2(τmax(XTX))2,

with

G := max
i∈{1,...,n}:

Σii 6=0

(H∗i )
2. (4.44)

Corollary 8. Under assumption (H1) there exists a constant G < +∞ such that we

have the following bound

E(‖β̂(PRLS)− β∗‖2
2) ≤

pGBn
(bn)2 , (4.45)

where β̂(PRLS) is the reweighted least square estimator defined as follows

β̂(PRLS) = arg min
β

1
2
‖Λ(Y− Xβ)‖2

2 . (4.46)

Proof of Corollary 8. By using optimality conditions of problem in equation

(4.46) and the definition of ε we have

β̂(PRLS)− β∗ = (XTΛ2X)−1(XTΛ2ε) . (4.47)
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Then, by using the Cauchy-Schwartz inequality we obtain

E(‖β̂(PRLS)− β∗‖2
2) ≤

√
E(‖(XTΛ2X)−1‖4

2)E(‖XTΛ2ε‖4
2), (4.48)

where

‖(XTΛ2X)−1‖4
2 =

1
(τmin(XTΛ2X))4

. (4.49)

By assumption (H1) and Lemma 10 we have the thesis.

Proof of Theorem 7. We want to prove the bound in equation (4.22). From

Corollary 8, since

E(‖β̂(w,λ) − β∗‖2
2) ≤ E(‖β̂(w,λ) − β̂(PRLS)‖2

2) (4.50)

+ E(‖β̂(PRLS)− β∗‖2
2),

we have to establish a bound for the first term of the r.h.s. of (4.50). In order to

do so, we follow similar arguments as in the proof of Theorem 3.1 in [157]. By

definition of β̂(w,λ) (equation (4.15)), the following inequality applies

1
2
‖Λ(Y− Xβ̂(w,λ))‖2

2 −
1
2
‖Λ(Y− Xβ̂(PRLS))‖2

2 (4.51)

≤ λ
p

∑
j=1

wj(|β̂(PRLS)j| − |(β̂(w,λ))j|).

From the optimality conditions of the optimization problem in equation (4.46),

we have

1
2
‖Λ(Y− Xβ̂(w,λ))‖2

2 −
1
2
‖Λ(Y− Xβ̂(PRLS))‖2

2 (4.52)

=
1
2
(β̂(w,λ) − β̂(PRLS))TXTΛ2X(β̂(w,λ) − β̂(PRLS)),
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and we notice that

τmin(XTΛ2X)‖β̂(w,λ) − β̂(PRLS)‖2
2 (4.53)

≤ (β̂(w,λ) − β̂(PRLS))TXTΛ2X(β̂(w,λ) − β̂(PRLS))

and

p

∑
j=1

wj(|β̂(PRLS)j| − |(β̂(w,λ))j|) ≤

√√√√ p

∑
j=1

w2
j ‖β̂(PRLS)− β̂(w,λ)‖2. (4.54)

Using (4.51), (4.52), (4.53) and (4.54) we obtain

‖β̂(w,λ) − β̂(PRLS)‖2 ≤
2λ
√

∑
p
j=1 w2

j

τmin(XTΛ2X)
, (4.55)

and finally, the Cauchy Schwartz inequality and assumption (H1) lead to

E(‖β̂(w,λ) − β̂(PRLS)‖2
2) ≤

4λ2

√
E

((
∑

p
j=1 w2

j

)2
)

(bn)2 . (4.56)

The thesis follows from equations (4.50), (4.56) and Corollary 8.

Proof of Theorem 8. For brevity we denote the APRiL estimator by β̂. To prove

the model selection consistency we prove that for n→ +∞

P(∀j ∈ (A∗)C, β̂ j = 0) −→ 1 (4.57)

and

P(∀j ∈ A∗, |β̂ j| > 0) −→ 1 . (4.58)

We now prove equation (4.57). The functional defined in equation (4.15) is

convex and not differentiable and C is a convex set. Then the solution β̂ is

characterized by the Karush-Kuhn-Tucker (KKT) optimality conditions [23]:

• (Xβ̂)i ≥ 0 ∀ i ∈ {1, . . . , n};
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• νi ≥ 0 ∀ i ∈ {1, . . . , n};

• νi(Xβ̂)i = 0 ∀ i ∈ {1, . . . , n};

• if β̂ j 6= 0

−xT
j Λ2(Y− Xβ̂) + λŵjsgn(β̂ j)− xT

j ν = 0, (4.59)

where sgn is the sign function;

• if β̂ j = 0

−xT
j Λ2(Y− Xβ̂) + λŵjsj − xT

j ν = 0, (4.60)

with sj ∈ [−1, 1].

ν is the n-dimensional vector whose components are the Lagrangian multipliers.

Thanks to KKT conditions, the event {∀j ∈ (A∗)C, β̂ j = 0} can be written as

{xT
j Λ2(Y− XA∗ β̂A∗) + xT

j ν = λŵjsj, ∀j ∈ (A∗)C}, (4.61)

where |sj| ≤ 1 (see equation (4.60)), XA∗ is the matrix constituted by the

columns xj and β̂A∗ is the vector constituted by the components β̂ j with j ∈ A∗.
By taking the absolute value of each equation in (4.61) the event takes the form

{|xT
j (Λ

2(Y− XA∗ β̂A∗) + ν)| ≤ λŵj, ∀j ∈ (A∗)C}. (4.62)

This implies that equation (4.57) is equivalent to

P
(
∃j ∈ (A∗)C,

∣∣∣xT
j (Λ

2(Y− XA∗ β̂A∗) + ν)
∣∣∣ > λŵj

)
→ 0

as n→ +∞. We set

Ŝj := |β̂(PRiL)j|+
(

1
n

) 1
γ+δ

,
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η̂ := min
j∈A∗

Ŝj,

η := min
j∈A∗
|β∗j |+

(
1
n

) 1
γ+δ

,

and

Êj :=
∣∣∣xT

j (Λ
2(Y− XA∗ β̂A∗) + ν)

∣∣∣ .

Then

P
(
∃j ∈ (A∗)CÊj > λŵj

)
≤ ∑j∈(A∗)C P

(
Êj > λŵj, η̂ > η

2 , Ŝj ≤
(

λ
n

) 1
γ

)
+∑j∈(A∗)C P

(
Ŝj >

(
λ
n

) 1
γ

)
+ P

(
η̂ ≤ η

2

)
. (4.63)

The idea is to determine three bounds M1, M2 and M3 depending on n, such

that

P
(

η̂ ≤ η

2

)
≤ M1, (4.64)

∑
j∈(A∗)C

P

(
Ŝj >

(
λ

n

) 1
γ

)
≤ M2, (4.65)

∑
j∈(A∗)C

P

(
Êj > λŵj, η̂ >

η

2
, Ŝj ≤

(
λ

n

) 1
γ

)
≤ M3 (4.66)

and M1, M2 and M3 go to 0 as n→ +∞. Let us start with the determination

of bound M1. Using Corollary 7, it follows that

P
(

η̂ ≤ η

2

)
≤ P

(
‖β̂(PRiL)− β∗‖2 ≥

η

2

)
≤ 2

η

(
2λ1
√

p +
√

pGBn
bn

)
=: M1. (4.67)
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For the determination of bound M2, we use again Corollary 7. We have that

∑
j∈(A∗)C

P

(
Ŝj >

(
λ

n

) 1
γ

)
≤

E
(
‖β̂(PRiL)− β∗‖2

)
+ p

(
1
n

) 1
γ+δ

(
λ
n

) 1
γ

≤ 1

(λ
n )

1
γ

(
2λ1
√

p +
√

pGBn
bn

+
p

n
1
γ+δ

)
=: M2. (4.68)

Finally, for the determination of bound M3, we write

∑
j∈(A∗)C

P

(
Êj > λŵj, η̂ >

η

2
, Ŝj ≤

(
λ

n

) 1
γ

)
≤ 2

E

∑j∈(A∗)C Êj1{
η̂ > η

2

}


n
,

where 1{·} denotes the indicator function. By definition of ε (equation (4.40)),

we have

∑
j∈(A∗)C

Êj = ∑
j∈(A∗)C

∣∣∣xT
j Λ2XA∗(β∗A∗ − β̂A∗) + xT

j Λ2ε + xT
j ν
∣∣∣

≤ ∑
j∈(A∗)C

‖xT
j Λ‖2

√
τmax(XTΛ2X)‖β∗A∗ − β̂A∗‖2 (4.69)

+ ∑
j∈(A∗)C

∣∣∣xT
j ν
∣∣∣+ ∑

j∈(A∗)C

‖xT
j Λ‖2‖Λε‖2.

By using assumption (H4), we get

∑
j∈(A∗)C

‖xT
j Λ‖2 ≤ p max

j=1,...,p
‖xj‖2 ≤ pL, (4.70)

and

E(‖Λε‖2) = E


√√√√ n

∑
i=1

(
εi√

Yi + 1

)2
 ≤ √2n (4.71)
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where we used that E

(
ε2

i
Yi+1

)
≤ 2 for all i ∈ {1, . . . , n}. Following the idea of

the proof of Lemma 7, in particular the calculus which leads to equation (4.45),

we have

‖β̂A∗ − β̂(PRLS)A∗‖2 ≤
2λ
√

p 1
η̂γ

τmin(XT
A∗Λ2XA∗)

. (4.72)

Thanks to the Cauchy-Schwartz inequality, equations (4.69), (4.70), (4.71), (4.72)

and hypothesis (H1) we obtain the following bound

E

 ∑
j∈(A∗)C

Êj1{
η̂ > η

2

}


≤ pL

√√√√√E
(

τmax(XTΛ2X)
)

E

‖β∗A∗ − β̂A∗‖2
21{

η̂ > η
2

}


+ E

 ∑
j∈(A∗)C

∣∣∣xT
j ν
∣∣∣ 1{

η̂ > η
2

}
+ pLE(‖Λε‖2)

≤ pL
√

Bn

(
2λ
√

p
( η

2

)−γ
+
√

pGBn
bn

)
(4.73)

+ E

 ∑
j∈(A∗)C

∣∣∣xT
j ν
∣∣∣ 1{

η̂ > η
2

}
+ pL

√
2n.

From optimality conditions in equations (4.59) and (4.60) it follows that

|xT
j ν| ≤ |xT

j Λ2(Y− Xβ̂)|+ λŵj,
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so we have

E

 ∑
j∈(A∗)C

∣∣∣xT
j ν
∣∣∣ 1{

η̂ > η
2

}


≤ E

(
∑

j∈A∗
|xT

j Λ2ε|
)
+ E

 ∑
j∈A∗
|xT

j Λ2X(β∗ − β̂)|1{
η̂ > η

2

}


+ λE

 ∑
j∈A∗

ŵj1{
η̂ > η

2

}


≤ pL
√

2n + pL
√

Bn

(
2λ
√

pn1+γδ +
√

pGBn
bn

)
+ λp

(
2
η

)γ

,

where we have used the following bound

E

( p

∑
j=1

ŵ2
j

)2
 = E




p

∑
j=1

1(
|β̂(PRiL)j|+

(
1
n

) 1
γ+δ
)2γ


2


≤ p2n4(1+δγ). (4.74)

Then, we obtain

∑
j∈(A∗)C

P

(
Êj > λŵj, η̂ >

η

2
, Ŝj ≤

(
λ

n

) 1
γ

)

≤ 4pL
n

√2n +
B
√

pG
b

+
√

Bnp
λ
(

2
η

)γ
+ λn1+δγ

bn
+ λ

2γ−1

ηγL


=: M3. (4.75)

Now we prove that M1, M2 and M3 go to 0 as n→ +∞.

M3 → 0
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since
√

nλ
(

2
η

)γ

n2 −→ 0,
√

nλn1+δγ

n2 −→ 0 and λ
n

(
2
η

)γ
−→ 0 as n → +∞, for the

assumption (H3 c) and for the positivity of constants γ and δ;

M2 =
1

(λ
n )

1
γ

(
2λ1
√

p +
√

pGBn
bn

+
p

n
1
γ+δ

)
→ 0

since λ1

( λ
n )

1
γ n
−→ 0 as n → +∞ for assumptions (H2) and (H3 a),

√
n

n( λ
n )

1
γ
=

1(
λn

γ
2 −1

) 1
γ
−→ 0 as n → +∞ for the assumption (H3 a), and 1

( λ
n )

1
γ n

1
γ +δ
−→ 0

as n→ +∞ for the assumption (H3 b);

M1 =
2
η

(
2λ1
√

p +
√

pGBn
bn

)
→ 0

since λ1
nη −→ 0 as n → +∞, for the assumption (H2) and the definition of η,

and
√

n
nη = O( 1√

n ) as n→ +∞.

Now we prove equation (4.58). It is sufficient to show that

P

(
min
j∈A∗
|β̂ j| > 0

)
−→ 1, n→ +∞.

By equation (4.72) we have

min
j∈A∗
|β̂ j| > min

j∈A∗
|β̂(PRLS)j| −

2λ
√

pη̂−γ

τmin(XTΛ2X)
, (4.76)

where

min
j∈A∗
|β̂(PRLS)j| ≥ min

j∈A∗
|β∗j | − ‖β∗A∗ − β̂(PRLS)A∗‖2 . (4.77)

Since minj∈A∗ |β∗j | > 0, to conclude we show that ‖β∗A∗ − β̂(PRLS)A∗‖2 and
2λ
√

pη̂−γ

τmin(XTΛ2X)
go to 0 in probability. Equation (4.45) implies that the second term

in the r.h.s of equation (4.77) goes to zero. Moreover, for the second term in
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equation (4.76) we have that, given M > 0

P

(
2λ
√

p

η̂γτmin(XTΛ2X)
> M

)

≤ P

(
2λ
√

p

η̂γτmin(XTΛ2X)
> M, {η̂ >

η

2
}
)
+ P

(
η̂ ≤ η

2

)

≤
2λ
√

p
M

√√√√√E

( 1
τmin(XTΛ2X)

)2
E

(
1

η̂2γ
1{η̂> η

2 }

)
+ M1

≤
2λ
√

p
bnM

(
2
η

)γ

+ M1 −→ 0 as n→ +∞ (4.78)

since M1 → 0 as n→ +∞ and λ
n

(
2
η

)γ
→ 0 as n→ +∞ thanks to assumption

(H3 c). This proves equation (4.58) and concludes the proof.

Proof of Proposition 9. The proof is analogous to the one of Theorem 8. We start

by proving that equation (4.57) holds. It is sufficient to show that the bounds

M1, M2 and M3 defined in equations (4.67), (4.68) and (4.75), respectively go

to 0 as n→ ∞ under assumptions (H5), (H6), (H7) and (H8). We have that

M1 =
2
η

(
2λ1
√

p +
√

pGBn
bn

)
→ 0

since λ1
√

p
ηn → 0 for the assumption (H7 a) and

√
p√

nη
→ 0 for the assumption

(H6). Moreover,

M2 =
1

(λ
n )

1
γ

(
2λ1
√

p +
√

pGBn
bn

+
p

n
1
γ+δ

)
→ 0

since
(

λ
n

)− 1
γ λ1

√
p

n =
(

λnδγ

pγ

)− 1
γ λ1nδ+ 1

γ−1
√

p → 0 for assumptions (H8 b) and (H7

b),
(

λ
n

)− 1
γ
√

p√
n =

(
λnδγ

pγ

)− 1
γ n−

1
2+δ+ 1

γ√
p → 0 for the assumption (H8 b) and for the

hypothesis 1
γ + δ < c+1

2 , and p
(

λ
n

)− 1
γ n−

1
γ−δ → 0 for the assumption (H8 b).
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Finally,

M3 =
4pL

n

√2n +
B
√

pG
b

+
√

Bnp
λ
(

2
η

)γ
+ λn1+δγ

bn
+ λ

2γ−1

ηγL

→ 0

since the first two terms in the definition of M3 go to 0 for the assumption (H5),
λp
nηγ

√
p√
n → 0 for assumptions (H5) and (H8 c), p

n
λn1+δγ
√

n
√

p = λnδγ− 1
2 p
√

p → 0

for the assumption (H8 a) and p
n

λ
ηγ → 0 for the assumption (H8 c).

Now we have to prove that equation (4.58) holds. It is sufficient to observe

that, as n→ ∞, the bound in equation (4.45) goes to 0 for the assumption (H5)

and the bound in equation (4.78) goes to 0 for the assumption (H8 c).
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Chapter 5

Solar flares prediction as a learning

problem

In the present Chapter we present a learning problem in solar physics for the

solution of which we make use of sparsity-enhancing methods. This learning

problem concerns the prediction of solar flares and the selection of the most

predictive features. Solar flares are the most energetic explosive events on the

solar surface: they are characterized by an intense electromagnetic emission

and are often followed by particle emissions, namely as Coronal Mass Ejections

(CMEs) during which the solar material (as electrons and solar plasma) is

ejected throughout the solar corona into the interplanetary space. They are

one of the primary drivers of space weather and they may cause damage to

space-based technological systems, communication links on our planet, radio

blackouts etc. The NASA satellite SDO has been launched in February 2010

[108] with the scientific goal of a more complete understanding of the solar

magnetic field dynamics related to emissions in Ultraviolet (UV) and Extreme

UV (EUV). It comprises three instruments: Extreme Ultraviolet Variability Experi-

ment (EVE), Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic

Imager (HMI). The instrument HMI [117] is devoted to provide observations

of the solar magnetic field activity. Many observational studies and previous

machine learning studies confirmed the important role of the magnetic field
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5.1 Introduction to the problem

for prediction of solar flares. We attempt to forecast solar flares and to analyze

the most predictive features of the magnetic field by using sparsity-enhancing

methods, i.e. Lasso-type methods as PRiL and APRiL (see Chapter 4). We

aim to select and rank the most relevant features by training algorithms on

dataset where the labeling is not only the occurrence of solar flares but other

tasks, as instance the number of the originated flares and the peak intensity of

the strongest originated flare, which are reasonably assumed to be affected by

Poisson noise.

5.1 Introduction to the problem

Solar flares are flashes of brightness on the surface of the Sun and they are the

most energetic events in the heliosphere [122]. They may extend to over 104

km while releasing more than 1032 erg in less than 100 seconds, accelerating

billions of tons of material to more than 106 km/h, emitting electromagnetic

radiation at all wavelengths and, in this way, triggering the whole space

weather connection. These events, although occurring far from the Earth,

could be a threat for our planet, affecting satellite operations, aviation and

communication technologies (in Figure 5.1 a summary of the most common

effects occur due to space weather, produced due to solar storms, is shown).

They are classified according to their peak soft X-ray flux/emission in the 1− 8

Angstrom channel measured by the Geostationary Operational Environmental

Satellites (GOES). The flare classes are A, B, C, M and X with decimal sub-

classes. Usually only flares of C class and above (we denote it as C+ class)

are potentially dangerous from a point of view of the space weather effects,

e.g. M and X class flares can cause radio blackouts. The full comprehension

of solar (and stellar) flare physics is still an open issue, to such an extent that

we can talk about a sort of flare paradox: simple computation based on their

physical and geometrical properties and on magnetohydrodynamic (MHD)

equations would lead to predict a light-up time for flares longer than 105 years,

while the observed flash phase for these mysterious events is of the order of
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5.1 Introduction to the problem

some minutes. The numerical modeling of solar flare physics may rely on two

different perspectives. On the one hand, finite and boundary element methods

applied against MHD partial differential equations allow the simulation of the

electromagnetic fields and plasma properties in time and space; on the other

hand, artificial intelligence allows pattern identification in the data mess and

both source reconstruction with inverse methods and flare prediction with

machine learning.

For this reason, the space weather community looks for methods for fore-

casting solar flares and this was the aim of the Horizon 2020 (H2020) project

FLARECAST (Flare Likelihood And Region Eruption foreCASTing). The main

purpose was the creation of an advanced technological infrastructure for the

solar flare prediction from the data provided by the instrument HMI on the

solar satellite SDO. The Vector Magnetic Field data product from HMI gives

a quantitative measurement of the free magnetic field energy, magnetic field

stress and the helicity. Thanks to the automated Active Region (AR) tracking

system, of which HMI is provided, the active regions, which could origin solar

flares in correspondence of the sunspots, are identified. However, the active

regions do not always origin solar flares and their occurrence is related to

the size and complexity of the magnetic patterns characterizing these regions.

Therefore, once active regions are localized, the aim is to predict if such active

regions will or will not give rise to solar flares (in Figure 5.2 we show an ex-

ample of HMI magnetogram). Efficient prediction relies on parameters which

quantify the eruptive capability of solar active regions. A working package

of the FLARECAST project was devoted to the extraction of features from

the HMI data characterizing active regions and another working package was

focused on developing flare prediction algorithms. Machine learning tech-

niques used for prediction can be exploited also to identify the most predictive

features (i.e. to do feature selection). In this part we show a first (preliminary)

analysis of the most relevant properties among all the features extracted by

the FLARECAST project, using sparsity-enhancing methods.
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5.1 Introduction to the problem

Figure 5.1: A summary of the most common effects due to solar storms.

Figure 5.2: An example of active region which will give rise to solar flares.
Left panel: HMI magnetogram and identification of an active region (on 9th
September 2017 at 00:34:41 UT). At right: AIA image at the bandwidth 171 Å,
which shows a solar flare (on 9th September 2017 at 19:28:21 UT) originated
by the active region shown in the left panel. These two images are provided
by www.SolarMonitor.Org.
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5.2 Data description

Data preparation consists of two steps: the feature extraction, which is devoted

to compute properties from HMI data in order to create feature vectors (feature

vectors constitute the input space, denoted as X in previous Chapters) and

the flare association, which consists mainly in labeling the feature vectors

from GOES data (labels constitute the output space, denoted as Y in previous

Chapters). We see in the following paragraphs these two procedures.

5.2.1 Feature extraction

The data we consider are provided by the Helioseismic and Magnetic Imager

in the payload of the Solar Dynamics Observatory (SDO/HMI). This telescope

provides full disk vector magnetograms with a temporal cadence of 12 minutes,

starting from February 2010 [70; 117]. Relying on the Near-Realtime (NRT)

Space Weather HMI Archive Patch (SHARP) data product of the HMI database

and also using property extraction algorithms developed within FLARECAST,

the input data at disposal for the machine learning analysis are feature vectors

of dimension up to 171 characterizing properties of the active regions (ARs)

present in the SDO/HMI maps. Features extracted by FLARECAST algorithms,

which often duplicate the property calculation step on Blos (the line-of-sight

component of the magnetic field vector) and Bradial (the radial component of

the magnetic field vector) input data, include the following:

• Schrijver’s R value [119]: 1 property yielding a total of 2 features.

• Multifractal structure function spectrum on a 2D image: 2 properties

yielding a total of 4 features.

• Falconer’s total free magnetic energy proxy WLSG [44]: 1 property yield-

ing a total of 2 features.

• Distance between the leading and following sunspot subgroups and the

Sl− f [76] separation parameter: 1 property yielding a total of 2 features.
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5.2 Data description

• Spectral power indices extracted by means of the Fourier transform and

of a continuous wavelet transform: 2 properties yielding a total of 4

features.

• Magnetic polarity inversion line (MPIL) characteristics: 3 properties

yielding a total of 6 features.

• Effective connected magnetic field strength (Be f f ): 1 property yielding a

total of 2 features.

• Vertical decay index of potential field: 4 properties yielding a total of 8

features.

• Non-neutralized electric currents: 1 property yielding 1 feature.

• Ising energy (E): 1 property yielding a total of 4 features.

• Fractal dimension (D): 1 property yielding a total of 2 features.

• Flow field characteristics: 8 properties yielding a total of 16 features.

• Magnetic helicity and energy injection rate: 14 properties yielding a total

of 14 features.

• SHARP keywords calculated from their corresponding vector and line-

of-sight magnetograms: 16 properties yielding a total of 96 features

(including the maximum, total, median, mean, standard deviation, skew-

ness and kurtosis over the SHARP field-of-view).

Eventually, this analysis provides 167 properties extracted from the HMI

images. Four further features come from the NOAA/SRS (Solar Region

Summary) database: the mean heliographic longitude and latitude of each AR,

a binary label encoding the presence of a flare in the past 24 hours and the

flare index of events occurring within the past 24 hours. The list of the overall

features with a brief description is reported in Tables 5.9, 5.10 and 5.11.
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5.2.2 Flare association

Once the features are extracted from each active region we have to associate

the information of the occurrence (or not) of solar flares: this procedure is

called "flare association". From GOES data we have the information if the

active region gave rise to a fixed class energetic solar flare. In this work we

consider only GOES class C1 and above (C1+). In order to do the association

between the SHARP ARs and the occurrence of C1+ class solar flares another

FLARECAST algorithm is then applied. The algorithm first verifies whether

the SHARP data contain NOAA-numbered regions (i.e., sunspot groups)

by comparison with NOAA’s daily SRS file immediately before the SHARP

observations. Then, if any NOAA number is assigned to the SHARP data, the

algorithm searches for GOES flares occurring in the same source region during

the entire disk passage. Once the flare association is realized, each active region

is characterized by the 171-dimensional vector of features and a binary label

(1 if the active region originated a solar flare 0 otherwise). Therefore, given

n active regions we can construct a training set {(Xi, Yi)}n
i=1 where Xi is the

feature vector of the i-th active region and Yi is the corresponding label. We use

this training to train machine learning techniques in order to be able to predict

the occurrence of solar flares when the feature vector of a new active region

is given. However, from GOES data many different types of information on

solar flares are available, such as the number of flares originated from an active

region and their intensity. In the case where many flares were originated from

an active region we refer to the "maximum flare" as the flare with the most

intensity. Therefore, we extract from GOES data the following information.

1. The number of flares originated by an AR.

2. The intensity of the maximum flare. This number is obtained by convert-

ing the GOES flare class (e.g. C3.6 flare class is converted in the quantity

3.6, M1.8 is converted in the quantity 18, etc. in synthesis the decimal

number is multiplied by a power of 10 in according to the corresponding

letter (from 10−2 for A class to 102 for X class)).
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3. The imminence of the maximum flare computed as 1 divided by the peak

time of the maximum flare (computed in hours).

We refer to such information on solar flares as "tasks" to predict. The task

which is typically used is the occurrence of solar flares (1 if a solar flare is

occurred and 0 if not) and we refer to it with the name ’flaring’. Theoretically,

a better prediction can be done since a more complete information on solar

flares (not only on the occurrence of flares) is available.

5.2.3 Training and test sets

Fixed a task, machine learning methods can be applied in order to predict the

occurrence of solar flares. If we denote n the number of active regions and p

the number of features associated to each active region, we can construct a

training set {(Xi, Y(t)
i )}n

i=1 where Xi is the feature vector and Y(t)
i is the label

of the t-th task for the i-th active region. Therefore the training set is given by

(X(training), Y(t)(training)), (5.1)

where X(training) is the feature matrix whose rows are the p-dimensional fea-

ture vectors XT
i , and Y(t)(training) is the label vector which has Y(t)

i as elements

i = 1, . . . n. Therefore, X(training) has dimension n× p and Y(t)(training) has

dimension n. Once, the machine learning method is trained we evaluate the

performances in prediction by defining a test set

(X(test), Y(t)(test)), (5.2)

where X(test) is a m × p test matrix which has as rows the feature vectors

XT
i (test) for i = 1, . . . , m and Y(t)(test) is the m-dimensional test label vector

made of the observations Y(t)
i (test) for i = 1, . . . , m.
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5.3 Solar flare prediction and feature selection

The ingredients of a supervised approach for the prediction of solar flares of a

given intensity class are

• a historical data set of feature vectors extracted from SDO/HMI data to

create the feature matrix X(training) for the training set;

• a set of labels, each one associated with an active region and encoding

the outcome information to create the label vector Y(training) for the

training set;

• a computational method trained on the historical (training) set and the

corresponding set of labels. When a new magnetogram arrives, the

pattern recognition method extracts the features from it and the trained

machine learning method both predicts the outcome corresponding to

the new feature set and assesses the impact of each feature against the

prediction effectiveness.

To this purpose, within the FLARECAST project, different machine learning

techniques are used as Support Vector Machine (SVM), Random Forest, multi-

layer perceptrons, k-nearest neighbors and so on [19; 48; 82; 101]. In particular

in [27; 110] a kind of Lasso method, called Hybrid Lasso [12], which combines

the Lasso method with an unsupervised fuzzy clustering technique, is used.

In this Chapter we apply some Lasso-type methods: the classical Lasso, the

Adaptive Lasso [156] and the two Lasso-type methods introduced in Chapter

4 PRiL and APRiL. As we discussed in Chapter 4, this kind of machine

learning methods allows us to simultaneously predict and select the most

predictive features. Lasso-type methods are supervised regularization methods

for regression, therefore, in order to have a binary prediction (YES or NO solar

flares) we apply a simple technique to partition the regression outcome through

the optimization of a specific skill score on the training set. Usually the feature

selection is analyzed using the ’flaring’ task as labeling [19; 27; 48; 82; 110]. In

the current Chapter we analyze the feature selection using also different tasks
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(the ones listed in section 5.2.2). In particular we are interested in analyzing if

(and how) the prediction improves using different tasks and using different

Lasso-type methods taking into account the nature of noise on each task. We

expect that it is more reasonable to consider the tasks ’number of flares’ and

’maximum intensity’ affected by Poisson noise rather than Gaussian, whereas

both choices, Poisson or Gaussian noise, should be not deemed appropriate

for the ’imminence’ task. We apply both Lasso (which is usually applied to

Gaussian data) and PRiL (which has to be applied to Poisson data) and their

adaptive versions (Adaptive Lasso and APRiL) on each of the available tasks

and we compare their performances.

5.3.1 Algorithm scheme

Fixed a task t, we assume that the observed data (Xi, Y(t)
i ) are i.i.d. and satisfy

E(Y(t)
i |Xi) = XT

i (β∗)(t), (5.3)

for all i = 1, . . . , n, where (β∗)(t) is a suitable vector of parameters. Under

this formulation we can consider the following cases: Y(t)
i is affected by

Gaussian noise; by Poisson noise; by an unknown noise, as concerns machine

learning setting. We apply a Lasso-type method in order to estimate the

sought parameter vector (β∗)(t). An estimator β̂(t) can be used to both select

the relevant features and to predict the outcomes. In order to evaluate the

selection of the relevant features we consider the active set: we recall that the

active set Â is defined as follows

Â = {j ∈ {1, . . . , p} : β̂
(t)
j 6= 0}. (5.4)

Â provides the set of relevant features.

Flare prediction with regression algorithms is typically obtained by ac-

counting for numerical skill scores for the assessment of flare prediction

performances [18], and thresholding the regression outcome in such a way

that one of the skill score is optimized. We follow a similar procedure in order
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to convert the quantitative information of the prediction (e.g. the number

of occurred flares, the maximum intensity of the maximum flare, and so on)

into a binary information of the occurrence or not of solar flares. To do so

we choose a threshold which allows us to cluster the predictions in YES or

NO so that the TSS (defined in equation (4.30)) is maximized. This procedure

is described in details in Algorithm 2. In this way we can compare the skill

scores on the binary prediction ’YES/NO solar flares’ using different tasks.

We describe in the following the algorithm scheme which we apply on each

task.

• Train the machine learning method on the training set

(X(training), Y(t)(training)). The result is an estimator β̂(t) of the sought

parameter vector (β∗)(t).

• Compute the set of relevant features (i.e., the active set Â).

• Select a threshold L(t)
opt in the training phase in order to convert the

information of the task to be predicted into a binary outcome (this

thresholding procedure is summarized in Algorithm 2).

• Given a new feature vector Xi(new), compute

Ŷi(new) = XT
i (new)β̂(t), (5.5)

and convert the information of the prediction Ŷi(new) in a binary out-

come as follows

– if Ŷi(new) > L(t)
opt then YES solar flare (i.e. in the next 24 hours at

least a C1+ class solar flare will occur)

– if Ŷi(new) ≤ L(t)
opt then NO solar flare (i.e. in the next 24 hours no

C1+ class solar flares will occur).

In order to assess the effectiveness of the prediction we compute some skill

scores on the test set. Computationally we consider the following scheme.
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• Compute

Ŷi(test) = XT
i (test)β̂(t), for i = 1, . . . , m. (5.6)

• Compute the classes

C(t)1 = {i ∈ {1, . . . , m} : Y(t)
i (test) > 0} (5.7)

C(t)2 = {i ∈ {1, . . . , m} : Y(t)
i (test) = 0}, (5.8)

where Y(t)
i (test) are the true labels of the test set and compute

Ĉ(t)1 = {i ∈ {1, . . . , m} : Ŷ(t)
i (test) > L(t)

opt} (5.9)

Ĉ(t)2 = {i ∈ {1, . . . , m} : Ŷ(t)
i (test) ≤ L(t)

opt}. (5.10)

• Compute the confusion matrix, i.e. evaluate the TP, TN, FP and FN as

follows

TP = #(C(t)1 ∩ Ĉ
(t)
1 ) (5.11)

TN = #(C(t)2 ∩ Ĉ
(t)
2 ) (5.12)

FP = #(C(t)2 ∩ Ĉ
(t)
1 ) (5.13)

FN = #(C(t)1 ∩ Ĉ
(t)
2 ), (5.14)

where #(·) indicates the cardinality of the set in the argument.

• From these four quantities compute some skill scores in order to evaluate

the performance in prediction.

The skill scores as TSS, Heidke Skill Score (HSS), accuracy (ACC), Probability

of Detection (POD) are metrics computed from the confusion matrix, or contin-

gency table, which is represented in Table 5.1. In this context TP are the ARs

which originated solar flares correctly predicted as YES flares, TN are the ARs

which did not originate solar flares correctly predicted as NO flares, FP are

the ARs which did not originate solar flares incorrectly predicted as YES flares

and FN are the ARs which originated solar flares incorrectly predicted as NO
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Table 5.1: Confusion matrix definition.

predicted
YES NO

observed YES TP FN
NO FP TN

flares. The TSS and HSS are the most popular metrics used in the context

of Space Weather, as forecasting solar flares [48]. ACC is the most popular

classification metric, but it is less meaningful in rare events: it can be very

high even if the prediction of the positive events is not so accurate since the

number of negative events correctly estimated is very high. The TSS is defined

in equation (4.30), it covers the range between −1 and 1 and it is optimal when

it is equal to 1. A negative value means that forecasting behaves in a wrong

way i.e. it mixes the role of the positive events with the one of the negative

events. The HSS is defined as follows

HSS =
2(TP · TN− FN · FP)

((TP + FN) · (FN + TN) + (TP + FP) · (FP + TN))
, (5.15)

it measures the improvement of the forecast over the random forecast. HSS

values are in the range between −∞ and 1. The optimal value is equal to 1, a

negative value means that the forecast is worse than the random forecast and

the 0 value means that the forecast has the same skill of the random forecast.

The ACC, defined as follows

ACC =
TP + TN

TP + FN + TN + FP
, (5.16)

is the ratio between the number of correct predictions over the total number of

predictions. It ranges between 0 and 1 and the optimal value is achieved in 1.

Finally, POD, defined as follows

POD =
TP

TP + FN
, (5.17)
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measures the ability to find the positive examples. It is the first addend in the

definition of TSS (see equation (4.30)).
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Algorithm 2 Thresholding procedure to classify predictions.

1: Input: X(training), Y(t)(training), β̂(t) (where β̂(t) denotes an estimator
computed in according to the chosen method).

2: Cluster the values of the label vector Y(t)(training) = (Y(t)
1 , . . . , Y(t)

n )T in
two classes, i.e.

C(t)1 = {i ∈ {1, . . . , n} : Y(t)
i > 0} (5.18)

C(t)2 = {i ∈ {1, . . . , n} : Y(t)
i = 0}. (5.19)

C(t)1 represents the set of the active regions which produce at least one

flare (YES flare) as a positive label correlates with the flare occurrence. C(t)2
represents the set of the active regions which do not produce any flares
(NO flare).

3: Compute

Ŷ(t)
(training) = X(training)β̂(t). (5.20)

4: Cluster the values of the t-th predicted task Ŷ(t)
(training) =

(Ŷ(t)
1 (training), . . . , Ŷ(t)

n (training))T in two classes according to YES or NO

flares by choosing a threshold L(t)
opt which optimizes the TSS on the training

set, as follows: given a set of values {`(t)q }Q
q ,

5: for L(t) ∈ {`(t)q }Q
q do

6:

Ĉ(t),L
(t)

1 = {i ∈ {1, . . . , n} : Ŷ(t)
i (training) > L(t)} (5.21)

Ĉ(t),L
(t)

2 = {i ∈ {1, . . . , n} : Ŷ(t)
i (training) ≤ L(t)}. (5.22)

7: Compute the TSS between the predicted classes Ĉ(t),L
(t)

1 , Ĉ(t),L
(t)

2 and the

true classes C(t)1 , C(t)2 , we denote such a value as TSS(t),L
(t)

.
8: end for
9: Choose the threshold such that

L(t)
opt = arg max

L(t)∈{`(t)q }Q
q=1

TSS(t),L
(t)

. (5.23)

10: Return L(t)
opt in order to classify the outcomes when a new feature vector is

given.

138



5.4 Experiments

5.4 Experiments

In our numerical results we consider point-in-time SDO/HMI images in the

time range between 09/14/2012 and 04/30/2016, with a time cadence of

24 hours corresponding to a specific forecast issuing time, which is 00:00

expressed Universal Time (UT). After the application of the pattern recogni-

tion step (or feature extraction) we had at disposal 4061 point-in-time 171-

dimension feature vectors. In the following sections we report some results

about the feature selection using different tasks by applying Lasso, Adaptive

Lasso, PRiL and APRiL as machine learning methods.

5.4.1 Data

Within the FLARECAST project, the usual way to rank the importance of

features consists in applying some machine learning methods, suitable for

feature selection, on data where the label is the ’flaring’ information. In this

Chapter we analyze the feature selection when the label is not the ’flaring’

but it is one of the tasks listed in section 5.2. We train the machine learning

methods following the procedure used in [27]. The training set is built by

randomly extracting around 2/3 active regions from the set of all ARs and

labeling the 171-dimension feature vectors associated to each AR with 1 if

a GOES C1+ flare occurred in the next 24 hours 0 otherwise. The set of

feature vectors associated to the remaining 1/3 ARs was provided as test set

for experiments to supervised learning algorithms trained on the training set.

Training and test sets are built such that they do not overlap in any way, neither

in time nor in terms of ARs examined. Finally the random complete separation

of ARs into training and test sets was replicated 100 times to enable statistical

robustness of the results. We follow a similar procedure for each task, with the

difference that the feature vectors are labeled with the information contained

in the chosen task (e.g. if we use the task ’number of flares’ the feature vector

is labeled by annotating the number of C1+ solar flares occurred in the next

24 hours and 0 means no occurrence of C1+ solar flares). In our experiments
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we consider separately the four tasks: ’flaring’, ’number of flares’, ’maximum

intensity’ and ’imminence’ (see section 5.2).

5.4.2 Results

We follow the algorithm scheme described in section 5.3 and we use Lasso,

Adaptive Lasso (AdaLasso) (see equations (4.6) and (4.7), respectively), PRiL

and APRiL methods to compute the estimator β̂(t). For the adaptive strategy

AdaLasso we define weights as in [156], i.e. weights are defined as in equation

(4.28) where, in this case, the Maximum Likelihood estimate coincides with

the least square estimate. We apply each of these four methods on each dataset

fixing one task t of the four above listed tasks. We first focus on the feature

selection. We evaluate the importance of a feature according to its presence in

the 100 active sets computed for each method. In Table 5.2 we report, for each

method and for each task, the number of features which belong to at least 1

active set (occurrence ≥ 1) and the number of features which belong to at least

10 active sets (occurrence > 10). Some comments on results in Table 5.2.

• The number of features selected by the Lasso method is always higher

than the one provided by the other methods.

• The number of inactive features (i.e. the features never selected by any

method in any active sets) is higher using the task ’maximum intensity’

than the one using the other tasks (this is clearly visible in results pro-

vided by PRiL method, since only 20 features occur in at least one active

set).

• For any method, few features, with respect to the total number, occur in

more than 10 active sets (for Lasso and AdaLasso methods the maximum

number is 58 and 26, respectively, obtained using the task ’number of

flares’ and for PRiL and APRiL methods the maximum number is 35

and 14, respectively obtained using the task ’imminence’ against the total

number of features equal to 171).
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• As we expected the adaptive methods return solutions more sparse than

the ones computed by the corresponding non-adaptive methods.

Furthermore, we remark that the set of relevant features selected by APRiL

with occurrence > 10 is contained in the set of relevant features selected by

PRiL with occurrence > 10, whereas the set of relevant features selected by

AdaLasso is usually different with respect to the one returned by Lasso: for

the task ’flaring’ only 5 features (over 18) are in common between Lasso and

AdaLasso, for the task ’number of flares’ only 6 features (over 26), for the task

’maximum intensity’ only 8 features (over 23) and for the task ’imminence’

only 3 features (over 23).

In order to rank features we order them in according to their occurrence

in the active sets and we report histograms of the top-10 features according

to this principle. In Figures 5.3, 5.4, 5.5 and 5.6 we report the top-10 rankings

provided by each method for each task: in detail, in Figure 5.3 we report the

histograms counting the number of times each feature is selected in the 100

active sets using the task ’flaring’, in Figure 5.4 using the task ’number of

flares’, in Figure 5.5 the task ’maximum intensity’ and in Figure 5.6 the task

’imminence’. In the following we provide some comments about the top-10

rankings by comparing them with the ones obtained in [27]. In [27] the top-10

rankings of features are provided by following a different principle based on a

Recursive Feature Elimination and differentiate the top-10 ranking obtained

by forecasting C1+ class flares and M1+ class flares whereas in our analysis

we consider only C1+ class flares. Furthermore, in [27] two machine learning

methods are compared: the Hybrid Lasso (which exploits an unsupervised

fuzzy clustering technique to classify the regression outcome provided by the

classical Lasso method) and the Random Forest, which provides good results

in flare prediction as shown in [48]. However, we notice that some of the top-10

features are the same found in [27].

We report some comments about the selected features.

• The features wlsg_blos/value_int and sharp_kw/snetjzpp/total belong to all 4

top-10 rankings of PRiL and APRiL and also to 3 and 4 top-10 rankings
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Table 5.2: Number of features with occurrence in at least 1 active set (occurrence
≥ 1) and in more than 10 active sets (occurrence > 10). For each method, 100
active sets are computed.

task flaring number of flares maximum intensity imminence

Occurrence of features in 100 active sets
≥ 1 > 10 ≥ 1 > 10 ≥ 1 > 10 ≥ 1 > 10

Lasso 99 41 135 58 83 27 95 34
AdaLasso 34 18 30 26 27 23 30 23

PRiL 72 22 62 20 20 13 93 35
APRiL 18 9 17 10 13 7 38 14

Table 5.3: Number of times each feature is selected in the top-10 rankings of
each method (the maximum possible number of times is equal to 4, which is
the number of tasks considered in the analysis).

Lasso AdaLasso PRiL APRiL

feature Number of times in the top-10 rankings

wlsg_blos/value_int 3 - 4 4
sharp_kw/snetjzpp/total 4 - 4 4
sharp_kw/twistp/kurtosis 4 - 4 4
wlsg_br/value_int 1 - 3 3
flare_past 2 - 2 1
flare_index_past - - 2 3
sharp_kw/sflux/max 2 4 2 2

Table 5.4: Presence of each feature (yes or no) in the top-10 ranking provided
with the task ’flaring’ for forecasting C1+ class flares, considering Lasso,
AdaLasso, PRiL, APRiL, HL and RF (results of HL and RF are provided in
[27]).

Lasso AdaLasso PRiL APRiL HL RF

feature Presence (yes or no) in the top-10 ranking using the task ’flaring’

wlsg_blos/value_int yes no yes yes yes no
sharp_kw/snetjzpp/total yes no yes yes no yes
sharp_kw/twistp/kurtosis yes no yes yes no no
wlsg_br/value_int no no yes yes yes no
flare_past yes no yes no yes no
flare_index_past no no no yes yes yes
sharp_kw/sflux/max yes yes yes yes no no
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of Lasso, respectively. The features wlsg_blos/value_int has almost always

occurrence equal to 100, which means that it is present in all 100 active

sets. Such a feature is in the top-10 ranking provided by Hybrid Lasso for

forecasting C1+ class flares and in the one provided by Random Forest

for forecasting M1+ class flares [27]. The feature sharp_kw/snetjzpp/total

is in the top-10 ranking provided by Random Forest for forecasting C1+

class flares and M1+ class flares and in the top-10 ranking of Hybrid

Lasso method for forecasting M1+ class flare [27].

• The feature sharp_kw/twistp/kurtosis belongs to all 4 top-10 rankings of

Lasso, PRiL and APRiL, but it does not belong to any top-10 rankings of

Hybrid Lasso and Random Forest.

• The feature wlsg_br/value_int belongs to 3 of the top-10 rankings of PRiL

and APRiL and 1 of the top-10 rankings of Lasso. Such a feature is in

the top-10 ranking provided by Hybrid Lasso for forecasting C1+ class

flares [27].

• The feature flare_index_past, which is present in both top-10 rankings

of Hybrid Lasso and Random Forest for forecasting C1+ class flares

[27], belongs to 2 of the top-10 rankings of PRiL (for tasks ’number of

flares’ and ’maximum intensity’) and 3 of the top-10 rankings of APRiL

(for tasks ’flaring’, ’maximum intensity’ and ’imminence’). However,

in 2 top-10 rankings of both PRiL and Lasso (for tasks ’flaring’ and

’imminence’) flare_past has very high occurrence (occurrence equal to

100 for 3 of these rankings). These two features are quite correlated in

meaning: flare_index_past is a binary flag for the occurrence of at least

one flare in the previous 24 hours and flare_past measures the flare peak

magnitudes of the previous 24 hours. The fact that the magnitude of the

flares in the past 24 hours is a relevant variable for the prediction of the

imminence is a coherent result.

• AdaLasso generally selects different features than the ones selected by the

other methods. The feature which is present in all 4 top-10 rankings of
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AdaLasso is sharp_kw/sflux/max, which belongs to 2 of the top-10 rankings

of Lasso, PRiL and APRiL, but it is not in any top-10 rankings provided

by Hybrid Lasso and Random Forest.

• Most of the features presented in the top-10 rankings are of the family

sharp_kw. They are mainly specific properties of the magnetic field (see

Tables 5.10 and 5.11).

We summarize some of these comments in Tables 5.3 and 5.4. In Table 5.3

we report the number of times each feature discussed above is selected in the

top-10 rankings by Lasso, AdaLasso, PRiL and APRiL: for each method there

are 4 top-10 rankings, therefore the maximum number of times is equal to 4.

In Table 5.4 we report if each feature is present (yes) or not (no) in the top-10

ranking provided with the task ’flaring’ using Lasso, AdaLasso, PRiL, APRiL,

Hybrid Lasso (HL) and Random Forest (RF) (we refer to the top-10 rankings

of HL and RF provided in [27] for forecasting C1+ class flares).

Now we focus on the prediction performances. In Tables 5.5, 5.6, 5.7 and

5.8 we report the TSS, HSS, ACC and POD values obtained by averaging over

the 100 replicates the results provided by each method for each task on both

the training and test set. We notice that Adaptive Lasso provides bad results

with respect to the other methods. PRiL usually provides higher values in TSS,

HSS and ACC than the other methods except for the TSS and HSS values in

the test phase for the task ’imminence’, which are a little smaller than the ones

provided by Lasso. In detail, the TSS and HSS values provided in training

by PRiL and APRiL are much higher than the ones provided by Lasso and

AdaLasso (the highest TSS mean value (approximatively equal to 0.82) and

the highest HSS mean value (approximatively equal to 0.75) are provided by

PRiL). The TSS values in the test set provided by PRiL, APRiL and Lasso

are approximatively equal or better with respect to the ones shown in [27]

(using the task ’flaring’ Lasso and PRiL achieve approximatively the value

equal to 0.57 against the value 0.53 provided by RF (see [27])). The HSS values

in the test set provided by PRiL and APRiL are approximatively close to the

ones shown in [27]: using the task ’flaring’ Lasso, PRiL and APRiL achieve
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Table 5.5: TSS values obtained by averaging over 100 replicates the results
provided by Lasso, Adaptive Lasso, PRiL and APRiL methods for each task.

TSS
task Lasso AdaLasso PRiL APRiL

flaring Train 0.59(±0.01) 0.43(±0.04) 0.72(±0.01) 0.71(±0.01)
Test 0.57(±0.03) 0.43(±0.06) 0.57(±0.03) 0.55(±0.03)

number of flares Train 0.56(±0.01) 0.51(±0.02) 0.74(±0.01) 0.73(±0.01)
Test 0.55(±0.03) 0.5(±0.03) 0.56(±0.03) 0.56(±0.03)

maximum intensity Train 0.53(±0.02) 0.5(±0.03) 0.82(±0.009) 0.79(±0.01)
Test 0.53(±0.02) 0.5(±0.03) 0.55(±0.03) 0.54(±0.03)

imminence Train 0.53(±0.02) 0.5(±0.02) 0.59(±0.01) 0.59(±0.02)
Test 0.58(±0.02) 0.5(±0.02) 0.57(±0.03) 0.57(±0.03)

approximatively the value equal to 0.51 against the value 0.52 provided by RF

(see [27]). However, we notice that using other tasks the HSS in the test set

achieve higher values (using the task ’maximum intensity’ PRiL provides an

HSS approximatively equal to 0.54). We notice that the POD values provided

by all methods are very high (see Table 5.8): this leads to worse results in the

False Alarm Ratio (FAR), since the TSS is obtained by balancing POD and FAR.

In Figure 5.7 we report the distributions of TSS and HSS over the 100

replicates: the TSS distributions on training and test sets are provided in the

top row and the HSS distributions are provided in the bottom row. We notice

that the TSS and HSS provided by PRiL and APRiL in the training phase

are much better with respect to the other methods, in particular for the task

’maximum intensity’. HSS in the test phase is usually better for PRiL and

APRiL. We notice that only for the task ’imminence’ Lasso has usually a better

performance than PRiL and APRiL. This result is coherent with the nature of

noise on the different tasks: we can assume that the tasks ’number of flares’

and ’maximum intensity’ follow a Poisson statistic whereas it is more reliable

that the task ’imminence’ is affected by Gaussian noise instead of Poisson

noise.

We report some comments about the obtained results and possible improve-

ments.
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Figure 5.3: Top-10 rankings using the task named ’flaring’: the histograms
count the number of times each feature is selected in the 100 active sets by
Lasso and AdaLasso methods (in the top row) and by PRiL and APRiL methods
(in the bottom row).
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Figure 5.4: Top-10 rankings using the task named ’number of flares’: the
histograms count the number of times each feature is selected in the 100 active
sets by Lasso and AdaLasso methods (in the top row) and by PRiL and APRiL
methods (in the bottom row).
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Figure 5.5: Top-10 rankings using the task named ’maximum intensity’: the
histograms count the number of times each feature is selected in the 100 active
sets by Lasso and AdaLasso methods (in the top row) and by PRiL and APRiL
methods (in the bottom row).

148



5.4 Experiments

presence in the active sets

0 50 100

fe
a
tu

re

sharp kw/jz/skewness

sharp kw/usiz/max

sharp kw/twistp/kurtosis

sharp kw/rho/skewness

sharp kw/sflux/max

sharp kw/ushz/max

sharp kw/snetjzpp/total

wlsg blos/value int

gs slf/g s

flare past

Lasso

(a) Task: imminence

presence in the active sets

0 50 100

fe
a

tu
re

sharp kw/hgradbt/max

sharp kw/usiz/max

sharp kw/hgradbh/skewness

sharp kw/hgradbh/total

sharp kw/hgradbt/ave

sharp kw/hgradbh/max

sharp kw/hgradbt/kurtosis

sharp kw/hz/ave

sharp kw/hgradbt/skewness

sharp kw/sflux/max

Adalasso

(b) Task: imminence

presence in the active sets

0 50 100

fe
a
tu

re

sharp kw/jz/skewness

sharp kw/twistp/kurtosis

sharp kw/usiz/max

sharp kw/ushz/max

sharp kw/rho/skewness

sharp kw/sflux/max

wlsg blos/value int

sharp kw/snetjzpp/total

gs slf/g s

flare past

PRiL

(c) Task: imminence

presence in the active sets

0 50 100

fe
a

tu
re

flare index past

sharp kw/twistp/kurtosis

decay index br/max l over hmin

sharp kw/sflux/max

sharp kw/ushz/max

sharp kw/snetjzpp/total

flare past

gs slf/g s

sharp kw/rho/skewness

wlsg blos/value int

APRiL

(d) Task: imminence

Figure 5.6: Top-10 rankings using the task named ’imminence’: the histograms
count the number of times each feature is selected in the 100 active sets by
Lasso and AdaLasso methods (in the top row) and by PRiL and APRiL methods
(in the bottom row).
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Figure 5.7: Distributions of TSS (top row) and HSS (bottom row) over 100
replicates using the method indicated in the x-axis and using the tasks indi-
cated in the legend (’flaring’ green boxplots, ’number of flares’ blue boxplots,
’maximum intensity’ yellow boxplots and ’imminence’ white boxplots). Left
column: TSS and HSS distributions computed on 100 replicates of the training
set. Right column: TSS and HSS distributions computed on 100 replicates of
the test set.
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Table 5.6: HSS values obtained by averaging over 100 replicates the results
provided by Lasso, Adaptive Lasso, PRiL and APRiL methods for each task.

HSS
task Lasso AdaLasso PRiL APRiL

flaring Train 0.52(±0.02) 0.37(±0.04) 0.64(±0.02) 0.62(±0.02)
Test 0.51(±0.03) 0.36(±0.06) 0.51(±0.03) 0.51(±0.03)

number of flares Train 0.5(±0.02) 0.44(±0.03) 0.66(±0.02) 0.64(±0.02)
Test 0.49(±0.04) 0.43(±0.04) 0.53(±0.04) 0.51(±0.04)

maximum intensity Train 0.47(±0.03) 0.44(±0.03) 0.75(±0.02) 0.72(±0.02)
Test 0.47(±0.03) 0.44(±0.03) 0.54(±0.04) 0.53(±0.04)

imminence Train 0.52(±0.03) 0.43(±0.02) 0.52(±0.03) 0.51(±0.02)
Test 0.52(±0.03) 0.43(±0.02) 0.5(±0.04) 0.5(±0.04)

Table 5.7: ACC values obtained by averaging over 100 replicates the results
provided by Lasso, Adaptive Lasso, PRiL and APRiL methods for each task.

ACC
task Lasso AdaLasso PRiL APRiL

flaring Train 0.8(±0.02) 0.71(±0.03) 0.85(±0.01) 0.84(±0.01)
Test 0.79(±0.02) 0.71(±0.04) 0.79(±0.02) 0.8(±0.02)

number of flares Train 0.79(±0.01) 0.76(±0.02) 0.86(±0.01) 0.85(±0.01)
Test 0.78(±0.02) 0.75(±0.02) 0.81(±0.02) 0.8(±0.02)

maximum intensity Train 0.77(±0.02) 0.76(±0.02) 0.89(±0.009) 0.88(±0.01)
Test 0.77(±0.02) 0.76(±0.02) 0.82(±0.02) 0.82(±0.02)

imminence Train 0.79(±0.02) 0.75(±0.01) 0.79(±0.02) 0.79(±0.01)
Test 0.79(±0.02) 0.75(±0.01) 0.79(±0.02) 0.78(±0.02)

• As we expected, taking into account the nature of noise of the tasks

gives better results (PRiL works better on tasks ’number of flares’ and

’maximum intensity’ than Lasso).

• The fact that the thresholding process to classify predictions (see Algo-

rithm 2) is based on optimizing a specific skill score does not seem to

affect so much the other scores: although the optimization is based on the

TSS value, we retrieve good values in HSS (especially for PRiL method)

and in accuracy.
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Table 5.8: POD values obtained by averaging over 100 replicates the results
provided by Lasso, Adaptive Lasso, PRiL and APRiL methods for each task.

POD
task Lasso AdaLasso PRiL APRiL

flaring Train 0.79(±0.03) 0.72(±0.04) 0.89(±0.02) 0.88(±0.02)
Test 0.78(±0.05) 0.72(±0.06) 0.77(±0.04) 0.73(±0.05)

number of flares Train 0.76(±0.03) 0.75(±0.03) 0.9(±0.02) 0.9(±0.02)
Test 0.75(±0.03) 0.75(±0.04) 0.73(±0.03) 0.73(±0.03)

maximum intensity Train 0.75(±0.03) 0.72(±0.04) 0.94(±0.02) 0.93(±0.02)
Test 0.75(±0.03) 0.72(±0.04) 0.67(±0.04) 0.68(±0.04)

imminence Train 0.79(±0.04) 0.76(±0.03) 0.8(±0.04) 0.8(±0.03)
Test 0.79(±0.04) 0.76(±0.03) 0.78(±0.04) 0.79(±0.04)

• The regularization parameter for all Lasso-type methods is chosen by

the 3-fold cross validation. From results in Chapter 4 we have already

noticed that Lasso and Adaptive Lasso do not provide optimal results

with this regularization parameter choice procedure. This could be a

reason which explains the low performances in TSS and HSS for the

Adaptive Lasso in the current analysis. Indeed, a better regularization

parameter choice strategy could be based on the optimization of a skill

score as the TSS value.

• We noticed that some features seem to be robust with respect to the use of

different tasks. In this analysis we applied methods on each task taking

them separately. However, we can hold more tasks together and apply

Multi-task learning methods. A preliminary analysis is in progress: we

applied the Multi-task Lasso method [103] on more tasks simultaneously

and we made the analysis fixing a feature matrix and varying the number

of tasks in the label matrix. This procedure confirmed that the features

wlsg_ blos/value_int and sharp_kw/snetjzpp/total occur in all active sets

obtained by applying the Multi-task Lasso method using all possible

combinations of tasks.
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5.5 Discussion

The mechanism of solar flares is an open issue in solar physics and it has

remained unsolved for more than one century. They are triggered at the Sun’s

surface and they propagate from the solar atmosphere toward Earth. Although

they are far from our planet the solar flare radiation may be damaging to

infrastructures, instruments and astronauts in space, therefore flare forecasting

is an integral part of contemporary space-weather forecasting. Solar flares

originate from magnetically active regions but not all solar active regions

give rise to solar flares. Therefore, the challenge of solar flare prediction is

nowadays based on an intelligent computational analysis of physics-based

properties extracted from active region observables, most commonly line-of-

sight or vector magnetograms of the active-region photosphere. To deal with

the recent large amount of solar observation data new approaches have been

developed using machine learning algorithms. In this Chapter we use Lasso-

type methods (as PRiL and APRiL) to flare forecasting and identify which

features are most effective for predicting flares. The analysis has been done

using different labeling (not only the binary information of ’flaring’ but other

tasks as the number of the originated flares, the maximum flare class intensity

between the originated ones and the imminence of the most intensive flare

between the originated ones). Furthermore, the nature of noise affecting labels

has been taken into account improving the results in terms of skill scores (PRiL

and APRiL methods, applied on tasks reasonably affected by Poisson noise,

gave better results). However, in our analysis we focused on a linear model. In

literature, different strategies have been applied also using non linear kernels

(as in [48]) or deep neural networks [100] providing comparable results.

Possible improvements concern the creation of different feature spaces:

instead of considering the linear model as in equation (5.3), where we estimate

the “best" weights (i.e. the estimator β̂) in such a way the linear combination

of features returns a good prediction, we can consider non linear combinations

of features with simple operations, as division or multiplication of powers of

features, driven by their physical meaning and physics models, to return a

153



5.5 Discussion

better prediction.
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Chapter 6

Solar image desaturation as an

inverse problem

Image saturation is an issue for several instruments in solar astronomy, mainly

at Extreme Ultraviolet (EUV) wavelengths: an example is the AIA instrument

on board SDO which realizes an unprecedented EUV view of solar corona

and its dynamics. EUV imaging is crucial for providing a clear-cut picture of

the dynamical structure of the solar corona at many different time and spatial

scales [7; 69; 141]. Observations at these wavelengths are probably the only

data that can provide direct clear visualizations of magnetic reconnection as

the trigger of magnetic energy release [47; 113; 149; 154], reveal in detail the

thermal structure of the solar atmosphere [65] and therefore explain basic

plasma physics processes like coronal heating [8] and irradiance [146], and

unveil still unresolved diagnostic issues concerned with coronal waves and

oscillations [83]. From a space weather perspective, the ability of EUV imaging

to point out, both spatially and dynamically, the connection between solar

flares and coronal mass ejections (CMEs) paves the way to understand how

Sun’s variability impacts the escape of energetic particles into the heliosphere

[91]. As typically happens in EUV imaging, SDO/AIA observations of solar

flares may be significantly limited by the presence of two kinds of image

artifacts, diffraction and saturation. A tool for desaturating such images, called
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6.1 Introduction to the problem

DESAT, has been developed in [120; 121; 137]. An inverse diffraction problem

is formulated in order to restore the primary saturated region. However

DESAT has some limitations: the main one is the fact that it can not be used

when a reliable estimate of the background is not available. This is the case for

instance of the super solar storm on September 10, 2017.

In this Chapter we develop a novel computational approach for the analysis

of SDO/AIA saturated images able to recover the signal in the primary satura-

tion region without any a priori estimate of the background. Such a method,

called Sparsity-Enhancing DESAT (SE-DESAT) is based on alternating the

PRiL method (see Chapter 4) with Expectation Maximization (EM) algorithm

for Poisson data. In order to introduce the method we first formalize the

process of saturation which comprises two phenomena: primary saturation

and blooming. We formulate an equation model for the signal acquisition

process which takes into account both the diffraction model and the blooming

process. Finally, we test the performance on both simulated and real data

comparing them with the DESAT ones. Finally we show the effectiveness of

the new method also on the solar storm occurred on September 10, 2017 on

which DESAT can not be used.

6.1 Introduction to the problem

The classical model of astronomical image reconstructions describes the ob-

served image as the result of a convolution between an unknown object and the

Point Spread Function (PSF) of the observation instrument. The PSF models the

impulse response of the whole optical system to a point source placed far from

the optical system, thus encoding the image degradation due to the optical

system of the telescopes. Most PSFs are made of just a core peak that induces

diffusion effects but there are also PSFs which have a non local component: in-

deed, in addition to the core one, a PSF can have more complex structures due

to wave scattering against the filters support which replicates the central peak

according to regular diffraction patterns of varying intensity. In addition to the
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6.1 Introduction to the problem

image blur, telescopes based on the Charged Coupled Device (CCD) imaging

technology can present artifacts due to the saturation effect. Saturation [90]

happens when the incident photons exceed the sensor capacity and includes

two phenomena: the primary saturation, which refers to the condition where

CCD pixels lose their ability to accommodate additional charge and therefore

for intense incoming photon flux a set of pixel cells reaching its Full Well

Capacity, stores the maximum number possible of photon-induced electrons;

the blooming, named also secondary saturation, which refers to the fact that

the additional charge spreads into neighboring pixels, causing bright artifacts

in a circular region around a single pixel or along the horizontal or vertical

axis in the image. The blooming effect takes place with the exceeding of the

limit to how much charge each pixel can store, and its consequence is that

the electrons excited by the incoming photons spill out onto adjacent pixels.

Despite the efforts undertaken to build more and more efficient devices, the

fact remains that making an instrument with higher spatial resolution requires

smaller pixels, which are more likely affected by saturation and blooming

effects with increasing incoming photon flux.

In the solar images provided by the Atmospheric Imaging Assembly (AIA)

telescopes [80], these three kinds of degradation, i.e. non-local diffraction,

primary saturation and blooming, become clearly visible when the incoming

light is enough (see Figure 6.1). AIA is mounted on the Solar Dynamics

Observatory (SDO) NASA satellite has been launched in February 2010 and

provides an unprecedented EUV view of the solar corona and its dynamics,

allowing to obtain several significant scientific results. The four telescopes

of AIA capture images of the Sun’s atmosphere in ten separate wave bands,

seven of which centered at EUV wavelengths (94 Å, 131 Å, 171 Å, 193 Å, 211

Å, 304 Å, 335 Å), providing full-disk 4096× 4096 pixel images with a time

cadence of 12 s and with pixel width in the range 0.6− 1.5 arcsec. The image

reconstruction problem in AIA/SDO is an important scientific issue as the

brightest images of the Sun, showing highest energetic events such as big solar

flares, are degraded to such an extent that they cannot be useful to the solar
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6.1 Introduction to the problem

scientists. It is also a big data issue since saturation effects involve, around

105 images per year. Diffraction and primary saturation play a competing

role in the image processing effort for AIA. Indeed, just part of the incoming

signal accumulates in the CCD pixels up to saturation, while the other part

is coherently and linearly scattered to produce diffraction pixels unaffected

by saturation. As shown in [121; 137], this fact has a crucial implication for

image restoration: all information lost due to primary saturation is actually

present, as regular ghosts, in the diffraction fringes and therefore such an

information can be recovered by means of an inverse diffraction procedure.

The method presented in these papers, called DESAT, is able to estimate the

saturated region with some limitations. The core idea of the DESAT method is

that the non local effect of diffraction brings information on the pixel intensity

of the saturated region from which it has been generated. Therefore, to recover

the photometry of the saturated region, the DESAT method (1) estimates

the support of the saturated region mainly producing the diffraction effect,

(2) performs an inversion process which restores the pixel content of the

saturated region from the diffraction values and (3) makes an interpolation

step to estimate the pixel intensity of the image in the remaining bloomed

region. As mentioned before, in order to work properly, the DESAT method

needs an estimation of the solar activity without the diffraction effect, i.e.

an estimation of the background. This is the actual drawback of DESAT:

the background estimation consists in exploiting the fact that a typical AIA

observation along a time range of some minutes, is characterized by some

unsaturated frames since such a telescope is equipped with a feedback system

which automatically reduces the exposure time in correspondence of intense

emission. The unsaturated frames are used for providing an a priori estimate

of the background. In detail, the estimation consists in interpolating the pixel

values of the two unsaturated images recorded just before and just after the

image which has to be de-saturated. However, some of the most interesting

events are correlated to acquired images where strong saturation effects occur

for a whole time series, as for example the solar storm on September 2017: in
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6.1 Introduction to the problem

particular on September 10 2017, at the wavelength 171 Å all images suffer

of significant primary saturation and blooming effects for more than an hour,

involving about 300 consecutive EUV maps completely deteriorated [63]. In

these cases DESAT can not be used since an a priori estimate of the background

is not available.

We propose a new method, called Sparsity-Enhancing DESAT (SE-DESAT),

which can be used in these dramatic cases. The idea is that diffraction effects in

the original image come from a subset of pixels of the saturated region. Such

pixels can be identified using a sparsity-enhancing (in detail, a Lasso-type)

method which selects those pixels whose diffraction PSF most correlates the

original signal. In the Lasso terminology such pixels belong to the active set,

whereas the pixels that do not correlate much belong to the inactive set. In

our case sparsity is not used in the standard way concerning astronomical

image reconstruction problems [41; 45; 123] in which the signal is usually

compressed in some suitable basis (e.g. wavelet basis), but rather in a way

more similar to the one considered in learning applications: the sparsity in

the pixel space is used to select the variables most explaining the diffraction

model, or the features most predictive in machine learning terminology (see

Chapter 5). Furthermore, our approach takes into account that in the original

signal the diffraction effect is superimposed to the normal solar activity and

therefore it considers an unknown background to be estimated. As a final

step of the method we proposed to use an inpainting procedure to fill the

pixels of the inactive set, being, in practice, the information on these bloomed

pixels irremediably lost. However, when the bloomed pixels are considerably

much more than the pixels whose diffraction fringes are clearly visible in the

image, the above strategy does not perform correctly. This is due to the fact

that enlarging the saturated region, the probability that the background solar

activity spuriously correlates with the diffraction effects increases, and this

degrades the restoration of the saturated region. This issue led us to consider,

together with the standard diffraction model, an additional model for the

signal in the saturated part of the image which relies on a peculiar feature of
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6.2 Signal formation process

Figure 6.1: An example of saturated AIA image at 171 Å wavelength with
highlighted the overall (primary + blooming) saturation region and the diffrac-
tion fringes (the event occurred on September 10, 2017 at the acquisition time
16:07:09 UT).

the non linear behavior of the blooming effect. Indeed, the blooming effect

appears along the columns of the image and we can consider that the total

amount of charge excited is maintained along columns despite the presence

of blooming. This approximation allows us to consider that the integral of

the restored images along the columns of the saturated region should be kept

approximately equal to the same integral applied to the original image. We

will show that using this additional data in the inverse restoration problem

permits to obtain more reliable results even when the blooming region is large.

6.2 Signal formation process

The signal formation process of an optical system can be described by a model

equation as follows

h = K ∗ f (6.1)

where K ∈ L2(X ×Y) is the point spread function of the instrument, where

X ,Y ⊂ R are two intervals, h ∈ L2(X ×Y) is the ideal data, f ∈ L2(X ×Y) is

the incoming photon flux and ∗ indicates the convolution operation. Therefore,
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6.2 Signal formation process

Figure 6.2: The AIA PSF of the bandwidth 171 Å. The diffusion (or core)
and diffraction components of the AIA PSF are in the left and central panels,
respectively. In the left panel a zoom of the core component is reported. The
core component is located at the center of the image in the central panel, in
which the diffraction component is reported. In the right panel we report a 3D
view of the AIA PSF.

we have the following integral equation

h(x, y) =
∫
X×Y

K(x− x′, y− y′) f (x′, y′)d(x′, y′), (6.2)

for each (x, y) ∈ X × Y . The measured data h belongs to the data space or

image space I , whereas the incoming photon flux f belongs to the object space

O (see Figure 6.3).

The PSF of the AIA instrument can be modeled as the sum of two contri-

butions [111]: the core PSF which takes into account the local diffusion of the

light and the diffraction PSF which describes the non-local component given

by the diffraction pattern corresponding to a point source (see Figure 6.2).

Therefore, the equation model is characterized by a linear integral operator

whose kernel is the sum of the core and the diffraction PSF, i.e.

K = Kc + Kd (6.3)

is the sum of the local and non-local components. These two components can

be thought of as compact supported as the diffraction patterns are elongated

along two axis at 40 and 50 degrees with respect the x-axis in Cartesian
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6.3 Signal acquisition process

coordinate [106]. The blur (and the diffraction) is a degradation due to the

signal formation process. However other kinds of degradation are introduced

during the recorded process, or signal acquisition process, which we see in the

next section.

6.3 Signal acquisition process

Beside blur and artifacts associated to the PSF, images are affected by noise,

which is a degradation introduced during the signal acquisition process. The

recording hardware is placed in the image space and in the case of AIA the

acquisition is according to a standard CCD-based imaging technique. The

noise which affects counting processes is the so-called Poisson noise. AIA

data can be thought approximately Poisson, since the returned data are Data

Number (DN), which are obtained by dividing the recorded charge by the

average charge per photon. However, during the acquisition not only noise

is added but AIA CCD pixels are affected by saturation effects. We refer to

saturation as the whole of two phenomena: the primary saturation which

refers to the fact that a pixel reaches the maximum possible value (M = 214

DN), and the blooming which refers to the fact that, once a pixel is saturated, it

can affect the value of its neighboring pixels. In the following we first describe

the primary saturation phenomenon and then we propose a formalization for

the entire saturation process which includes also the blooming effect, by means

of a nonlinear operator between Hilbert spaces.

6.3.1 Primary saturation

Let us consider a function h representing the result of the signal formation

process (see equation (6.1)). We define the primary saturated region as

S = {(x, y) ∈ X ×Y | h(x, y) ≥ M} . (6.4)
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6.3 Signal acquisition process

f

The object
space O

The image
space I

h = K ∗ f

g

Signal formation
process

Signal acquisition
process

Figure 6.3: Geometric representation of the signal formation and acquisition
processes.

The primary saturation is a threshold operator

S(h)(x, y) =

{
h(x, y) (x, y) 6∈ S

M (x, y) ∈ S
. (6.5)

Therefore, the primary saturated data g is given by

g = S(h). (6.6)

We consider the sub-region of the image defined by

F = {(x, y) ∈ X ×Y | (Kd ∗ 1S)(x, y) > 0 , (Kc ∗ 1S)(x, y) = 0} , (6.7)

where 1Z indicates the characteristic function on the set Z. F contains the

replicates of the primary saturated region S due to the diffraction effect and

does not contain core effects.

By splitting the signal f in the two regions S and SC, where SC denotes the

complementary of the set S, from equations (6.1) and (6.3) we obtain

h = Kc ∗ f + Kd ∗ f|S + Kd ∗ f|SC , (6.8)
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6.3 Signal acquisition process

where the convolution of Kd with f restricted to a set T (with T = S or T = SC)

is defined as follows

(Kd ∗ f|T)(x, y) =
∫

T
Kd(x− x′, y− y′) f (x′, y′)d(x′, y′), (6.9)

where (x, y) ∈ X ×Y . Since in AIA images the visible diffraction effects come

only from the primary saturated parts of the images, we can assume that

Kd ∗ f|SC is negligible with respect to the other terms. Then, by restricting the

signal formation model (6.8) to F and by using equation (6.6) we get

g|F = (Kd ∗ f|S)|F + b (6.10)

where b := (Kc ∗ f )|F can be thought of as a background restricted to the set

F. In this context, the background is the image deprived by diffraction effects.

Equation (6.10) states that if we know the primary saturation region S and

the background b, we can retrieve the photon flux intensity in S by solving an

inverse diffraction problem.

6.3.2 Saturation (primary saturation and blooming)

In this section, we include the blooming effect in the saturation model. As

the saturation process of the CCD of the AIA telescope takes place along the

vertical axes of the images, the primary saturated region can be written in the

following form

S :=
⋃

x∈X
Sx , Sx = {y ∈ Y | h(x, y) > M} . (6.11)

Provided that Sx is connected for each x ∈ X , we start modeling the saturation

process by considering the two-dimensional nonlinear operator S : L2(X ×
Y)→ L2(X ×Y) which is defined by

g(x, y) := S(h)(x, y) =

{
h(x, y) y 6∈ S̃x

M y ∈ S̃x
(6.12)
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6.3 Signal acquisition process

where, for each x ∈ X ,

S̃x = {y ∈ Y | |y− y0(x)| ≤ t(x)} , (6.13)

and where y0(x) = 1
2(max(Sx) + min(Sx)) and t(x) satisfies the condition

∫ y0(x)+t(x)

y0(x)−t(x)
(M−min(h(x, y), M))dy =

∫
Sx
(h(x, y)−M)dy . (6.14)

The saturation operator S describes the process of vertically and symmetri-

cally charge spilling out of the primary saturated region S from the medium

point y0(x) for each x ∈ X . If S = ∅ the r.h.s. of equation (6.14) is identically

zero and this implies that t(x) = 0 for each x ∈ X , i.e. no charges are spilled

out as no saturation effect takes place. The saturation process makes the

observed image flat in the total saturated region

S̃ :=
⋃

x∈X
S̃x . (6.15)

The diffraction fringes of the saturated region can be modeled as for the

primary saturation. Therefore, we define the diffraction fringes corresponding

to the saturated region as

F̃ = {(x, y) ∈ X ×Y | (Kd ∗ 1S̃)(x, y) > 0 , (Kc ∗ 1S̃)(x, y) = 0} , (6.16)

and again from equations (6.1) and (6.12), by splitting f in the two regions S̃

and S̃C and then by restricting the resulting signal formation model to F̃, with

K given by equation (6.3), we get

g|F̃ = (Kd ∗ f|S̃)|F̃ + b (6.17)

where b := (Kc ∗ f )|F̃ is the background restricted to the fringes F̃. Then,

as we consider that the diffraction effects generated by the pure blooming

region S̃− S are negligible with respect to the ones produced by the primary
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saturation region, solving an inverse diffraction problem to retrieve the photon

flux intensity in S needs an estimate of the primary saturation region. This is

the reason why the DESAT method [120] performs an estimate of the primary

saturation region as a starting point. However, in section 6.5, we propose a

sparsity-enhancing method which automatically performs the segmentation of

the saturation region in primary and blooming.

6.3.3 Integrated core model

In section 6.3.2, we have considered the restriction of the signal g to the

diffraction fringe support. However, we can provide an image acquisition

model also for the signal in the saturated region. Indeed, having supposed

that the signal integrated along the vertical axes of the image is maintained

(see equation (6.14)), we can consider an integral equation

ḡ(x) :=
∫

S̃x
g(x, y)dy =

∫
S̃x
(Kc ∗ f|S̃)(x, y)dy + w, (6.18)

where w =
∫

S̃x
(Kc ∗ f|S̃C)(x, y)dy includes the local effects coming from the

non saturated region S̃C. We refer to this model as the integrated core model.

This additional model equation can be considered together with the diffraction

model (6.17). We will show with some numerical experiments that the addition

of the integrated core model can be very useful to improve the reconstruction

of the unknown photon flux of the saturated region.

6.4 Discretization

Since the AIA data are images of 4096 × 4096 pixels, we have to consider

the discretization of equations (6.17) and (6.18). By taking n = 4096 equis-

paced points for each axis, {(xp, yq)}p,q=1,...,n we can write the discretization

of equation (6.1) as

h = Aβ∗, (6.19)
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where h = {h(xp, yq)}p,q=1,...,n ∈ RN, β∗ = { f (xp, yq)}p,q=1,...,n ∈ RN and

A = {K(xp − xp′ , yq − yq′)}p,q,p′,q′=1,...,n ∈ RN × RN with N = n2 having

used the lexicographic order for the image pixel rearrangement and cyclic

boundary condition for the convolution operator. Moreover, we consider the

discretization of the saturated data g in equation (6.12) denoting it with I,

therefore,

I = {g(xp, yq)}p,q=1,...,n ∈ RN. (6.20)

Given an index i of the vector h, we define with r the index transformation

r : {1, . . . , N} → {1, . . . , n} × {1, . . . , n} which returns the row and column

indexes (q, p) ∈ {1, . . . , n} × {1, . . . , n} associated with the index i before the

rearrangement. As in the infinite dimensional case, the matrix A can be split

into two parts

A = AD + AC, (6.21)

with AD and AC the circulant matrices associated with the diffraction compo-

nent of the PSF and with the diffusion component, respectively (see equation

(6.3)). With a slight abuse of notation, we keep using the same symbols for the

saturated region, the fringes region and the saturation operator. The saturated

region is given by

S̃ = {i ∈ {1, . . . , N} : Ii ≥ M}, (6.22)

and the saturation operator S : RN → RN is defined as

S(h) =
{

hi i 6∈ S̃

M i ∈ S̃
. (6.23)

The saturated data I ∈ RN is given by

I = S(h). (6.24)
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The set of the diffraction fringes F̃ defined in equation (6.16) is computed in

the following way

F̃ = {i ∈ {1, . . . , N} : (AD1S̃)i > 0, (AC1S̃)i = 0}, (6.25)

where 1S̃ indicates the index rearrangement of the mask of the region S̃, i.e.

(1S̃)i = 1 when i ∈ S̃ and 0 otherwise. Therefore, the diffraction model

equation (6.17) can be written as follows

IF̃ = AS̃
Dβ∗S̃ + b, (6.26)

where AS̃
D : R#S̃ → R#F̃ is the sub-matrix of AD given by (AS̃

D)i,j = (AD)i,j

when i ∈ S̃ and j ∈ F̃, mapping the photon flux emitted in the region S̃ into the

flux recorded into the diffraction fringes F̃; β∗S̃ denotes the restiction of β∗ in S̃

and b is the discretized background (see equation (6.17)), i.e. b := (ACβ∗)F̃.

The integrated core model can be discretized as follows. We denote with

L̃S̃ the discretized saturation region

L̃S̃ :=
⋃

p∈{1,...,n}
L̃p, L̃p = {q ∈ {1, . . . , n} | g(xp, yq) ≥ M}. (6.27)

We consider the column indexes for which at least one pixel is saturated

JS̃ = {p ∈ {1, . . . , n} | L̃p 6= ∅}. The discrete version of the integrated core

model equation reads as

y = Cβ∗S̃ + w, (6.28)

where w is the discretization of w in equation (6.18),

yj = ∑
i∈Tj

Ii, (Cβ∗S̃)j = ∑
i∈Tj

(AS̃
Cβ∗S̃)i (6.29)

with j ∈ JS̃ and

Tj := {i ∈ {1, . . . , N} : (r(i))1 ∈ L̃j} (6.30)

where (r(i))1 indicates the first entry of the rearrangement. The inverse
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diffraction model (6.19) and the integrated core model (6.28) together can be

written as an unique equation as follows

G = Tβ∗S̃ + W (6.31)

where

G :=

[
IF̃

y

]
, T :=

[
AS̃

D

C

]
and W :=

[
b

w

]
. (6.32)

6.5 De-saturation with a sparsity-enhancing approach

In this section we describe in details our new approach for de-saturating AIA

images and we compare it with the DESAT method [120; 121; 137], which is, to

our knowledge, the only available method to desaturate AIA images. DESAT

method consists mainly of three steps: the first step (segmentation) allows

us to separate the primary saturation region from the blooming one and to

select the diffraction fringes pixels, the second step (reconstruction) consists in

estimating the photon flux in the primary saturation region by solving an in-

verse diffraction problem and the last step (synthesis) returns the de-saturated

image by projecting in the data space the solution given in the reconstruction

step. We remark that all these three steps need an a priori estimate of the

background and this limitation does not allow DESAT to de-saturate many

consecutive images in the AIA dataset. Here we propose an approach in which

segmentation and reconstruction are performed simultaneously by means of

an `1-penalized method inducing sparsity in the pixel space. This strategy

is able to estimate a constant background. Such an `1-penalized method is

our novel Lasso-type method PRiL (see Chapter 4), which takes into account

the Poisson nature of data. In particular, we recall that PRiL method consists

in minimizing a penalized functional where the fidelity term is a globally

quadratic approximation of the Kullback-Leibler divergence and the penalty

term is the `1 norm of the flux: this ensures to select those pixels which most

correlate with the data, automatically segmenting the saturation region. The
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novel approach uses PRiL first for giving an initialization of the photon flux

in the saturated region and then by alternating it with an iteration of the

Expectation Maximization (EM) algorithm for Poisson data [124] to estimate

the background into the diffraction fringes. Finally the synthesis step is needed

to project the estimated photon flux into the image space.

6.5.1 The novel method

The desaturation method is composed by three steps: first, it provides a rough

estimate of the photon flux with a constant background; second, it alternates

an iteration of the EM algorithm and the PRiL method in order to refine the

estimation of the background in the diffraction fringes and the photon flux in

the primary saturation region; third, it performs a synthesis step by projecting

the estimated incoming photon flux to the image space and estimating the

value of the bloomed pixels by means of an inpainting procedure. We remark

that the method can be applied to both the diffraction model only (6.19) and

the total model (6.31). For the sake of simplicity, we introduce a general

notation which takes into account both cases. Consider

Y = Xβ∗S̃ + B, (6.33)

where 
Y := IF̃,

X := AS̃
D,

B := b

or


Y := G,

X := T,

B := W

in the case of the diffraction model only (6.19) or in the case of the total model

(6.31), respectively. We notice that in the first case the equation (6.33) is a

vector-equation of dimension #F̃, whereas in the second case the equation

(6.33) is a vector-equation of dimension #F̃ + #JS̃.

We now describe the three steps of the proposed algorithm.
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1. Initialization. We compute the PRiL solution for a given set of λ; i.e. we

solve the following minimization problem

(α̂(0), β̂(0)) = arg min
(α,β)∈R×R#S̃

∣∣∣∣∣∣∣∣Y− Xβ− α√
Y + 1

∣∣∣∣∣∣∣∣2
2
+ λ‖β‖1, (6.34)

where α is a constant intercept to estimate a zero-order approximation of the

background. The division in the fit term has to be intended as element-wise.

The regularization parameter λ is chosen such that the estimated total flux

approximates the recorded one in the saturated area S̃. The regularization

parameter choice is described in detail in section 6.5.2.

2. Iterative alternating method.

• Input: β̂(0), B(0) := α̂(0), X,Y

• k = 0, 1, . . .

– estimate of the background by means of one iteration of the EM

algorithm for Poisson data,

B̂(k+1)
= B(k) Y

Xβ̂(k) + B(k)
, (6.35)

where the division and the first product in the r.h.s. of equation

(6.35) has to be intended as element-wise;

– estimate of the primary saturation by means of the PRiL method

with B̂(k+1) provided in the previous step

(α̂(k+1), β̂(k+1)) = arg min
(α,β)∈R×R#S̃

∣∣∣∣∣
∣∣∣∣∣Y− Xβ− B̂(k+1) − α√

Y + 1

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ‖β‖1.

(6.36)

The regularization parameter λ is selected according to the above

mentioned procedure;
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– update the background

B(k+1) = B̂(k+1)
+ α̂(k+1); (6.37)

• stop the iterative procedure when the C-statistic computed on diffraction

fringes pixels (see equation (6.42)) is approximately close to 1. The stop-

ping rule is described in detail in section 6.5.3;

• output: β̂(kopt).

3. Synthesis. We define the de-saturated image Î as follows

Î =



(AS̃
C β̂(kopt))S, in S

inpaintig procedure, in B

IF − (AS̃
D β̂(kopt))F, in F

I, elsewhere,

(6.38)

where S := {i ∈ S̃ : β̂
(kopt)
i 6= 0}, B := {i ∈ S̃ : β̂

(kopt)
i = 0} and F is the set of

diffraction fringes generated by S (see equation (6.16)), i.e.

F := {i ∈ F̃ : (AD1S)i 6= 0, (AC1S)i = 0}. (6.39)

We point out that the method performs an automatic segmentation of the

overall saturation region S̃ in the two regions S and B, the primary saturated

and the blooming one by exploiting sparsity in the pixel space. This sparsity

constraint is effective since the diffraction effects produced by the pixels in

the blooming area are negligible with respect to the ones produced by the

primary saturated region and the sparsity-enhancing method allows us to

select the pixels that most correlate with the data. Therefore, according to the

sparsity-enhancing method terminology, the primary saturated pixels compose

the active set, whereas the blooming pixels belong to the inactive set. This

means that the estimated incoming photon flux β̂(kopt) in the blooming pixels
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is 0. Therefore, in the synthesis step we use an inpainting strategy to fill these

pixels with reasonable values continuously depending on the rest of the image

values. To recover their value we exploit the inpainting procedure proposed in

[54; 145], which is based on the Discrete Cosine Transform.

6.5.2 Regularization parameter choice

In order to select the regularization parameter we first compute the PRiL solu-

tions β̂λj for a grid of parameter values {λj}T
j=0 by using the fast Coordinate

Descent strategy proposed in [53]. We then consider the expected total flux E

in the saturated region S̃ as a function of the regularization parameter. As we

expect that E is a decreasing function of the regularization parameter, we look

for the regularization parameter such that the total flux convolved with the

core PSF is approximately equal to the recorded one. To do this, we exploit

a simple bisection method. Operationally, for any solution β̂λj we project it

into the image space by means of the core component of the PSF and we fill

the zero values in the pure blooming region by means of the above mentioned

inpanting procedure [54; 145]. Formally, the expected total flux is defined by

E(λj) := ∑
i∈S̃

(ẑλj)i, (6.40)

where

ẑλj =

(AS̃
C β̂λj)Sj , in Sj

inpainting procedure, in Bj

, (6.41)

Sj := {i ∈ S̃ : β̂λj 6= 0} and Bj := {i ∈ S̃ : β̂λj = 0}. When E(λj) is equal to the

overall recorded signal in the saturated region up to a given tolerance tol > 0,

(set to 10−3 in our experiments), the bisection method stops. As the evaluation

of the function E involves the inpainting procedure which is a quite costly

operation, the bisection method allows a significant reduction of the number

of evaluations. A pseudo code of this strategy is reported in Algorithm 3.
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6.5.3 Stopping rule

At each iteration k of the iterative algorithm described in the second step we

evaluate the C-statistic on the diffraction fringes generated by the estimated

primary saturated pixels of the solution β̂(k+1). Formally, we compute

S(k+1) := {i ∈ S̃ : β̂
(k+1)
i 6= 0},

F(k+1) := {i ∈ F̃ : (AD1S(k+1))i 6= 0, (AC1S(k+1))i = 0}

and the C-statistic

C(k+1)
stat =

2
#F(k+1) ∑i∈F(k+1) (IF̃)i log

(IF̃)i

(AS̃
D β̂(k+1))i + b(k+1)

i

+ (6.42)

(AS̃
D β̂(k+1))i + b(k+1)

i − (IF̃)i,

where b(k+1)
i is the estimated background at the k-th iteration (in the case of the

diffraction model b(k+1) = B(k+1), in the case of the total model b(k+1) is given

by the first #F̃ components of B(k+1)). C-statistic measures the discrepancy

between the original unsaturated image and the reconstructed de-saturated

image according to the Kullback-Leibler topology. We stop the algorithm

at the first iteration in which the C-statistic is smaller than 1. As the C-

statistic provides a goodness of fit, a too much small value indicates data

overfitting. Then, in the case the C-statistic becomes smaller than a fixed

threshold, it is preferable to keep the last iteration with C-statistic higher than

1. In applications we fix the threshold equal to tolCstat = 0.6. For the sake

of robustness, we fixed a maximum number of iterations kmax = 10. In our

experiments the stopping rule is always satisfied before the sixth iteration.

6.6 Relation with DESAT method

Whereas the novel method is based on the discretization of equations (6.17)

and (6.18), the DESAT method relies on the discrete version of equation
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(6.10) assuming an estimate of the background. The first step of DESAT

is a correlation analysis to segment the primary saturation region from the

blooming one. Once the primary saturation region is estimated the equation

model (6.10) reads as

IF̂ = AŜ
Dβ∗Ŝ + b̂, (6.43)

where Ŝ is the estimated primary saturation region, F̂ is the associated diffrac-

tion fringe set and b̂ is an a priori estimate of the background restricted to the

set F̂. The second step consists in estimating the photon flux in the primary

saturation region Ŝ by means of an inverse diffraction procedure [121] applied

to the equation (6.43) based on the Expectation Maximization (EM) algorithm

for Poisson data regularized by early stopping [11]. Finally, the third step is

the synthesis, which is analogous to the one used in our method, with the

difference that the intensities in the blooming pixels are estimated with the a

priori estimate of the background whereas in our method they are estimated

with the inpainting strategy.

6.7 Algorithm

We provide pseudo codes for the regularization parameter choice rule, the

stopping rule and the entire reconstruction procedure in Algorithms 3, 4 and 5

respectively.
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Algorithm 3 Regularization parameter choice rule

1: Input: regularization path {(α̂λj , β̂λj)}T
j=0 , S̃, F̃, AS̃

D, I and tol.
2: Initialize jmin = 0 and jmax = T,
3: while jmax − jmin ≥ 2 do
4: Set j = jmin+jmax

2 , λopt = λj and take the solution (α̂λj , β̂λj).
5: Compute the flux E(λj) as in equation (6.40).
6: if E(λj) > ∑i∈S̃ Ii (overestimation) then
7: jmax = j
8: else if E(λj) < ∑i∈S̃ Ii (underestimation) then
9: jmin = j

10: end if
11: if

|E(λj)−∑i∈S̃ Ii|
∑i∈S̃ Ii

< tol (approximately equal) then
12: stop
13: return λopt

14: end if
15: end while

Algorithm 4 Stopping rule

1: Input: β̂(k+1), S̃, F̃, AS̃
D, I, b(k+1), tolCstat .

2: Identify the primary saturation region: S(k+1) := {i ∈ S̃ : β̂
(k+1)
i 6= 0}.

3: Compute F(k+1) := {i ∈ F̃ : (AD1S(k+1))i 6= 0, (AC1S(k+1))i = 0}.
4: Compute C-statistic C(k+1)

stat as in equation (6.42).
5: if C(k+1)

stat ≥ 1 then
6: Go to the next iteration
7: else if C(k+1)

stat < 1 and C(k+1)
stat > tolCstat then

8: stop and
9: return kopt = k

10: end if
11: if C(k+1)

stat ≤ tolCstat then
12: stop and
13: return kopt = k− 1
14: end if
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Algorithm 5 SE-DESAT method

1: Input: Y, S̃, X
2: Initialization
3: Compute the PRiL solutions on a set of regularization parameters {λj}T

j=1,
i.e. for each λj solve

(α̂λj , β̂λj) = arg min
(α,β)∈R×R#S̃

∣∣∣∣∣∣∣∣Y− Xβ− α√
Y + 1

∣∣∣∣∣∣∣∣2
2
+ λj‖β‖1, (6.44)

and select λopt according to Algorithm 3.
4: Set (α̂(0), β̂(0)) = (α̂λopt , β̂λopt).
5: Iterative alternate method
6: Initialize B(0) := α̂(0).
7: for k ≥ 0 do
8: An iteration of EM algorithm for Poisson data to compute the back-

ground

B̂(k+1)
= B(k) Y

Xβ̂(k) + B(k)
. (6.45)

9: Compute the PRiL solutions on a set of regularization parameters
{λj}T

j=1, i.e. for each λj solve

arg min
(α,β)∈R×R#S̃

∣∣∣∣∣
∣∣∣∣∣Y− Xβ− B̂(k+1) − α√

Y + 1

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λj‖β‖1 (6.46)

and select λopt according to Algorithm 3.
10: Set (α̂(k+1), β̂(k+1)) = (α̂λopt , β̂λopt) and update

B(k+1) = B̂(k+1)
+ α̂(k+1). (6.47)

11: Stopping rule according to Algorithm 4.
12: if stopping rule is satisfied then
13: stop and
14: return kopt.
15: end if
16: end for
17: Segmentation

18: Compute S := {i ∈ S̃ : β̂
(kopt)
i 6= 0}, B := {i ∈ S̃ : β̂

(kopt)
i = 0} and F as in

equation (6.39).
19: Synthesis
20: Output: de-saturated image Î defined in (6.38).

180



6.8 Experimental results

6.8 Experimental results

In this section we test the performance of the proposed method in both the case

of synthetic and real data, comparing the results with the ones provided by

DESAT method. We apply our method in both the case of the diffraction model

in equation (6.17) and of the total model in equation (6.31). We refer to it as

SE-DESAT* in the first case and as SE-DESAT in the second one. Concerning

synthetic data, we show two simulations: we first recover simple gaussian

sources in three different configurations and second a realistic simulated data

generated by an unsaturated AIA/SDO image. In both cases we generate the

saturation effect by means of a suitable algorithm based on equations (6.12),

(6.13) and (6.14). The pseudo code is described in Algorithm 6. Concerning

real data, we desaturate AIA/SDO images corresponding to two different

events: the September 6, 2011 and the September 10, 2017. Finally in section

6.8.3 we provide an accurate analysis on the solar storm occurred on September

10, 2017. We remark that in this case the DESAT method can not be used, due

to the lack of a reliable background estimate.

6.8.1 Simulation studies

In order to simulate the saturation effects we need to discretize the saturation

process described in section 6.3.2. We set all pixels whose grey level is larger

than the saturation level M equal to M and we artificially expand the total

sum of the photon flux exceeding M along columns in a symmetric way.

We report in Algorithm 6 a pseudo code to mimic the presence of primary

saturation and blooming: the algorithm approximates the process described in

formulas (6.12), (6.13) and (6.14). To make easy the writing we consider that

the set of saturated pixels along each column is connected and we use the

following notation: h is the ideal image in the case the CCD does not suffer

from saturation effects (see equation (6.19)) and I is the output image with

saturation effects. We denote with h[q, p] the elements in the q-th row and p-th

column of the image.
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Algorithm 6 Primary saturation and blooming simulation

1: Input: h unsaturated image.
2: Initialization: I = h.
3: I[q, p] = M, for (q, p) such that h[q, p] ≥ M. (discretization of the threshold

operator in equation (6.5)).
4: Let Lp = {q ∈ {1, . . . , n} : I[q, p] = M} and let JS = {p ∈ {1, . . . , n} : Lp 6=

∅}.
5: for p ∈ JS do
6: d := ∑q∈Lp h[q, p] − #Lp × M (discretization of the r.h.s. of equation

(6.14)).
7: Let d(1)above := d

2 and d(1)below := d
2 . We approximate the process described in

equations (6.12), (6.13) and (6.14) as follows

8: for k ≥ 1 do
9: c = M− I[max(Lp) + k, p]

10: if c < d(k)above then
11: I[max(Lp) + k, p] = M

d(k+1)
above = d(k)above − c

12: else if c ≥ d(k)above then
13: stop the for loop
14: end if
15: end for

16: for k ≥ 1 do
17: c = M− I[min(Lp)− k, p]

18: if c < d(k)below then
19: I[min(Lp)− k, p] = M

d(k+1)
below = d(k)below − c

20: else if c ≥ d(k)below then
21: stop the for loop
22: end if
23: end for

24: end for
25: return I saturated image.

First simulation study. We consider three ground truth objects each of

which constituted by three two-dimensional Gaussian sources. The three

objects differ for the parameter values of the gaussian sources as we report

in Table 6.1 (the energy E , the position of the center (xc, yc) and the standard

deviation σ). The configuration of the first object is characterized by three well

separated sources with different standard deviations and intensities; in the

second one there are the same three sources but the smallest is much closer

to the biggest one; in the third configuration the three sources are all close

to each other in order to call up the typical loop shape of a solar flare. We

convolve these three objects with the global AIA PSF of the 131 Å passband
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Table 6.1: Parameters associated to the synthetic sources of the three configura-
tions: E is the energy, σ is the standard deviation and (xc, yc) is the position of
the center in arcseconds.

Configuration 1 Configuration 2 Configuration 3
E (105) σ (xc, yc) E (105) σ (xc, yc) E (105) σ (xc, yc)
7 2 (285, 123) 7 2 (297, 129) 7 2 (294, 129)
8 4 (273, 141) 8 4 (273, 141) 10 3 (291, 132)
10 6 (303, 123) 10 6 (303, 123) 9 6 (291, 126)

wavelength and we perturb it with Poisson noise. Finally we add the primary

saturation and blooming effects by applying Algorithm 6.

In Table 6.2 we compare the performance of our method with the DESAT

one in terms of C-statistic, relative error (computed in norm) and the relative

error computed only in the primary saturation region. Furthermore, we report

in the same table the confusion matrix associated to each method for giving

a quantitative measure of the goodness of the saturated pixel estimation. In

this regard, true positives (TP) are the pixels correctly estimated to have values

higher than the saturation level M (primary saturated pixels), true negatives

(TN) are the pixels in the saturation region correctly estimated to have values

smaller than M (blooming pixels), false negatives (FN) are the pixels in the

primary saturation region incorrectly estimated to be blooming pixels and

false positives (FP) are the pixels in the blooming region incorrectly estimated

to be primary saturated pixels.
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Table 6.2: C-statistic, relative error (RE), relative error in the primary saturation
region (RE-P) and confusion matrix for the three configurations considered in
the first simulation study provided by DESAT, SE-DESAT* and SE-DESAT.

Configuration 1

C-stat RE RE-P Confusion matrix

DESAT 2.9859 0.1162 0.0841 TP = 578 FN = 9
FP = 87 TN = 790

SE-DESAT* 0.9356 0.2941 0.0853 TP = 570 FN = 17
FP = 11 TN = 866

SE-DESAT 0.8019 0.2844 0.0444 TP = 561 FN = 26
FP = 0 TN = 877

Configuration 2

C-stat RE RE-P Confusion matrix

DESAT 2.9162 0.1144 0.088 TP = 586 FN = 8
FP = 82 TN = 828

SE-DESAT* 0.9749 0.2866 0.0897 TP = 582 FN = 12
FP = 19 TN = 891

SE-DESAT 0.8349 0.2749 0.0416 TP = 578 FN = 16
FP = 12 TN = 898

Configuration 3

C-stat RE RE-P Confusion matrix

DESAT 1.7827 0.0606 0.0366 TP = 254 FN = 2
FP = 8 TN = 488

SE-DESAT* 0.6906 0.1464 0.02879 TP = 244 FN = 12
FP = 2 TN = 494

SE-DESAT 0.7393 0.1446 0.0218 TP = 249 FN = 7
FP = 1 TN = 495

From a morphological point of view the three methods provide reconstruc-

tions of the configuration 3 very similar to the ground truth, whereas the

reconstructions of configuration 1 and 2 provided by SE-DESAT are slightly

better than the ones provided by DESAT and SE-DESAT*. This is due to the

fact that SE-DESAT takes advantage of the integrated core model. Moreover,

we remark that DESAT needs an estimate of the background and in these

simulations we used the true background, given by ACβ∗, which is unknown

in real experiments. Indeed, the relative error computed from the DESAT

reconstruction is smaller than the one provided by both SE-DESAT methods.

This is mainly due to the fact that in DESAT reconstructions the blooming pixel

value is the original one as the background is exact, whereas the blooming

pixels in reconstructions provided by SE-DESAT methods are estimated with
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an inpainting procedure. Nonetheless, both SE-DESAT methods achieve a

better relative error in the primary saturation region and a better C-statistic

value which is always close to 1. From the analysis of the confusion matrices

we notice that DESAT provides a higher number of TP and a smaller number

of TN with respect to the ones provided by SE-DESAT methods. However,

except for the third configuration, the pixels incorrectly estimated by DESAT

(FN+FP) are much more than the ones incorrectly estimated by SE-DESAT

methods (see Table 6.2). Finally, Figure 6.5 shows the photon flux integrated

along the columns affected by the saturation effects. We compare the integral

of the photon flux of the saturated image with the integral of the estimated

photon flux of the reconstructed signals. We remark that for each configuration

the estimated integrated profiles fit the data for all the three methods. In the

case of SE-DESAT method the fit is almost exact as the integrated core model is

taken into account, whereas in the case of SE-DESAT* the profiles are over- and

under-estimated in such a way that the total amount of signal in the overall

saturation region is maintained thanks to the regularization parameter choice

rule. In the case of DESAT method the profiles are usually overestimated in

agreement with the high number of FP. It is worth observing that the proposed

sparsity-enhancing method is able to reconstruct these three kinds of configu-

rations despite not having at disposal the background. Furthermore, as shown

in the case of the second configuration, the method is able to reconstruct a

small point source also when it is close to a broader source.
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Figure 6.4: First simulation study. First row: ground-truth images. Second
row: synthetic saturated images corrupted by Poisson noise. Third, fourth and
fifth rows: reconstructions obtained by SE-DESAT*, SE-DESAT and DESAT
methods, respectively. Left, middle and right columns refer to configurations
1, 2 and 3, respectively.
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Figure 6.5: First simulation study. Comparison of the reconstructed flux
profiles integrated along the saturated columns obtained by SE-DESAT*, SE-
DESAT and DESAT methods with the ground truth profiles. In the first (resp.
the second) configuration the three (resp. two) plots correspond to the three
(resp. two) connected components of the saturated region.

Second simulation study. In the second study we aim to desaturate a

realistic simulated data whose saturation is artificially generated starting

from the unsaturated real AIA image of September 6, 2011 at 22:07:09 UT at

131 Å wavelength (see first panel in Figure 6.6). The simulation process is

implemented similarly to the one considered in [137]. It is described by the

following steps:

• deconvolve the original map with the total PSF to eliminate the diffraction

fringes and the blur by means of the EM algorithm for Poisson data (see

second panel in Figure 6.6);

• re-scale the image in order to have a region with pixel intensity higher

than the saturation level M (see third panel in Figure 6.6). The rescaled

intensity is given by

zrescaled =

mM̃−T
M̃−T z + M̃(1−m)

M̃−T , if z ≥ T

z, if z < T,
(6.48)

where z is the pixel intensity before the rescaling, T is the threshold

which defines which pixels have to be rescaled and it is set as T = M̃
4 , M̃
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is the maximum intensity in the image and m = 12;

• saturate the image: first convolve the rescaled map with the total PSF, sec-

ond perturb data with Poisson noise and finally simulate the saturation

by means of Algorithm 6 (see fourth panel in Figure 6.6).

The ground-truth which we want to recover is the result of the convolution

between the rescaled image with the core of PSF (see first panel in Figure

6.7): such a map represents the ideal image that would be recorded by AIA if

there were not diffraction nor saturation effects. Figure 6.7 shows the results of

DESAT, SE-DESAT* and SE-DESAT methods, for which we repeat the analysis

provided in the first simulation study. We report in Table 6.3 the C-statistic

values, the relative errors, the relative errors in the primary saturation region

and the confusion matrices. From Table 6.3 we remark that our methods give

much better C-statistic than DESAT method. In this case the relative errors

provided by our methods are better than the ones given by DESAT and only the

relative error in the primary saturation region provided by SE-DESAT* is higher

than the one given by DESAT. Exactly as in the first simulation the number

of TP provided by DESAT is higher than the ones provided by our methods

whereas the number of TN is smaller. From the integrated flux reconstruction

analysis (see Figure 6.7) we notice that the profiles produced by SE-DESAT

coherently fit the data, as expected. On the contrary, DESAT over-estimates the

integrated profiles in the left part of the saturation region (see bottom panel in

Figure 6.7). This over-estimation is reflected in an incorrect reconstruction of

the diffraction fringe values, clearly visible in the black structures appearing

at the top right part of the reconstructed image (second panel in Figure 6.7).

Such a reconstruction is provided by DESAT despite the fact that the original

background is used. A study of the performance of the DESAT method by

randomly perturbating the original background is provided in [137] and, as

we expect, the performance gets worse by increasing the standard deviation of

the perturbation.
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Figure 6.6: Second simulation study. From left to right: original image,
deconvolved image, re-scaled image and saturated image corrupted by Poisson
noise.

Table 6.3: C-statistic, relative error (RE), relative error in the primary satu-
ration region (RE-P) and confusion matrix for the synthetic saturated image
considered in the second simulation study provided by DESAT, SE-DESAT*
and SE-DESAT.

C-stat RE RE-P Confusion matrix

DESAT 16.2052 0.2738 0.1467 TP = 217 FN = 12
FP = 21 TN = 148

SE-DESAT* 1.6892 0.1717 0.1563 TP = 197 FN = 32
FP = 16 TN = 153

SE-DESAT 1.840 0.1649 0.1399 TP = 204 FN = 25
FP = 11 TN = 158
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Figure 6.7: Second simulation study. First row: from left to right ground
truth image and reconstruction obtained by DESAT. Second row: from left
to right reconstructions obtained by SE-DESAT* and SE-DESAT. Third row:
comparison of the integrated flux profiles.
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6.8.2 Real data

We test the performance of our method on the event occurred on September 6,

2011. We consider two images corresponding to wavelength 131 Å, the first at

22:19:25 UT and the second at 22:19:09 UT, and a third image at wavelength

193 Å and time 22:16:43 UT. The first image represents a real data with few

saturated pixels, whereas in the second image the saturation effect is really

dramatic and the blooming effect dominates. The third example presents a

mildly saturated image, with a quite moderate blooming. In all these cases

it turns to be possible to estimate the background from some unsaturated

maps before and after each acquisition time and therefore to compare with the

DESAT method.

We report in Figure 6.8, the original images and the reconstructions pro-

vided by the three methods and the comparison of the reconstructed fluxes

integrated along the saturated columns.

In Figure 6.8 the first column contains low saturated data and its cor-

responding desaturated images. From a morphological point of view the

saturated region appears to be similar across the three reconstructions. How-

ever, the reconstruction in the diffraction fringes provided by DESAT presents

a larger set of black pixels with 0 value: this is due to the overestimation of the

pixel values in the saturated region as it is confirmed by the integrated profiles

(see Figure 6.9). On the other hand, the integrated flux profiles estimated

by SE-DESAT methods yield a good data fit. The second column in Figure

6.8 shows the reconstructions of a dramatically saturated image: in this case

the reconstructions provided by the three methods are similar to each other

solely in the brightest part of the image. Both SE-DESAT methods furnish

a solution that is broader than the DESAT one. The comparison of the inte-

grated flux profiles shows that both DESAT and SE-DESAT* do not fit correctly

the integrated signal. This is not the case for SE-DESAT which implements

the integrated core model. Finally, the third column in Figure 6.8 shows the

reconstructions of the mildly saturated image. In this case the SE-DESAT*

reconstruction seems to be affected by some artifacts (or edge effects) in the top
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part of the saturation region. SE-DESAT reconstruction appears to be much

more similar to the DESAT one from a morphological point of view. The main

difference consists in locating the large majority of the flux in the upper part

of the central structure. Also in this case DESAT method overestimates the

integrated flux profiles. For all the three cases the C-statistic computed on

the diffraction fringes provided by DESAT is much higher (see [137]) than the

ones provided by both SE-DESAT methods which are smaller than 1 in each

three cases.

Finally, we show the effectiveness of our method where DESAT can not

be applied. We consider two images from the super storm occurred on

September 10, 2017: the first acquired at the acquisition time 16:00:47 UT

at 94 Å wavelength and the second at 16:07:09 UT at 171 Å. In these two

examples DESAT method is ineffective since a reliable a priori estimate of the

background can not be provided: for example in the case of the wavelength

171 Å all images are saturated for more than an hour around the considered

acquisition time. In Figure 6.10 we report the reconstructions provided by SE-

DESAT methods. In both cases there is an extraordinary amount of saturation

with a strongly pronounced blooming effect. The reconstructions provided by

SE-DESAT* are evidently corrupted by edge effects which are clearly visible

on the frontier of the saturated region. These effects are dumped in the SE-

DESAT reconstructions having considered here the integrated core model in

addition to the diffraction one. In SE-DESAT reconstructions is more evident

the loop structure of the solar flare: this is particularly emphasized in the

second case (see second row third panel in Figure 6.10). From a methodological

point of view the difference between SE-DESAT* and SE-DESAT is that the

latter one is obliged to fit the integrated profiles (see third row in Figure

6.10): this constraint appears to be a key point to improve the quality of the

reconstructions when no background estimation is available.
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Figure 6.8: Real data: September 6, 2011 event. First row: saturated images.
First column: image recorded at 22:19:25 UT at the 131 Å wavelength. Sec-
ond column: image recorded at 22:19:09 UT at the 131 Å wavelength. Third
column: image recorded at 22:16:43 UT at the 193 Å wavelength. Second
row: reconstructions obtained by SE-DESAT* method. Third row: reconstruc-
tions obtained by SE-DESAT. Fourth row: reconstructions obtained by DESAT
method.
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Figure 6.9: Real data: September 6, 2011 event. Comparison of the recon-
structed flux profiles integrated along the saturated columns obtained by
SE-DESAT*, SE-DESAT and DESAT methods with the real profiles. In the
second (resp. third) panel the two (resp. three) plots correspond to the two
(resp. three) connected components of the saturated region.
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Figure 6.10: Real data: September 10, 2017 event. First row from left to right:
image recorded at 16:00:47 UT at the 94 Å wavelength, SE-DESAT* and SE-
DESAT reconstructions. Second row from left to right: image recorded at
16:07:09 UT at the 171 Å wavelength, SE-DESAT* and SE-DESAT reconstruc-
tions. Third row: comparison of the reconstructed fluxes integrated along the
saturated columns for images in the first row (left panel) and for images of the
second row (right panel).
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6.8.3 Solar storm on September 2017

During the super storm of September 6-10 2017, 27 M flares and four X flares

were emitted by the Sun, which correspondingly emitted several powerful

CMEs and bursts of high-energy protons. For more than one hour observation,

all AIA filters suffered saturation in the core region of their images. In

particular, at 171 Å all images presented significant primary saturation and

blooming effects, which correspond to a consecutive deterioration of up to 300

EUV maps: even a rather sophisticated computational method such as DESAT

is ineffective in this case, since the background estimation via interpolation

of unsaturated emission is completely impossible. The desaturation power of

SE-DESAT in the case of solar storms is illustrated in Figure 6.12 together with,

in Figure 6.11, a first example of how these recovered EUV images can be used

for basic scientific purposes. These figures refer to the most saturated energy

channel (171 Å) in the batch of AIA wavelengths observing the flaring storm on

September 10 2017. At this wavelength, around 300 images in the time range

between 15:45:09 UT and 16:45:09 UT were dramatically corrupted by wide

saturation stripes so that more than one hour observation of this intriguing

event could not be fully exploited for scientific investigation. The first row

(in the reverse direction of the page) of Figure 6.12 shows five consecutive

images in the time range 16:05:45 UT - 16:06:33 UT; the blooming effects are

clearly not distinguishable from the primary saturation region, while the

diffraction fringes affect around half of the remaining field-of-view. These

same fringes were given as input to the algorithm that produced the restored

images represented in the second row and zoomed in the third one (in the

reverse direction of the page) in Figure 6.12, where the core of the area is visible

during its temporal evolution. The peak intensity in these cores is larger than

105 DN pixel−1 which is well above the saturation level of 16383 DN pixel−1.

Figure 6.11 shows that it is now possible to determine the photon flux at 171

Å over time in the primary saturation region identified thanks to the sparsity-

enhancing property of the method. The C-statistic values in Table 6.4 describe

the predictive power of the desaturated signal in the primary saturation region
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when reproducing the experimental diffraction patterns. These numbers are

the C-statistic values averaged over the diffraction pixels and corresponding to

the desaturation of 50 highly saturated images in the 171 Å band: these values

go down to 1 at the third iteration of the second step of the algorithm for

most images and for all examples the goodness-of-fit is completely satisfactory

after just 4 iterations of the alternate iterative scheme (all desaturated images

presented in the current section correspond to the last iteration with C-statistic

bigger than 1). We also applied the algorithm to the processing of images of

the same event but in the 94 Å wavelength, where saturation and blooming

effects are typically less persistent. The particular case considered in Figure

6.13 and Figure 6.14 corresponds to the highly deteriorated frame at 16:00:23

UT, preceded and followed by two mildly saturated frames at 16:00:14 UT and

16:00:38 UT, respectively. Figure 6.13 compares the original and desaturated

images whereas Figure 6.14 contains the comparison of the integrated flux

profiles, the C-statistic predicted pixel-wise by the desaturated signal patterns

of the image at the acquisition time 16:00:23 UT and a comparison of the

location and morphology of the three desaturated images.
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Figure 6.11: Bandwidth 171 Å for the September 10, 2017 event. Left panel:
de-saturated image at 16:06:21 UT with highlighted the two boxes in which
we computed the flux along the acquisition time from 15:57:09 UT to 16:27:09
UT. ‘ Right panel: reconstructed flux in the two boxes as a function of time
(the inner box corresponds to the primary saturation region).
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Figure 6.13: Bandwidth 94 Å for the September 10, 2017 event. First row, satu-
rated images at 16:00:14 UT (left panel), 16:00:23 UT (middle panel), 16:00:38
UT (right panel). Second row: corresponding desaturated images provided by
SE-DESAT.
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Table 6.4: Performance of SE-DESAT method in C-statistic in the case of the
September 10, 2017 solar storm, recorded at waveband 171 Å for different
acquisition times. First and sixth column: recording time. From second to fifth
column and from seventh to tenth column: C-statistic values at the first four
iterations of the algorithm for the corresponding recording time.

C-statistic C-statistic

time (UT) iter 1 iter 2 iter 3 iter 4 time (UT) iter 1 iter 2 iter 3 iter 4

16:04:09 2.96 0.86 16:09:33 4.82 1.45 1.02 0.72
16:04:21 2.68 1.08 0.72 16:09:45 5.19 1.08 0.97
16:04:33 3.20 1.06 0.65 16:09:57 4.52 1.25 0.71
16:04:45 2.89 1.39 0.68 16:10:09 4.24 1.18 0.97
16:04:57 3.12 1.44 0.67 16:10:21 3.98 1.21 0.84
16:05:09 3.39 1.48 0.66 16:10:33 4.38 1.19 0.76
16:05:21 3.95 1.33 0.77 16:10:45 3.69 0.97
16:05:33 3.69 1.49 0.80 16:10:57 3.82 0.92
16:05:45 3.59 1.73 0.93 16:11:09 3.50 0.90
16:05:57 3.62 1.81 0.92 16:11:21 3.88 1.00
16:06:09 4.36 1.61 0.84 16:11:33 3.98 0.86
16:06:21 4.72 1.78 0.90 16:11:45 3.82 0.90
16:06:33 4.67 1.70 0.91 16:11:57 3.98 1.08 0.52
16:06:45 4.55 1.81 0.91 16:12:09 4.22 1.01 0.57
16:06:57 4.21 1.56 0.94 16:12:21 4.70 1.09 0.58
16:07:09 4.11 1.72 0.94 16:12:33 4.56 1.13 0.65
16:07:21 4.42 1.85 1.01 0.70 16:12:45 4.56 1.03 0.72
16:07:33 4.65 1.67 0.92 16:12:57 4.38 0.98
16:07:45 4.22 1.54 1.00 0.69 16:13:09 4.23 0.87
16:07:57 4.42 1.77 1.03 0.71 16:13:21 4.18 0.85
16:08:09 4.78 1.68 1.07 0.70 16:13:33 4.07 0.79
16:08:21 4.41 1.57 1.03 0.69 16:13:45 3.73 0.71
16:08:33 4.55 1.45 0.88 16:13:57 3.68 0.73
16:08:45 4.30 1.29 0.87 16:14:09 4.06 0.81
16:08:57 4.53 1.21 0.84 16:14:21 4.25 0.89
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Figure 6.14: Bandwidth 94 Å for the Septemper 10, 2017. Left panel: compari-
son of the integrated fluxes along the saturated image columns between the
SE-DESAT reconstruction and the image data (at 16:00:23 UT). Middle panel:
time evolution of the level curves of the three desaturated images in Figure
6.13 at 16:00:14 UT (red curves), 16:00:23 UT (black curves), and 16:00:38 UT
(green curves). Right panel: pixel-wise C-statistic predicted in the diffraction
fringes by the desaturated image at 16:00:23 UT in Figure 6.13.

6.9 Discussion

Why can we trust SE-DESAT results? When we use real data we have not

at disposal a ground truth in order to compare results. In the case of the

solar storm on September 2017, we can not compare results with DESAT

method: as explained, DESAT cannot be applied since a reliable estimate of

the background is not a priori available. Therefore, in this case, the reliability

of SE-DESAT possibly relies on the very low values of the C-statistic in all of

the almost 50 frames we investigated (see Table 6.4) and on the behavior over

time of the flux in the primary saturation region (see Figure 6.11), which seems

coherent with observations of previous similar events [77] and with simulation

models [104]. Finally, results in Figure 6.13 and Figure 6.14 concerning the

desaturation of three consecutive frames show a rather smooth evolution over

time with respect to the restored emission morphology, peak location and

overall photometry.

A brief comment regarding the inpainting procedure. In our approach the

blooming pixel values, whose information is essentially lost, are estimated
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making use of an inpainting procedure. However, such an inpainting procedure

can be substituted with other approaches computationally less expensive and

providing better results. A next step is the investigation of new approaches to

fill blooming pixels: an idea is to use deep neural networks in order to estimate

the unknown coefficients [26], i.e. the ones that can not be reconstructed by

using our sparsity-enhancing approach.

What to do next is rather clear: thanks to this crucial desaturation step, all

ingredients are now at disposal to design and implement an automatic pipeline

for big data processing of AIA production, able to realize the whole stream of

operations that from each recorded image leads to a reconstructed EUV map

relieved by saturation, diffraction, and dispersion effects and therefore ready

for a full exploitation within the framework of all possible physical models

concerning flaring emission.
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