
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Test Generation and Dependency Analysis for Web
Applications

by

Matteo Biagiola

Theses Series DIBRIS-TH-2019-XX

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

Test Generation and Dependency Analysis for Web
Applications

by

Matteo Biagiola

December, 2019

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Matteo Biagiola
DIBRIS, Univ. di Genova
biagiola@fbk.eu

Date of submission: October 2019

Title: Test Generation and Dependency Analysis for Web Applications

Advisors:
Paolo Tonella
Full Professor

Faculty of Informatics and Software Institute
Università della Svizzera Italiana
paolo.tonella@usi.ch

Filippo Ricca
Associate Professor

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università di Genova

filippo.ricca@unige.it

Ext. Reviewers:
Ali Mesbah

Associate Professor
Department of Electrical and Computer Engineering

University of British Columbia
amesbah@ece.ubc.ca

Leonardo Mariani
Full Professor

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli studi di Milano Bicocca
leonardo.mariani@unimib.it

2

Abstract

In web application testing existing model based web test generators derive test paths
from a navigation model of the web application, completed with either manually or
randomly generated inputs. Test paths extraction and input generation are handled
separately, ignoring the fact that generating inputs for test paths is difficult or even
impossible if such paths are infeasible.

In this thesis, we propose three directions to mitigate the path infeasibility problem.
The first direction uses a search based approach defining novel set of genetic oper-
ators that support the joint generation of test inputs and feasible test paths. Results
show that such search based approach can achieve higher level of model coverage
than existing approaches.

Secondly, we propose a novel web test generation algorithm that pre-selects the most
promising candidate test cases based on their diversity from previously generated
tests. Results of our empirical evaluation show that promoting diversity is beneficial
not only to a thorough exploration of the web application behaviours, but also to
the feasibility of automatically generated test cases. Moreover, the diversity based
approach achieves higher coverage of the navigation model significantly faster than
crawling based and search based approaches.

The third approach we propose uses a web crawler as a test generator. As such,
the generated tests are concrete, hence their navigations among the web applica-
tion states are feasible by construction. However, the crawling trace cannot be easily
turned into a minimal test suite that achieves the same coverage due to test dependen-
cies. Indeed, test dependencies are undesirable in the context of regression testing,
preventing the adoption of testing optimization techniques that assume tests to be
independent. In this thesis, we propose the first approach to detect test dependencies
in a given web test suite by leveraging the information available both in the web
test code and on the client side of the web application. Results of our empirical
validation show that our approach can effectively and efficiently detect test depen-
dencies and it enables dependency aware formulations of test parallelization and test
minimization.

1

Table of Contents

Chapter 1 Introduction 6

1.1 Motivations . 7

1.2 Problem Statement . 9

1.3 Objectives . 11

1.4 Organization of the Thesis . 11

1.5 Origin of Chapters . 13

Chapter 2 Web Application Testing: Background 14

2.1 Preliminaries . 14

2.1.1 Web Applications . 14

2.1.2 Software Testing . 21

2.1.3 Metaheuristic Algorithms . 24

2.2 Web Application Testing . 25

2.2.1 E2E Testing . 26

2.2.2 Test Dependency . 35

2.3 Automatic Web Application Testing . 37

2.3.1 Model Based Testing . 38

2.3.2 Web Crawling . 39

Chapter 3 State of the Art 42

3.1 Test Case Generation . 42

2

3.1.1 Traditional Software . 42

3.1.2 Web Testing Techniques . 45

3.1.3 Limitations and Open Problems . 48

3.2 Test dependency . 50

3.2.1 Tools Supporting Test dependency Management 50

3.2.2 Regression Testing Techniques Assuming independence 52

3.2.3 Test Flakiness . 53

3.2.4 Limitations and Open Problems . 53

Chapter 4 Test Case Generation 54

4.1 Overall Approach . 55

4.2 Testing Model Extraction . 57

4.2.1 Guards . 62

4.3 Test Generation Problem Definition . 62

4.4 Search Based Web Test Generation . 63

4.4.1 Guards Specification in PO Methods . 64

4.4.2 Problem Reformulation . 65

4.4.3 Genetic Operators . 67

4.4.4 Implementation . 68

4.5 Empirical Evaluation . 69

4.5.1 Subject . 69

4.5.2 Procedure and Metrics . 69

4.5.3 Results . 71

4.5.4 Threats to Validity . 73

4.6 Limitations of Search Based Web Test Generation 74

4.7 Diversity Based Web Test Generation . 75

4.7.1 Distance Between Test Cases . 76

4.7.2 Example of Distance Computation . 79

3

4.7.3 Implementation . 80

4.8 Empirical Evaluation . 80

4.8.1 Research Questions . 80

4.8.2 Subject Systems . 81

4.8.3 Procedure and Metrics . 82

4.8.4 Results . 85

4.8.5 Threats To Validity . 89

4.8.6 Discussion . 90

Chapter 5 Web Test Dependency Detection 92

5.1 Motivating Example . 93

5.2 Approach . 95

5.2.1 Dependency Graph Extraction . 97

5.2.2 Filtering . 99

5.2.3 Dependency Validation and Recovery 102

5.2.4 Disconnected Dependency Recovery . 104

5.2.5 Implementation . 107

5.3 Empirical Evaluation . 107

5.3.1 Subject Systems . 108

5.3.2 Procedure and Metrics . 108

5.3.3 Results . 109

5.3.4 Threats to Validity . 113

5.3.5 Discussion . 114

Chapter 6 Dependency Aware Test Case Generation 115

6.1 Motivating Example . 116

6.1.1 Crawling Trace Based Test Generation and its Limitations 117

6.2 Approach . 119

4

6.2.1 Test Dependency Analysis . 121

6.2.2 SAT solver-based Test Minimization . 125

6.2.3 Implementation . 127

6.3 Empirical Evaluation . 127

6.3.1 Research Questions . 127

6.3.2 Subject Systems . 128

6.3.3 Procedure and Metrics . 128

6.3.4 Results . 129

6.3.5 Threats to Validity . 133

6.3.6 Discussion . 134

Chapter 7 Conclusions and Future Work 136

7.1 Summary of Achievements . 136

7.2 Discussion . 137

7.3 Future Work . 139

Bibliography 142

5

Chapter 1

Introduction

Web applications are one of the fastest growing class of software systems in use today. They
cover a wide range of domains such as banking, e-commerce, healthcare management and, as
such, they have a big impact on all aspects of our society. According to a recent survey 1 there
are 1.5 billion websites on the world wide web. The number of users worldwide is around
4.3 billion 2, which is roughly 57% of the world population. Thus, web application failures
potentially impact many users and the consequences of such failures spread from obvious costs
such as revenue lost due to customers being unable to use the product to indirect financial costs
coming from problems with brand reputation and customer loyalty when a software failure is
made public. A reasonable level of confidence in the software can be gained by testing it before
its release. Software testing is nowadays a widely adopted practice in the software industry.
Companies like Facebook and Google invest resources in software testing and develop their own
tools to automate the software testing process 3.

Modern web applications available nowadays provide the same high level of user interaction as
native desktop applications, while eliminating the need for in-site deployment, installation, and
update. For instance, single page web applications (SPA) achieve high responsiveness and user
friendliness by dynamically updating the Document Object Model (DOM) of a single web page
by means of JavaScript functions that react asynchronously to user events. To test such complex
software systems, engineers typically adopt test automation frameworks such as Selenium Web-
Driver 4. In this context, the tester verifies the correct functioning of the web application under
test using test cases that automate the set of manual operations that the end user would perform
on the web application’s graphical user interface (GUI), such as delivering events with clicks, or
filling in forms [Bin96, FG99, SYM18, LSRT16, LSRT15, LSRT18, HRS16] (such GUI tests are

1https://www.internetlivestats.com/total-number-of-websites/
2https://www.internetworldstats.com/stats.htm
3https://screenster.io/software-testing-facebook-google/
4http://www.seleniumhq.org

6

https://www.internetlivestats.com/total-number-of-websites/
https://www.internetworldstats.com/stats.htm
https://screenster.io/software-testing-facebook-google/
http://www.seleniumhq.org

often called end to end (E2E) tests). Testers implement business-focused test scenarios within
such test cases, along with the necessary input data. Each test case, hence, exercises a specific
test path along the model of the web application which specifies its functionalities (often called
navigation model or navigation graph since a test case navigates among the functionalities of the
web application under test specified in the model).

1.1 Motivations

Software testing accounts for a significant portion of the overall development cost of a piece of
software mainly due to the effort spent by test engineers in generating test data that exercise the
system in various ways [PY08]. For this reason, automating test case generation has been the
subject of a large body of research work resulting in several techniques and tools.

In the web domain, model based approaches in web testing have received a significant amount of
attention from the research community [RT01, MvDR12, MFM13, MTR08, TMN+12, MTR12,
TNM+13]. Indeed, models represent the behaviours of the web application abstracting from the
underneath technologies and programming languages that shape the web application. Test sce-
narios represent navigation among the states of the web application under test and are derived by
such models using extraction algorithms that try to satisfy some coverage criterion (e.g. making
sure that all the transitions of the model are exercised at least once). However, testing research is
predominately focused on how to automatically build the model of the web application under test
without considering that extracting test paths from the model and generating proper input values
for such paths can be difficult or even impossible if the paths are infeasible. Among the different
open problems in the attempt of automating the web testing process, the feasibility problem is a
major one. Indeed, infeasible tests violate dependencies and constraints of the web application
under test and, as a consequence, do not exercise the functionalities of the web application they
are created for. Therefore, solving the feasibility problem would guarantee an adequate coverage
of the functionalities of the web application under test, hence a more effective testing process.

Determining if a test path is feasible (a priori, i.e. before execution) is in general undecidable and
in practice a very challenging problem. In this thesis, we tackled the feasibility problem under
three different point of views, summarized in Figure 1.1. The first direction we considered is
to apply search based approaches to look for feasible paths in the model of the web application
under test. Secondly, we considered the diversity based approach with the aim of exploring the
space of the possible paths at large to find the feasible ones. The third perspective we considered
is to use a crawler to directly generate test cases without using a model of the web application
under test, such that generated tests are not affected by the feasibility problem. Indeed, web
crawlers explore the web application under test by accumulating different navigations that rep-
resent different test scenarios. However, such test scenarios are dependent. In fact a test case
generated during crawling cannot be successfully executed in isolation because it potentially

7

Test Case Generation
Feasibility problem

Search Based

Diversity Based

Crawling Based

Web Test Dependency problem
Web Test Dependency Detection

Figure 1.1: Research directions

needs the web application to be in a certain state, produced by the previously executed tests.
Despite test dependencies can be useful to exercise new behaviours of the web application under
test during test generation, they are not desirable in the context of regression testing since they
inhibit the application of test optimization techniques (e.g. test parallelization) that assume tests
to be independent.

Therefore, in order to have a functional test suite to be executed during regression testing, crawl-
ing based test generators need test dependencies to be resolved. However, the problem of test
dependency detection in the web domain is not yet solved by existing approaches [ZJW+14,
BKMD15, GBZ18]. Indeed such approaches extract dependencies by detecting, statically or
dynamically, read-after-write operations on the shared state between the tests, which is usually
represented by static object fields in Java classes. Such analysis cannot be easily performed in
E2E web test suites where the state is spread among multiple layers that involve multiple lan-
guages and technologies.

8

1.2 Problem Statement

The feasibility problem deals with automatically finding proper paths in the navigation
model of the web application under test along with associated input values, such that, upon
execution of the web application under test, the desired navigation is taken.

Infeasibility in model based testing comes from abstracting away the implementation details of
web application under test with the aim of getting a concise and useful representation of the web
application behaviours in a model. In fact, the abstraction also strips away part of the program
semantics and, as a result, tests extracted from the model violate dependencies and constraints
that hold in the real web application under test, but they are not represented explicitly in the
model.

Let us take the example of an e-commerce web application which has two states, namely the
product list state and the shopping cart state. The product list has two possible actions, namely
the possibility to go to the shopping cart and the action to add a product to the cart. Moreover, the
shopping cart state has only one action, which is checkout. The constraint that is not represented
in the model is the fact that the checkout action is possible only if there is at least one product
in the cart (it can be noticed that such constraint is dynamic, i.e. it is possible to verify its
validity only at runtime since the dependencies between the actions are also not represented in
the navigation model). Under such assumptions the path in the model composed of the two
actions go to cart and checkout is infeasible since it is not possible to buy a product that is not
added to the cart. However, the path that includes the action add to cart as first action is a feasible
one because the preconditions of the action checkout in the shopping cart state are satisfied.

As the example above shows, practically, infeasibility regards the impossibility to generate in-
put values satisfying the path constraints in the test paths extracted from the model. Therefore,
infeasibility hinders an adequate coverage of the web application functionalities since infeasible
test paths do not exercise the functionalities they are extracted for (infeasible test paths cannot
be executed against the web application under test). The combination of test path extraction and
input generation strategies determines the feasibility of a test path, although existing approaches
treat them separately, assuming that each extracted test path is feasible. Moreover, random input
strategies may be ineffective when decoupled from test paths extraction and manual input gener-
ation is costly and limited by the testing resources (e.g. time) available to testers. Therefore, we
need novel approaches to address the feasibility problem which are able to jointly generate test
paths and the corresponding input values, discarding infeasible test paths and evaluating as few
test candidates as possible, since E2E tests are characterized by slow execution times due to the
interaction with the browser.

The feasibility problem can also be addressed by directly generating concrete test cases with-
out passing through the model based testing process, i.e. extracting abstract test cases (i.e.
test paths) from a model and making them executable by generating proper input values. An

9

appealing approach to generate concrete tests is the crawling based approach where the web
crawler produces test cases while exploring the web application under test. However, deriving
a functional test suite from the crawling trace is not trivial. Existing approaches [MvD09] seg-
ment the long crawling trace produced during the exploration, which can be seen as a single
test case, into meaningful test cases with the purpose of increasing readability and maintain-
ability. Such segmented test cases are supposed to be executed one after the other since they
come from the crawling trace, which is a continuous sequence of events. Therefore, each test
case potentially depends on the state produced by those executed before it. If such dependencies
are not known, during regression testing the generated test suite has to be executed in the order
in which the tests were generated, preventing the application of optimization techniques such
as test parallelization [BK14], test prioritization [RUCH01], test selection [GEM15] and test
minimization [VSM18], which all require having independent test cases. Hence, the crawling
based approach for test case generation guarantees feasibility but it is affected by the web test
dependency problem:

The web test dependency problem concerns resolving the dependencies among tests such
that the execution of the given test suite can be optimized.

Test dependency can be informally defined as follows. Let T = 〈t1, t2, . . . , tn〉 be a test suite,
where each ti is a test case, whose index i defines an order relation between test cases that
corresponds to the original execution order given by testers. When tests within T are executed
in the original order, all tests execute correctly. If the original execution ordering is altered, e.g.,
by executing t2 before t1, and the execution of t2 fails, we can say that t2 depends on t1 for its
execution, and that a manifest test dependency exists [ZJW+14, GBZ18].

Ideally, all tests, both automatically generated and manually created, in a test suite should be
independent or dependencies between tests should be known and documented. Besides inhibit-
ing the application of test optimization techniques, test dependencies have other implications
as well. In fact, test dependencies can mask program faults and lead to undesirable mislead-
ing side-effects, such as tests that pass when they should fail, tests that fail when they should
pass [ZJW+14, LZE15], or significant test execution overheads [BKMD15, Kap16].

Automated detection of all test dependencies in any given test suite is challenging and it has
been proven to be NP-complete [ZJW+14]. As such, researchers have proposed techniques and
heuristics that help developers detect an approximation of such dependencies in a timely man-
ner [GSHM15, ZJW+14, GBZ18, BKMD15, Kap16]. However, existing approaches [ZJW+14,
BKMD15, GBZ18] are not applicable to E2E web test suites because they are based on the ex-
traction of read/write operations affecting shared data (e.g., static fields) of Java objects. Instead,
web applications are prone to dependencies due to the persistent data managed on the server-side
and the implicit shared data structure on the client-side represented by the DOM. Such dependen-
cies are spread across multiple tiers/services of the web application architecture and are highly

10

dynamic in nature. Therefore, the web test dependency problem demands for novel approaches
that leverage the information available both in the web test code and on the client side of the
web application under test to automatically detect test dependencies. Once test dependencies are
known, test optimization techniques can be reformulated in order to be applied to dependent test
suites.

1.3 Objectives

The objectives of this thesis are as follows:

• Devise new model based test case generation methods for E2E web application testing in
order to address the feasibility problem;

• Empirically investigate the performance (i.e. effectiveness and efficiency in terms of cov-
erage and fault detection) of the devised test case generation techniques with respect to
state-of-the-art crawling based approaches;

• Devise new test dependency detection techniques for E2E web test suites in order to ad-
dress the test dependency problem;

• Empirically investigate the performance (i.e. efficiency in terms of time spent to find the
dependencies) of the devised test dependency detection techniques;

• Turn a web crawler into a test case generator in order to overcome the feasibility problem
which affects the model based test case generators. To that aim, devise new methods to
solve the test minimization problem taking into account test dependencies;

• Empirically investigate the performance (i.e. effectiveness in terms of coverage) of the
crawling based dependency aware test generator with respect to state-of-the-art crawling
based test generators.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2. This chapter presents the concepts related to web application testing that we used
in the thesis. It starts with introducing web applications, concepts related to software testing in
general and metaheuristic algorithms. Then, it introduces the web application testing domain
with a particular focus on E2E testing. Furthermore, the test dependency problem is presented.

11

Finally, it introduces automation in the context of web application testing with a focus on model
based testing, it explains the functioning of a web crawler and how it is used in state-of-the-art
approaches to test the functionalities of web applications.

Chapter 3. This chapter provides an overview of the state of the art in the area of web testing.
We first present works related to test case generation by describing both approaches for Java
software and for web applications. Then, we introduce how the test dependency problem has
been addressed by previous approaches with a focus on dependency detection techniques and
test optimization techniques that assume test independence.

Chapter 4. This chapter describes our model based approach to test case generation for web
applications. The chapter starts with our overall approach and it explains the differences with the
crawling based approaches. Then, each component of the approach is described, starting from
the testing model extraction. Afterwards, the test generation problem is defined together with
the test path feasibility problem. We address such problem in two ways, namely by using search
based and diversity based methods. Specifically, the search based web test generation approach
is explained and evaluated against the state-of-the-art crawling based approach in terms of size
of the generated test suite and transition coverage of the navigation graph. Then, we identify the
limitations of search based approaches and we explain how such limitations can be addressed by
adopting a diversity based approach. Finally, the diversity based web test generation method is
presented and extensively evaluated with respect to the state-of-the-art crawling based approach
and the previously presented search based method in terms of effectiveness and efficiency (tran-
sition coverage, client side code coverage and fault detection).

Chapter 5. This chapter outlines our test dependency detection approach for web applications.
In this chapter we focus on manually written E2E web test suites. First of all, we introduce a
running example to help understanding the test dependency problem and the steps of our ap-
proach which are presented next. Each step of the approach is detailed, namely dependency
graph extraction, filtering, validation and recovery and disconnected dependency recovery. Dif-
ferent techniques are proposed for dependency graph extraction and filtering and all of them are
evaluated empirically to establish which combination performs better. The baseline for compar-
ison is the state-of-the-art approach for dependency detection proposed for Java software. The
comparison between the combinations of our approach and the baseline is done in terms of time
to complete the detection of the dependencies. Furthermore, we show that dependency detection
enables test parallelization with a relevant test suite runtime speed-up.

Chapter 6. This chapter reports our dependency aware test case generation approach which uses
a web crawler. The test dependency and test redundancy problems are presented with an example.
We then outline the steps of our approach, namely test dependency detection and SAT solver
based test minimization. Since a web crawler is used to generate tests, we adapt the dependency
detection techniques presented in the previous chapter and apply them to automatically generated
test cases. Once the dependencies among the generated tests are found we can formulate the
dependency aware test minimization problem. We use a SAT solver to minimize the generated

12

test suite, which ensures that all redundant test cases are removed and all dependencies among
tests are respected. Finally, we present the evaluation of such approach with respect to the state-
of-the-art crawling based test generator in terms of client side code coverage.

Chapter 7. This chapter concludes the thesis by summarizing its contributions and outlining
possible directions for future work.

1.5 Origin of Chapters

Some of the work presented in this thesis has been previously published in the following papers:

• Matteo Biagiola, Filippo Ricca, Paolo Tonella ”Search based path and input data genera-
tion for web application testing”, in International Symposium on Search Based Software
Engineering (SSBSE 2017), pages 18–32, 2017. This paper contains part of Chapter 4.

• Matteo Biagiola, Andrea Stocco, Filippo Ricca, Paolo Tonella ”Diversity-based Web Test
Generation”, in Proceedings of 27th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019),
pages 142–153, 2019. This paper contains part of Chapter 4.

• Matteo Biagiola, Andrea Stocco, Filippo Ricca, Paolo Tonella ”Web test dependency de-
tection”, in Proceedings of 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019), pages
154–164, 2019. This paper contains part of Chapter 5.

Chapter 6 of this thesis has been accepted and it will be published next year as the following
paper:

• Matteo Biagiola, Andrea Stocco, Filippo Ricca, Paolo Tonella ”Dependency-Aware Web
Test Generation”, in Proceedings of 13th IEEE International Conference on Software Test-
ing, Verification and Validation (ICST 2020), 2020.

13

Chapter 2

Web Application Testing: Background

This chapter presents the basic concepts that are extensively used in this thesis. Section 2.1
briefly describes the functioning of web applications and the topic of software testing in general.
Furthermore, metaheuristic algorithms are also introduced. Section 2.2 contextualizes software
testing for web applications, presenting the different testing approaches with a particular focus
on end-to-end (E2E) testing and one of the best practices used to develop such test cases, namely
the Page Object Design Pattern. Moreover, it also defines the test dependency problem in general
and in the context of web applications. Section 2.3 explains what it means for web applications
to be tested automatically given a model of the web application under test (WAUT). Additionally,
this section describes how a web crawler works and how it is used for testing the functionalities
of a web application. The reader who is already familiar with such concepts can safely skip this
chapter.

2.1 Preliminaries

2.1.1 Web Applications

The world wide web has changed a lot since its invention in 1989 by Tim Berners-Lee, shifting
from static read-only pages to highly dynamic services providing rich user interactions.

Nowadays, web applications are composed of three major components: (1) the client side or
front end, running on the browser, (2) the server side, or back end, running on the server and (3)
the data store, which also runs on a server (not necessarily the same as the back end) or on the
cloud.

Framework. In web development, but more in general in computer programming, it is common
to build an application upon a software framework. A software framework is an abstraction in

14

Framework

Platform Platform

Ap
pl

ic
at

io
n

Application

Library 1

Library 2

Library 3

Figure 2.1: Library vs Framework comparison. Taken from [lib10]

which software providing generic functionality can be selectively changed by additional user-
written code, thus providing application-specific functionalities 1.

Frameworks and libraries, run on platforms. A platform is some lowest level on which to build
an application, as operating systems (e.g. Linux, Windows, OSX) or virtual machines (e.g. Java,
.Net). However, there are some differences between libraries and frameworks as Figure 2.1
shows. When an application is built using libraries, the application is in control. In other words,
the application stands on its own, it has an identity, and it just uses libraries to do some part
of the work. When building an application using a particular framework, the application lives
inside the framework which controls the application. Practically, the framework embodies some
abstract design and, in order to use it, the developer of the application needs to insert specific
behaviours in various places of the framework (e.g. subclassing). The framework’s code then
calls the application code at these points [Inv05]. Such control switch is called Inversion of
Control (IoC) and Martin Folwer describes it as a key part of what makes a framework different
than a library.

Frameworks create a structured and organized environment in which a new application can be
developed. Frameworks take care of low level details of the environment (e.g. rendering data
on the browser) and let developers focus on the application specific behaviours.This greatly de-
creases the time needed to start creating applications and websites since developers do not have
to start from scratch but they can reuse the framework’s code. However, frameworks have also
some limitations. For example, a framework can have a lot of unnecessary code that adds to
the application’s overhead and the scope of the framework can be binding in some cases as the
application exists inside the framework.

2.1.1.1 The Client

For client side programming, even though developers often adopt a rich set of technologies and
frameworks, they still mostly use the core stack of HTML plus CSS and JavaScript, with a few

1https://en.wikipedia.org/wiki/Software_framework

15

https://en.wikipedia.org/wiki/Software_framework

Figure 2.2: DOM tree example

extensions mostly provided through additional standards. The major reason for the success of
such stack is the separation of structure/content (HTML), presentation/style (CSS) and logic
(JavaScript), that is supposed to make reuse and maintainability much simpler.

HTML. HTML, which stands for HyperText Markup Language, is a technology that allows to
specify the structure of the visual elements (sometimes referred to as the user interface) of a
web application. An HTML document consists of normal text content wrapped around tags,
which are a form of metadata that is used to apply structure to the content of the page. HTML
is a hierarchical method of structuring documents by indenting HTML tags that are contained
in other HTML tags. The hierarchical structure defined by HTML tags is called the Document
Object Model, or DOM for short, which is used by the browser to create a visual rendering of
the page. The DOM is a way of representing objects that can be defined via HTML and then
later interacted with via a scripting language like JavaScript. HTML tags define DOM elements,
which are entities that live in the DOM.

One way to visualize the DOM is by using tree diagrams shown in Figure 2.2. DOM elements
that are lower in the tree are called descendants of DOM elements that are higher in the tree
if there is a path that connects them. Immediate descendants are called child elements, and the
element above a child element is referred to as its parent element.

CSS. CSS stands for Cascading Style Sheets and its main purpose is to give style to the content
structured with HTML. Essentially, CSS files describes how specific elements of the HTML
should be displayed by the browser. A CSS file is a collection of rulesets and a ruleset is a
collection of style rules that are applied to some properly selected elements in the DOM. A
ruleset consists of a selector and a list of rules, which are key-value pairs. One major objective
achieved by means of CSS is responsive design. A design is said to be responsive if it changes its
layout based on the height and width of the browser in which it is displayed (e.g. desktop, tablet,
mobile devices). It is possible to obtain responsiveness using CSS media queries. However,

16

several CSS frameworks are available that allow developers to build responsive designs with less
effort.

JavaScript. JavaScript is a cross-platform, object-oriented scripting language used to make
websites interactive (e.g. having complex animations, clickable entities, popup menus, etc.). In
the host environment, such as a web browser, JavaScript can be connected to the objects of its
environment to provide programmatic control over them. Specifically, client side JavaScript can
control the page displayed by a browser and its Document Object Model (DOM), for example,
by dynamically placing elements on an HTML form and by responding to user events such as
mouse clicks, form (e.g. key press), and page navigation.

Moreover, the browser environment provides other functionalities built on top of the core JavaScript
language, in the form of Application Programming Interfaces (APIs). They generally fall into
two categories: browser APIs and third party APIs. Browser APIs are built into the web browser
and are able to expose data from the surrounding computer environment, for example retriev-
ing geographical information (Geolocation API), creating animated 2D and 3D graphics (Canvas
and WebGL API) and interacting with multimedia (Audio and Video APIs) for playing audio
and video in a web page. Third party APIs are not built into the browser by default but they
have to be imported in the web page as JavaScript libraries. They can provide functionalities of
third party websites to the website under development, e.g. by embedding custom maps into it
(Google Maps).

One interesting browser API is the DOM API that allows JavaScript to manipulate HTML and
CSS at runtime, creating, removing and changing HTML, dynamically applying new styles to the
web page, etc. Part of this API provides web events. In general, events are actions that happen in
the system being programmed. The system will fire a signal of some kind when an event occurs,
and also provide a mechanism by which a response can be automatically activated (e.g. some
code running) when the event occurs. In the case of the web, events are fired inside the browser
window, and are usually attached to a specific item that resides in it. Examples of web events
are: the user clicking on an element, the user submitting a form, a web page finishing loading,
etc. Each event has an event listener that listens out for the event to happen, and an event handler
(or callback) which is the code that runs in response to the event being fired. Event handlers are
sometimes called event listeners although, strictly speaking, they work together.

The JavaScript runtime uses a message queue to handle events.The message queue contains the
list of messages to be processed. Indeed, in web browsers, messages are added anytime an event
occurs if there is an event listener attached to it. Each message may have an associated function
which gets called in order to handle the message, namely the event handler. The messages in the
queue are processed in an event loop, starting with the oldest one. A very interesting property
of the event loop model is that JavaScript never blocks. While the application is waiting for an
event to be processed, JavaScript can still handle other user inputs.

17

Client Server Database

network protocol

Figure 2.3: Client-server model

Usually, when a developer builds a new web application, almost surely, he/she will use a JavaScript
framework, instead of writing vanilla (i.e. plain) JavaScript. Choosing a JavaScript framework,
however, is not easy nowadays, given their proliferation. According to a recent survey 2 there are
at least 57 JavaScript frameworks as of January 2018.

2.1.1.2 The Server

Traditionally, a server program abstracts some resource over a network that multiple client pro-
grams want to access. The simplest client-server model is shown in Figure 2.3.

In the context of web applications the client is a web browser and the server is a remote machine
that is abstracting resources via the HyperText Transfer Protocol, or HTTP for short. Although
it was originally designed to transfer HTML documents between computers, the HTTP protocol
can now be used to abstract many different types of resources on a remote computer (for instance,
documents, databases, or any other type of storage). HTTP is the basic technology behind the
World Wide Web. Examples of HTTP servers are Apache or Nginx, designed to host big web-
sites. An HTTP server is also event-driven but instead of being called in response of user events,
it is called whenever a client (in our case, the browser) sends an HTTP request.

There are essentially four types of HTTP requests, also called HTTP verbs, namely POST, GET,
PUT and DELETE. These four verbs map to four basic operations on the data store (persis-
tent storage), respectively Create, Read, Update and Delete, also known under the acronym of
CRUD. This mapping allows web developers to create APIs that create a clean and simple inter-
face to resources that are available on the server (data store). APIs that behave in this way are
typically referred to as RESTful web APIs. REST stands for REpresentational State Transfer,
an architectural style of the web that describes how resources on web servers should be exposed
via the HTTP protocol, first proposed by Roy Fielding [FT00]. REST specifies a layered client-
stateless-server architecture in which each request is independent of the previous ones.

In the context of the back end, frameworks are also widely used. On Github 3, server-side
frameworks count 29 repositories spanning 11 languages (last update March 2017).

2https://jsreport.io/the-ultimate-guide-to-javascript-frameworks/
3https://github.com/showcases/web-application-frameworks

18

https://jsreport.io/the-ultimate-guide-to-javascript-frameworks/
https://github.com/showcases/web-application-frameworks

2.1.1.3 The Data Store

The data store application program runs independently of the web application server and is re-
sponsible to persistently store the data of the web application. SQL (sometimes pronounced
sequel), which stands for Structured Query Language, is probably the most popular technology
that is used to interact with a database. SQL is a language that is used to perform queries on a
database stored in a relational format. Relational databases store data as cells in tables, where
the rows of the tables can easily be cross-referenced with other tables. For instance, a relational
database might store a table of actors and actresses and a separate table of movies. A relational
table can be used to map actors and actresses to the movies in which they star. This approach has
several advantages, but the primary reason why they are so widely used is supposedly because
storing information in this way minimizes redundancy (duplicated data) at the expense of some
performance penalty.

The alternative consists of storing data in a non-relational format. Such new data storage so-
lutions, sometimes referred to as NoSQL data stores, make a trade-off: sometimes they store
redundant information in exchange for increased ease-of-use from a programming perspective.
Furthermore, some of these data stores are designed with specific use cases in mind, such as
applications where reading data needs to be more efficient than writing data. For example, let us
consider a web application that shows restaurants in a user-specified town. The user can sign up
and rate a restaurant he/she has been to. In such web application querying restaurants, together
with their own reviews, is much more frequent than a user writing and submitting a review.
Therefore, it is reasonable to store a restaurant together with its reviews even if they are different
concepts and, in a traditional relational approach, they would probably be stored separately (i.e.
different tables).

Regarding database technologies, 350 database management systems have been ranked 4. Most
of them fall into the categories of relational and non-relational (document) data storage.

2.1.1.4 Communication Between Client and Server

Today’s practice for the communication between client and server consists of two elements. A
standard format for the data being transmitted from client to server and viceversa, and a technol-
ogy that allows asynchronous exchange of data.

JSON. JSON, which stands for JavaScript Object Notation, is the most widely used data-interchange
format. A JSON object is a collection of variables each of which has a name and a value. The
name is a string and the value can be either a string, a number, a boolean, an array or an object
itself.

4https://db-engines.com/en/ranking

19

https://db-engines.com/en/ranking

Client

Server

Time

user activity user activity user activity

server-side
processing

server-side
processing

data transm
ission da

ta
 tr

an
sm

is
si

on

da
ta

 tr
an

sm
is

si
on

data transm
ission

Figure 2.4: Multi Page Web Application Model. Taken from [aja05]

AJAX. AJAX stands for Asynchrnonous JavaScript And XML. The common data-interchange
format that preceded JSON was called XML, which looks much more like HTML. Although
XML is still widely used in many applications, there has been a major move to JSON since
AJAX was invented. The reason is that JSON is as expressive as XML and, in addition, JSON
can use arrays [jso19]. Furthermore JSON is shorter and quicker to read and write, since it is
parsed into a ready-to-use JavaScript object, whereas XML requires a XML parser. The basic
idea behind AJAX is that the web application can send and receive information to/from other
computers without reloading the entire web page. One of the first examples of use of AJAX is
Google’s Gmail web app. A new email just appears in the inbox of Gmail’s web page which
does not need to be reloaded to get new messages.

The advent of AJAX changed the traditional synchronous communication model between client
and server (shown in Figure 2.4), i.e. the so called click and wait model, introducing asyn-
chronicity on the client side (shifting the communication model to the one shown in Figure 2.5).
Nonetheless, the current web application development scene can still be divided according to
two models, called multi page application and single page application.

Multi Page Applications. Multi page applications (MPAs) are the traditional web applications
that reload the entire page and display the new one whenever a user interacts with the web
application. The synchronous model of multi page web applications is shown in Figure 2.4.
Whenever data is exchanged back and forth, a new page is requested from the server to be
displayed in the web browser. This process takes time to generate the page on the server, to send
it to the client and to display in the browser, which may affect negatively the user experience (the
client is frozen while waiting for the new web page to be sent from the server and displayed).

20

Client

Server

Time

user activity

server-side
processing

server-side
processing

data transm
ission da

ta
 tr

an
sm

is
si

on

da
ta

 tr
an

sm
is

si
on

data transm
ission

client-side
processing

browser UI

Ajax engine

input

di
sp

la
y input

di
sp

la
y input di

sp
la

y input

Figure 2.5: Single Page Web Application Model. Taken from [aja05]

AJAX has made it possible to render/update just a fragment of the web page, at the cost of more
difficult and complex development process.

Single Page Applications. Single page applications (SPAs) consist of just one single web page.
SPAs load all the content onto just one single page, which is updated dynamically, rather than
navigating the user to different pages. SPAs are faster and provide a better user experience than
multi page web applications because they execute a substantial portion of the application logic
in the web browser itself rather than on the server. After the initial page load, when a web page
with the client side code is sent to the client, only data is exchanged between client and server
(usually in JSON format) instead of entire HTML pages. The asynchronous model of single page
web applications is shown in Figure 2.5.

Despite the disadvantages of multi page applications in terms of development, maintainability,
user experience and performance, MPAs still perform better than SPAs in terms of search en-
gine indexing. This is one of the main reasons why MPAs are still widely popular and hybrid
approaches, which try to combine the best of the two models, are also arising.

2.1.2 Software Testing

Software testing is widely used in the industry as a quality assurance technique for the various
artefacts produced in a software project, including the specification, the design, and the source
code. Testing aims at finding as many errors as possible, thus improving the reliability, the qual-

21

Unit Tests

Integration Tests

E2E Tests
UI Tests

Quantity

Execution
Cost

Figure 2.6: Testing pyramid taken from [Coh10]

ity and the compliance with expected behaviour of the software. The goal of testing, however, is
not to prove correctness, because exhaustive testing is economically and technologically infeasi-
ble, even on trivial examples. Rather, it aims at increasing confidence on the software quality by
showing that faults are not observed in a set of test scenarios that exercise the application accord-
ing to some test adequacy criterion. Indeed, since testing resources are limited and there is no
way to determine if all faults have been exposed, testers use an adequacy criterion as an indicator
of sufficient testing to stop writing and executing new test cases. The test adequacy criterion
usually consists of measuring some coverage of the system under test (SUT), while the system
is being exercised by the test cases. For example, if the code of the SUT is available, structural
coverage can be measured. Examples of structural coverage are statement and branch coverage.
Instead, if the test cases are based on a finite state model that describes the functional aspects of
the SUT, one common criterion is to measure the coverage of the transitions that constitute the
model.

Another important question software testers are expected to answer is what to test. The testing
pyramid shown in Figure 2.6, first introduced by Mike Cohn [Coh10], briefly describes what to
test and to what extent. Indeed, the size of each layer indicates the number of tests that should be
written within each stage. The first stage is constituted by unit tests, in which each unit is tested
in isolation, after properly mocking all its dependencies. What a unit is depends on the program
under test and on the level of granularity the tester chooses. For example, in object oriented
programs, a unit is often a class. For its functioning such class may depend on several others but,
since the objective is to test that class in isolation, the other classes the class under test depends
on should be replaced with mocks or stubs, i.e. ad hoc classes that simulate the behaviours of
real classes. The pyramid suggests that unit tests are cheap to execute and that the vast majority
of tests in a software system should be unit tests. The second stage is given by integration tests

22

Specifications

Oracles Tests

Programs

observe

state

measure

coverage

combination of Oracles and Tests determines

efficacy of testing process

Figure 2.7: Theoretical testing framework: example relationships between testing factors. Taken
from [SWH11]

in which the individual units are combined and tested as a group. If the unit is a class, then
one possible criterion is to test together (i.e. without mocking) such class and all the classes the
class under test depends on. According to the test pyramid integration tests are more expensive
to execute than unit tests and there can be less integration tests than unit tests in the test suite
of a software project. The last stage consists of end to end tests, E2E tests for short. Such tests
exercise the system as a whole, under real world scenarios including the communications of the
software under test with hardware, network, database and other programs. The system is tested
in an E2E way through its user interface (that is the reason why they are often called UI tests),
which is typically a Graphical user interface (GUI). Those tests are usually computationally
more expensive than integration and unit tests, because they involve the entire system with all its
components. That is why the overall percentage of such tests in a software system is usually low
with respect to the other types of tests.

A more formal view of testing is shown in Figure 2.7. In such theoretical testing framework,
Staats at al. [SWH11] illustrate the interrelationships between the four key testing artefacts:
specifications, programs, tests and oracles. With the term specifications they mean the abstract,
ideal notion of correctness (ground truth). Specifications in this context are the true requirements
of the software, i.e. they represent the intended/desired behaviour of the software. The dashed
arrows in Figure 2.7 represent approximations, i.e. possible sources of errors or divergences that
make software testing needed and, at the same time, challenging. The first source of error is
when the program is derived from, and intended to implement, the specification, for instance
through requirements. Tests are, in a similar way, approximately derived from the specification
and are intended to exercise scenarios where the program violates the specification. Finally, the

23

oracle, directly approximates the specification and it is intended to determine, for each test, if the
program has violated the corresponding specification.

The other arrows of the diagram represent relationships between the concepts that can be ex-
plained as follows. Tests are selected based on the syntactic structure of the program under test,
for example based on how well they cover the structural properties of the program (test adequacy
criteria). The relationship between the oracle and the program under test implies the observabil-
ity of the state of the program under test, i.e. weather it is possible to observe program failures
and to identify program locations in which failures can be exposed. Finally, the relationship be-
tween oracles and tests is crucial for the efficacy of the testing process, which is failure exposure
and fault finding.

2.1.3 Metaheuristic Algorithms

Stochastic optimization is the general class of algorithms and techniques which employ some
degree of randomness to find optimal (or as optimal as possible) solutions to hard problems.
Metaheuristics are the most general of these kinds of algorithms. Metaheuristics are applied to
a very wide range of problems [Luk13]. In particular, they are applied to problems where it is
possible to determine the solution analytically nor what is the direction towards it and exhaustive
search cannot be applied because the solution space is too large. The assumption of metaheuristic
algorithms is that, given a candidate solution, it is possible to assess how good that solution is.
The quality of a solution is measured by the so called fitness function which has to be defined
for each specific optimization problem. Furthermore, the candidate solution has to be encoded
for each specific problem. One simple and common representation for candidate solutions is a
fixed-length vector with boolean values.

Metaheuristic algorithms are divided into two classes: non-population based and population-
based algorithms. The difference is in the number of candidate solutions: non-population based
methods keep a single candidate solution, whereas, population based methods keep a sample
of candidate solutions. Below, a class of population based algorithms (namely, evolutionary
algorithms) is briefly explained.

The basic generational evolutionary computation algorithm (shown in Figure 2.8) first constructs
an initial population, then iterates through three procedures. First, it assesses the fitness of all the
individuals in the population. Second, it uses this fitness information to breed a new population
of children. Third, it joins the parents and children in some way to form a new next-generation
population, and the cycle continues, until a certain stopping condition is met (e.g. the optimal
solution is found or the algorithm runs out of resources, like max time or max number of fitness
evaluations). Evolutionary algorithms differ from one another largely in how they perform the
breed and join operations. The breed operation usually has two parts: selecting parents from
the old population, then reproducing them (usually mutating or recombining them in some way)

24

start

stop

Initialize
Population

Fitness
Evaluation

Stopping
Condition

Parent
SelectionReproduction

Survival
Selection

yes

no

Figure 2.8: Relationships between components of an evolutionary algorithm. Taken
from [ES+03].

to make children. The join operation either completely replaces the parents with the children,
or includes fit parents along with their children to form the next generation. The reproduction
block includes recombination (often called crossover) and mutation. The selection from the old
population is called parent selection, whereas the join operation is called survival selection.

A common example of evolutionary algorithm is the Genetic Algorithm (GA), invented by John
Holland in the 1970s. Basically, GA follows the steps described in Figure 2.8 [ES+03]. Given a
population of n individuals (candidate solutions), parent selection fills an intermediate population
of size n. Then the intermediate population is shuffled to create random pairs and crossover is
applied to each consecutive pair with a certain probability and the children replace the parents
immediately. Mutation is applied individual by individual to the new intermediate population
(each individual is modified with independent probability). The resulting intermediate population
forms the next generation, which replaces the previous one entirely.

2.2 Web Application Testing

In this thesis the focus is on E2E tests. Testing a web application E2E is important since today’s
web applications are built on intertwined layers of code, networks of subsystems and third-party
integrations. This makes the stability of each component, both on its own and as part of the entire
application system, vital to the functioning of a web application. Moreover, it highlights the clear

25

need to test entire web application from start to finish, from software modules and APIs through
networking systems and end-user interfaces. Indeed, E2E tests have the advantage of exercising
the web application with all its parts connected together and thus can find bugs in the interaction
between components in the way that unit and integration tests cannot.

2.2.1 E2E Testing

In the context of web applications an E2E test exercises the application starting from the GUI
but indirectly it exercises all the components that contribute to form the web application, back
end and database server included.

2.2.1.1 Modelling

Formally, an E2E test case is a triple T = 〈U, V,O〉, where U = 〈u1, . . . , un〉 is a sequence of
user events (e.g. click on a button/link, filling in a form, etc.), V = 〈v1, . . . , vn〉 is the sequence
of input values required by the user events (e.g. the values required for filling in a form), and
O = o1 ∧. . .∧ on is the oracle (expected results) for the sequence of user events. An item in the
sequence V , i.e. vi, can be empty (i.e. an empty sequence) which means that the corresponding
user action ui does not require any input value. The sequence of user events bring the application
to a certain state, which is the state of the Document Object Model (DOM) which has been
manipulated and modified as a result of the user events, plus the server side state. The oracle is
supposed to verify the existence or properties of particular elements in the resulting DOM state.
Therefore, each oi is a function that takes l arguments, where l ≥ 0, and returns a boolean value.
If an oi is not specified then its value is simply the boolean value true. Note that the function
oi can evaluate multiple conditions after the same step. If the oracle O, which is the conjunction
of n functions, returns false, the test case fails and a failure is found, since the application under
test deviates from the expected behaviour. Otherwise, if it returns true, the test case passes.

Figure 2.9 shows an example of an E2E test case that can be performed manually against the
example application, called Phoenix Trello 5 which is the open source version of Trello 6, a web
application that provides a visual way to manage and organize projects. Its main elements are
boards, lists and cards that can be private to the single user or shared among users to enable
collaboration.

The figure, from the left hand side to the right hand side, shows the transitions of the web applica-
tion when the action at the top of each snapshot is performed. The E2E test case triple in this case
is: U = 〈open-app, insert, insert, click-sign-in〉, V = 〈〈〉,“john@phoenix-trello.com”,“12345678”, 〈〉〉
and O = true ∧ true ∧ true ∧ check(“Sign out”). The E2E test case is testing the login

5https://github.com/bigardone/phoenix-trello
6https://trello.com/

26

https://github.com/bigardone/phoenix-trello
https://trello.com/

(1) open app
phoenix-trello.com

(2) insert
“john@phoenix-trello.com”

in input field

(3) insert
“12345678”
in input field

(4) click Sign in (5) check “Sign out” text

Figure 2.9: Example of E2E test case

functionality of the web application, in the scenario in which the user who is signing in is already
registered. The oracle at step (5), makes sure that the sequence of actions performed to sign in
the user brings the application to the desired DOM state in which the Sign out text is present at
the top right corner of the web page.

2.2.1.2 E2E Testing Tools

The test case presented in Figure 2.9 can be executed manually by carrying out the actions
through the web browser. Manual testing is the simplest approach to testing but, unfortunately,
this practice is error prone, time consuming, and ultimately not very effective. For this reason,
most teams automate manual web testing by means of automated testing tools. The first part of
the process is manual: the developer writes the test code to exercise the web application under
test. The test code provides input data, operates on DOM elements, and retrieves information to

27

Table 2.1: Sample of E2E testing tools classified according to localization and test case develop-
ment techniques. Taken from [LCRT16].

Test Case Development

Localization Capture-Replay Programmable

Visual-based Sikuli IDE Sikuli API

DOM-based Selenium IDE Selenium WebDriver

be compared with oracles (e.g., in the form of assertions). The second part of the process is au-
tomatic: the test code is executed automatically against the application under test. The execution
is faster, with respect to the manual one and it can be carried out much more often.

E2E web testing tools can be classified according to two main orthogonal criteria [LCRT16]: (1)
test cases implementation and (2) web page elements localization. Table 2.1 presents a sample
existing E2E web testing tools classified according to these criteria. For what concerns the first
criterion, there are two main approaches:

Capture-Replay (C&R) Web Testing. C&R consists of recording the actions performed manu-
ally by a tester on the web application GUI and producing a test case that automatically reproduce
those actions.

Programmable Web Testing. It consists of full-fledged programs, written with the help of
specific testing frameworks that interact with the web browser such that the test case can navigate
the application under test as a user would (e.g. clicking on buttons and links, submitting forms,
etc.).

An E2E test case that executes automatically can interact with web elements, such as links,
buttons, forms, input fields, etc. The interaction with those elements require their localization
in the web page. Correspondingly, for the second criterion (localization) there are two main
approaches:

DOM-based. In this category elements are located using the information available in the DOM
(see Section 2.1). The most prominent tools in this category are Selenium IDE 7 and Selenium
WebDriver 8 respectively under the Capture-Replay and Programmable approach. Those tools
offer the possibility to locate web elements in the DOM in different ways, e.g. by attributes like
name, id and class, by XPath and by CSS selectors, by tag name and by href, which is
the string URL that can be associated with a link element. However, not all location mechanisms
can always be used to uniquely locate a web element in the DOM. For example a web element

7https://www.seleniumhq.org/selenium-ide/
8https://www.seleniumhq.org/projects/webdriver/

28

https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/projects/webdriver/

Firefox Driver

Edge Driver

Chrome Driver

+

Test Case using
WebDriver Client

libraries
(e.g. Java, Python, etc.)

WebDriver’s
Browser-specific
Implementations

Browsers

Web Server hosting
WAUTRequest

&
Response

Figure 2.10: Selenium architecture. Taken from [Ava14].

can be located by attribute if it either has a unique name, id or class. In the same way a
web element can be located by tag name only if there is only that element with that tag and
it can be located by href if the URL attached to that link element uniquely identifies it. On
the other hand, localization either through XPath or CSS can always be applied. Indeed, both
those location techniques are hierarchical, meaning that it is always possible to uniquely identify
a web element X by traversing the DOM tree starting from the root element R.

Visual-based. These tools exploit image recognition techniques to locate and control web ele-
ments (GUI elements). The tools Sikuli IDE 9 and Sikuli API 10 belong to this category, respec-
tively for Capture-Replay and Programmable approach.

2.2.1.3 Selenium WebDriver

In this thesis, the focus is on Selenium WebDriver, i.e. the programmable DOM-based approach.
Selenium WebDriver is a quite mature (it started in 2009) and well maintained tool (on the of-
ficial GitHub repository hosting the project 11, in the month between August and September
2019, 82 commits have been pushed to the master branch and 84 commits to all branches) which
was specifically designed to automate the actions performed on a web page programmatically.

9http://www.sikuli.org/
10https://github.com/sikuli/sikuli-api
11https://github.com/SeleniumHQ/selenium

29

http://www.sikuli.org/
https://github.com/sikuli/sikuli-api
https://github.com/SeleniumHQ/selenium

Moreover, Selenium specifically provides infrastructure for the WebDriver specification, a plat-
form and language-neutral coding interface compatible with all major web browsers. Since June
2018 12 WebDriver became a W3C (World Wide Web Consortium, an international community
that develops open standards) recommendation.

Overall, Selenium WebDriver works in the following way (see Figure 2.10 for a graphical repre-
sentation) [Ava14]:

• A developer, through his/her test case, can command WebDriver to perform certain actions
on the Web Application Under Test (WAUT) on a certain browser. The way the user can
command WebDriver to perform such actions is by using the client libraries or language
bindings provided by WebDriver. These libraries are available for different languages,
such as Java, Ruby, Python, Perl, PHP, and .NET;

• By using the language-binding client libraries, developers can invoke the browser-specific
implementations of WebDriver, such as Firefox Driver, Edge Driver, Chrome Driver, to
interact with the WAUT on the respective browser. These browser-specific implementa-
tions of WebDriver work with the browser natively and execute commands from outside
the browser to simulate exactly what a real user does. Language-binding client libraries
supply a well-designed object-oriented API to let the test case interact with the selected
browser;

• After execution, WebDriver sends out the test result back to the test case for developer’s
analysis.

Figure 2.11 shows the Selenium WebDriver version of the login test case for the application
Phoenix Trello, previously shown in Figure 2.9. The figure presents at the top the login test case,
implemented using the Java programming language and the Selenium WebDriver Java bindings.
In the middle of the figure are the two screenshots of the WAUT before (left hand side) and after
(right hand side) login is performed. Under each screenshot there is a portion of the DOM of the
respective web page. The elements of the DOM the test case interacts with are highlighted. First,
the test instantiates the specific selenium driver, in this case the ChromeDriver. Then it opens
the browser at the application URL. The first driver statement is at line 5: it locates the email input
field of the sign in form by its id = "user email"; it then writes the email in the respective
input field by using the selenium method sendKeys. At line 6, the driver statement is quite
similar. Indeed, it locates the password input field by its id = "user password" and it
writes the password. At line 7, the test locates the submit button of the form by XPath, which is
a relative XPath (it starts with a double slash), and it clicks on it. Such relative XPath, starting
from the root, searches the first DOM element with the button tag which has an attribute
named type with value submit. The assertion at line 8 is the oracle, which checks that the

12https://www.w3.org/TR/webdriver/

30

https://www.w3.org/TR/webdriver/

…
<main>
<header>
<div class="logo">
!</div>

!</header>
<form id="sign_in_form">
<div class="field">
<input type="Email" id="user_email" required="">

!</div>
<div class="field">
<input type="password" id="user_password" required="">

!</div>
<button type="submit">Sign in!</button>

!</form>
Create new account!

!</main>
…

…
<main>
<div>
<div id="authentication_container" class="application-container">
<header class="main-header">
<nav id="boards_nav">

<i class="fa fa-columns">!</i>
Boards!

!
!

!
!</nav>

!

!
<nav class="right">

<i class="fa fa-sign-out">!</i>
Sign out!

!
!

!
!</nav>

!</header>
<div class="main-container">…!</div>

!</div>
!</div>

!</main>
…

1 public void loginTest() {
2
3 WebDriver driver = new ChromeDriver(); !// create a new instance of the Chrome Driver
4 driver.get("https:!//phoenix-trello.herokuapp.com/"); !// open the browser at the specified address
5 driver.findElement(By.id("user_email")).sendKeys("john@phoenix-trello.com"); !// write email in input field
6 driver.findElement(By.id("user_password")).sendKeys("12345678"); !// write password in input field
7 driver.findElement(By.xpath("!//button[@type=\"submit\"]")).click(); !// click the "Sign in" button
8 assertEquals("Sign out",driver.findElement(By.xpath("!//div[@id=\"authentication_container\"]/header/nav[2]/ul/li/a/span"))
9 .getText()); !// check that the "Sign out" text is present in the navigation bar
10 driver.quit(); !// close the browser
11
12 }

Figure 2.11: Selenium WebDriver login test case for Phoenix Trello application

login has been performed correctly. Also in this case the DOM element is located by a relative
XPath. The XPath starts with a div which has id = "authentication container"
and it navigates the DOM, starting from that element, all the way through the element which has
the span tag. The getText method of the driver extracts the text from a DOM element, in
this case the text Sign out. The assertEquals(<expected>,<actual>) method of
JUnit 13, a Java library for unit testing, checks that the first argument is equal to the second one.
At line 8, it is used to check that the Sign out string is equal to the text extracted from the
DOM element that is supposed to contain such text. If the two arguments are equal, the assertion

13https://junit.org/junit5/

31

https://junit.org/junit5/

Test case 1

Test case 2

Test case 3Web Page

Web Page

Page
Object

Test case 1

Test case 2

Test case 3

Test logic + Implementation details

Test logic
Implementation

details

Application
specific
APIs

HTML
APIs

Figure 2.12: Test cases interacting with a web page without (above) and with (below) the use of
the Page Object pattern

passes (hence, the test case); otherwise it throws an assertion exception, making the test case fail.
Finally, the driver statement at line 10 closes the driver and ends the test case.

Page Object Design Pattern. The login test case in Figure 2.11 interacts directly with the web
pages before and after the login is performed. Some of the implementation details of the web
pages are included in the test case as locators. Indeed, the driver statements, from line 5 to line
8, depend on the structure (see XPath at line 7 and 8) and the properties (see id at line 5 and 6)
of the web elements to be located and interacted with. Moreover, the same test case contains the
test logic/semantic, i.e. what the test case actually does, which is logging in a user. The upper
part of Figure 2.12 shows, in general, such testing scenario.

The fact that the test case contains both test logic and implementation details (locators) raises
several software engineering issues such as maintainability, reusability and readability of test
code. Regarding readability, the test logic is not completely evident by reading the instructions
of the test case, which are selenium specific and implementation related (e.g. findElement,
sendKeys, click, etc.). Regarding reusability, if another test case (e.g. addBoardTest)
needs to perform the login before testing the functionality it was created for, it has to duplicate

32

the specific selenium instructions from line 5 to line 7. Duplication has also a negative impact
when it comes to maintainability, i.e. when the application under test evolves and the test cases
need to be updated. Suppose that the ids of the email and password input fields of the login
page (see screenshot at left hand side of Figure 2.11) change. Technically, such locators are
called broken, since executing the test case on the new version of the application leads the test
case to break. As a consequence, all the test cases that contain such ids need to be modified,
which is an error-prone and costly process.

One way to alleviate this problem is through the use of the Page Object Desing Pattern, which is
widely used in web testing to decouple the implementation details that depend on the web page
structure from the test logic. The lower part of Figure 2.12 shows how test cases interact with
the web page when the Page Object Design Pattern is adopted. The Page Object (PO for short)
design pattern was first proposed by Martin Fowler 14 as an abstraction of the page under test.

POs are particularly important to increase the maintainability and the evolution of web test
cases [LCRT16], since one of the main causes of test case breakages upon software evolution
is the occurrence of broken locators [LSRT16]. If locators (implementation details) are confined
within POs, they need to be maintained just once upon software evolution. When the concrete
HTML page changes, those changes impact the POs, not the test cases, making the test cases
more maintainable. Moreover, POs can be reused across test cases [LCRT16]. In fact, different
test cases can refer to the same page object for locating and activating the HTML elements of
the page under test, without having to duplicate the HTML access instructions multiple times, in
different test cases. Finally, the PO pattern makes the test cases more readable since it creates an
abstraction layer allowing the developer to write application specific APIs that are used by test
cases. In summary, POs are a classic example of encapsulation applied to programmable web
testing.

Figure 2.13 shows how the login test case in Figure 2.11 can be refactored using the PO design
pattern. Two POs are created in this case for the two web pages showed in Figure 2.13. In the
Java language they are just classes. The PO LoginPage (left hand side) refers to the form
displayed to sign the user in; the second PO, BoardsPage, models the web page that displays
the list of boards (right hand side) after the login. Another PO could be created in this case, i.e.
the NavigationBar PO, which could model the functionalities of the navigation bar at the
top of the web page on the right hand side. In particular, the board menu functionality on the
top left corner, the application logo at the top center, which brings the application to the home
page, and the sign out button on the top right corner. In fact, despite the term “page” object,
these classes are not necessarily built for an entire page. A PO may wrap an entire HTML page
or a cohesive fragment that performs a specific functionality. The rule of thumb is to group and
model the functionalities offered by a page as they are perceived by the user of the application.
The test case at the bottom of Figure 2.13 uses the POs LoginPage and BoardsPage to
perform the same operation carried out in Figure 2.11, i.e. signing the user in and checking that

14https://martinfowler.com/bliki/PageObject.html

33

https://martinfowler.com/bliki/PageObject.html

public class LoginPage {

private WebDriver driver;

public LoginPage(WebDriver driver) { this.driver = driver; }

public BoardsPage signIn(String email, String password) {
driver.findElement(By.id("user_email")).sendKeys(email);

 driver.findElement(By.id("user_password")).sendKeys(password);
 driver.findElement(By.xpath("!//button[@type=\"submit\"]")).click();
 return new BoardsPage(driver);
}

…
}

1 public void loginTest() {
2
3 WebDriver driver = new ChromeDriver(); !// create a new instance of the Chrome Driver
4 driver.get("https:!//phoenix-trello.herokuapp.com/"); !// open the browser at the specified address
5 LoginPage loginPage = new LoginPage(driver); !// create a new instance of the LoginPage PO
6 BoardsPage boardsPage = loginPage.signIn("john@phoenix-trello.com", "12345678"); !// sing the user in
8 assertEquals("Sign out",boardsPage.getUserStatus()); !// check that the "Sign out" text is present in the navigation bar
9 driver.quit(); !// close the browser
10
11 }

public class BoardsPage {

private WebDriver driver;

public BoardsPage(WebDriver driver) { this.driver = driver; }

public String getUserStatus() {
 return driver.findElement(By.xpath(
 “!//div[@id=\"authentication_container\"]" +

+ "/header/nav[2]/ul/li/a/span")).getText()
}

…
}

Figure 2.13: Selenium WebDriver login test case for Phoenix Trello application using Page Ob-
jects

the sign in succeeded. The method signIn of the LoginPage PO, fills in the login form with
the concrete values of email and password passed to it in the test case and clicks on the submit
button. The signIn method returns the PO that models the boards list since the click on the
submit button of the login form leads the application to the boards list page. Then, the method
getUserStatus of the PO BoardsPage is used in the assertion to retrieve the text at the
top right corner of the boards list page, to be compared against the expected value. In this way
the implementation details of the web page are confined inside the PO methods, which represent
application/domain specific APIs, making the test case more maintainable and readable.

2.2.1.4 Pros and Cons of E2E Testing

To summarize the discussion on E2E web testing, below are highlighted the advantages and
disadvantages of using this testing approach.

34

Advantages. The first advantage is that E2E testing hides the technologies that are used to build
the web application under test, since the application is tested via its interface. The testing ap-
proach is general and it can be applied to any web application regardless of the technologies used
to develop it. Moreover, an E2E test exercises the application in real conditions/scenarios, which
helps developers increase their confidence on the quality of the application, since it navigates the
application as a real user would. If a bug is introduced that hinders the core functionalities of
the application, E2E tests can find it. Moreover, the execution of E2E tests can be automated by
quite mature and well maintained tools like Selenium.

Disadvantages. On the other hand, E2E tests are time consuming to run with respect to the other
types of tests, since the execution environment of those tests is the browser. This problem has
been alleviated, in part, with the introduction of headless browsers, i.e. browsers that provide
the same functionalities of normal browsers but without the user interface. Hence, the browser
instantiation is faster with respect to the normal browser as well as the actions that are performed
by robots (such as Selenium) against the web application under test. However, an E2E test case
still remains slower than a unit test case 15 16.

Moreover, E2E tests are notoriously flaky and often fail for unexpected and unforeseeable (non
deterministic) reasons. The more sophisticated the user interface, the more flaky the tests tend to
become. Timing issues, animations, unexpected popup dialogs, browser quirks are only some of
the reasons for E2E test flakiness.

E2E tests are also prone to the so called fragility problem, i.e. minor changes to the web app under
test can invalidate/break the existing test code. This problem is in part mitigated if E2E test cases
are written with the Page Object design pattern that separates the implementation details from
the test logic. Once such minor changes happen, only the specific page objects affected by them
need to be modified, leaving the test cases unchanged.

Finally, when a failure occurs upon the execution of an E2E test, it is not possible to pinpoint
the root cause of the failure, since anything in the entire flow could have contributed to raise the
error.

2.2.2 Test Dependency

Ideally, running the tests in a test suite in any order should produce the same outcome [GBZ18].
This means tests should deterministically pass or fail independently from the order in which they
are executed. A test dynamically alters the state of the WAUT in order to assess if it behaves
as expected. In practice, some tests fail to undo their effects on the program’s state after their
execution, which can pollute any shared state [GSHM15] in tests executed subsequently.

15https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.
html

16https://vuejsdevelopers.com/2019/04/01/vue-testing-unit-vs-e2e/

35

https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://vuejsdevelopers.com/2019/04/01/vue-testing-unit-vs-e2e/

Table 2.2: Test cases for Phoenix Trello, numbered according to their test execution order.

Test Name Description

t1 addUserTest A new user account is created.
t2 loginUserTest The newly created user logs in to the application.
t3 addBoardTest The admin adds a board to his/her board page.
t4 shareBoardTest The admin shares his/her board with the newly created user.

In the web domain, testers write E2E tests by using testing frameworks like Selenium WebDriver.
Unlike unit testing, in which tests target specific class methods, web tests simulate E2E user
scenarios, and therefore the program state that persists across test case executions might be left
polluted, causing test failures if tests are reordered. This is due to the fact that the state of a web
application is more distributed than the state of a single unit and, hence, more difficult to control
and to clean up after test execution.

Table 2.2 lists four E2E Selenium WebDriver tests for the Phoenix Trello web application. Tests
are numbered according to their test execution order. The execution of the first test addUserTest
pollutes the state of the web application, which is used by the subsequent test loginUserTest
to sign in the same user created by addUserTest. To make these two tests independent
and avoid polluted program states, a tester, for instance, should (1) delete the user created in
addUserTest after its execution, to clean the polluted program state, and (2) re-create the
same user (or a different one) before the execution of loginUserTest.

In practice, however, testers re-use states created by preceding tests to avoid test redundancy,
higher test maintenance cost and increased test execution time [LCRT16]. In doing so, they
also enforce pre-defined test execution orders, which in turn inhibit utilizing test optimization
techniques such as test prioritization [RUCH01].

Test Dependency Graph. Dependencies occurring between tests can be represented in a test
dependency graph (TDG) [GBZ18], a directed acyclic graph in which nodes represent test cases
and edges represent dependencies. TDG contains an edge from a test t2 to a test t1 if t2 depends
on t1 for its execution (notationally, t2 → t1).

Figure 2.14 illustrates the actual test dependency graph (TDG) for the test suite in Table 2.2.
It contains an edge from loginUserTest to addUserTest because loginUserTest re-
quires the execution of addUserTest to produce the expected result (i.e., addUserTest
must be executed before loginUserTest in order for it to succeed). Multiple test dependen-
cies can also occur. For instance, shareBoardTest depends both on addUserTest and
addBoardTest for its correct execution, since the admin user, in order to share his/her board,
needs both a board (t3) and a user to share such board with (t1).

36

t1
 addUserTest

t2
 loginUserTest

t3
addBoardTest

t4
shareBoardTest

Figure 2.14: Test depencency graph for the test suite of Table 2.2.

2.3 Automatic Web Application Testing

As a bottom line, test automation means that the developers write the test cases and a ma-
chine/robot executes them. However, software testing researchers aim for a higher level of test
automation. Indeed, their goal is that the machine both designs and executes the test cases.

Automatically generating an E2E test means generating all the components in the triple T =
〈U, V,O〉 presented in Section 2.2. Respectively, the machine should generate the sequence of
user events U , the input values V that are needed by the user events and the oracle O. However,
in this thesis, the automatic generation of the oracle is not addressed. Indeed the oracle problem
is, in itself, a very challenging problem that would deserve other PhD theses. Instead, different
techniques are explored in the subsequent chapters to address the problem of generating the
sequence of user events U with the respective input values V . When the oracle is not explicitly
defined in a test case, the test case relies on the so called implicit oracle. The implicit oracle
catches a particular kind of unwanted behaviour of a program, which is the crash/error. In a Java
program a failure may be an undeclared exception being thrown, whereas in a web application
a failure may be represented by a client or a server error. In both cases, after the failure, the
functioning of the WAUT is compromised or interrupted.

One way to generate the sequence of user events and their respective input values is through
model based testing, which is presented below.

37

n0 n1 n2
onLoad

add board

remove board
empty boards

add board
remove board
share board

Figure 2.15: Abstract model of a simple Trello application

2.3.1 Model Based Testing

Model-based testing (MBT) is a variant of testing that relies on explicit behaviour models that
encode the intended behaviours of a system under test (SUT) and/or the behaviour of its environ-
ment [UPL12]. Test cases are then derived from the model using extraction algorithms that try
to satisfy some coverage criteria and are executed on the SUT. Hence, the SUT is seen as a black
box that accepts inputs and produces outputs. The SUT has an internal state which changes as it
processes inputs and produces output. The model describes possible input/output sequences at a
chosen level of abstraction of the SUT’s internal states.

In the context of web application testing, models represent an appealing solution, since they can
abstract from the underneath technologies and they can capture all the important behaviours of
the web application under test. Indeed a web application is nowadays developed using different
programming languages that interact in a complex way to shape the overall behaviour of the
application (see Section 2.1). Hence, it is difficult to base testing on the source code whereas
models are a valuable alternative.

Usually, the model of a web application is a state-flow graph which captures the states of the
WAUT, and the possible transitions between them. Nodes N of such graph are states of the
WAUT and edges E are the events that bring the WAUT from one state to another. Basically, the
model represents the navigations that a user can make while browsing the functionalities of the
application (this is why the state-flow graph is often called navigation graph). A path in such
graph can be defined as P = 〈S,A,X〉, where S ∈ N+ is a sequence of one or more graph nodes
(states), A ∈ E∗ is a sequence of zero or more graph edges (actions) such that |A| = |S| − 1 and
if ai = 〈n1, n2〉 then si = n1 ∈ S, si+1 = n2 ∈ S. A test case can be defined as T = 〈S,A,X〉
where, X ∈ I∗ is a sequence of zero or more parameter values matching the parameter names
required by the events associated with A.

Figure 2.15 shows the model of a simple Trello web application with two states (n0 is the initial
state): n1, in which there is no board in the project, and n2, in which there is at least one board
in the project. In this model all the important transitions of the application are represented: it
is possible to add a board to the project, remove it, empty the project from all the boards and

38

share a board. Therefore, if testing is based on such model, with the test cases extracted from
the model, all the important functionalities of the web application under test can be exercised.
If the test adequacy criterion is transition coverage, testing based on the model in Figure 2.15 is
considered sufficient when each transition is exercised at least once.

The general approach in model based testing is composed of the following steps, which can be
applied to web applications as well:

1. Getting the model: available options are manual creation or automatic extraction;

2. Using the model: once the model is available, paths P , that represent actions on the
application states, need to be generated. However, paths are abstract, since the model is
abstract, hence, in order to make them executable against the WAUT concrete input data
X need to be generated for the events in the sequences A;

3. Checking path feasibility: the last step consists of checking the absence of infeasible
paths among the paths produced in the previous step. In fact, given the abstraction of the
model there can be dependencies and constraints that hold in the WAUT but might not be
represented in the model.

The test case feasibility problem is a major problem in model based testing [TTN14, DNSVT07],
since it can impact the coverage of the model (e.g. transition coverage), the code coverage of
the application under test and, consequently, the fault detection capability of the test cases. For
example from the model in Figure 2.15, the following paths can be extracted: the first one is
P1 = 〈S1, A1〉 where S1 = 〈n1, n2, n1〉, A1 = 〈add, remove〉; the second one is P2 = 〈S2, A2〉
where S2 = 〈n1, n2, n2, n2〉, A2 = 〈add, remove, share〉. The first is a feasible path whereas the
second is an infeasible one, since the board that is added is necessarily the same that is removed
afterwords. In such case the transition share is not covered, unless other paths are extracted.
In a state-flow graph, transitions are always feasible, whereas paths extracted from the graph can
be infeasible, as in the example shown above.

2.3.2 Web Crawling

One way to automatically get the model of a web application and use it is web crawling. A
web crawler can automatically walk through different states of the WAUT and create a model of
the navigational paths and states [MvDL12]. Crawling an SPA is more difficult than crawling a
traditional MPA. In classical multi-page web applications, states are explicit, and correspond to
pages that have a unique URL assigned to them. In SPAs, however, the state of the user interface
is determined dynamically, through changes in the DOM that are only visible after executing the
corresponding JavaScript code.

39

In order to explain how a crawler for SPAs works, we describe Crawljax, the first automatic
approach that addressed the problem of SPA crawling.

2.3.2.1 Crawljax: Crawling Ajax Applications

The approach implemented in Crawljax [MvDL12] is based on a crawler that can exercise client
side code, and can identify clickable elements (which may change with every click) that change
the state within the browser’s dynamically built DOM. From these state changes, a state-flow
graph is inferred incrementally. Initially, it only contains the root state and new states are created
and added as the application is crawled and state changes are analyzed. Below are the steps that
the crawler follows to create such state-flow graph.

Detecting Clickables. The first operation that the crawler carries out is scanning the DOM of the
current application state to analyze the clickable elements, which are those elements that respond
to user actions (e.g. links, buttons) or, in other words, those that are exposed to an event type
(e.g. click, mouseOver). For each candidate clickable element (candidate element for short), the
crawler instructs a robot (e.g. Selenium WebDriver, used to simulate user input) to execute a
click on the element (or perform other actions, e.g., mouseOver), in the browser.

Creating States. After firing an event on a candidate element, the algorithm compares the re-
sulting DOM tree with the DOM tree as it was just before the event fired, in order to determine
whether the event results in a state change. The problem of detecting already visited states is
delegated to the state abstraction function, which is a function (which returns a value between
0.0 and 1.0) that decides if a new state is found after an event is fired. One way to determine the
state change is by computing the Levenshtein edit distance [Lev66] between two DOM trees. A
similarity threshold τ is used under which two DOM trees are considered clones. This threshold
ranges from 0.0 to 1.0 and it can be set by the user of the crawler. A threshold of 0 means two
DOM states are seen as clones if they are exactly the same in terms of structure and content. Any
change is, therefore, seen as a state change. If a change is detected according to the distance
threshold τ , a new state is created and added to the state-flow graph. Furthermore, a new edge is
created on the graph between the state before the event and the current state.

Exploration Strategy. The crawler explores the web application according to the depth-first
graph visit algorithm, meaning that, on each state, one clickable is selected, and fired an event
upon. If such event reveals a new DOM state, the visit continues from the newly discovered state
until no more candidate elements are present in the current state. In order to avoid an infinite
loop, a list of visited candidate elements is maintained to exclude already checked elements in
the recursive algorithm.

Backtracking. When no more candidate elements are present in the current state, the crawler
backtracks its exploration to the first state containing unexplored candidate elements. One way
to get to a previous state is by saving information about the clickable elements and the order in

40

which they have been fired. If such information is available, the application can be reloaded and
the path from the initial state to the desired state can be followed by firing the clickable elements.
As an optimization step, Dijkstra’s shortest path algorithm [Dij59] can be used to find the shortest
element execution path on the graph to a certain state. However, because of side effects of the
clickable execution on the state of the WAUT, there is no guarantee that the exact same state is
reached when a path is traversed a second time.

The state-flow graph obtained with Crawljax can be used for testing. In particular, it is possible
to automatically generate test cases by extracting paths from the graph. One strategy is to apply
graph visit algorithms (e.g. breadth-first and depth-first) that guarantee that each edge of the
graph is included at least once. Each path is then made executable either by providing fresh new
random inputs to the corresponding sequence of events in the path or by reusing the input values
supplied during crawling. In this way, paths are extracted from the state-flow graph and, if all of
them are feasible, the transition coverage test adequacy criterion is met. However, infeasibility
is one of the major limitations of crawler-based approaches. State-of-the-art approaches to web
testing and their limitations are discussed in the next chapter.

41

Chapter 3

State of the Art

This chapter presents an overview of the state of the art in the area of web testing. The chapter is
organized into two main sections: we first discuss test generation techniques starting from those
proposed for traditional software (e.g. Java) and then proceeding to state of the art approaches
proposed in the literature for testing web applications. Then we present works related to test de-
pendency including techniques for detecting test dependencies and test optimization techniques
that assume test independence (e.g. test parallelization). We conclude the chapter by discussing
the problem of test flakiness and how it is related to test dependency.

3.1 Test Case Generation

3.1.1 Traditional Software

In this section we present the most prominent techniques for automatic generation of test cases [CCC+13]
for traditional software. In the next section we comment test generation approaches instantiated
in the context of web applications.

Symbolic Execution. One widely used white box technique to generate test inputs for a program
to improve code coverage and expose software bugs is symbolic execution [Kin75] (SE). SE uses
symbolic values, instead of concrete values, as program inputs, and represents the values of pro-
gram variables as symbolic expressions of the symbolic inputs. At any point during symbolic
execution, this technique computes the symbolic values of program variables and a path con-
straint on the symbolic values to reach that point. The path constraint (PC) is a boolean formula
over the symbolic inputs, defined by propagation of inputs along the path. Therefore, it represents
the constraints that the inputs must satisfy in order for an execution to follow that path. If the PC
is solved (using a constraint solver) it is called satisfiable and any solution of the PC is a program

42

input that executes the corresponding path which is a feasible program path. Otherwise the PC
is called unsatisfiable and the corresponding program path is infeasible. Using SE for test input
generation received much attention in the recent years [GKS05, SMA05, CGK+11, VPK04] both
due to the dramatic growth in the computational power of today’s computers and the availability
of increasingly powerful constraint solvers (e.g. Z3 [DMB08], Yices [DDM06], STP [GD07]).
However, the effectiveness of symbolic execution on real world programs is still limited because
the technique suffers from three fundamental problems: path explosion, path divergence, and
complex constraints. Path explosion relates to the problem of the virtually infinite number of
paths in the code. Path divergence is about the inability to compute precise path constraints due
to multiple programming languages used to develop the program under analysis or parts of the
program that may be available only in binary form (e.g. external libraries). Such inability leads
to path divergence, i.e. the path that the program takes for the generated test data diverges form
the path for which test data is generated. Moreover, some constraints may be complex, such
that the general class of those constraints (e.g. constraints involving non-linear operations) is
undecidable using the available constraint solver. These issues limit the applicability and the
effectiveness of symbolic execution in generating test inputs for the program under test.

However, there are techniques that attempt to alleviate these three problems. For example, to
partially address the complex constraints problem, two extensions of symbolic execution were
proposed, respectively called dynamic symbolic execution (DSE) [GKS05] and concolic execu-
tion [SMA05]. Both DSE and concolic execution (CONCrete and symbOLIC) start from an
available (random), concrete execution and use symbolic execution to explore alternative paths.

Random Testing. Random Testing (RT) is one of the most popular testing methods. It is simple
in concept, easy to implement, and can be used on its own or as a component of many other
testing methods. It may be the only practically feasible technique if the specifications are incom-
plete and the source code is unavailable. RT is often used in scientific papers as a baseline for
comparison to evaluate a new test generation technique [AIB10].

Adaptive Random Testing (ART) [CLM04, CKMT10] has been proposed as an enhancement to
RT. Several empirical studies have shown that failure-causing inputs tend to form contiguous fail-
ure regions, hence non-failure-causing inputs are also expected to form contiguous non-failure
regions [WC80]. Therefore, if previous test cases have not revealed a failure, new test cases
should be far away from the already executed non-failure-causing test cases. Hence, test cases
are generated to be evenly spread across the input domain. It is this concept of even spreading
of test cases across the input domain the basic intuition behind ART. Even spreading, diversity
or distance between test cases (and test inputs), can be implemented in different ways and, for
that reason, several algorithms have been proposed in the literature [CCT06, CLM04, CKL09,
CKMN04, STM12]. All of them define methods to decide which test case to execute next, given
a set of already executed test cases and an implementation of a distance measure between test
cases. The process of adding test cases to the set of already executed test cases stops when a
given criterion is met (e.g., maximum test suite size) or when a timeout is reached. Empiri-

43

cal studies [AB11, CLM04, CKM06] show that ART outperforms RT, in terms of effectiveness,
considering both injected and real faults. In terms of efficiency all ART algorithms have an
overhead compared to RT, given by the additional task of distance computation. Therefore, it is
not obvious that an ART algorithm is more cost-effective than RT for a given program, where
cost-effectiveness refers to the fault detection capability achieved in a given time budget.

Another important improvement of random testing is achieved by incorporating feedback ob-
tained from executing test inputs as they are created [PLEB07]. The technique is called feedback-
directed random test generation and it builds inputs incrementally using the feedback from previ-
ous executions to select those inputs that have the possibility to explore new program behaviours.
In particular the tool Randoop [PLEB07] addresses random generation of unit tests for object ori-
ented programs. Such kind of testing typically consists of a sequence of method calls, with the
respective concrete input values, that create and manipulate the state of objects. The feedback
from previous executions is used to avoid the generation of inputs leading to redundant or illegal
(i.e. exception thrown) states, thus focusing the search towards unexplored object states.

Search Based Testing. Search Based Software Testing (SBST) is a branch of Search Based
Software Engineering [HJ01] in which optimization algorithms are used to automate the search
for test data that maximizes the achievement of test goals while minimizing test costs. In its
simplest formulation the search problem consists of finding a value x∗ which maximizes (or
minimizes) the objective (fitness) function f over the search space X . In formulae: given f :
X → R the objective is to find x∗ : ∀x ∈ X, f(x∗) ≥ f(x). The search is granted a search budget
(e.g. time or max number of fitness evaluations) and it finishes when the search budget terminates
or the testing adequacy criterion is met. However, given a search budget, search algorithms are
only guaranteed to find a local optimum solution for a given problem.

In all approaches to SBST, the primary concern is to define a fitness function (or set of fitness
functions) that capture the test objectives. The fitness function is used to guide a search based
optimization algorithm, which searches the space of test inputs to find those that meet the test ob-
jectives. Because any test objective can, in principle, be re-cast as a fitness function, the approach
is highly generic and therefore widely applicable. SBST has been applied to a wide variety of
testing goals including structural [Ton04, HM09], functional [WB04], non-functional [WG98]
and state-based properties [DHHG06], although the most widely studied area is test generation
for structural coverage [HJZ15]. Testing goals can also be combined [RCV+15, PKT18b] so that
the fitness function takes into account the different properties of the class under test.

The actual search could be performed using any of the existing meta-heuristic optimization al-
gorithms: local search algorithms (e.g., hill climbing), simulated annealing, evolutionary al-
gorithms (e.g., GA), etc [McM04]. However, much of the literature has tended to focus on
evolutionary algorithms [Har11, Ton04].

A lot of research has been conducted in the field of search based test generation and many
approaches and techniques have been proposed in the last years, especially for unit testing of

44

object oriented programs. In the literature there are single objective (one fitness function) for-
mulations of the problem [McM04, FA13], multi objective [HKL+10, MHJ16] formulations in
which there are different opposing fitness functions to optimize and many objective formula-
tions [PKT15, Arc17], where there is one fitness function for each uncovered test objective.

3.1.2 Web Testing Techniques

In this section we report the current state-of-the-art techniques used to generate test cases for
web applications [LDD14]. In particular, we describe end to end approaches to test generation
which either assume no knowledge about the web application under test (black-box approaches)
or harness such knowledge to generate test cases (white-box approaches).

3.1.2.1 End to End Approaches

Model Based Approaches. These approaches create a model of the web application under test
and use it for test case derivation. The model can be created manually [RT01] or it can be ex-
tracted automatically, via crawling [MvDR12, MFM13], a combination of static and dynamic
analysis [MTR08] or inference from system executions [TMN+12, MTR12, TNM+13] (respec-
tively event based inference [TMN+12] and state based inference [MTR12, TNM+13]). Paths
are then extracted from the model using graph-visit algorithms that try to satisfy some model
coverage criterion. Then, input values for the events in the paths are generated (or manually
specified) to make those paths executable. However, both manually defined and automatically
inferred models express the program semantics in an incomplete way, as a consequence of the
abstraction operated during model creation [TTN14]. In fact, a complete and precise specifi-
cation of the system semantics is usually unaffordable and would require a very complicated
and large model, which is against the initial goal of abstracting away the implementation de-
tails to get a concise system representation. On the other hand, the approximation necessarily
introduced in the model makes some of the paths derived from the model infeasible. Such paths
violate dependencies and constraints that are not expressed explicitly in the model. Path infeasi-
bility is one of the major open problems in model based testing [DNSVT07] and practically it is
very challenging to tackle, since determining if a path is feasible is, in general, an undecidable
problem.

Most model based approaches rely on web application crawling for the automatic construction
of a navigation model and on graph visit algorithms (e.g. depth-first [Tar72] or breadth-first
visit [Lee61]) for the selection of navigation paths that ensure high coverage of the model (e.g.,
transition coverage). Input data generation to turn the selected paths into executable test cases
is either manual or random [TRM14]. The proposal by Mesbah et al. [MvD09] uses a crawler,
Crawljax, to derive a state flow graph consisting of states and transitions that model the Ajax web
application under test. States are abstraction of concrete DOM instances whereas transitions are

45

the (simulated) user events that lead the application from one state to the next. Then, the tool
Atusa uses the inferred model to generate test cases (i.e. sequences of events). Atusa [MvD09]
derives test cases from the model and makes them executable either by providing the same inputs
used during crawling or by generating inputs randomly. Atusa uses the k-shortest path algorithm,
a generalization of the shortest path problem in which several paths in increasing order of length
are sought, for path selection. Specifically, Atusa collects all sink states in the crawled graph, and
computes the shortest path from the index state to each of them. In this way, transition coverage
in the crawled graph is achieved by construction.

Another model based approach for testing Ajax web applications has been proposed by Marchetto
et. al. [MTR08]. A Finite State Machine (FSM) that models the Ajax web application is built
using a combination of dynamic and static analysis. Differently from Atusa, the adopted cover-
age criterion, used also in GUI-testing, is based on the notion of semantically interacting event
sequences. In such event sequences the ordering of events affects the state reached at the end
of the interactions [YM07]. If two events interact semantically there must be some dependency
between the two events. For that reason semantically interacting events are probably the most
important to test and it is possible to define an adequacy criterion which is based on the coverage
of pairs of semantically interacting events.

Another criterion that can be used for the generation of event sequences is sequence diversity.
The intuition is that the more diverse the test cases are, the more effective is testing [FPCY16].
It is possible to define different diversity metrics, for instance metrics based on event execution
frequencies [MT11]. A set of test cases, i.e. a test suite, can be characterized in terms of frequen-
cies of events in each test case and the diversity of test suites (e.g. based on the average euclidean
distance between pairs of vectors representing the frequencies of events in the corresponding test
cases) can be optimized using search based algorithms.

Ricca et al. [RT01] generate test cases from a manually constructed UML model of the web
application under test. The UML model is then turned into a graph and paths are extracted
starting from a regular expression that represents the graph. The expression is composed of
events and it can then be used to generate paths by identifying the set of linearly independent
paths that comprise it, and applying heuristics to minimize the number of paths generated. A
linearly independent path is defined as a path that cannot be obtained as a linear combination of
the previously selected paths.

Furthermore, the problem of feasible paths is addressed by Tonella et al. [TTN14]. They propose
to use n-grams to predict the next feasible event in a sequence in the same way as they are used to
predict words in natural language processing tasks (e.g. machine translation, speech recognition,
etc.). Therefore, when a sequence is built, it is possible to predict the next likely feasible n-th
event to append to the sequence, based on the observation of the sequence of n−1 events already
executed. The intuition is that, since infeasible sequences are never observed in the given corpus
of real executions, the possibility of generating infeasible event sequences is reduced, though not
completely eliminated, by means of n-grams.

46

User Session Based Approaches. In user session-based testing, testing is done by keeping
track of user sessions. In particular, a list of interactions performed by a user is collected in
the form of URLs and name-value pairs of different attributes, from which test cases are then
generated. Since most web application operations comprise receiving requests from the client
and then processing those requests, the collection of client requests can be done with minor
tweaks to the server. The most significant work in this direction was proposed by Elbaum et
al. [ERKI05]. They propose three different ways to use user sessions for testing purposes. First,
they used session data directly, i.e. different user sessions were replayed individually. Second,
they replayed a mixture of different session interactions from different users, in order to expose
the error conditions caused when conflicting data is provided by different users. Finally, they
proposed to mix the real user sessions with actions which are likely to be problematic (e.g.,
navigating backward and forward while submitting a form). Their empirical evaluation shows
that such capture-and-replay techniques for user session-based testing are able to discover certain
special types of faults which cannot be exposed by white-box testing.

Search Based Approaches. SBST has been applied also to web applications, e.g. by Alshah-
wan and Harman [AH11] to test PHP web applications. The main aim of this technique is to
maximize branch coverage. The algorithm starts with a static analysis phase that collects static
information to aid the subsequent search based phase. The search based phase uses an algorithm
that is derived from Korel’s Alternating Variable Method (AVM) [Kor90] in addition to constant
seeding. The paper shows that there are many issues associated with white-box web application
testing, such as dynamic type binding and user interface inference.

Feedback Directed Random Approaches. Belonging to random testing is Artemis, a frame-
work for automated testing of JavaScript web applications proposed by Artzi et al. [ADJ+11].
The framework takes into account the features of JavaScript, such as its event-driven execution
model and interaction with the Document Object Model (DOM) of web pages. The framework is
parameterized by: (1) an execution unit to model the browser and server, (2) an input generator
to produce new input sequences, and (3) a prioritizer to guide the exploration of the application’s
state space. By instantiating these parameters appropriately, various forms of feedback-directed
random testing [PLEB07] are proposed.

Yu et al. [YMZ15] proposed a tool called InwertGen. Differently from Artemis, InwertGen
generates its test cases against the Java code of the page objects, which in turn are obtained
heuristically at run time by an algorithm proposed in the same paper. Test cases are generated
using the tool Randoop [PLEB07].

Symbolic and Concolic Execution Approaches. Artzi et al. [AKD+08] proposed a white-box
concolic testing technique for PHP web applications. Their tool is called Apollo. The aim of
the technique is to find failures in HTML-generating web applications: the technique is based
on dynamic test generation, using combined concrete and symbolic execution. The technique
generates tests automatically, runs the tests (sequences of URLs) capturing logical constraints on
inputs, and minimizes the conditions on the inputs to failing tests, so that the resulting bug reports

47

are small and useful in finding and fixing the underlying faults. Apollo generates test inputs for
a web application, monitors the application for crashes, and validates that the output conforms to
the HTML specification (it checks if the HTML page is well-formed using an HTML validator).

Considering the JavaScript programming language, Jalanji [SKBG13] is a framework which
enables the dynamic analysis techniques for JavaScript programs, among which there is concolic
testing. Their implementation of concolic testing supports constraints over integer, string, and
object types.

While Jalanji focuses on pure JavaScript programs, SymJS [LAG14] is a framework for auto-
matic testing of client-side JavaScript web applications. However, it uses symbolic execution,
which is performed within a virtual machine, rather than concolic execution. For exhaustive
testing SymJS also constructs event sequences automatically based on dynamic analysis. It con-
tains various sequence construction schemes, one of which is a re-implementation of the main
algorithm of the concrete testing tool Artemis [ADJ+11].

Specification Based Approaches. Thummalapenta et al. [TLS+13] present a behavioural-driven
technique for generating web tests along interesting business-related behaviours of the web app.
The behaviours of interest are specified in the form of business rules. Business rules are a general
mechanism for describing business logic, access control, or even navigational properties of an
application’s GUI. The technique uses a crawler to explore the application’s GUI. To handle the
unbounded number of GUI states, the technique includes two phases. The first phase uses an
abstraction function that represents equivalence of GUI states without considering rules. The
second phase identifies rule-relevant abstract paths aiming at full coverage.

3.1.3 Limitations and Open Problems

The approaches described above present a series of limitations that pave the way to new tech-
niques to address them.

Concolic and search based white-box approaches [AKD+08, AH11] are only applicable when
the web application under test is developed with the multi page paradigm, in which web pages
are dynamically generated by the server side and are transmitted synchronously to the browser,
where they replace the previously visited page. However, they are severely limited when the de-
velopment paradigm shifts to single page, where the client handles most of the computation.
Indeed, the proposed techniques were specifically designed to work with server-side script-
ing languages (such as PHP) and cannot be extended to work with client-side languages (e.g.
Javascript). On the other hand, concolic and symbolic execution approaches targeting JavaScript
programs [SKBG13, LAG14] may represent an alternative to E2E approaches and it would
be interesting to compare them. However, both Jalanji [SKBG13] and SymJS [LAG14] have
been evaluated on very simple JavaScript programs and web applications (u 1270 LOC of non
framework-based JavaScript code on average of which only u 400 LOC are executable). Pros

48

and cons of concolic and symbolic execution approaches for web applications and the compar-
ison with E2E approaches need to be assessed in a systematic way and we leave that for future
work.

In user session based approaches [ERKI05] the level of human effort involved in collecting data
is relatively small but the actual effectiveness of the technique depends on the number and on the
representativeness of data collected.

Regarding feedback directed random approaches, the Artemis framework [ADJ+11] analyzes
the JavaScript code of the web application under test and it has been applied to single page
web applications today considered quite trivial (u 700 LOC of non framework-based JavaScript
code on average). The approach simulates the browser environment (using the envjs library, no
longer maintained 1) which may hide some of the issues a real user can experience using the real
browser. Furthermore, Artemis analyzes the client side code to guide the generation of sequences
and test inputs, which might be difficult if the client side is developed using frameworks/libraries.
In fact, in such cases, the source code that contains the business logic of the web application
can be thoroughly analyzed only taking into account the framework source code and the third
party libraries that are used. Overall, even if the aforementioned limitations of Artemis could
be overcome by other techniques (e.g. InwertGen [YMZ15]), the feedback directed random
approaches have been shown to be ineffective for automatic generation of unit tests [SJR+15].
In particular, given the same timeout, Randoop generates a lot more test cases (i.e. two order of
magnitudes more test cases) than other test generators (e.g. Evosuite [FA13], belonging to the
category of search based techniques) but it achieves less coverage. The reason is that feedback-
directed random approaches do not target specific test objectives. Therefore, feedback directed
random approaches are not suitable for automatic generation of E2E web tests in which efficiency
is crucial, since the execution of each E2E test is slower than that of, for instance, a Javascript
unit test, since the execution environment of an E2E web test is the browser 2 3.

All model based approaches share some common limitations. Most of them do not address
the feasibility problem [MvD09, MTR08, MT11, RT01] which may hinder the fault detection
capability of the test generator since not all test paths derived from the model can be turned
into test cases that traverse the desired paths upon execution. Furthermore, existing model
based approaches focus on the extraction of abstract paths from the model (graph visit algo-
rithms [MvD09], semantically interactive events [MTR08], diversity [MT11], linear indepen-
dence [RT01]) and they resort to random inputs to make those paths executable or they rely on
manually specified inputs. In the latter case manual input specification is expensive to carry out
for developers whereas random input generation, when it is decoupled from the abstract paths
generation, may not be effective, since feasibility depends on the combination of path extracted

1https://github.com/thatcher/env-js
2https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.

html
3https://vuejsdevelopers.com/2019/04/01/vue-testing-unit-vs-e2e/

49

https://github.com/thatcher/env-js
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://vuejsdevelopers.com/2019/04/01/vue-testing-unit-vs-e2e/

and inputs generated. To the best of our knowledge, the only approach that deals with the feasi-
bility problem is the work proposed by Tonella et al. [TTN14]. However, feasibility is addressed
only taking paths into account, without considering input values required by the events in the
paths. Furthermore, the authors rely on a corpus of real executions to predict the feasibility
of the next event during path generation, hence, the success of the technique depends on the
representativeness of executions collected.

In conclusion, new approaches are needed to address the feasibility problem effectively and
efficiently, in which the combination of paths and input values are generated jointly without
relying on external inputs as a corpus of real executions or manually specified data.

3.2 Test dependency

In this section we describe works related to test dependency. In particular, we present the tools
that support test dependency management and the techniques available for detecting dependen-
cies in unit test suites developed in Java. We also show how the problem of test dependency is
related to automated regression testing techniques and test flakiness. We conclude the section
by motivating the need for new approaches that address dependency detection for web E2E test
suites.

3.2.1 Tools Supporting Test dependency Management

Testing frameworks provide mechanisms for developers to define the context for tests. For ex-
ample, JUnit, starting from version 4.11, supports executing tests in lexicographic order by test
method name [Git12]. JUnit version 5 lets developers implement their own test methods order or
use three built-in options: alphanumeric ordering, numeric ordering or random ordering [JUn19].
TestNG [Tes19] allows developer to specify dependencies between tests and supports a variety
of execution policies that respect these dependencies. However, although such testing frame-
works allow dependencies to be made explicit and respected during execution, they do not help
developers identify unknown (not documented) dependencies.

Test dependencies can be caused by poorly isolated test executions. On this topic, Muşlu et
al. [MSW11] identified tests that fail when executed in complete isolation. This indicates that
the tests require a specific state to be in place before their execution. However, Muşlu et al. do
not extract concrete dependencies. On the same line, Bell and Kaiser [BK14] present VMVM,
a tool that runs multiple tests in the same JVM but selectively resets state regions that may have
been written by tests such that each test runs from the initial state as if run in a separate JVM.
VMVM instruments all classes and re-initializes the static fields that can be shared across tests.
The goal is to speed up testing compared to running each test in a separate JVM but also to

50

prevent data flowing between tests via internal resources by design. Therefore, the approach
effectively masks the effects of poorly designed tests (i.e. with dependencies) although, in turn,
it makes the job of developers who must identify and fix such poorly designed tests harder. In
fact, VMVM can avoid test dependencies by providing support for automatically resetting the
state, but it does not determine if tests are actually dependent.

Dependency Detection Techniques. Different techniques have been proposed recently to detect
dependencies in unit tests. Zhang et al. [ZJW+14] empirically studied test-order dependency
and proposed a technique to find dependent tests in the existing test suites. Their study of issue-
tracking systems for five projects found 96 dependent tests, of which 61% are due to shared state.
Their tool DTDetector explores selected permutations of test suites to manifest dependent tests
in JUnit test suites. Guided by the analysis of real-world dependent test suites on open source
projects they developed a dependency-aware k-bounded algorithm and they found that a small
value of k (e.g., k = 1 and k = 2) finds most dependent tests on real-world projects while keeping
the runtime limited.

Test dependencies can also be caused by external resources, such as files and sockets that are
shared between the tests. Identifying how tests interact with those external resources might give
developers a better view of what causes tests to behave differently in different executions. Gyori
et al. [GSHM15] proposed PolDet, which uses dynamically identified state polluting tests, i.e.,
tests whose execution results in persistent changes to the testing environment and that might
influence the behaviour of other tests. PolDet focuses on finding the tests which might introduce
dependencies by leaking data, but does not consider the tests which are actually affected by that.
In other words,PolDet detects potential data sharing between tests, i.e. data left behind by a test
that a later test may read, which may or may not ever occur.

ElectricTest [BKMD15] utilizes dynamic data-flow analysis to identify all conflicting write and
read operations over static Java objects in a given test suite. Rather than detecting manifest de-
pendencies (i.e., a dependency that changes the outcome of a test case [ZJW+14]), ElectricTest
detects simple data dependencies and anti-dependencies (i.e., respectively read-after-write and
write-after-read). Since not all data dependencies will result in manifest dependencies, Elec-
tricTest is inherently less precise (over-approximation) than DTDetector at reporting true de-
pendencies between tests (i.e. it could report false positives). Furthermore, ElectricTest uses
dependency information (once dependencies are detected) to soundly parallelize the execution
of tests.

Gambi et al. [GBZ18] propose Pradet that shares the basic approach to detect data dependencies
with ElectricTest by executing the tests once and observing conflicting accesses to objects that
can be reached by the tests through static references. Two main differences separate Pradet and
ElectricTest. Compared to ElectricTest, Pradet precisely handles dependencies which involve
String objects and enumerations, but it does not handle external data dependencies. Furthermore,
differently from ElectricTest, Pradet iteratively refines data dependency to establish if they result
in manifest dependencies. In fact, if tests are data dependent there is the possibility of observing

51

unexpected behaviours, i.e., the manifest dependencies, when they are executed out-of-order.
The iterative refinement process starts out by selecting a data dependency to check. Then, it
proceeds with scheduling an execution of tests such that all the dependencies, except the selected
one, are respected. Next, it checks if the tests produce the same outcome although executed
out-of-order. If the outcome of the tests does not change with respect to the one obtained by
executing the tests in the expected order, then the data dependency is not a manifest dependency
and it is discarded. Otherwise it is stored as manifest and not removed. The process is repeated
until all data dependencies are removed or become manifest.

3.2.2 Regression Testing Techniques Assuming independence

Regression testing is the process of validating modified software to provide confidence that the
changed parts of the software behave as intended and that the unchanged parts of the software
have not been adversely affected by the modifications [HJL+01]. Rerunning all test cases in a
test suite every time the software changes or there is a new release may, however, be expensive.
An improvement is to apply a test selection technique to select an appropriate subset of the
test suite to be run, for example by selecting only tests that have been impacted by changes in
the application code. If the subset is small enough, significant savings in time are achieved.
Dependencies in the given test suite can break existing test selection techniques since a test
cannot be selected and executed alone if it depends on another.

Due to imprecision in the analysis carried out to estimate impact, test selection may be unsafe
in practice and some may turn to test prioritization, where the entire test suite is ranked and
tests most likely to be impacted by recent changes are ranked first. In fact test prioritization
techniques [RUCH01] schedule test cases so that those with the highest priority, according to
some criterion, are executed earlier in the regression testing process than lower priority test
cases. For example, testers might schedule test cases in an order that achieves code coverage at
the fastest possible rate, exercises features in order of expected frequency of use, or increases
the likelihood that faults will be detected early in testing. Basically test prioritization techniques
consider the set of all permutations of a test suite and find the best reward value for an objective
function over that set. However, reordering test cases in a test suite assume test independence.

An approach to speed up test execution, which is complementary to test case selection and prior-
itization, is test parallelization [Kap16, BKMD15]. Test parallelization runs tests concurrently
utilizing different computational resources (threads, processes, servers, etc.). Tests are scheduled
in order to utilize all the available computing resources. Once again, if tests are dependent, test
dependencies must be factored in the scheduling process to achieve sound results.

Test minimization, also known as test reduction, techniques aim at eliminating redundant test
cases from test suites to reduce their maintenance and regression testing costs [VSM18, RHVRH02].
Most reduction techniques use adequacy criteria, such as code coverage, as a guideline to remove

52

whole test cases with redundant coverage [YH12]. However, removing test cases is not safe when
tests are dependent as the remaining tests may break because of missing dependencies.

In conclusion, regression testing techniques that rely on the test independence assumption need
to be reformulated, taking into account, in the optimization process, the dependencies between
tests. For example Haidry and Miller proposed a set of test prioritization techniques that consider
test dependency [M+12]; a dependency-aware test parallelization technique was proposed by
Bell et al. [BKMD15].

3.2.3 Test Flakiness

Test dependencies are one root cause of the general problem of flaky tests, a term that refers
to tests whose outcome is non-deterministic despite the software under test being so [LHEM14,
MC13]. Recent studies conducted at Microsoft [HN15] and at Google [MGN+17] have shown
that flaky tests exist in practice and lead to many broken builds. Luo et al. [LHEM14] investi-
gated possible root-causes of flaky tests and defined a taxonomy of ten common root-causes.
They found that test order dependency is one of the top three common causes of flakiness
(specifically 12% of the analyzed flakiness reports). In a more recent study, Palomba and Zaid-
man [PZ17] showed that test smells correlate with flaky tests and can help locating them. The
authors identified a strong correlations between test order dependency issues and the indirect
testing smell [vDMBK02].

3.2.4 Limitations and Open Problems

All the approaches described above address the problem of test dependency for Java software. In
particular the dependency detection techniques are tailored on the peculiarities of Java programs.
For example DTDetector [ZJW+14] executes the test cases and records the reads and writes on
global objects shared between tests. Similarly, ElectricTest [BKMD15] and Pradet [GBZ18]
utilizes dynamic data-flow analysis to identify all conflicting write and read operations over
static Java fields. On the contrary, in E2E web tests, the semantics of read and write operations
is implicit and mediated by multiple layers of indirection such as client-side DOM, server-side
application state, database entries, and remote service calls. Furthermore, with web E2E test
suites, applying thorough data-flow analysis is neither feasible nor straightforward, due to the
heterogeneity of technologies and languages used in modern web applications.

In conclusion, new approaches are needed to address the problem of dependency detection for
web E2E test suites since state-of-the-art dependency detection techniques for Java programs,
based on static analysis, are not directly applicable.

53

Chapter 4

Test Case Generation

The main goal of E2E test case generation when the program under test is a web application is
to ensure that the functionalities of the web application are fully exercised by the generated test
cases. Usually no explicit navigation graph is available to guide the creation of test cases and to
measure the degree of navigation coverage achieved. Existing approaches resort to web crawling
in order to build the missing navigation model [MvDR12]. However, crawling is severely limited
in its ability to fully explore the navigation graph, which depends on the input generation strategy.
Such strategy is usually manual input definition, random input generation, or a mixture of the
two. Another limitation of crawling based approaches is that not all paths in the crawled model
are feasible (i.e., admit a test input that traverses them upon execution) (see Section 2.3.1 for the
definition of feasibility). As a consequence not all test paths derived from the crawled model can
be turned into test cases that traverse the desired paths upon execution.

Contribution. In this chapter we address the problem of navigation graph construction by taking
advantage of the Page Object (PO for short) design pattern (see Section 2.2.1.3), widely used in
web testing 1. The PO pattern was introduced to increase the maintainability, reusability and
readability of test code [LCRT16]. However, it gives another indirect benefit: when defining
the POs for a web application, developers implicitly define also its navigation structure, since
navigation methods in POs return the next PO encountered after triggering the navigation action.
We resort to such property of POs to build the navigation graph to be covered by the automatically
generated test cases.

Moreover, differently from crawling based approaches [MvDR12], which first extract paths from
the graph and then randomly generate the inputs for those events in the extracted paths, we
perform path selection and input generation at the same time. Such joint generation of paths and
inputs is guided either by a fitness function, designed to maximize the transition coverage of the
navigation model, or by the diversity among the executed test cases. The guidance towards good

1https://github.com/SeleniumHQ/selenium/wiki/PageObjects

54

https://github.com/SeleniumHQ/selenium/wiki/PageObjects

web app

OwnerInfo

EditOwnereditOwner

AddPetaddNewPet

NewVisitaddNewVisit(pet)

Find

goToFind

Index
goToHome

submitEdit

goToFind

goToHome

submitAdd

goToFind

goToHome

submitVisit

goToFind

goToHome AddOwner
addNewOwner

goToHome

Owners

findOwner

goToFind

goToHome
add(info)findOwner

goToFind

displayOwner(ownerName)

goToFind

goToHome

search

navigation
graph

page objects

Test Generation
(Search/Diversity)

(2)

Testing Model
Extraction

(1)

test suite

Figure 4.1: E2E web test generation approach

test cases (either through fitness or diversity) is crucial for increasing test effectiveness [FA13,
FPCY16] (e.g. in terms of coverage) with respect to random approaches (as crawling based
approaches). Therefore, it is also beneficial to the feasibility of the paths that are generated.

4.1 Overall Approach

In a nutshell, our goal is to effectively generate E2E web test cases that exercise application
behaviours adequately. Figure 4.1 depicts the steps of our test generation approach. First, a
testing model of the WAUT is extracted in the form of POs ¶. Then, from the POs we extract the
model of the WAUT (i.e. the navigation graph) that is the input of the test generation component
which outputs the generated test suite ·.

Crawling based approaches, instead, generate the navigation graph by crawling the WAUT. The
crawler, indeed, is able to expose the visible and hidden portions of the WAUT, as well as, the
connections among web pages. However, the testing model created by the crawler presents two
issues.

The first issue regards the size of the navigation graph that can be huge. The default state ab-
straction function of the crawler (see Section 2.3.2.1), which compares the equality of the string
representation of the DOM of each web page, is affected by minor GUI changes leading to the
presence of many DOM states (web pages), conceptually clones of each other. Basically, when
the crawler visits the same page with different input data, the crawler often creates different DOM
states, even though the page is conceptually the same [SLRT17, RT01, Ric04, TRM14] (this is
because the state abstraction function returns 0.0, i.e. the two states are equal, only if the two
DOM strings are exactly the same; 1.0, i.e. the two states are different, otherwise. The threshold
in this case is not meaningful, since string equality returns a boolean value). The number of tran-

55

sitions, each one representing an event on a candidate clickable element, can correspondingly be
potentially very large, since a new transition is created and added to the graph to connect the state
before the event occurs and the state after the event occurred. Therefore, the inaccuracy of the
state abstraction function creates redundancy that can hinder the effectiveness of the subsequent
test generation step, which is based on the testing model. The risk is that of exploring the same
parts of the WAUT without exercising it thoroughly.

The second issue is state dependencies which cause infeasibility. The crawler explores the
WAUT without resetting its state and, at the end of the exploration, it outputs the navigation
graph of the WAUT. Then, the test generation phase is activated, which starts from a clean state
of the WAUT. Paths are extracted from the navigation graph (see Section 2.3.1 for the definition
of path) but, some of them, cannot reproduce the state of the WAUT created during crawling since
the state of the WAUT during test generation is different (i.e. such paths are infeasibile). For in-
stance, let us consider the running example web application, Phoenix Trello (see Figure 2.9) in
Figure 4.2. Let us say that the first navigation of the crawler, among other actions, logs into
the web application and creates a board (respectively actions ¶ and · in Figure 4.2). Then, the
crawler goes back to the initial login page (top screenshot in Figure 4.2) and a new navigation
starts. Let us say that the crawler signs in as a different user (respectively actions ¸ and ¹) and
finds a boards page which is different from the empty boards page encountered in the first nav-
igation (screenshot named BOARDSPAGE). Let us suppose that the crawler created a new state
in the graph during the first navigation for the boards page with one board in it (named BOARD-
SPAGE instead of EMPTYBOARDSPAGE), clicks on it (action º) and the navigation proceeds.
After crawling, let us suppose that the test generator extracts the test path in which the user signs
in and clicks on the board in the non-empty boards page (i.e. the path composed of the actions
¸–¹–º). Such path is not feasible during test generation since the boards page is empty. In
such situation, when the test tries to click on the board which is expected to be in the web page,
the Selenium driver throws an element not found exception.

By using the PO pattern, instead, all the DOM states that logically represent the same web page
are grouped together in the same PO. As a consequence, each PO contains only the methods
for the web page (or portion of web page) that the PO is modelling. Hence, by extracting the
navigation graph from the POs, the redundancy is reduced (or even eliminated). For instance, the
boards page in the Phoenix Trello web application is represented by the same PO both when it is
empty and when it contains at least one board. In such case the method that clicks on a board b
in the boards page, leading to another PO, can be executed without exceptions only if the boards
page contains the board b. Therefore, the transition in the graph represented by such action can
be considered as traversed/covered only if such precondition is respected. However the PO based
model does not solve the path infeasibility problem since the model abstracts away parts of the
program semantics to favour a compact and concise system representation. Therefore, the model
does not represent all the constraints and dependencies of the web application under test. We
tackled the path infeasibility problem from two different points of view, namely search based
and diversity based approaches.

56

LoginPage

EmptyBoardsPage

BoardsPage

EmptyListPage

SignUpPage

login

add
board

sign up

go to sign up

click on board

1

2

3

4

5

Figure 4.2: Example web crawling applied on Phoenix Trello. The path with red arrows, whose
states are created during the second navigation of the web crawler, is not feasible during test case
generation.

4.2 Testing Model Extraction

The first step of our approach is the extraction of the testing model in the form of POs. This
step can be performed manually by testers, or automatically. Previous research [SLRT17] shows
that POs can be created automatically with a good degree of accuracy. In order to extract the
POs from a given WAUT, the tool Apogen [SLRT17] uses a crawler (i.e. Crawljax [MvDR12])
to reverse-engineering the navigation graph of the WAUT. Then, similar web pages are clustered
into syntactically and semantically meaningful groups. The crawled navigation graph and the
additional information, e.g. DOMs and clusters, are statically analyzed to generate Java POs, via
model to text transformation.

57

1 public class BoardsPage implements PageObject {
2

3 public WebDriver driver;
4 public BoardsPage(WebDriver driver) {
5 if(!this.isPageLoaded()){
6 throw new IllegalStateException("BoardsPage not loaded ←↩

properly");
7 }
8 }
9

10 public BoardListPage clickOnBoard(String boardName) {
11 this.driver.findElement(By.id(boardName)).click();
12 return new BoardListPage(this.driver);
13 }
14

15 @Override
16 public boolean isPageLoaded() {...}
17 }

Figure 4.3: BoardsPage PO

Whether created manually or automatically, POs implicitly specify a navigation graph for the
WAUT. In fact, one of the best practices recommended for PO creation requires that PO navi-
gation methods return the PO of the next page upon invocation [vD15]. This means that POs
specify the navigation structure of the web application under test in terms of method invocations
(i.e., operations executed within each abstract web page) and page objects returned by the in-
voked methods (i.e., next PO reached during navigation in the web application). We use such
implicit navigation graph for automated test case generation.

The API of a PO is application-specific and provides an abstraction of the concrete HTML page
functionalities to the test case. Despite the term “page” object, these objects are not necessarily
built for an entire page. In fact, a PO may wrap an entire HTML page or a cohesive fragment
that performs a specific functionality. The rule of thumb is to group and model the functionalities
offered by a page as they are perceived by the user of the web application. Furthermore, the PO
developer also decides which functionalities to model that are worth testing.

Let us consider our running example web application Phoenix Trello. Figure 4.3 shows a portion
of the code of the PO BoardsPage, which models the page that lists the boards owned by a
user (last screenshot on the bottom right corner of Figure 2.9).

Among others, this PO contains the method clickOnBoard that models the user action con-
sisting of the selection of a specific board from the board list displayed in the boards page. The
actual selection is performed at line 11 where Selenium WebDriver’s APIs are used to locate and
operate some web elements inside the concrete HTML page of the web application. Specifically,

58

the web element of interest is located by its unique identifier, by means of the Selenium method
findElement(By.id(...)). The action performed on the web element located by id is a
click (Selenium method click, still at line 11). Since after the click the navigation continues
on the next page, which is modelled by the PO BoardListPage, method clickOnBoard
returns a new instance of the PO reached after the click, of type BoardListPage.

In general, PO methods may return values of any type (void, int, String, etc.). However, a
recommended best practice is that navigational PO methods return the next PO encountered in
the navigation (this if navigation does not leave the current PO). In the following, we call a
navigational method any PO method that returns a PO.

The interface PageObject, which all POs have to implement, has the method isPageLoaded
which has to be overridden by all POs. The aim of such method is to make sure that the actual
DOM page which is loaded during the navigation is represented by the desired PO. This way
we can easily check if the navigational methods are implemented correctly since the method
isPageLoaded is called when the PO is instantiated; if the DOM page is not the desired one,
an exception is thrown. In order to do that the PO developer has to identify a particular element
(or a set of elements) that uniquely identify the DOM page represented by the PO. For example,
the BoardsPage PO can be uniquely identified by the DOM element which is needed to add a
new board (see last screenshot of Figure 2.9, in particular the DOM element with text Add new
board...).

The PageObject interface is also useful to parametrize the execution of a PO method. For ex-
ample, the signIn of the PO LoginPage in Figure 2.13 can be parametrized to include both
the scenario of the successful login (i.e. credentials are correct) and the scenario of the unsuc-
cessful one (i.e. credentials are not correct). The return type of the signIn method is the inter-
face PageObject: in the scenario of the unsuccessful login, distinguished by checking if the
new desired page is loaded (in this example, BoardsPage), the returned PO is LoginPage;
otherwise the returned PO is BoardsPage.

Intuitively, the navigation graph is obtained from the POs by associating nodes to page objects
and edges to navigational methods. More specifically, given a navigational method that, starting
from a PO node, leads either to the same PO or to another PO, such method induces either a self
loop edge or an edge to another node (corresponding to the returned PO) in the graph. Formally,
we can define the navigation graph and its relation with POs as follows:

Definition 1 (Navigation Graph) A navigation graph G for a web applicationW is a labelled,
directed graph, denoted by a 4-tuple 〈r,N , E ,R〉 where:

1. r is the root node (called Index) representing the initial DOM state whenW has been fully
loaded into the browser.

2. N is a set of vertices representing the nodes. Each n ∈ N represents an abstract DOM
state ofW .

59

3. A is a set of directed edges between vertices, which we call actions. Each (n1, n2)[r]e ∈ E
represents a possible transition between two nodes n1, n2 if and only if node n2 is reached
by executing the action e in node n1 and the guard r is satisfied.

4. R is a set of guards on actions (n1, n2)[r]e ∈ E .

5. G can have multi-edges and be cyclic.

Given a set of page objects PO, the nodesN of the navigation graph G are bijectively mapped to
PO by the function po : N → PO. Each edge e ∈ A connects a pair of nodes (n1, n2) such that
the page object po(n1) contains a return statement whose returned type is po(n2).

Algorithm 1: Navigation graph extraction algorithm

1 Procedure extractNavGraph(G, po)
Input:
G: navigation graph computed so far
po: page object to be analyzed
Output:
G: updated navigation graph

2 begin
3 n1 := getNodeByPO(G, po)
4 l := getNextPOsByStaticAnalysis(po)
5 v = ∅
6 for p′o ∈ l do
7 n2 := getNodeByPO(G, p′o)
8 if n2 = NULL then
9 n2 := newNode(p′o)

10 G.N := G.N ∪ {n2}
11 v := v ∪ {n2}
12 end
13 G.E := G.E ∪ {〈n1, n2〉}
14 end
15 for n2 ∈ v do
16 extractNavGraph(G, mapNodeToPO(n2))
17 end
18 end

Algorithm 1 shows the recursive navigation graph extraction procedure. The loop at lines 6–12
iterates over all POs that are possibly returned by the PO under analysis. The set of such POs

60

BoardsPage

goToBoardsPage() BoardListPage

clickOnBoard(boardName)

addNewBoard(boardName)

Index

signOut()

goToBoardsPage()

addNewList
(listName)

addNewCardToList
(listName,cardName)

signOut()

CardDetailsPagegoToCardDetailsPage(listName,cardName)

login(credentials)

loginFailure
(notExistingCredentials)

SignUpPage

goToSignUpPage()

signUp(newCredentials) goToLoginPage()
signUpFailure

(existingCredentials)

goToBoardListPage()

addComment(comment)

Figure 4.4: Simplified navigation graph of the Phoenix Trello web application. Transitions be-
tween states are labelled with the corresponding events, which can be parameterized. The path in
bold represents an instance of transition coverage-maximizing test path, which are those our test
generation techniques aim to generate. For simplicity we do not show the guards in the graph.

is obtained by static code analysis (line 4). When the returned PO is not already mapped to a
graph node, a new node is created (line 9) and added to the graph (line 10). An edge (i.e. action)
〈n1, n2〉 from the node n1 associated with the PO under analysis to the returned PO node n2 is
then added to the graph (line 12). Graph extraction continues recursively on all newly created
PO nodes (stored in variable v), i.e., all PO nodes not already present in the initial graph G (lines
13–14). Note that the procedure getNextPOsByStaticAnalysis can also navigate the PO
method in order to handle the case of a parametrized PO method. In particular, if a PO method
has the returned type PageObject, the PO method is traversed to collect all the returned types
(which are POs) of the method.

Figure 4.4 shows a simplified navigation graph of the Phoenix Trello web application. The
graph consists of five abstract DOM states, each having several possible actions that can trigger
transitions between them. Since the navigation graph is obtained by statically analyzing the POs,
each action is a PO method.

Next, we formally define the notion of feasibility, and its impact on automated test case genera-
tion.

61

4.2.1 Guards

Given an abstract DOM state n, the set of possible actions E may be constrained by one or more
guards (a.k.a., preconditions).

Definition 2 (Guard) A guard r(n, e, x) is a boolean condition over the possible input values
x ∈ X of an action e in a specific application state n.

The guard needs to be satisfied in order to enable the transition between state n and the target
state of the action e (typically another state n′, or n itself). If the guard r of the action e is
not satisfied, the action e throws an exception/error. The application state n includes the global
variable values, the DOM, and any persistent data that remains available across user interactions.

Hence, satisfiability of a guard depends on: (1) the input values x ∈ X generated for the given
action e, as well as, (2) the internal business logic state n of the application, produced by previous
user interaction sequences.

For instance, in the BoardsPage state of Figure 4.4, an action clickOnBoard allows to
navigate towards the BoardListPage state. A simple guard over this action imposes that the
board identified by the input boardName must be present in the application prior to executing
the event. (For readability, we omitted the guards in the figure.) As such, the guard depends not
only on the specific value assigned to the input boardName of the clickOnBoard action, but
also on the internal business logic state of the application. In fact, the board to be clicked must
have been previously inserted into the application by a dedicated action (e.g., by executing the
addNewBoard action in the same BoardsPage state).

4.3 Test Generation Problem Definition

Given a navigation graph of a web application, the goal of a web test generator is to automatically
extract sequences of actions and generate suitable inputs in order to exercise the application
behaviours thoroughly, potentially covering all transitions in the navigation graph.

Definition 3 (Test Path) A Test Path is a sequence of test states paired with a corresponding
sequence of actions with unspecified input values.

Then, a test case can be defined by instantiating concrete input values within a test path.

Definition 4 (Test Case) A Test Case is a sequence of concrete values for a corresponding se-
quence of actions in a specific test path.

62

For example, in Phoenix Trello, a simple test path that displays a board for a certain user consists
of the test state sequence 〈Index, BoardsPage, BoardListPage〉. The corresponding
action sequence is given by 〈login, clickOnBoard〉.

In such sequence of actions, two input values need to be specified: (1) credentials, the cre-
dentials of the user to insert (namely username and password of an already registered user),
required by the action login of state Index, and (2) boardName, the name of the new
board to add, required by the action clickOnBoard of state BoardsPage. The action
clickOnBoard has a guard (not shown in the graph) that states that the board identified by
boardName must exist before the execution of the action. Since in the considered test path
no board is added by any event before executing clickOnBoard, the chosen test path cannot
be taken, for any possible values of input boardName. Therefore, we say that such path is
infeasible.

Definition 5 (Test Path Feasibility) A Test Path is feasible if there exists an input parameter-
value assignment that satisfies all the guards related to the actions in the test path. If such input
parameter-value assignment satisfying all the guards in the test path does not exist for every
possible input value, then we say that the test path is infeasible. A concrete test case derived
from an infeasible test path, upon execution diverges (i.e. do not traverse/cover), from the path
it is supposed to traverse.

In conclusion, the test generation problem that we address (for the transition coverage adequacy
criterion) is then to generate a set of feasible test paths, as well as the related parameter-value
assignment, which, upon execution, ensure that all navigation graph edges are traversed at least
once. In this thesis, we found that feasible test paths are produced by means of search based and
diversity based approaches.

4.4 Search Based Web Test Generation

The first concern with regards to search based software testing is the definition of a fitness func-
tion that captures the test objective, namely transition coverage. Such fitness function is used to
guide a search based optimization algorithm which searches the space of test inputs (test paths
in conjunction with the corresponding input values) to find those that maximize transition cov-
erage. In particular we used a genetic algorithm [Ton04, FA13, PKT18a] which performs test
paths selection and input generation at the same time.

The fitness function establishes the quality of each test case. In order to have a test case that
maximizes transition coverage such test case has to be feasible. Therefore, the fitness function
can be defined as a metric that quantifies the degree of feasibility of a test case and guides the
search towards feasible test cases.

63

1 public class BoardsPage implements PageObject {
2

3 public WebDriver driver;
4 public BoardsPage(WebDriver driver) {...}
5 public List<String> getExistingBoardNames() {...}
6

7 public BoardListPage clickOnBoard(String boardName) {
8 if(getExistingBoardNames().contains(boardName)) {
9 this.driver.findElement(By.id(boardName)).click();

10 return new BoardListPage(this.driver);
11 } else throw new IllegalArgumentException();
12 }
13 ...
14 }

Figure 4.5: BoardsPage PO with guard in the goToBoard method

4.4.1 Guards Specification in PO Methods

According to the definition of feasibility (see Definition 5), a test path is feasible if all the guards
related to the actions in the test path are satisfied by a generated parameter-value assignment.
One way to guide the generation of feasible test paths is to explicitly specify the guards in the
actions of the navigation graph, hence in the PO methods.

Specifically, each navigational method in each PO should specify the condition (i.e. the guard)
under which it can be safely executed. Such condition may depend on the invocation parameter
values, as well as the state of the application, which is determined by the actions performed on the
application in the previous navigation steps. In Figure 4.5, the guard of method clickOnBoard
deals with the proper selection of a board from the list of boards shown in the boards page.
Each board is uniquely identified by its name boardName. In the running example, the valid
value for the boardName parameter must be in the list of already created boards, whose names
are returned by the method getExistingBoardNames. If the guard is not respected, an
exception is thrown.

Guards depend on the WAUT business logic and intended behaviour and thus cannot be generated
fully automatically. While the requirement that every navigational method returns the next PO
is a best practice which is commonly followed (although it is not enforced by the PO pattern),
the inclusion of guards is more impactful. Indeed, in practice, developers write test code that
respect guards by construction, making them not strictly necessary. However, guards are a good
programming practice, independently of the use of our technique.

In conclusion, in order for a test path P = 〈S,A〉 (see Section 2.3.1 for the definition of test
path) to be feasible, the conjunction of the constraints in the method guards associated with the

64

class cid1 implements PageObject {
public cid2 mid1 (pms1) {

if (guard1)
stbl1
return new cid2

else thst1
}

}
class cid2 implements PageObject { . . . }

⇒

class CUT {
private PageObject cp;
public void mid1 (

<mapParamTypes>(pms1)) {
if (cp instanceof cid1)

cid1 p = (cid1) cp
if (<replParam>(<replThis>(guard1)))
<replParam>(<replThis>(stbl1))
cp = new cid2

else thst1
else thst1

}
public void mid2 (

<mapParamTypes>(pms2) { . . . }
}

Figure 4.6: Automated program transformation that generates class CUT from the POs

edge sequence A must be satisfiable. Since some of the values evaluated in the method guards
may depend on the server/client side state (e.g., getExistingBoardNames() in Figure 1),
in general the problem of determining whether a test path P is feasible or not is an undecidable
problem. Moreover, since feasibility depends on the server/client state, which is computed by
arbitrarily complex programs, SAT solvers are generally not a viable tool to address the test path
feasibility problem. For these reasons, we resort to a meta-heuristic algorithm.

4.4.2 Problem Reformulation

The problem of generating test cases that cover all navigation graph edges can be reformulated
as a standard branch coverage problem on an artificial class generated from the navigation graph
and the POs. In fact, a path P = 〈S,A〉 consists of a method sequence (namely, the sequence of
method invocations associated with A), for which suitable parameter values X must be found.
Hence, we can solve the feasible path generation problem and the parameter input value gen-
eration problem by applying the search based approaches that have been proposed for object
oriented testing [FA13], where method sequence and parameter values are generated at the same
time. This requires the creation of an artificial class under test (which we call CUT for short)
whose methods are the methods associated with the navigation graph edges and whose state is
the currently visited web page and more specifically, the currently instantiated PO for such web
page.

Figure 4.6 shows the program transformation that creates class CUT. Its input is a set of POs
and its output is class CUT, containing a private field to store the current page object, cp. Each
PO method becomes a method of the new class, whose return type becomes void. The method
can be called only if the current PO cp is an instance of the PO where the method originally

65

1 public class CUT {
2 private PageObject currentPage;
3

4 public void clickOnBoard(BoardName boardName) {
5 if(this.currentPage instanceof BoardsPage) {
6 BoardsPage page = (BoardsPage) this.currentPage;
7 if(page.getBoardNames().contains(boardName.value)) {
8 page.driver.findElement(By.id(boardName.value)).click();
9 this.currentPage = new BoardListPage(this.driver);

10 } else {
11 throw new IllegalArgumentException();
12 }
13 } else {
14 throw new IllegalStateException();
15 }
16 }
17

18 }

Figure 4.7: Excerpt of CUT generated from the POs of the Phoenix Trello example

belonged to. When this condition is satisfied, the current page object is cast to its concrete
type and assigned to the local variable p. This variable must replace any occurrence of this
in the body of the original method, including its guard guard1. This is performed by function
<replThis>. The instruction that returns a new PO in the original code is transformed into a
statement that assigns such new PO to the class field cp (current page) of CUT.

To facilitate the job of the test generator, the original parameter types (e.g., boardName:String)
are mapped to a type with smaller range (e.g., boardName:BoardName, a custom type that
contains a user specified number of string values) by function<mapParamTypes>. Such smaller
range can be determined by static analysis, in simple cases in which the range is specified in the
guard (e.g. id ≥ 1 ∧ id ≤ 6), or it can be specified by the tester (e.g. the BoardName type).
As a consequence, any occurrence of the original parameter identifiers must be replaced with
an accessor to the parameter value (e.g., x becomes x.value). This is performed by function
<replParam>. Figure 4.7 shows the result of the transformation when it is applied to the PO in
Figure 4.5.

We apply search based test case generation as instantiated for object oriented systems [FA13]
in order to find the method sequences and parameter values that cover the last statements of the
transformed method bodies, which correspond to the statements returning a new PO in the orig-
inal methods (i.e., this.currentPage = new BoardListPage(page.driver) for
clickOnBoard). In fact, coverage of all the statements that return the next PO in the naviga-
tion is equivalent to covering all the edges in the navigation graph, i.e., to transition coverage.
In particular, we use a Genetic Algorithm (GA) and the evolved chromosomes are test suites,

66

n0 !-> n1

e1()
n1 !-> n2

e2()
n2 !-> n3

e3()
n3 !-> n4

e4()
n0 !-> n1

e7()
n1 !-> n2

e2()
n2 !-> n3

e3()

n0 !-> n1

e7()
n1 !-> n2

e2()
n2 !-> n3

e3()
n3 !-> n4

e4()
n0 !-> n1

e1()
n1 !-> n2

e2()
n2 !-> n3

e3()

Figure 4.8: Crossover operator

i.e., set of test cases which are sequences of method calls. The fitness function is the sum of
the branch distances of the yet uncovered branches [FA13]. On the other hand, the standard
genetic operators for object oriented test generation do not work properly in our case, because
they do not take the structure of the navigation graph into account. Hence, we have defined
new crossover and mutation operators, described in the next section. The initial population is
obtained by performing multiple random walks on the navigation graph.

4.4.3 Genetic Operators

We defined new genetic operators with the aim of modifying the test cases during evolution,
taking into account the constraints imposed by the navigation graph.

Crossover. We have defined a crossover operator that works at test case level, in addition to the
usual test suite crossover operator [FA13]. Our new crossover operator is shown in Figure 4.8,
where the notation ni → nj above the method name ek() indicates that method ek() has PO ni

as starting node and PO nj as target node. Crossover is straightforward to apply if the cut point
selected on the two tests is between method calls that refer to the same PO (in Figure 4.8, the
cut point between e1() and e2() in both tests refer to the same PO, n1, which is the target of
e1() and the source of e2()). When this does not happen, the two different POs are connected
by performing a random walk in the hammock subgraph between them. To ensure reachability
during the random walk, head and tail of the new test are possibly shortened, until reachability
holds between the two POs.

Mutation. We have maintained the test suite mutation operator [FA13], but we have modified
the delete and insert method call operators, which work at the test case level. An example of how
they manipulate the test is provided in Figure 4.9. The change method call operator is applicable
only if the alternative method has the same source and target POs as the original method call.

The delete mutation operator randomly selects a starting method from the test case and, given
the target PO of the selected method (in Figure 4.9, method e2() and target node n2), it removes

67

n0 !-> n1

e1()
n1 !-> n2

e2()
n2 !-> n3

e3()
n3 !-> n4

e4()

n0 !-> n1

e1()
n1 !-> n2

e2()
n2 !-> n3

e3()
n3 !-> n4

e4()

n0 !-> n1

e1()
n1 !-> n2

e2()
n2 !-> n3

e8()
n3 !-> n4

e4()
n4 !-> n5

e7()
n5 !-> n6

e6()

Figure 4.9: Mutation operator: delete followed by insert

all the following method calls until it finds one with a source node that is equal to the target node
of the starting method. If it does not find it, it deletes all the methods from the selected point
until the end of the test (as in Figure 4.9). This operation cannot remove all the statements (at
least one, the first method call, is always left), to avoid the generation of an empty test case.

The insert mutation operator always starts at the end of the test case (in Figure 4.9, method e2(),
which has become the last method call after application of the delete operator) and it selects a
method corresponding to a yet uncovered branch (e.g., e6()). Then it performs a random walk
on the hammock subgraph between the target node and the source node of the two selected
methods (i.e., the hammock subgraph between n2 and n5). The path obtained in such random
walk is appended to the chromosome (in Figure 4.9, methods e8(), e4(), e7(), plus the target
method e6()). If the source node of the uncovered method is unreachable from the end of the
chromosome, the insert operator fails and does not change the chromosome.

Insert and delete operations balance each other, by extending and shrinking the test cases, hence
providing a mechanism for bloat control [FA13] (bloat occurs when negligible improvements in
the fitness value are obtained by extremely large solutions).

4.4.4 Implementation

We have implemented SUBWEB on top of Evosuite [FA13]. In particular, we have enabled
the Whole Test Suite strategy, because we have multiple targets to satisfy. We have modified
Evosuite in order to take the navigation graph into account, both when generating the initial
random population of individuals and in the genetic operators, which must generate method
sequences compliant with the navigation graph.

68

We use Selenium WebDriver to instantiate the driver needed to launch and send commands to the
browser, when test cases have to be executed in order to measure their fitness. The constructor
of the class under test contains a method that instantiates the Selenium driver and resets the state
of the application (e.g., ensuring the database is initially empty).

4.5 Empirical Evaluation

The goal of the case study is to assess pros and cons of the proposed approach. The baseline for
comparison is the navigation graph produced by a state of the art crawler, Crawljax [MvDL12],
and the test cases derived from such graph. We have formulated the following research questions:

RQ1 (Cost): What is the size of the POs to be written manually and what is the size and com-
plexity of the PO method guards, required by our approach?

RQ2 (Navigation Graph): How does the navigation graph specified through POs differ from
the navigation graph obtained through crawling?

RQ3 (Test Suite Features): What is the size of the test suite generated by SUBWEB as com-
pared to that derived from the crawled navigation graph and what is the proportion of divergent
test cases?

RQ4 (Coverage): What is the level of coverage reached by the test cases generated by SUBWEB
in comparison with the coverage reached by the test cases derived from the crawled navigation
graph?

4.5.1 Subject

AddressBook 2 is a web-based address and phone book, contact manager and organizer. It is writ-
ten in PHP and it uses JavaScript for handling and modifying HTML elements at runtime; more-
over it is backed by a MySQL database. The web application is a multi page (non framework-
based) web application with 30k PHP LOC and 1.3k JavaScript LOC. Moreover, this application
has been used as a case study in previous works on web application testing [LSRT16, LSRT15].

4.5.2 Procedure and Metrics

RQ1 (Cost). We manually created the POs for the AddressBook web application, since such
subject is not equipped with PO-based test suites. To minimize any subjectivity/bias, we de-
veloped the POs by adopting a rigorous procedure. Specifically, we adhered to the guidelines

2https://sourceforge.net/projects/php-addressbook/

69

https://sourceforge.net/projects/php-addressbook/

given by Van Deursen [vD15] on the design of PO-based web test suites. Each PO represents
a test state, with explicit responsibilities for state navigation and state inspection. Thus, we
represented each action of a test state as a navigational method in the PO. Instances of such
methods are, for instance, clicks and data-submitting forms that bring the browser to a new
state (e.g. clickOnBoard method in Figure 4.5). Getter methods have been used to re-
trieve the value of key/unique elements displayed in the browser when it is in a given state (e.g.
getExistingBoardNamesmethod in Figure 4.5). These are usually used in test scenarios to
check the feasibility of a navigational method (e.g the getter method getExistingBoardNames
is used in the guard of the navigational method clickOnBoard in Figure 4.5).

In light of these design considerations, we modelled the web applications into POs as follows.
Starting from the root node Index (i.e., the initial web page, typically the login page), we mod-
elled it as a PO. Following the navigations that were possible from the initial state, new test
states were discovered (e.g., for user registration), which in turn were modelled as POs. Then,
we proceeded following the actions that were possible in each newly discovered state, building
POs iteratively and incrementally, until all the pages were accounted for. Additionally, states
having common behaviours (e.g., menu bars) were organized into reusable components [vD15].

To analyze the manual cost that a tester incurs when using our approach, we measure the lines of
code (LOC3) of all POs needed to model the subject application. In particular, we are interested
in the manual cost for writing the guards, since they represent a specific requirement of our
approach. We measure the total number of guards, the total number of logical operators in such
guards and the lines of code of methods used exclusively by the guards.

RQ2 (Navigation Graph). Since the navigation graph extracted from the POs is specified di-
rectly by the testers, we assume it as the reference and we measure the difference between the
crawled graph and such a reference, in terms of graph size, states/transitions missing in the
crawled graph and split/merged states/transitions in the crawled graph as compared to the PO
navigation graph. The purpose of this research question is to understand whether crawling alone,
with no human involvement for PO definition, is able to produce a navigation graph close to the
ideal one, specified through the POs.

RQ3 (Test Suite Features). Test case derivation from the navigation graph produced by Crawljax
is supported by the tool Atusa [MvD09], which is unfortunately unavailable. Hence, we have
reimplemented the test derivation algorithm of Atusa by following its description in the reference
paper [MvD09]. We call our reimplementation Ext-Crawljax. We are interested in comparing
the size of the test suites produced by SUBWEB vs Ext-Crawljax. A smaller size is preferable
because it makes manual oracle creation or validation easier for testers. Moreover, we measure
the proportion of divergent test cases (i.e., those that upon execution do not cover the test path
for which they were generated, hence the corresponding test paths are likely to be infeasible). In

3Non-commenting lines of code, calculated by cloc (https://github.com/AlDanial/cloc)

70

https://github.com/AlDanial/cloc

Table 4.1: RQ1: cost of writing POs and its guards

POs Guards

LOC # Navigational Methods # Method LOC # Logical Operators

13 764 73 16 75 54

fact, the occurrence of divergences is detrimental to the actually achieved coverage, with respect
to the theoretical coverage guaranteed by the test case derivation algorithm.

To measure test case divergences, we transform each path obtained from the crawled navigation
graph into a JUnit test case. The JUnit test case fires a sequence of events that should bring the
application from the initial to the end state of the path. If an event is a form submission, we insert
all the needed input values (either random or custom values, when necessary). The execution of
such test case is deemed divergent when a Selenium exception is thrown during the execution. In
fact, divergences happen if an element existing at crawling time is no longer found at test time,
when the application state is different, so that the desired path cannot be followed. The missing
element triggers a Selenium exception.

RQ4 (Coverage). Regarding coverage, which represents the core objective of test generation, we
consider the transition coverage adequacy criterion, measured in the navigation graph specified
by testers through POs. This required to manually map states and transitions in the crawled nav-
igation graph to states and transitions in the PO navigation graph. We use statistical tests [AB14]
to assess whether the difference between the two coverage medians is significant from the statis-
tical point of view (Mann-Whitney U test [Kor04]).

For the sake of fairness, we granted both tools, SUBWEB and Ext-Crawljax, an overall execution
budget of 2 hours and we ran both tools on the same subject 10 times, because both tools have
non deterministic behaviour. In SUBWEB we have disabled the minimization step of Evosuite,
because it requires multiple, costly test case executions on the browser, which makes it too
inefficient for our purposes. Moreover, at every test case execution, we reset the state of the web
application, both client and server side. In Ext-Crawljax, we use the default configuration with
the default parameter values. We only provide Ext-Crawljax with custom values for those form
inputs in the application that require very specific values. Ext-Crawljax does not reset the state
of the application at every test case execution during crawling; however, we do reset the state of
the web application when test are extracted from the crawled model.

4.5.3 Results

RQ1 (Cost): The data in Table 4.1 shows that the 13 POs written manually account for 764
LOC in total. This is a small fraction of the overall application size (around 2%). Guards, that

71

Table 4.2: RQ2: size of PO vs crawled graph, with missing/split states/transitions

#
St

at
es

#
Tr

an
s

#
M

is
si

ng
St

at
es

#
M

is
si

ng
Tr

an
s

Sp
lit

St
at

e
R

at
io

Sp
lit

Tr
an

s
R

at
io

PO Graph 12 73 0 0 0 0
Crawled Graph 329 927 0 5 27 13

are required exclusively by our approach, represent an even smaller portion of the application
size: guard method LOC account for 0.2% of the application size, while the 16 guards use on
average 3 logical operator each. Moreover, we wrote the 13 POs in, approximately, one day.
However, this metric clearly depends on many factors, the main one is the level of confidence the
developer has with the PO pattern.

Overall, based on the size data collected on our case study, the manual cost for writing POs and
PO guards seems relatively low.

RQ2 (Navigation graph): As shown in Table 4.2, the crawled navigation graph is huge if
compared to the PO navigation graph (approximately ×27 states; ×13 transitions). While it
does not miss any state, despite its size it misses on average 5 transitions, which are specified
by testers, but are not covered during some executions of crawling (5 is the average computed
over 10 runs of Ext-Crawljax). No single case of state/transition merge was observed, while, as
expected from the larger graph size, several states and transitions are split in the crawled graph.

The crawled graph deviates from the ideal, manually specified, PO graph to a major extent,
because of its larger size, missing transitions and split states/transitions.

RQ3 (Test Suite Features): Table 4.3 shows that SUBWEB generates much smaller test suites
than Ext-Crawljax. This is a consequence of the different navigation graph size. Moreover,
while SUBWEB generates non divergent test cases by construction, the crawling based approach
generates as many as 17% divergent test cases.

The test suites produced by SUBWEB are approximately 11 times smaller than the test suites
produced by Ext-Crawljax. The latter include a relatively large proportion of divergent test
cases.

RQ4 (Coverage): Figure 4.10 shows the box plots of the transition coverage achieved by SUB-
WEB and Ext-Crawljax. Table 4.3 also shows that the median coverage of SUBWEB is on
average 13pp (percentage points) above the median coverage of Ext-Crawljax and such a differ-
ence is statistically significant according to the Mann-Whitney U test [Kor04] (p-value 4.7 · 10−4

72

Table 4.3: RQ3: number of test cases and divergent test cases in SUBWEB and Ext-Crawljax.
RQ4: transition coverage (%) achieved by SUBWEB and Ext-Crawljax in 10 runs; the two dis-
tributions differ in a statistically significant way according to the Mann-Whitney U test [Kor04]
(p-value 4.7 · 10−4).

RQ3: Test Suite Features RQ4: Transition Coverage (%)
#

Te
st

s

#
D

iv
er

ge
nt

Te
st

s

%
D

iv
er

ge
nt

Te
st

s

M
ed

ia
n

V
ar

ia
nc

e

SUBWEB 54 0 0 96 12
Ext-Crawljax 598 104 17 83 39

at 5% significance level), that we applied since we didn’t have a priori knowledge about the
distribution of the data.

The test cases generated by SUBWEB achieve higher transition coverage than those generated
by Ext-Crawljax.

4.5.4 Threats to Validity

Threats to the internal validity might come from how the empirical study was carried out. Each
test case was run starting from an empty database, under the assumption that the tester is inter-
ested in the behaviour of the application when no record has been persisted yet. On the contrary,
if a non empty database is created at each test case startup, the traversal of paths for which pop-
ulating the database is a prerequisite becomes easier for both approaches. Moreover, we didn’t
use a case study with existing POs and measured the effort needed to modify them in order to en-
able our technique; indeed it is difficult to find open source projects with existing selenium tests
using the PO design pattern. Furthermore, the reimplementation of Atusa’s extraction algorithm
constitutes an internal validity threat. However, we followed the algorithm description reported
in the Atusa’s paper [MvD09] for our reimplementation.

Threats to the external validity mainly regard the use of only one case study, which prevents us
from generalizing our findings to substantially different cases. On the other hand, AddressBook
is a non trivial application that has been used in several previous works on web testing.

73

Figure 4.10: RQ4: box plots of transition coverage achieved by SUBWEB and Ext-Crawljax

4.6 Limitations of Search Based Web Test Generation

Search based techniques iteratively sample the input space, selecting the fittest candidate test
cases, and evolving the fittest ones using genetic search operators to create new test cases [Luk13].
Since these algorithms can effectively guide the generation of test cases even for large input
spaces, they are suited for system-level testing [Zel17]. In the previous section, we showed that
an effective fitness function can be defined for E2E web tests based on approximate information
available in the navigation graph, specifically the actions guards, by making them explicit in the
PO methods. Results show that this approach can guide the search towards generating test cases
unaffected by the path infeasibility problem.

However, this approach needs the manual specification of all guards for each action, a task that
is time-consuming and laborious for testers. Indeed, such information depends on the web appli-
cation business logic and intended behaviour, and thus cannot be generated fully automatically.
Additionally, the evaluation of the fitness function is costly, because it requires a large number
of test cases to be generated and executed in the browser before converging to an adequate set of
tests.

Moreover, while search based approaches provide theoretical warranties of asymptotic conver-
gence to the desired input values, they exhibit poor execution time performance when applied to
web applications, as compared, for instance, to standard Java desktop applications [FA13]. The
reason why search based approaches are computationally expensive is that they always need to

74

execute the candidate test cases to assess their feasibility and the value of the fitness function.
This disadvantage is amplified in web testing because (1) the overhead imposed by browser’s
interaction makes evaluating these tests very slow, and (2) the input space may contain local op-
timum regions, in which all candidate test cases are likely to be behaviourally equivalent (e.g., all
equally infeasible), hence increasing the run time of the test generation algorithm without ben-
efiting the overall coverage. The discussed limitations (i.e., high computational costs, need for
manual guards specification) justify the investigation of alternative, possibly cheaper and more
automated algorithms.

4.7 Diversity Based Web Test Generation

Inspired by adaptive random testing [CLM04], which makes the assumption of contiguous failure
regions, we conjecture that web applications might also have contiguous infeasibility regions.
Correspondingly, in the case of web apps the main advantage of test case diversity would be
the possibility of exploring the search space at large, diversifying the region where navigation
sequences are sampled. This is expected to help escaping local solutions, as well as avoiding gen-
erating infeasible test paths and ensuring a more effective exploration of alternative (i.e., diverse)
behaviours. Indeed, research has shown that diversity is especially beneficial to fault detection.
Diverse inputs are necessary to expose different failures, whereas inputs from contiguous areas
of the input space are likely to expose the same program failure [CKMT10].

A second advantage of diversity based test case generation is its higher efficiency with respect to
existing random and search based approaches. In fact, the quality of a candidate test case is eval-
uated by measuring its diversity with respect to previously generated test cases and using such
metric to assess its potential at increasing the exploration of diverse behaviours. Interestingly,
such assessment can be performed without actually executing the candidate test cases.

Algorithm 2 describes our overall procedure for diversity based path and input generation. The
test generation starts from an empty set of tests, and therefore the first generated test is random.
The algorithm generates a set C of candidate test cases, instantiating candidate test paths along
with concrete input vectors (Lines 8–10). To select the most promising candidates, the distance
between each candidate test case and the current set of already executed test cases Texec is com-
puted (Lines 11–17) and only the farthest test case t is executed (Line 18). Test case t is restricted
to its feasible prefix in case it includes a divergence (Lines 19–21). A divergence occurs when-
ever the test path of a test case t differs from the execution trace obtained by running t. Then,
the test case is added to the final test suite TSgen only if it contributes to increase coverage of the
navigation graph G (Lines 22–24).

Algorithm 3 shows how candidate test paths are created. In our notation, S represents a state
sequence, A indicates a method sequence having X as a input vector sequence. S, A and X
are incrementally created within the main loop (Lines 5–11) by choosing an edge 〈n, n′〉[r]e ran-

75

Algorithm 2: Diversity-based Test Case Generation
Input : G: navigation graph, k: number of candidates
Output: TSgen: test suite that optimizes coverage of G

1 Texec ← ∅ . Set of executed test cases
2 TSgen ← ∅ . Set of generated test suite
3 generate randomly a test case t, add t to Texec, and execute it
4 while G is not adequately covered by TSgen or timeout is not reached do
5 e← GETRANDOMUNCOVEREDMETHOD(G)
6 Dmax← 0
7 C ← ∅ . Set of candidate test cases
8 for i← 1 to k do
9 C ← C ∪ GENERATECANDIDATETEST(G, e) . see Algo 2

10 end
11 for ci ∈ C do
12 di ← min(ρ(ci, tj)) ∀tj ∈ Texec . see Eq 1
13 if di > Dmax then
14 Dmax ← di
15 t← ci
16 end
17 end
18 add t to Texec and execute it
19 if t is divergent then
20 t← GETFEASIBLEPREFIX(t)
21 end
22 if t increases coverage of G w.r.t. TSgen then
23 TSgen ← TSgen ∪ {t}
24 end
25 end
26 return TSgen

domly, with uniform probability, among those available from state n according to the navigation
graph G. The selection is constrained by the fact that the target method e must remain reachable
from n′. At last, a vector of input values as parameters to e is randomly chosen (Line 9).

4.7.1 Distance Between Test Cases

Algorithm 2 requires a distance metric to assess the diversity between test cases. Differently from
object-oriented [LTCZ09, CLOM08] or numerical applications testing [CKMT10], in our setting
we cannot rely only on the input values, as the distance function ρ must also take into account
the sequence of actions composing a test case. As such, we devised a novel distance metric
between two test cases taking into account the diversity of the respective sequences of actions,
and, in cases in which this is not discriminative, privileging the test case having the farthermost
diversity in terms of concrete input values. By diversifying the sequence of actions, as well as

76

Algorithm 3: Candidate Test Case Generation
Input : G: navigational model, e: target method
Output: 〈S,A,X〉: candidate test case reaching e

1 A← 〈〉
2 X ← 〈〉
3 n← GETROOTNODE(G)
4 S ← 〈n〉
5 while e 6∈ A do
6 〈n, n′〉[r]e← GETRANDOMEDGE(G, n, e) . must ensure n′ e
7 n← n′

8 x← GETRANDOMINPUTVECTOR(e)
9 S ← S.add(n)

10 A← A.add(e)
11 X ← X .add(r)
12 end
13 return 〈S,A,X〉

the associated input values, we conjecture that we can escape infeasible test path regions and we
can diversify the WAUT behaviours.

4.7.1.1 Distance Formula

Intuitively, our distance formula comprises two terms, the first measuring the distance between
the action sequences in the two test cases being compared and the second measuring the distance
between the input values used by matching actions in the two sequences. To compute the first
term, the distance function α reports the number of non-matching actions in the two sequences.
To compute the second term, we rely on the longest common subsequence to obtain the match-
ing actions; upon each matched actions, we compute the normalized distance β between their
parameter values.

Given two test cases (ti, tj), where ti = 〈Si, Ai, Xi〉 and tj = 〈Sj, Aj, Xj〉, the distance ρ(ti, tj)
is given by Equations (4.1), (4.2):

ρ(ti, tj) = α(Ni ::Ai, Nj ::Aj) (4.1)

+
∑

〈k1,k2〉∈LCSi,j

β(Xi[k1], Xj[k2])

77

β(x, y) =
1

| x |
∑

q∈[1...|x|]

δ(x[q], y[q]) (4.2)

In Equation 4.1, the notation Nx::Ay indicates that the two sequences of actions are identified
both by their actions Ai, Aj and the states Ni, Nj in which they are applicable. This helps dis-
ambiguate cases in which an action Ay is present with the same name in different states.

Function α represents the sequence edit distance [CLRS01, Lev66], which determines the num-
ber of non-matching elements in two sequences (e.g., 3 = | 〈a〉 | + | 〈e, f〉 |, when comparing
〈a, b, b, c〉 to 〈e, b, c, f〉). LCS is the set of matching indexes in the longest common subse-
quence [CLRS01, Lev66] (e.g., {(2, 2), (4, 3)}, when comparing 〈a, b, b, c〉 to 〈e, b, c, f〉). Func-
tion β computes the distance between the two parameter value sequences Xi[k1], Xj[k2] of two
matching actions (indexed by k1 and k2 respectively in Ni::Ai and Nj::Aj). At last, function
δ computes the normalized distance between two primitive input values of the same type (see
Table 4.4).

The second term of Equation 4.1 matches the actions Ai[k1], Aj[k2] in the two sequences. Cor-
respondingly, the two input vectors Xi[k1] and Xj[k2] have the same cardinality. Function β
computes the average distance between the parameter values x and y of two matching actions. It
resorts to function δ to compute the normalized distance between pairs of primitive input values
x[k], y[k]. The computation of function δ varies depending on the type of parameters occur-
ring into the actions (see Table 4.4). The input distance δ is normalized between 0 and 1. For
types string or number, normalization is achieved using function η(x) = x

x+1
as proposed

by Arcuri et al. [Arc13], that maps a value x onto the range [0, 1].

Equation 4.1 resembles the computation of the fitness function for branch coverage, commonly
adopted in search-based testing [McM04]. In such a case, the two terms of the fitness function are
approach level and normalized branch distance, respectively. We share with that definition the
idea of making the first term (action sequence distance) dominant, while resorting to the second
term (input value distance) only when the first term is not discriminative enough. In fact, the
range of α is N, so the minimum non-zero distance is 1, whereas β ranges between 0 and 1, such

Table 4.4: Input distance computation

Type Input Distance δ(w, z)

boolean δ(w, z) = {0 if w = z; 1 otherwise }
enum δ(w, z) = {0 if w = z; 1 otherwise }
string δ(w, z) = α(w, z)/(1 + α(w, z))

number δ(w, z) = |w − z| /(1 + |w − z|)

78

that the contribution to ρ of each matching pair of actions cannot be greater than 1. The intuition
is that the major contribution to diversity comes from the action sequence distance, while the
input value distance for each matching action pair contributes at most as the minimum non-zero
action sequence distance (i.e., 1). However, in case of a large number of actions being matched,
the aggregate value of the input value distance might become dominant.

4.7.2 Example of Distance Computation

We present how the distance between test cases is computed using a simplified notation in which
only the actions are reported while omitting the states (e.g., Index::login becomes login).
In fact, in all our examples the state sequence associated with a given action sequence will be
unique (this is not true in the general case). Moreover, parameter values are indicated in brackets
rather than separate input vectors (e.g., an action sequence A = 〈login〉 and the corresponding
input sequence X = 〈〈"credentials"〉〉 become 〈login("credentials")〉.

Let us consider three simple test cases t1, t2, t3 for the running example Phoenix Trello, defined
as follows:

t1 = 〈login("credentials1"), signOut()〉
t2 = 〈login("credentials2"),addNewBoard("board"),goToBoardsPage()〉
t3 = 〈login("credentials2"), signOut()〉

Suppose that t1 is already in the list of generated test cases Tgen, whereas t2 or t3 are in the
set of generated tests C. Our algorithm must decide which test to execute next. The sequence
edit distance between t1 and t2 is α = 3, because there are three non-matching actions in t1, t2
(signOut in t1, and addNewBoard, goToBoardsPage in t2).

Concerning the matching actions (login in both t1 and t2), the input distance is computed by
function β, which in turn resorts to function δ for the distance between primitive values. In our
running example, β(("credentials1"), ("credentials2")) = δ("credentials1",
"credentials2") = 1/2 = 0.5, because α("credentials1", "credentials2") = 1
(the one non matching character in "credentials2" being ‘2’). Therefore, ρ(t1, t2) = 3 +
0.5 = 3.5.

Conversely, the sequence edit distance between t1 and t3 is α = 0, since there are no unmatched
actions in the two sequences. Therefore, our distance formula relies on the input distance
β(("credentials1"), ("credentials2")) = 1/2. Therefore, ρ(t1, t3) = 0 + 1/2 = 0.5.
Thus, the most diverse test case t2 is selected and executed.

79

4.7.3 Implementation

We implemented our approach in a Java tool called DIG (DIversity-based Generator), which is
publicly available 4. To retrieve the PO testing model, DIG relies on Apogen [SLRT17]. Finally,
our diversity-based test generator is implemented on top of Evosuite [FA13], which we extended
to handle the PO model. Our algorithm uses the PO method information to generate and evaluate
candidate test cases. At last, only the most diverse candidates are executed through Selenium
WebDriver in headless execution mode.

4.8 Empirical Evaluation

The goal of the empirical evaluation is to study the effectiveness and the efficiency of the pro-
posed diversity based approach. In particular, we want to investigate empirically our conjecture
that by reducing the number of executions with respect to the existing web test generators, our
diversity based approach allows a better exploration of the navigation graph. As baselines, we
consider the test cases that can be extracted from the navigation graph produced by a state of
the art crawler, Crawljax [MvDL12, MvD09] (i.e. our reimplementation of Atusa [MvDR12]
which we call Ext-Crawljax) and the test cases that are generated by our search based web test
generator SUBWEB, presented in Section 4.4.

4.8.1 Research Questions

We address the following research questions:

RQ1 (Effectiveness): How do diversity, search, and crawling based random test generation
compare in terms of transition coverage, code coverage and fault detection?

RQ2 (Efficiency): How do diversity and search based test generation compare in terms of
efficiency over time?

RQ3 (Distance Computation): What is the impact of distance computation in the diversity
based test generation process?

RQ4 (Manual POs): What is the effect of using manually defined POs within the diversity and
search based test generation approaches?

RQ1 and RQ2 aim to compare DIG with two state-of-the-art solutions: our previous search
based web test generator called SUBWEB and Ext-Crawljax, which is based on a crawling-
based random approach. RQ3 and RQ4 aim at assessing the impact of the internal factors of the

4https://github.com/matteobiagiola/FSE19-submission-material-DIG

80

https://github.com/matteobiagiola/FSE19-submission-material-DIG

proposed approach (namely, distance computation and POs generation method) on the final test
suites.

4.8.2 Subject Systems

To assess the relevance of our approach at testing real-world web applications, we focus our anal-
ysis on single page applications (SPA). We overviewed the most popular JavaScript frameworks
for developing web applications from GitHub Collections [JS-18]. Popularity was measured as
the number of stars owned by the framework’s GitHub repository at the time of writing (August
2018). We retained five frameworks with more than 15k stars.

Second, we selected web applications developed with one of the selected frameworks that are
popular (number of stars ≥ 50), mature (number of commits ≥ 50) and have been maintained
recently (year of last commit ≥ 2016). Third, from the resulting candidate set, in order to
maximize diversity and representativeness, we randomly sampled six applications considering
the six most popular JavaScript frameworks: dimeshift (Backbone.js), pagekit (Vue.js), splittypie
(Ember.js), phoenix-trello (Phoenix/React), retroboard (React), PetClinic (AngularJS).

Table 4.5 summarizes the main characteristics of our subjects. The size of the selected systems
(> 1k client-side JavaScript LOCs, frameworks excluded) is representative of modern web ap-
plications [OJPM17] (Ocariza et al. [OJPM17] report an average of 1,689 LOCs for a dataset of
web applications developed with the AngularJS framework with at least 50 stars).

We focused on SPA because, in such category of web applications, the business logic is moved
towards the client side. Only in such context it is reasonable to compare the competing test
generators by measuring their client side code coverage, since the ultimate objective of func-
tional testing is to exercise the functionalities (hence the logic) of the web application under test.
Moreover, client side code coverage is easier to measure than server side code coverage in E2E
GUI testing, both because JavaScript is the only language used for client side development (w.r.t

Table 4.5: Experimental subjects

Subject Framework LOC (JS) Stars Commits Year

dimeshift [dim18] Backbone 5,140 127 194 2018
pagekit [pag18] Vue.js 4,214 4,851 4,914 2019
splittypie [spl18] Ember.js 2,710 67 331 2017
Phoenix Trello [pho18] React 2,289 2,233 422 2016
retroboard [ret18] React 2,144 390 476 2019
PetClinic [Pet18] AngularJS 2,939 50 71 2018

81

many server side programming languages) and because existing unit testing JavaScript coverage
tools can be easily adapted to E2E testing JavaScript coverage tools.

4.8.3 Procedure and Metrics

To answer the research questions RQ1, RQ2, RQ3 we generated the POs needed for DIG and
SUBWEB with the tool Apogen [SLRT17]. To answer RQ4 we wrote the POs manually for each
subject. From the POs we extract the navigation graph with Algorithm 1 and we reformulate the
problem of transition coverage of the navigation graph as a branch coverage problem by using
the program transformation procedure described in Figure 4.6.

Effectiveness (RQ1). We ran DIG, SUBWEB and Ext-Crawljax on each subject system. For
DIG, we set the number of candidate test cases generated at each step of the algorithm to 50.
As SUBWEB requires, we manually specified the guards for the POs methods. For DIG and
SUBWEB, at every test case execution, we reset the state of the web application under test, both
client and server side. This way the generated tests are independent. Ext-Crawljax does not reset
the state of the application at every test case execution during crawling; however, we do reset the
state of the web application when test are extracted from the crawled model. We granted each
tool the same time budget of 30 minutes because, in our exploratory experiments, we empirically
observed convergence of transition coverage to a plateau within half an hour. Additionally, we
repeated each experiment 15 times, and computed the average across all executions to cope with
non-deterministic behaviours.

We considered three metrics of effectiveness. First, we measured the transition coverage of the
navigation graph according to the transition coverage adequacy criterion. This metric tells us
how many functionalities each approach covers. Second, we measured branch coverage of the
JavaScript code of our subject systems. We instrumented the client side of each web application
(libraries and framework excluded) with the tool Istanbul [Ist18], and executed the generated
test suites against the instrumented applications. Code coverage is an important metric to under-
stand how much of the actual business logic is exercised by each approach. Third, we studied
the fault detection capability, by counting the number of unique faults (i.e., unique JavaScript
exceptions and errors) reported in the JavaScript console upon test suite execution. The number
of unique faults let us understand the capabilities of a certain approach to expose potential errors
of the web application under test.

Efficiency (RQ2). To assess efficiency, we measured how the competing algorithms perform
over time in terms of transition coverage, branch coverage, and fault detection. To this aim, we
computed the area under the curve (AUC) of each metric as a function of the test generation time,
with higher values of AUC denoting a superior efficiency of the algorithm within the given time
budget (30 minutes).

82

Concerning transition coverage, we could compute the AUC accurately, because Evosuite outputs
the value of such metric at every new test case generation. Differently, to measure AUC for
branch coverage and fault detection, we had to execute each intermediate test suite produced
during the test generation process. Given the huge number of test suites to be considered (in the
order of dozens of thousands considering all applications, approaches and repetitions), for each
subject, we sampled three time intervals: the point at which the transition coverage difference
between DIG and SUBWEB is maximal, the point at which it is 50% of the maximum, and
30 minutes. In fact, by graphically plotting the two transition coverage functions, we observed
transition coverage difference has a steep peak followed by a smooth decline. Hence, in order
to accurately estimate the AUC with only a few data points (time intervals), it makes sense to
sample them where the difference is the largest, and the next one, when it is halved.

Distance Computation (RQ3). Distance computation is expensive because it grows quadrati-
cally with the number of test cases: at each test generation step, the number of distance com-
putations is given by the number of previously executed test cases multiplied by the number
of candidates. The input distance term of Equation 4.1 further increases the cost for distance
computation. To assess such impact, we ran DIG disabling the input distance computation, thus
computing the distance as just the sequence edit distance. We refer to these two variants of our
approach as DIGS and DIGS+I, respectively, and computed the same effectiveness/efficiency
metrics used for RQ1 and RQ2. Additionally, we assessed the overhead of distance computation
on the number of test executions by reporting the number of tests generated and executed by each
tool/configuration.

Manual POs (RQ4). A developer may develop more accurate POs than those produced by an
automatic technique. Thus, we compared the effectiveness and efficiency of DIG and SUBWEB
when manually defined POs are utilized. We wrote the POs for each subjects following the
rigorous procedure presented in Section 4.5.2 (see RQ1 (Cost)).

To compare automatically vs manually generated POs, we computed the same effectiveness and
efficiency metrics used to answer RQ1 and RQ2, as described above.

83

Table 4.6: Effectiveness, Efficiency and Distance Computation results (Automated POs) for RQ1, RQ2, and RQ3 for all
subjects and approaches. Values in bold indicate statistically significant differences between DIG and SUBWEB. Stars
indicate statistically significant differences between DIGS+I and DIGS. NC indicates non-comparable values since the test
generation terminates before the given time budget.

EFFECTIVENESS EFFICIENCY DISTANCE COMPUTATION

Structural Coverage Faults Structural Coverage Faults Tests Distance

Trans Cov. (%) Branch Cov. (%) Avg Unique (#) Trans AUC (%) Branch AUC (%) AUC (%) Gen. Exec. #

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

E
xt

-C
ra

w
lja

x

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

E
xt

-C
ra

w
lja

x

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

D
IG

S
+

I

D
IG

S

dimeshift 99.4 100.0 98.4 40.5 40.4 40.3 18.8 2.7 3.3 2.5 1.0 97.2 97.2 95.1 36.2 35.9 34.9 50.0 56.2 35.2 NC NC NC NC NC NC NC

pagekit 96.3 97.6 96.3 27.9 27.2 28.0 24.8 1.0 1.1 1.1 0.0 94.5 96.2 93.3 24.6 24.6 26.6 33.0 34.6 41.7 69.5k 7.9k 218 158 218 487k 628k

splittypie 94.0 93.8 91.0 51.9 51.7 50.1 18.6 5.6 6.0 5.6 1.0 91.0 90.7 86.3 47.3 45.8 44.3 84.5 89.6 86.2 11k 11.8k 329 221 236 1,227k 1,398k

phoenix 99.7 99.7 99.2 64.1 62.8 62.5 34.2 3.1 3.5 3.1 0.0 98.1 98.1 94.8 58.0 58.7 55.4 58.1 66.2 47.8 NC NC NC NC NC NC NC

retroboard 100.0 100.0 100.0 71.3 71.7 69.8 51.4 0.0 0.0 0.0 0.0 97.9* 96.1 96.3 69.1 68.7 67.4 0.0 0.0 0.0 NC NC NC NC NC NC NC

PetClinic 100.0 100.0 100.0 85.0 85.0 85.0 0.0 2.5 2.9 2.1 0.0 96.4 95.8 97.3 79.1 75.7 68.7 41.0 45.6 32.5 NC NC NC NC NC NC NC

Average 99.7 98.5 97.5 56.8 56.5 56.0 24.6 2.5 2.8 2.4 0.3 95.9 95.7 93.9 52.4 51.6 49.6 44.4 48.7 40.6 40.2k 15.3k 274 180 197 857k 1,000k

84

4.8.4 Results

Effectiveness (RQ1). Table 4.6 (Effectiveness) compares DIGS+I, DIGS, and SUBWEB in terms
of transition coverage, code coverage and fault detection. Statistical significance of the difference
was assessed by applying the non-parametric Mann-Whitney U test [Kor04], with a confidence
threshold α = 0.05.

Concerning Ext-Crawljax, we do not report comparisons in terms of transition coverage, because
the navigation graph retrieved by the crawler is different from those based on the PO abstraction
that DIG generates. To compare them accurately, one would need to find the isomorphism be-
tween the two navigation graphs, which requires mapping each state and each transition from
one model onto the other—a manual and expensive process. Actually, we performed such map-
ping when we evaluated the search based approach in the previous section (see Section 4.5.2)
and found a substantially higher coverage of SUBWEB w.r.t Ext-Crawljax. For those reasons,
for Ext-Crawljax, we only compare code coverage and fault detection metrics.

Looking at the results, both DIG and SUBWEB outperform Ext-Crawljax substantially. In all
cases the differences are statistically significant (not reported in Table 4.6). As far as effective-
ness is concerned, when automated POs are utilized, DIG and SUBWEB can be considered
comparable test generators, with minimal performance variations. Despite both tools cover al-
most all navigation graphs within the given time budget of 30 minutes, there is however a re-
markable difference. DIG is totally automated, and achieved these results by relying only on
its diversity heuristic. SUBWEB, on the contrary, is semi-automatic, as it takes advantage of
manually-defined guards to guide the search and avoid path infeasibility.

Diversity and search based approaches achieve substantially higher transition coverage, code
coverage and fault detection than the crawling based random approach. Despite being compa-
rably effective, the diversity based approach is preferable because it is fully automated.

Efficiency (RQ2). Table 4.6 (Efficiency) compares DIG and SUBWEB in terms of transition
coverage, code coverage and fault detection achieved over time (AUC metrics). DIG outperforms
SUBWEB by a statistically significant amount in 5/6 subjects for transition and branch coverage.
Regarding fault detection, DIG is significantly better than SUBWEB in 3/5 subjects (retroboard
revealed no faults).

The plot in Figure 4.11 shows a meaningful example regarding the efficiency difference on tran-
sition coverage for Phoenix Trello. DIG reaches the maximum transition coverage after nearly
one third of the total time budget, whereas SUBWEB takes approximately twice as much time.
Moreover, for small time intervals, the effectiveness difference of DIG vs SUBWEB is further
amplified. For instance, the maximum difference between the two algorithms is 22% after 2
minutes (≈6% of the time budget). In practice, this means that DIG is preferable if strict testing
time constraints apply.

85

Figure 4.11: Average efficiency over time in terms of transition coverage of the compared ap-
proaches on Phoenix Trello

.

The diversity based approach achieves high coverage and fault detection rates substantially
faster than the search based approach.

Distance Computation (RQ3). Table 4.6 (Distance Computation) shows the number of test
cases generated and executed by DIG and SUBWEB and the number of distance computations
required by DIGS+I and DIGS (for SUBWEB the number of generated test cases always equals
the executed test cases).

On average, DIG computed a large number of distances (857k by DIGS+I and 1, 000k by DIGS).
Such computations reduce the time available for test case execution. Thus, while SUBWEB
runs on average 274 test cases, DIGS+I and DIGS run an average of 94 and 77 less test cases,
respectively (dimeshift, Phoenix Trello, retroboard and PetClinic are excluded from the analysis

86

Table 4.7: Manually vs Automatically generated POs

PO Size (LOC) # PO Methods

A
po

ge
n

M
an

ua
l

In
cr

(%
)

A
po

ge
n

M
an

ua
l

In
cr

(%
)

dimeshift 511 760 49 35 72 105
pagekit 567 2,030 258 42 214 409
splittypie 492 560 14 31 44 42
Phoenix Trello 324 482 49 24 38 58
retroboard 292 350 20 26 29 11
PetClinic 312 450 44 20 47 135

Average 416 772 72 30 74 127

since they always terminate before 30 minutes, which means that the number of test executions
is not constrained by the time budget).

The number of generated test cases (not necessarily executed) by DIG is substantially higher than
the test cases generated and executed by SUBWEB (e.g., 40.2k and 15.3k vs 274). However,
despite a lower number of test executions, the time spent in distance computation allows DIG
to produce test cases that have a higher chance of increasing coverage and fault detection (see
results for RQ1 and RQ2). This confirms our initial hypothesis that it is possible to assess the
quality of web test cases without executing them, while still achieving high coverage and fault
detection rates.

Let us now compare DIGS+I and DIGS. The extra computational cost associated with the input
distance reduces on average the number of executed test cases by ≈9%. On the other hand, the
increased accuracy of the distance computed by DIGS+I does not bring considerable advantages
in terms of coverage or fault detection (see results for RQ1 and RQ2).

The overhead brought by the distance computation is more than compensated by the benefits in
efficiency and automation. Moreover, the input component of the proposed distance metric can
be discarded with little to no associated penalty.

Manual POs (RQ4). Table 4.8 presents the results obtained when manually defined POs are
utilized for test generation. For all subjects, both tools did not cover the entire navigational
model within the given time budget (30 minutes). This can be explained by the higher number
of methods contained in the manual POs, which model the web applications more accurately, at
the cost of making test generation more challenging.

87

Table 4.8: Effectiveness, Efficiency and Distance Computation results (Manual POs) for RQ4, and RQ3 for all subjects
and approaches. Values in bold indicate statistically significant differences between DIG and SUBWEB. Stars indicate
statistically significant differences between DIGS+I and DIGS.

EFFECTIVENESS EFFICIENCY DISTANCE COMPUTATION

Structural Coverage Faults Structural Coverage Tests Distance

Trans Cov. (%) Branch Cov. (%) Avg Unique (#) Trans AUC (%) Gen. Exec. #

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

E
xt

-C
ra

w
lja

x

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

E
xt

-C
ra

w
lja

x

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

S
U

B
W

E
B

D
IG

S
+

I

D
IG

S

D
IG

S
+

I

D
IG

S

dimeshift 70.8 70.3 67.2 41.7 41.3 40.1 18.8 2.7 3.1 2.8 1.0 67.4 66.9 62.2 31.4k 27.0k 628 541 490 6,015k 7,331k

pagekit 65.0 65.1 61.6 34.5 35.3 33.3 24.9 2.7 2.8 2.7 0.0 60.4 60.6 56.4 9.7k 7.3k 196 146 142 965k 537k

splittypie 74.7 74.4 67.0 51.7 51.4 50.6 18.7 7.0 6.9 6.7 1.0 70.8 70.6 61.4 13.7k 12.5k 275 250 225 1,271k 1,569k

phoenix 72.1 74.6 68.8 63.4 64.4 61.8 34.2 2.8 2.3 1.4 0.0 69.5 72.4* 65.5 16.5k 13.6k 331 272 243 1,482k 1,856k

retroboard 85.9 88.1 85.3 82.2 83.1* 82.3 51.5 0.0 0.0 0.0 0.0 84.0 86.0* 81.5 23.0k 19.8k 462 396 352 3,106k 3,930k

PetClinic 69.2 69.8 65.7 49.1 46.8 44.1 0.0 3.7 3.1 3.0 0.0 66.9 67.2 62.2 12.4k 12.6k 248 253 356 1,544k 1,607k

Average 73.0 73.7 69.3 53.8 53.7 52.0 24.7 3.2 3.0 2.8 0.3 69.8 70.6 64.9 18.7k 15.5k 375 310 283 2,397k 2,805k

88

Table 4.7 shows information about the size, in lines of code (LOC), of the POs of our study,
as well as the number of methods they contain. Methods determine the transitions, hence the
complexity, of the navigation graph. The manually generated POs contain, on average, 72%
more LOC (Column 4) and 127% more transitions (Column 7) than Apogen’s POs.

For 3/6 subjects (namely dimeshift, Phoenix Trello, and PetClinic), we observed no significant
difference between using automated or manual POs in terms of branch coverage and fault detec-
tion (see results of DIG in Table 4.6 and Table 4.8). Overall, when manually defined POs are
available, DIG outperforms SUBWEB with statistical significance in terms of transition cover-
age in all cases, and in 4/6 cases concerning branch coverage.

When using manually-defined POs, the diversity based approach outperforms the search based
approach in terms of structural coverage reached by the generated test suites.

4.8.5 Threats To Validity

Using a limited number of subject systems in our evaluation poses an external validity threat, in
terms of generalizability of our results. We tried to mitigate this threat by choosing six subject
systems developed with real-world JavaScript frameworks and pertaining to different domains,
although more subject systems are needed to fully address the generalization threat.

Threats to internal validity might come from confounding factors of our experiments. We com-
pared all competing algorithms under identical parameter settings (e.g., time budget intervals),
on real-world web applications. The manual PO development task poses a threat to validity that
we tried to mitigate by following a rigorous, systematic procedure. Moreover, the reimplementa-
tion of Atusa’s extraction algorithm constitutes an internal validity threat. However, we followed
the algorithm description reported in the Atusa’s paper [MvD09] for our reimplementation.

Conclusion validity is related to random variations and inappropriate use of statistical tests. To
mitigate these threats, we ran each experiment 15 times and used the non-parametric Mann-
Whitney U test for statistical testing which does not make any assumption about the distribution
of the data.

With respect to reproducibility of our results, the source code of DIG and all subject systems are
available online 5, making the evaluation repeatable and our results reproducible.

5https://github.com/matteobiagiola/FSE19-submission-material-DIG

89

https://github.com/matteobiagiola/FSE19-submission-material-DIG

4.8.6 Discussion

Effectiveness and Automation. By combining POs and test generation, diversity and search
based approaches achieved substantially higher transition coverage, code coverage and fault de-
tection than a state-of-the-art crawling based, PO agnostic approach.

DIG is fully automated while SUBWEB is only semi-automated as manual preconditions need
to be specified. Our results show that DIG can potentially save testers a considerable amount
of time by generating both POs and test cases automatically. If necessary, testers can refine the
generated POs with missing actions or transitions, and repeat the test generation.

Additionally, the test suites generated by our approach are based on the page object design pat-
tern, which brings known advantages in terms of maintainability [LCRT16].

Efficiency. Our efficiency results demonstrate that our diversity based approach is preferable,
especially in settings where the time devoted to testing is strict or when test cases are executed
very often during the development process. Indeed, the diversity based approach achieved high
coverage and fault detection scores substantially earlier than the search based approach, regard-
less of the POs being used. This gives us confidence in the applicability of our technique in
modern software development processes such as XP and DevOps.

Benefits to Feasibility. According to our empirical results, which confirmed the conjecture of
contiguous infeasibility regions, promoting diversity is beneficial not only to a thorough explo-
ration of the application behaviours, but also to the feasibility of automatically generated test
cases. The search based approach, on the contrary, uses the guards in the navigational model ex-
plicitly to guide the search towards inputs that satisfy them. Therefore, DIG achieves feasibility
as a side effect of diversity, while SUBWEB requires manual specification of guards to achieve
feasibility.

Comparison with Manual POs. The POs automatically generated by Apogen are usually sim-
pler than those developed manually, in terms of number and complexity of actions being exposed
for testing. Apogen creates methods based on the actions statically extracted from each test state.
As such, in most cases, the resulting methods may miss complex interactions that are possible
on the web GUI. Additionally, due to a transition minimization strategy, Apogen does not create
reusable components for repeated headers (such as menu bars). Thus, the number of possible
test paths/cases that can be generated by DIG (and SUBWEB) is lower.

Despite such limitations, automated POs are competitive with manual POs in a subset of the
considered applications. An interesting option available to testers could be the refinement of
automatically generated POs, to achieve the same performance of manual POs at a lower de-
velopment cost. Overall, our empirical results show that when high quality POs are available,
our diversity based approach outperforms all other approaches both in terms of effectiveness
(transition and branch coverage) and efficiency (rate at which coverage is reached).

90

Comparison with FeedEx. Te test generation approach implemented by DIG may seem similar
to FeedEx [MFM13] conceptually in which event sequence (path) diversity and DOM structural
diversity are considered for deciding how to explore a given web app. However, FeedEx is not
a test generator but a crawler, hence a direct comparison is not possible. An interesting line
for future work would be to develop a brand new tool that integrates FeedEx to retrieve the
navigation model, and let Atusa or DIG to derive tests from it.

91

Chapter 5

Web Test Dependency Detection

E2E web test suites are prone to test dependencies due to the heterogeneous multi-tiered nature
of modern web applications, which makes it difficult for developers to create isolated program
states for each test case. In fact, in modern web applications the state is often distributed in
multiple layers such as the database, the browser and third party services. Hence, it is difficult
for developers to have the complete control over the state while developing the test cases.

Test dependencies are undesirable in the context of regression testing. In fact, many regression
testing techniques, such as test prioritization [RUCH01], minimization [VSM18, RHVRH02],
selection [HJL+01] and parallelization [Kap16, BKMD15], assume test cases in the given test
suite to be independent. Therefore, such techniques cannot be applied when dependencies among
test cases are unknown, while new formulations of those problems can be devised if dependencies
between tests are explicit (e.g. dependency-aware formulations of test parallelization [BKMD15]
and test prioritization [M+12] were proposed).

Manually detecting dependencies between tests is costly and infeasible in practice and the prob-
lem of automatically finding all possible dependencies in a test suite is NP-complete [ZJW+14].
Therefore, researchers have focused their attention on devising automatic techniques that extract
a subset of those dependencies in a timely manner. In particular, in this thesis, we are interested
in finding those dependencies that need to be respected for the correct execution of the test cases
in the given test suite.

Contribution. Heuristics to automatically extract dependencies in a test suite were developed
for Java programs [ZJW+14, BKMD15, GBZ18]. Essentially, test dependencies are extracted by
detecting, statically or dynamically, read-after-write operations on the shared state between the
tests, which is usually represented by static object fields in Java classes (for instance, the static
variable x can be set, i.e. written, by t1 and later read by t2, which constitutes a read-after-write
dependency over the variable x). Such analysis cannot be easily performed in E2E web test suites
where the state is spread across multiple layers that involve multiple languages and technologies.

92

Table 5.1: Test cases for Phoenix Trello, numbered according to their test execution order.

Test Name Description

t1 addUserTest A new user account is created.
t2 loginUserTest The newly created user logs in to the application.
t3 addBoardTest The admin adds a board to his/her board page.
t4 shareBoardTest The admin shares his/her board with the newly created user.
t5 addMultipleBoardsTest The admin adds multiple boards to his/her board page.
t6 viewAllBoardsTest The admin accesses the menu to view all the boards in his/her board page.

In this thesis, we address the problem of automatically finding dependencies among E2E web
tests. In a nutshell, our approach first extracts an approximated set of dependencies from the
given test suite. It then filters potential false dependencies through natural language processing
of test names. Finally, it validates all dependencies, and uses a novel recovery algorithm to
ensure no true dependencies are missed in the final test dependency graph. Finally, we show that
test dependency graphs extracted by our approach enable test parallelization and we measure the
resulting execution speed-up factor.

5.1 Motivating Example

Ideally, running the tests in a test suite in any order should produce the same outcome [GBZ18].
This means tests should deterministically pass or fail independently from the order in which they
are executed. Each test dynamically alters the state of the program under test in order to assert its
expected behaviour, but in practice, some tests fail to undo their effects on the program’s state af-
ter their execution, which can pollute any shared state [GSHM15] in tests executed subsequently.

In the web domain, testers perform end-to-end (E2E) testing of their applications [BWK05,
FG99] by creating test cases using test automation tools such as Selenium WebDriver. Unlike
unit testing, in which tests target specific class methods, web tests simulate E2E user scenarios,
and therefore the program state that persists across test case executions might be left polluted,
causing test failures if tests are reordered.

Motivating Example. Table 5.1 lists six E2E Selenium WebDriver tests for the Phoenix Trello
web application (see Section 2.2.1.1).

Figure 5.1 shows dependencies between tests t1 and t2. The test case addUserTest navigates
to the sign up form (line 3), fills the appropriate form with the details of the new user to create
(lines 4–15) and it verifies that the user logged in is exactly the one just created (line 16). Finally,
it logs out (line 17).

93

1 @Test
2 public void addUserTest() {
3 driver.findElement(By.xpath("//a[@href="/sign_up"]")).click();
4 driver.findElement(By.xpath("//input[@id="user_first_name"]")).clear();
5 driver.findElement(By.xpath("//input[@id="user_first_name"]")).sendKeys("foo");
6 driver.findElement(By.xpath("//input[@id="user_last_name"]")).clear();
7 driver.findElement(By.xpath("//input[@id="user_last_name"]")).sendKeys("bar");
8 driver.findElement(By.xpath("//input[@id="user_email"]")).clear();
9 driver.findElement(By.xpath("//input[@id="user_email"]")).sendKeys("foo@bar.com");

10 driver.findElement(By.xpath("//input[@id="user_password"]")).clear();
11 driver.findElement(By.xpath("//input[@id="user_password"]")).sendKeys("password");
12 driver.findElement(By.xpath("//input[@id="user_password_confirmation"]")).clear();
13 driver.findElement(By.xpath("//input[@id="user_password_confirmation"]"))
14 .sendKeys("password");
15 driver.findElement(By.xpath("//button[@type="submit"]")).click();
16 assertEquals("foo bar", ←↩

driver.findElement(By.xpath("//a[@class="current-user"]/span[2]")).getText());
17 driver.findElement(By.xpath("(//a[@href="#"])[2]")).click();
18 }
19 @Test
20 public void loginUserTest() {
21 driver.findElement(By.xpath("//input[@id="user_email"]")).clear();
22 driver.findElement(By.xpath("//input[@id="user_email"]")).sendKeys("foo@bar.com");
23 driver.findElement(By.xpath("//input[@id="user_password"]")).clear();
24 driver.findElement(By.xpath("//input[@id="user_password"]")).sendKeys("password");
25 driver.findElement(By.xpath("//button[@type="submit"]")).click();
26 assertEquals("foo bar", ←↩

driver.findElement(By.xpath("//a[@class="current-user"]/span[2]")).getText());
27 driver.findElement(By.xpath("(//a[@href="#"])[2]")).click();
28 }

Figure 5.1: Two dependent E2E web tests for the Phoenix Trello web application. Potential
dependencies due to shared input data are highlighted.

The execution of addUserTest modifies the state of the web application, which is used by
the subsequent test loginUserTest to login with the same credentials (foo@bar.com,
password) created by addUserTest (lines 21–25). Thus, the shared input data (foo@bar.com,
password, foo, bar) might reveal a potential dependency between the tests (see highlighted
inputs in Figure 5.1).

To make these two tests independent and avoid polluted program states, a tester, for instance,
should (1) delete the user foo, bar created in addUserTest, to clean the polluted program
state, and (2) re-create the same user (or a different one) in loginUserTest.

In practice, however, testers re-use states created by preceding tests to avoid test redundancy,
higher test maintenance cost and increased test execution time [LCRT16]. In doing so, they
also enforce pre-defined test execution orders, which in turn inhibit utilizing test optimization
techniques such as test prioritization [RUCH01].

94

t1
 addUserTest

t2
 loginUserTestt3

addBoardTest

t4
shareBoardTest

t5
addMultipleBoardsTest

t6
viewAllBoardsTest

Figure 5.2: Test depencency graph for the test suite of Table 5.1. Solid edges represent manifest
dependencies, namely, dependencies that result in a different outcome if unrespected.

Test Dependency Graph. Dependencies occurring between tests can be represented in a test
dependency graph (TDG) [GBZ18], as presented in Section 2.2.2. Figure 5.2 illustrates the
actual test dependency graph (TDG) for the test suite of Table 5.1

In order to be useful, TDG should contain all manifest dependencies, i.e., dependencies that do
cause tests to fail if violated, while retaining the minimum number (or none) of false dependen-
cies. One possible application of a TDG that contains only manifest dependencies is test suite
parallelization. For instance, if we traverse the graph of Figure 5.2 and extract the subgraphs
reachable from each node with zero out-degree (in our example there are three nodes, namely
addUserTest, addBoardTest and addMultipleBoardsTest) we can identify sub-
sets of tests that can be be executed in parallel with the others. In our example, three parallel test
suites are possible: { 〈t1, t2〉, 〈t1, t3, t4〉, 〈t5, t6〉 }.

5.2 Approach

The goal of our approach is to automatically detect the occurrence of dependencies among web
tests. Detecting dependencies in E2E web tests is particularly challenging due to the stack of
programming languages and technologies involved in the construction of modern web applica-

95

t1 t2 t3
t4 t5 t6

test suite
with order

t1
t2

t3

t4

t5

t6

1

Dependency Graph Extraction

t1
t2

t3

t4

t5

t6

2

Filtering

t1
t2

t3

t4

t5

t6

3

Dependency Validation & Recovery

+

Disconnected Dependency
Recovery

+
t1

t2

t3

t4

t5

t6

4

Figure 5.3: Our overall approach for web test dependency detection, validation and recovery.

tions, e.g., HTML, CSS, JavaScript on the client side; PHP, Java or JavaScript on the server-side,
and back-end layers through Restful APIs or databases.

Our insight is that by analyzing the input data used in test cases (highlighted in Figure 5.1), we
can obtain clues about potential test dependencies caused by shared polluted states. For example,
the input string password used at line 11 in addUserTest is a write operation of persistent
data. The same input string is used at line 24 in loginUserTest as a read operation of
persistent data. We conjecture that such read-after-write connections on persistent data could
indicate potential test dependencies. Given this insight, our approach focuses on read-after-write
relationships on persistent data, defined as follows.

Definition 6 (Persistent Read-After-Write (PRAW) Dependency) Two test cases t1 and t2 ex-
ecuted in this order in the original test suite are subject to a PRAW dependency if t1 performs an
operation that writes some information Si into the persistent state of the web application and t2
performs an operation that reads Si from the persistent state of the web application.

96

Examples of the write operations in t1 include creating, updating or deleting a record in a
database, or creating a DOM element on the webpage. Examples of read operations in t2 are
reading the same record from the database, or accessing the newly created DOM element on the
webpage.

Figure 5.3 illustrates our overall approach, which requires a web test suite as input, along with a
predefined test execution order. Overall, our approach ¶ computes an initial approximated test
dependency graph, · filters out potential false dependencies, ¸ dynamically validates all depen-
dencies in the graph while recovering any missing dependencies, and, finally, ¹ handles missing
dependencies affecting independent nodes possibly resulting from the previous validation step.

Next, we describe each step of our approach.

5.2.1 Dependency Graph Extraction

In the first step, from the input test suite, our approach computes an initial test dependency graph
representing an approximated set of candidate dependencies. This can be conducted in different
ways, as described below.

5.2.1.1 Original Order Graph Extraction

A baseline approach consists of connecting all pairwise combinations of tests according to the
original order. This results in a directed graph in which every pair of distinct nodes is connected
by a unique pair of edges, so as to establish a dependency relation between each test and all the
others that are executed before it. If n is the number of test cases in the test suite, the graph
contains n(n−1)

2
edges (e.g., dependencies).

Since the time to validate a dependency graph increases with the number of dependencies in
the graph, heuristics can be used to reduce the size of the graph by removing edges that are
less likely to be manifest dependencies. To that end, we propose an approach that leverages a
fast static string analysis of the input data present in the tests, to construct a smaller initial test
dependency graph.

5.2.1.2 Sub-Use String Analysis Graph Extraction

Algorithm 4 describes our dependency graph extraction based on sub-use-chain relations. A
sub-use relation consists of a submission (sub) of input data i and all the following uses of such
submitted value i.

97

Algorithm 4: Sub-use string analysis graph extraction
Input : To: test suite in its original order o, I: set of input-submitting actions
Output: TDG: test dependency graph with candidate dependencies to be validated

1 TDG← ∅
2 Ta← To . tests to analyze
3 foreach t in To do
4 S ← GETINPUTVALUES(t, I) . S is the set of input values submitted by t
5 Ta← Ta − {t}
6 foreach tf in Ta do
7 U ← FINDUSEDVALUES(tf) ∩ W . U is the set of input values used by tf
8 if U 6= ∅ then
9 depToAdd← (tf

U−→ t) . candidate manifest dependency
10 TDG← TDG ∪ { depToAdd }
11 end
12 end
13 end

Starting from the first test case according to the original test suite order, Algorithm 4 first retrieves
the set S of input values submitted by the test, like values inserted into input fields by input-
submitting actions such as the sendKeys methods (line 4).

Second, the algorithm considers each test case tf following t and searches for any input value
in the set S, which is used in any statement of the current test case tf (line 7), and adds them to
the set of used values U . If at least one string value is found (i.e., a sub-use chain), a candidate
PRAW dependency between t and tf is created by adding the edge tf → t, labelled with each
retrieved string value (line 9), to the test dependency graph (line 10).

The internal loop of Algorithm 4 (lines 6–12) searches for the input values indistinctly in any test
action because in web tests there is no clear distinction between read and write statements. For
instance, in Figure 5.1, the sendKeys action at line 9 is used to write persistent information into
the application (e.g., in a database). However, the same sendKeys action, at line 22, identifies
an action with a read connotation, because the string value foo@bar.com is used to verify that
a specific persistent information (e.g. the email of a user) is present in the web application.

Let us consider the source code of the two test cases in Figure 5.1, namely addUserTest
and loginUserTest. From the first test addUserTest, the algorithm extracts the set S =
{foo, bar, foo@bar.com, password} because sendKeys is the only input-submitting
action. Then, the string values in S are looked up in the subsequent test loginUserTest,
producing the set of used values U = {foo@bar.com, password, foo, bar}. Being U
not empty, the algorithm creates a candidate test dependency between loginUserTest and
addUserTest.

98

5.2.2 Filtering

The second step of our approach applies a filtering process to remove potential false PRAW
dependencies. The filtering is performed to speed up the subsequent validation step, which
requires in-browser test execution, and therefore can be computationally expensive for graphs
with numerous candidate test dependencies. Finding an effective filtering technique is, however,
challenging. A loose filter might remove few false dependencies, whereas a strict filter might
mistakenly remove manifest dependencies, which would need to be recovered at a later stage.

In this work, we propose two novel test dependency filtering techniques based on (1) dependency-
free values, and (2) Natural Language Processing (NLP).

5.2.2.1 Dependency-free String Value Filtering

We analyze the frequency of string input values used in the test suite to filter potentially false
PRAW dependencies.

Let us consider the test dependency graph depicted in Figure 5.4, obtained by applying our
sub-use string analysis graph extraction (Section 5.2.1.2) to the motivating example test suite
(Section 5.1).

The set of dependencies {t5 → t3, t5 → t4, t6 → t3} represents instances of false candidate
PRAW dependencies. The edges between these test cases are only due to the same login in-
put data used by the tests—i.e., john@phoenix-trello.com, 12345678—a default user
created during the installation, for which no test case must be executed to create it.

Existing techniques [ZJW+14, GBZ18] refer to such cases as dependency-free values, i.e., if the
test dependency graph includes dependencies that are shared across multiple (or all) test cases,
these likely-false dependencies could be filtered out.

However, in principle, these assumptions might not hold in all cases, as occurrence frequency
alone is not conclusive for safe filtering. Our dependency-free string value filtering computes
a ranked list of frequently occurring strings and asks the developer to either confirm or discard
them (if a string value occurs in all test cases, the corresponding dependency is automatically
filtered).

In our example of Figure 5.4, our approach computes the frequencies of all strings, presents
it to the the tester, who, for instance, may decide to filter the dependencies due to the john@
phoenix-trello.com, 12345678 pair of strings, hence removing t5 → t3, t5 → t4, t6 →
t3 (it can be noticed that the dependency t4 → t3 is not filtered because such dependency is also
due to the string value myproject which is not a dependency-free value).

99

t1
 addUserTest

t2
 loginUserTest

t3
addBoardTest

t4
shareBoardTest

t5
addMultipleBoardsTest

t6
viewAllBoardsTest

foo@bar.com
password

foo@bar.com

foo@bar.com

john@phoenix-trello.com
12345678

john@phoenix-trello.com
12345678
project_1
project_2

john@phoenix-trello.com
12345678

john@phoenix-trello.com
12345678

john@phoenix-trello.com
12345678

john@phoenix-trello.com
12345678
myproject

Figure 5.4: Dependency-free string-based PRAW filtering. Solid black edges represent manifest
dependencies whereas dashed red edges represent false dependencies.

5.2.2.2 NLP-based Filtering

Developers often use descriptive patterns for test case names, which summarize the operations
performed by each test. Giving a descriptive name to a test case has several advantages such
as enhanced readability (i.e., it becomes easier to understand what behaviour is being tested)
and debugging (i.e., when a test case fails, it is easier to identify the broken functionality). For
instance, Google recommends test naming conventions [Goo19, Goo14] in which unit tests need
to be named with the method being tested (a verb or a verb phrase, e.g., pop) and the application
state in which the specific method is tested (e.g., EmptyStack). For behaviour-based tests
such as E2E tests [Goo14], the guidelines propose a naming convention that includes the test
scenario (e.g., invalidLogin) and the expected outcome (e.g., lockOutUser).

Therefore, our second filtering mechanism consists of using Natural Language Processing (NLP)
to analyze test case names and classify them into two classes, namely, read or write. Then,
based on such classification, non-PRAW dependencies, such as a “read” test being dependent on
another “read” test, are discarded from the test dependency graph.

100

Our approach uses a Part-Of-Speech tagger (POS) to classify each token (i.e., word) in a tok-
enized test name as noun, verb, adjective, or adverb. In particular, our approach uses the verb
from the test case name as the part of speech that conveys the nature of the test operation, and uses
it to classify each test into read or write classes. Our approach relies on two groups of standard-
ized R/W verbs, namely CRUD operations—Create, Read, Update and Delete) [CRU19]—in
which the Read operation is pre-classified as read whereas the other three are pre-classified as
write.

Our approach uses POS to extract the first verb from each test name and then computes the
semantic similarity [PPM04] (specifically, the WUP metrics [WP94]) between the extracted verb
and each verb in the pre-classified read/write groups. The similarity score quantifies how much
two concepts are alike, based on information contained in the is–a hierarchy of WordNet [Mil95]
(for example, an automobile might be considered more like a boat than a tree, if automobile and
boat share vehicle as a common ancestor in an is–a hierarchy). After computing all similarity
scores, our approach classifies the extracted verb to the group having the maximum similarity
score. In case of ties (e.g., the verb has the same similarity score for both the read and write
classes), or in case no verbs are found, our approach does not perform any assignment and the
dependency is not filtered. Our classification of read/write verbs achieved a precision of 80%
and a recall of 94% on our experimental subjects.

In this work, we propose and evaluate three NLP configurations.

Verb only (NLP Verb). Our first NLP filtering configuration considers only the verb of the
test case name. Given a dependency ty → tx, our approach extracts the verb from both ty
and tx, and classifies them either as read or write. Then, it filters (1) the read-after-read (RaR)
dependencies, in which both ty and tx have verbs classified as read, and (2) the write-after-read
(WaR) dependencies, where ty has a write-classified verb whereas tx has a read-classified verb.
All other types of dependencies, such as read-after-write (RaW) and WaW (write operations in
web applications often involve also reading existing data), are retained.

The dependency shareBoardTest→ loginUserTest (Figure 5.4) is filtered because it is
classified as WaR, with login being the read-classified verb. Conversely, the edge loginUserTest
→ addUserTest is retained since it is classified as RaW, being login and add the read/write
verbs, respectively. The word Test is considered a stop word and removed before the NLP anal-
ysis starts.

Verb and direct object (NLP Dobj). The second configuration considers the direct object the
verb refers to. Given a set of test cases, our approach uses a dependency parser to analyze the
grammatical structure of a sentence, extract the direct object from each test name, and construct
a set of “dobject” dependencies.

RaR and WaR dependencies are filtered as described in the previous NLP Verb case. Differently,
RaW and WaW dependencies are filtered only if the direct objects of two verbs appearing in two
tests ty and tx are different. The intuition is that the two tests may perform actions on different

101

persistent entities of the web application, if the involved direct objects in the test names are dif-
ferent. For example, the WaW dependency addListToBoardTest→ shareBoardTest
is filtered because the two involved direct objects, List and Board, are different.

Verb and nouns (NLP NOUN). Our third configuration takes into account all entities of type
noun contained in the test names. When the test name includes multiple, different entities, an-
alyzing only the direct object may not be enough to make a safe choice. For instance, in our
running example Phoenix Trello, the analysis of the direct object would erroneously filter the
manifest dependency addListToBoardTest→ addBoardTest, because it is a WaW and
the two direct objects List and Board are different. However, there is an implicit relation
between the direct object List and the Board object it refers to. Thus, the dependency with
addBoardTest should be retained.

Again, RaR and WaR dependencies are filtered as described in the NLP Verb case. Here, RaW
and WaW dependencies are filtered only if the two tests involved in a dependency have no noun
in common. As such, the manifest dependency addListToBoardTest→ addBoardTest
would not be filtered in this configuration, because of the shared name Board.

5.2.3 Dependency Validation and Recovery

Given a test dependency graph TDG, the overall dynamic dependency validation procedure
works according to the iterative process proposed by Gambi et al. [GBZ18]. The approach
executes the tests according to the original order to store the expected outcome. Next, it selects
a target dependency according to a source-first strategy in which tests that are executed later in
the original test suite are selected first (i.e., t3 → t2 would be selected before t2 → t1).

To validate the target dependency, tests are executed out of order, i.e., a test schedule in which
the target dependency is inverted is computed and executed. If the result of the test execution
differs from the expected outcome, the target dependency is marked as manifest, because the
failure is due to the inversion. Otherwise, the target dependency is removed from TDG. The
process iterates until all dependencies are either removed or marked as manifest.

The dynamic validation procedure described above works correctly under the assumption that
the initial TDG contains all manifest dependencies (as the original order graph Section 5.2.1.1).
In our approach, the filtering techniques applied in the previous step may be not conservative.
Therefore, differently from existing techniques [GBZ18], our approach features a dynamic de-
pendency recovery mechanism that retrieves all missing dependencies. To the best of our knowl-
edge, this is the first dependency validation algorithm that also includes dynamic dependency
recovery.

102

Algorithm 5: Recovery algorithm
Input : To: test suite in its original order o

TDG: test dependency graph
targetDep: dependency selected for validation
expResults: results of executing To
execResults: results of a test schedule in which targetDep is inverted

Output : TDG: updated test dependency graph with missing dependencies recovered
Require: expResults 6= execResults, i.e., targetDep is manifest

1 schedule← COMPUTETESTSCHEDULEWITHNOINVERSION(TDG, targetDep)
2 execResults← EXECUTETESTSCHEDULE(schedule)
3 failedTest← GETFIRSTFAILEDTEST(expResults, execResults)
4 if failedTest 6= null then
5 /* Failure due to a missing dependency; get all tests before failedTest. */
6 depCandidates← GETDEPCANDIDATES(To, schedule)
7 foreach depCandidate ∈ depCandidates do
8 depToAdd← 〈 failedTest→ depCandidate 〉
9 TDG← TDG ∪ {depToAdd}

10 end
11 end

Recovering Missing Dependencies. Algorithm 5 takes a partially-validated TDG. For each
failing test schedule in which a target dependency is inverted, it checks whether the failure is due
to a missing dependency in the dependency graph.

More specifically, Algorithm 5 takes the target dependency and computes a schedule in which
the target dependency is not inverted (line 1). If the execution of such schedule complies with
the expected outcome, our approach considers the test failure due to the dependency inversion
and marks the dependency as a manifest. On the contrary, if one or more tests fail also in the
schedule without inversion (line 4), our approach assumes that one or more dependencies are
missing and need to be recovered.

To do so, the algorithm takes the first failing test and retrieves the preceding test cases that were
not executed in the schedule (line 6). Those tests are all candidate manifest dependencies for the
failed test. The algorithm connects the failed test case with each such preceding test and adds
those dependencies to the graph (lines 8–9). The graph obtained this way contains all newly
added candidate manifest dependencies that still need to be validated.

Let us take as example Figure 5.5.A, in which t4 has a missing manifest dependency on t2, and
t3 does not modify the application state. According to the source-first strategy, the validation
selects the dependency t4 → t3 . The schedule computed for such dependencies is 〈t4〉, in which
t4 fails because t2 is not executed. Then, our algorithm starts retrieving the missing dependency
by computing a schedule in which t4 → t3 is not inverted, 〈t3, t4〉, in which t4 fails again for the

103

A

t3

t4

t1

t2

D

t3

t4

t1

t2

B

t3

t4

t1

t2

+
+

C

t3

t4

t1

t2

Figure 5.5: Recovery of missing dependencies. (A) t4 → t3 is selected, t4 fails because t4 → t2
is missing. (B) recovery procedure adds candidate dependencies. (C) dependency validation.
(D) final TDG.

same reason. The recovery procedure concludes that there is at least one missing dependency,
and connects t4 with both t1 and t2 (Figure 5.5.B), i.e., the only candidate manifest dependencies.

In Figure 5.5.C the dependency t4 → t3 is selected again. This time, the computed schedule
is 〈t1, t2, t4〉, in which none of the tests fail. Therefore, the dependency is marked as false and
removed. The next selected dependency is t4 → t2, for which the schedule 〈t1, t4〉 is computed.
The test t4 fails because t2 is not executed. To check if the failure is due to a missing dependency,
our algorithm computes the test schedule 〈t1, t2, t4〉, in which none of the tests fail. Our algorithm
concludes that t4 → t2 is a manifest dependency and recovers it. The validation iterates over the
other dependencies in the same way and outputs the final TDG (Figure 5.5.D), where the initially
missing dependency (t4 → t1) has been recovered.

5.2.4 Disconnected Dependency Recovery

The previous validation step ¸ can produce disconnected components in the TDG. Missing
dependencies involving tests in disconnected components require a separate treatment. Two
cases can occur: (1) tests with no outgoing edges (zero out-degree),1 and (2) isolated tests, i.e.,
tests having neither incoming nor outgoing edges (zero in- and out-degree).

The former case occurs when a false dependency, removed during the validation, shadows a
missing dependency. In such cases, disconnected components of TDG, including potentially
missing dependencies, are created as a result of the validation.

Figure 5.6.A illustrates an example: the manifest dependency t4 → t1 is missing in the initial
dependency graph. Let us suppose that t3 does not change the state of the application when
executed, and therefore, its execution does not influence the execution of any other successive
test in the original order. The algorithm selects first the dependency t4 → t3, it produces the

1First test t1 excluded

104

A

t3

t4

t1

t2

D

t3

t4

t1

t2

E

t3

t4

t1

t2

C

t3

t4

t1

t2 +
+

+
B

t3

t4

t1

t2

Figure 5.6: Disconnected dependency recovery. (A) dependencies are validated; t3 → t1 shad-
ows the missing dependency t4 → t1. (B) t4 and t2 fail because of missing dependencies.
(C) recovery procedure adds candidate dependencies. (D) dependencies are validated. (E) final
TDG.

schedule 〈t4〉, in which the test fails since t1 is not executed. Our approach checks if the failure is
due to a missing dependency. When the dependency is not inverted, the computed schedule is 〈t1,
t3, t4〉, in which none of the tests fail. Hence, our algorithm concludes that t4 → t3 is a manifest
dependency and no dependency recovery takes place. In the next step, the algorithm validates
the dependency t3 → t1, which is removed because t3 can execute successfully without t1. The
dependency graph produced by dependency validation algorithm is illustrated in Figure 5.6.B.
In the isolated subgraph t4 → t3 the schedule 〈t3,t4〉 results in a failure of t4. Indeed, the
dependency t4 → t1 was not captured by the recovery algorithm because the false dependency
t3 → t1 shadowed the absence of the manifest dependency t4 → t1.

Figure 5.6.A also illustrates how our approach handles isolated tests. In this example, t2 is an
isolated node. Let us suppose that t2 has a manifest dependency on t1 (t2 → t1), which is
missing in the initial TDG because it is either not captured, or because it is wrongly filtered
out in the second step of our approach. Therefore, the validation step would produce the TDG
shown in Figure 5.6.B, in which there is no chance to check whether t2 executes successfully in
isolation. In fact, t2 is not part of any test schedule that can be generated from TDG, regardless
of any possible dependency inversion. For this reason, a further recovery step is required once
the validation is completed.

Algorithm 6 handles the recovery of missing dependencies within disconnected components.
The algorithm retrieves all isolated nodes and zero out-degree nodes (line 3) and executes each of
them in isolation (line 5). For each failing test, the algorithm connects it with all preceding tests
according to the initial test suite order (line 8). Otherwise, if a test is not isolated and executes
successfully (line 9), the algorithm takes all schedules that contain that test and execute them
(lines 12–18). If a test in those schedules fails, the algorithm connects it with all the preceding
ones (line 16).

105

Algorithm 6: Disconnected dependency recovery algorithm
Input : To: test suite in its original order o

TDG: test dependency graph
Output: TDG: updated test dependency graph with missing dependencies recovered

1 expResults← EXECUTETESTSUITE(To)
2 /* Get isolated nodes and nodes with no outgoing edges. */
3 disconnectedTests← GETDISCONNECTEDTESTS(TDG)
4 foreach disconnectedTest in disconnectedTests do
5 execResults← EXECUTETESTINISOLATION(disconnectedTest)
6 failedTest← GETFAILEDTEST(expResults, execResults)
7 if failedTest 6= null then
8 TDG← CONNECTWITHPRECEDINGTESTS(failedTest, TDG, To)
9 else if ISNOTISOLATED(disconnectedTest) then

10 /* Out-degree = 0; in-degree > 0. */
11 schedules← COMPUTESCHEDULES(disconnectedTest, TDG)
12 foreach schedule ∈ schedules do
13 execResults← EXEC(schedule)
14 failedTest← GETFAILEDTEST(expResults, execResults)
15 if failedTest 6= null then
16 TDG← CONNECTWITHPRECEDINGTESTS(failedTest,TDG, To)
17 end
18 end
19 end
20 end

Finally, for each dependency found and added to TDG during the disconnected dependency
recovery step, the dependency validation procedure must be re-executed.

Given the graph in Figure 5.6.B, Algorithm 6 executes t2 in isolation, which fails, thus the de-
pendency t2 → t1 is added. Moreover, in Figure 5.6.B, there is only one schedule that involves
t3, namely 〈t3,t4〉. In this schedule t4 fails, hence our approach adds the dependencies t4 → t2
and t4 → t1 (Figure 5.6.C). Next, the added dependencies are validated (Figure 5.6.D), and the
final graph is produced, where all initially missing manifest dependencies have been successfully
recovered (Figure 5.6.E).

To conclude, our validation and recovery algorithms make sure that (1) newly added dependen-
cies are themselves validated, (2) false dependencies are removed in the final TDG. Indeed,
a node in the final TDG can be either (i) connected (i.e., in-degree ≥ 0 and out-degree > 0),
(ii) without outgoing edges (i.e., in-degree > 0 and out-degree = 0) or (iii) isolated (i.e., in-
degree = out-degree = 0).

106

5.2.5 Implementation

We implemented our approach in a Java tool called TEDD (Test Dependency Detector), which
is available 2. The tool supports Selenium WebDriver web test suites written in Java. TEDD
expects as input the path to a test suite and performs the string analysis by parsing the source
code of the tests by using Spoon (version 6.0.0) [PMP+15]. Our NLP module adopts algorithms
available in the open-source library CoreNLP (version 3.9.2) [Cor19]. The output of TEDD is a
list of manifest dependencies extracted from the final validated TDG.

5.3 Empirical Evaluation

We conducted an empirical study to answer the following research questions:

RQ1 (effectiveness): How effective is TEDD at filtering false dependencies without missing
dependencies to be recovered?

RQ2 (performance): What is the overhead of running TEDD? What is the runtime saving
achieved by TEDD with respect to validating complete test dependency graphs?

RQ3 (parallel test execution): What is the execution time speed-up of the test suites parallelized
from the test dependency graphs computed by TEDD?

2https://github.com/matteobiagiola/FSE19-submission-material-TEDD

Table 5.2: Subject systems and their test suites

WEB APP TEST SUITES

Version LOC # LOC (Avg/Tot)

Claroline 1.11.10 352,537 40 46/1,822
AddressBook 8.0.0 16,298 27 49/1,325
PPMA 0.6.0 575,976 23 54/1,232
Collabtive 3.1 264,642 40 48/1,935
MRBS 1.4.9 34,486 22 51/1,114
MantisBT 1.1.8 141,607 41 43/1,748

Total 866,995 196 47/9,176

107

5.3.1 Subject Systems

We selected six open-source web applications used in previous web testing research [LCRT13].
Each subject comes with one JUnit 4 test suite containing between 22-41 Selenium test cases;
a JUnit test runner class specifies the tests order provided by the developer. Table 5.2 lists our
subject systems, including their names, version, size in terms of lines of code, number of test
cases, and the total number of lines of test code counted with cloc 3.

5.3.2 Procedure and Metrics

5.3.2.1 Procedure

We manually fixed any flakiness of the test cases of the subject test suites by adding delays
where appropriate and we executed each test suite 30 times to ensure that identical outcomes
are obtained across all executions. Moreover, at every schedule, we reset the state of the web
application under test, both client and server side. This way each test dependency, checked in a
schedule, is not affected by the execution of tests in previous schedules.

To form a baseline for comparison, we applied dependency validation to the dependency graph
obtained from the original order of each test suite (Section 5.2.1.1). Essentially, our baseline
approach represents the execution of Pradet’s [GBZ18] heuristics on the TDGs obtained from
the original test suites.

For each test suite, we ran different configurations of TEDD, by combining each admissible con-
figuration of graph extraction and filtering technique. The first evaluated configuration is String
Analysis (SA), in which the dependency graph is obtained through sub-use chain extraction (Sec-
tion 5.2.1.2) and filtered from the dependency-free values (Section 5.2.2). Then, we evaluated
three configurations in which we applied the three proposed NLP filters (NLP-Verb, NLP-Dobj,
NLP-Noun) both to the graph from the original order as well as to the graph obtained with SA.

Finally, given the validated dependency graph obtained in each configuration, we generated all
possible parallel test schedules automatically, by traversing the final validated TDG from de-
pendents to dependees, until all tests are included. Each parallelized test suite was executed
sequentially.

5.3.2.2 Metrics

To assess effectiveness (RQ1), for each configuration we measured the number of false depen-
dencies removed by TEDD as well as the number of manifest dependencies that are missing and

3https://github.com/AlDanial/cloc

108

https://github.com/AlDanial/cloc

need to be recovered. The number of false dependencies is obtained by subtracting the num-
ber of manifest dependencies retrieved at the end of the recovery step from the total number of
dependencies in the initial graph.

We evaluated performance (RQ2) by comparing the execution time (in minutes) of each config-
uration of TEDD with respect to the baseline approach.

Concerning parallelization (RQ3), we measured the speed-up factor of the parallelizable test
suites with respect to the original test suite running time. We considered two speed-up scenarios.
(1) average case, in which we measured the ratio between the original test suite running time
and the average running time of the parallelizable test suites, and (2) worst case, in which we
measured the speed-up ratio between the original test suite running time and the parallelizable
test suite having the highest runtime.

5.3.3 Results

Effectiveness (RQ1). For each configuration of TEDD, Table 5.3 (Effectiveness) shows the
number of extracted dependencies starting from the initial test suite (Figure 5.3, step ¶) and
the number of filtered dependencies (Figure 5.3, step ·). It also reports information about the
validation and recovery steps, specifically the number of false dependencies detected, the number
of dependencies recovered and those recovered from the disconnected components. The final
number (Column 8) shows the number of dependencies in the final TDGs, all of which are
manifest PRAW dependencies.

Across all apps, the baseline approach validated on average 536 dependencies, of which 504 were
deemed as false, and 32 as manifest. The most conservative among TEDD’s configurations is
NLP-Verb (Original Order), which validated overall 416 dependencies, of which 384 were false
(24% less than the baseline) and detected 32 manifest dependencies without filtering/recovering
any. The least conservative configuration of TEDD is NLP-Noun (String Analysis) which re-
tained only 143 dependencies on average from the initial graphs, of which 110 were detected as
false, five dependencies had to be recovered, leading to the final number of 33 manifest depen-
dencies. Overall, the number of missing dependencies due to filtering and recovered in steps ¸
¹ is very low (1% of the initial number of dependencies).

TEDD does not ensure having minimal test dependency graphs, meaning that the final depen-
dency graphs produced by TEDD can contain false positives (dependencies that are not manifest
and could be filtered). Therefore, the number of manifest dependencies retrieved by each con-
figuration is slightly different, between 32 and 34 (Column Total PRAW). However, these differ-
ences do not affect the executability of the schedules that respect the dependencies (see results
for RQ3).

109

Table 5.3: Effectiveness (RQ1), Performance (RQ2) and Parallelization (RQ3) average results across all subject test suites. Results for each
subject test suite are available at https://github.com/matteobiagiola/FSE19-submission-material-TEDD/blob/
master/supplementary-material.pdf

EFFECTIVENESS PERFORMANCE PARALLELIZATION

Manifest Deps. Validation Speed-up (%)

E
xt

ra
ct

ed

Fi
lte

re
d

To
V

al
id

at
e

Fa
ls

e

V
al

id
at

ed

R
ec

ov
er

ed

R
ec

ov
er

ed
(D

is
c.

)
To

ta
lP

R
A

W

E
xt

ra
ct

io
n

Fi
lte

ri
ng

V
al

.a
nd

R
ec

ov
er

y

R
ec

ov
er

y
(D

is
c.

)

To
ta

l

Sa
vi

ng
(%

)

Sc
he

du
le

s
(#

)

W
or

st
-c

as
e

A
ve

ra
ge

Baseline (Original Order) 536 - 536 504 32 0 0 32 0.00† - 424.7∗ - 424.70 - 30 2.2× 7.1×
String Analysis 494 393 101 69 21 10 1 32 0.10 0.00 162.02 5.21 167.33 61% 30 2.4× 7.1×
NLP-Verb (Original Order) 535 119 416 384 32 0 0 32 0.00† 0.04 307.20 1.27 308.51 27% 30 2.2× 7.1×
NLP-Verb (String Analysis) 494 113 381 348 32 1 0 33 0.09 0.04 281.10 1.28 282.50 33% 30 2.2× 7.1×
NLP-Dobj (Original Order) 536 362 174 140 27 6 1 34 0.00† 0.24 134.90 3.46 138.60 67% 29 2.1× 6.7×
NLP-Dobj (String Analysis) 494 343 151 117 27 5 2 34 0.09 0.23 129.20 9.10 138.62 67% 29 2.1× 6.7×
NLP-Noun (Original Order) 536 364 172 140 28 3 1 32 0.00† 0.05 123.30 2.52 125.87 70% 29 2.1× 6.7×
NLP-Noun (String Analysis) 494 351 143 110 28 4 1 33 0.08 0.04 116.10 4.08 120.30 72% 29 2.1× 6.8×
∗ only validation, no within-recovery. † execution time < 0.01 minutes (0.6 seconds).

110

https://github.com/matteobiagiola/FSE19-submission-material-TEDD/blob/master/supplementary-material.pdf
https://github.com/matteobiagiola/FSE19-submission-material-TEDD/blob/master/supplementary-material.pdf

R
em

ai
ni

ng
 F

al
se

 D
ep

en
de

nc
ie

s

0

0.14

0.28

0.42

0.56

0.7

Filtered Manifest Dependencies (Recovered)
0 0.1 0.2 0.3 0.4 0.5

Baseline (Original Order)
String Analysis
NLP-Verb (Original Order)
NLP-Verb (String Analysis)
NLP-Dobj (Original Order)
NLP-Dobj (String Analysis)
NLP-Noun (Original Order)
NLP-Noun (String Analysis)

Figure 5.7: Pareto front

Figure 5.7 shows the Pareto front plotting the ratio between false and missing (or filtered man-
ifest) dependencies, for each configuration. The Pareto front is used to represent the solutions
of a multi-objective optimization problem [ES+03] where two or more conflicting objectives are
optimized. In this work the two conflicting objectives to minimize are the number of remaining
false dependencies after the filtering step and the number of filtered manifest dependencies (to
be recovered) after the filtering step. In Figure 5.7 each point represents the average 〈missing,
false〉 values across all subjects, normalized over the respective maximum values. This essen-
tially shows the tradeoff between the false dependencies remaining after the filtering step and
the missing dependencies to be recovered. The blacked dotted line in Figure 5.7 is the Pareto
front which is a set of non-dominated solutions to the optimization problem. On the other hand,
a solution x1 is referred to as dominated by another solution x2 if, and only if, x2 is equally
good or better than x1 with respect to all objectives. For instance, the solution/configuration
NLP-Verb (Original Order) (yellow circle in Figure 5.7) dominates the solution/configuration
Baseline (Original Order) (empty blue circle in Figure 5.7) because NLP-Verb (Original Order)
has a lower value (i.e. it is better) than the Baseline (Original Order) configuration with respect
to the number of false dependencies objective.

From the analysis of the Pareto front, we can see that the non-dominated configurations are those
based on NLP-Verb, NLP-Noun and String Analysis (SA). The baseline approach (Baseline) has
the highest number of false dependencies (536 on average) and no missing dependencies. On
the contrary, SA filters many dependencies (393 on average) but has the highest number of miss-
ing/recovered dependencies (11 on average). Interestingly, NLP-Verb (Original Order) does not

111

miss any manifest dependency but has more false dependencies compared to the other NLP-based
configurations. Configurations NLP-Dobj (both SA and Original Order) and NLP-Noun (both
SA and Original Order) are comparable regarding the number of false dependencies remaining
after filtering. However, NLP-Noun (SA and Original Order) needs to recover substantially less
manifest dependencies. Indeed, NLP-Noun dominates NLP-Dobj, while both NLP-Noun (SA
and Original Order) configurations are on the non-dominated front, being both optimally placed
in the lower-left quadrant of the Pareto plot.

Performance (RQ2). Table 5.3 (Performance) reports the average runtime, in minutes, of each
step of TEDD across all configurations. The most expensive step of TEDD is validation, es-
pecially for what concerns validating the connected part of the graph (Column 12), whereas
dependency graph extraction and filtering (Columns 10 and 11) have negligible costs (under one
minute on average in all cases). The cost of disconnected components recovery (Column 13)
is generally low, ranging from nearly one minute for NLP-Verb to maximum nine minutes for
NLP-Dobj (3.8 minutes on average).

The slowest configuration of TEDD is NLP-Verb (Original Order) which is 27% faster on av-
erage (almost 2 hours less) than the baseline approach. The fastest configuration of TEDD is
NLP-Noun (SA) which is 72% faster on average (5 hours less) than the baseline approach. This
result confirms the Pareto front analysis, showing that NPL-Noun (SA) is the most effective
configuration of TEDD.

The table reports also the percentage decrease of each configuration with respect to the baseline,
which took approximately 425 minutes on average (≈7 hours). Overall, all SA- or NLP-based
configurations of TEDD are significantly faster.

Parallel Test Execution (RQ3). Column 15 (schedules) reports the average number of test
schedules obtained from the final TDGs. Isolated nodes in the dependency graphs are counted
as (single-test) schedules. Columns 16 and 17 report the relative speed-up of the parallelizable
test suites considering the longest test execution schedule (worst-case) and the average case.

First, in our experiments, no test failures occurred in any of the parallelizable test suite produced
by any configuration of TEDD. Essentially, this confirms that the dependency validation and
recovery algorithm does not miss any manifest dependency.

Overall, all techniques achieve similar speed-up scores, around 2× in the worst case and 7× on
average. This is expected since the final TDGs are similar across configurations (see total number
of manifest dependencies in Table 5.3). However, results differ across applications. Table 5.4
presents the results for the NLP-Noun (SA) configuration. Column runtime original reports the
execution time of the original test suite in seconds. Collabtive has the slowest test suite (almost 5
minutes) whereas Addressbook has the fastest (40 seconds). The highest speed-up in the worst-
case occurs for Claroline, where the longest test execution schedule test suite is 2.7× faster.
MantisBT exhibits the highest speed-up in the average case (12.3×), but the lowest speed-up in
the worst-case (1.4×) due to a single slow-executing schedule (133 s) with respect to the average

112

Table 5.4: Parallelization results for NLP-Noun (SA)

Worst-case Average

ru
nt

im
e

or
ig

in
al

(m
in

)

sc
he

du
le

s
(#

)

ru
nt

im
e

(m
in

)

sp
ee

d-
up

(%
)

ru
nt

im
e

(m
in

)

sp
ee

d-
up

(%
)

Claroline 75.1 36 29.0 2.7× 9.4 8.3×
Addressbook 40.2 24 20.1 2.0× 8.8 4.5×
PPMA 51.7 22 21.1 2.4× 8.9 5.8×
Collabtive 297.7 37 133.1 2.3× 53.2 5.7×
MRBS 56.9 20 28.7 2.0× 13.8 4.2×
MantisBT 184.5 37 133.8 1.4× 15.1 12.3×
Total 706.1 176 365.9 2.1×* 109.2 6.9×*

* average

runtime (15 s). The lowest speed-up in the average case occurs for MRBS, but it remains still
high (4.2×).

5.3.4 Threats to Validity

Using a limited number of test suites in our evaluation poses an external validity threat. Although
more subject test suites are needed to fully assess the generalizability of our results, we have
chosen six subject apps used in previous web testing research, pertaining to different domains, for
which test suites were developed by a human web tester. Threats to internal validity come from
confounding factors of our experiments, such as test flakiness. To cope with possible flakiness
of the test cases, we manually fixed any flaky test by adding delays where appropriate and we
ran each test suite 30 times to ensure having identical results on all executions. With respect to
reproducibility of our results, the source code of TEDD and the Docker containers for all subject
systems are available online 4, making the evaluation repeatable and our results reproducible.

4https://github.com/matteobiagiola/FSE19-submission-material-TEDD

113

https://github.com/matteobiagiola/FSE19-submission-material-TEDD

5.3.5 Discussion

Automation and Effectiveness. Our results confirm that (1) E2E web tests entail test depen-
dencies, (2) such dependencies can be identified by considering PRAW connections between test
cases, and (3) TEDD can successfully detect all PRAW test dependencies necessary for indepen-
dent test case execution. All proposed filtering techniques proved to be very fast and effective at
reducing the size of the initial graph, without filtering many manifest dependencies.

Performance and Overhead. All configurations of TEDD achieve substantial improvements
with respect to validating the graph extracted from the original ordering, whose validation cost is
quadratic on the number of test cases. During software evolution, when the test suite is modified,
our analysis does not need to be re-executed from scratch, as TEDD can harness the depen-
dency information given by a previously validated TDG. Validation and recovery, on the other
hand, must be carried out on the entire newly produced TDG, even though the validation cost is
expected to be low, if partial and incremental changes of the test suites are made.

Test Smells. Our test dependency graph can also be utilized for other test analysis activities
such as detecting poorly designed or obsolete tests (i.e., test smells [vDMBK02]). For in-
stance, in PPMA, the test checkEntryTagsRemoved executes after addEntryTags and
removeEntryTags tests. By analyzing the TDG produced by TEDD for this test suite, we
noticed that checkEntryTagsRemoved executes properly also when no tags have been cre-
ated yet (i.e., checkEntryTagsRemoved is isolated in the TDG). This means that the test
checkEntryTagsRemoved is obsolete because it is subsumed by the previous removeEntryTags
test. Therefore, it can be safely removed with no impact on the functional coverage or assertion
coverage of the test suite.

Limitations. TEDD depends on the information available in the test source code, used to iden-
tify potential test dependencies. As such, the effectiveness of our NLP-based filtering may be
undermined if test case names are not descriptive, as in the case of many automatically gen-
erated test suites (e.g., test1, test2). In such cases, testers can rely on the string analysis
configuration of TEDD (SA), which also proved effective in our study. Second, our tool does
not provide information about the root cause of the dependencies, i.e., what part of the program
state is polluted by which test. Lastly, TEDD does not support the analysis of flaky test suites.

114

Chapter 6

Dependency Aware Test Case Generation

Crawlers are appealing tools for testers as they can effectively and rapidly explore the state
space of a web application. However, deriving executable functional test cases from a sequence
of crawled pages and events is not trivial. First, such sequence is typically very long and it
would be inefficient to execute it directly within a single test case. Therefore, the sequence
must be segmented into meaningful sub-sequences, according to some criteria, in order to iso-
late the different functionalities exercised by the crawler into separate test cases. Second, the
obtained sub-sequences may have dependencies on web application states created by previous
sub-sequences [GSHM15, ZJW+14, LZE15], which must be resolved. Third, since crawlers are
designed to perform continuous, repeated explorations with different randomly generated inputs,
the segmented sequences may also be redundant, which increases the test suite runtime, without
benefiting the overall coverage of the web application functionalities.

Existing works [MvDL12, MFM13, YMZ15] use crawlers for test generation quite differently.
Indeed, crawlers are used to navigate the WAUT (Web Application Under Test) and create a
navigation model which is then used for test generation purposes. Given some model based
adequacy criterion, such as transition coverage, tools like Atusa [MvDL12] derive a set of paths
from the navigational model. Such paths represent abstract test cases that can be turned into
concrete, executable test cases by supplying proper input values. The main limitation of such
model-based test generation techniques is that they have to cope with the feasibility problem,
i.e., finding proper paths in the navigational model along with associated input values, such that,
upon execution of the web application under test, the desired navigation is taken (see Section 4.3
and Section 2.3.1 for the definition of path feasibility). Determining if a path is feasible is in
general undecidable and in practice a very challenging problem. Infeasibility might be due to
dependencies on previous states that the selected path cannot reproduce (i.e. state dependencies)
or on the impossibility to generate input values satisfying the path constraints (see Section 4.1).

115

Contribution. In this chapter, we propose a novel approach to web test generation that com-
bines crawling, test dependency detection, and test minimization. Our approach, implemented in
a tool called DANTE (Dependency-Aware Crawling-Based Web Test Generator), takes as input
the raw segmented crawling trace produced by a crawler, computes and validates the test depen-
dencies between each sub-sequence, ensuring that any resulting test suite (sub-list of segmented
sequences) that respects them will not result in any test breakage. Last, DANTE uses the test
dependencies as a set of constraints for detecting and eliminating redundant test cases using a
SAT solver.

6.1 Motivating Example

In Section 2.3.2 we described the functioning of the web crawler Crawljax [MvDR12]. In this
section we recall the exploration strategy and state abstraction function concepts and examine
them in detail. Then, we present a motivating example to show the main limitations of crawlers
when they are used to generate web tests.

Three are the important characteristics of a web crawler that impact test generation, namely
exploration strategy, state abstraction function and sequence segmentation.

Exploration Strategy. The crawler explores the web application according to a graph visit algo-
rithm, such as breadth-first or depth-first visit [Mes15, TRM14]. The default option in Crawljax
is the depth-first visit: on each state, one clickable is selected, and fired an event upon. The
order in which candidate elements are selected within a state can be changed. For instance,
FeedEx [MFM13] selects the clickable element to consider based on a linear combination of
factors aimed at maximizing the diversity of the exploration.

Another aspect that impacts the crawler’s exploration is the selection of the same clickable el-
ement multiple times within different states. For instance, let us consider a web application
having a navigation bar with menu items which are displayed in all possible states. The tester
can decide whether Crawljax should consider each menu item only once during exploration, or,
differently, whether it should consider them multiple times in different states. The rationale for
choosing the former option is to make the exploration faster, assuming that all menu items, when
fired upon, always bring the web application to the same state deterministically. However, this
assumption might not always be true, especially for modern web applications such as single page
web applications. Therefore, the latter option may ensure a more thorough exploration.

State Abstraction Function. To avoid redundancies, states that are identical or similar to pre-
viously encountered states should be discarded. The problem of detecting already visited states
is delegated to the state abstraction function, which is a function (which returns a value between
0.0 and 1.0) that decides if a new state is found after an event is fired. The default state abstrac-
tion function integrated within Crawljax compares the equality of the string representation of the

116

DOM of each web page, which ensures fast comparisons, and therefore, more exploration capa-
bilities. In such particular case, indeed, the state abstraction function returns 0.0 if the two DOM
strings are the same and 1.0 if they are different. However, other state abstraction functions have
been proposed, e.g., comparing the DOM tree by the tree edit distance [MFM13]. In this case a
threshold τ , between 0.0 and 1.0, has to be defined to decide if the two states are different (i.e.
the value returned by the state abstraction function is greater than τ) or not.

Sequence Segmentation. Given a web application’s URL, an exploration strategy, and a state
abstraction function, the crawler performs an exploration of the web application state space and
returns a (possibly long) sequence of visited pages. Then, it is possible to segment such sequence
into shorter sub-sequences that can be used as test cases, which replay the actions of the crawler
on the web application. On the contrary, replaying the entire sequence at once would require
as much execution time as the crawling phase, if used as a single test case. One approach is
to segment the crawling sequence whenever no more candidate elements are present in a given
state, or no new DOM states are discovered in a given crawl path. In this case, the sequence
is ended (i.e., segmented) in that state, and the crawler continues its exploration from the first
unvisited state, or from the start state (usually, the index page).

6.1.1 Crawling Trace Based Test Generation and its Limitations

The list of segmented sub-sequences retrieved by a crawler represents candidate test cases. How-
ever, two main problems may occur and need to be addressed.

First, after segmentation, the individual test cases may be dependent on each other. Test depen-
dencies are due to the web application state being modified by actions performed by the crawler
in previously executed test cases.

Second, test redundancy may appear as a consequence of the length of the navigation performed
by the crawler. On the one hand, long navigations are desirable, because they have more chances
to explore the web application in depth. However, long navigations tend also to include many
segments that are equivalent (according to some chosen adequacy criterion, such as code/model
coverage). Other factors affecting the degree of test redundancy are the crawler’s state abstraction
function and the strategy used to select DOM elements within a state. For what concerns state
abstraction, when the state abstraction function is too coarse-grained, many parts of the web ap-
plication would be unexplored because many states would be considered the same. Conversely,
if the state abstraction function is too permissive, many similar states would be considered dif-
ferent, leading to many redundant test cases. For what concerns DOM element selection, when
the crawler considers candidate elements multiple times, it can explore the web application more
deeply, at the cost of potentially increasing the redundancy of the tests.

Figure 6.1 (left) shows the web application Phoenix Trello whose index page contains a naviga-
tion bar to navigate to the index page (the logo Phoenix Trello), to the Login page (button Sign

117

Index

select 1st
board

1

BoardListPage

add list to
1st board

Index

BoardListPage

back

BoardListPageBoardListPage

select 1st
board in menu 2update list

Index BoardListPage BoardListPage

IndexBoardListPageBoardListPage

back
select 2nd

board
add list to
2nd board

back
select 2nd

board in menuupdate list

…

3

4

Figure 6.1: Phoenix Trello example and generated crawling trace containing dependent and re-
dundant test cases.

Out), and to the List page of each board (button boards). When the boards button is clicked a
dropdown menu with all the existing boards in the web applications is shown (second screenshot
on the left hand side of Figure 6.1). Clicking on the name of a board brings the web application
to the page that shows the lists created in each board (namely the BoardListPage). Once a list is
created it is possible to update its name (third screenshot on the left hand side of Figure 6.1).

Crawling. Figure 6.1 on the right hand side shows a possible exploration performed by the
crawler on the Phoenix Trello web application that results in a long sequence of visited states.
For simplicity, suppose the crawler adopts the default depth-first crawling exploration strategy
(clicking the same web elements only once) and a state abstraction function based on DOM string
equality.

In the represented sequence, the crawler selected the first board (board1) by clicking on it in the
index page. Then, it created a list for that board and navigated back to the index page. Then, the
crawler accessed the menu in the index page, clicked on the board1 link and updated the name
of the list, before returning to the index page. The same crawling path was repeated for the other
board (board2); the list name for the second board was also updated.

Segmentation. Suppose that in our example, the crawler segments the crawling trace whenever
it reaches the first visited page (e.g., Index). In this case, four sub-sequences are generated,
as shown in Figure 6.1 (the first state of each new sub-sequence is marked by an incremented
number). For instance, the first sub-sequence ¶ ends after having added the list to the first board,
whereas the second sub-sequence · ends after having updated the list name for the first board.
The other sub-sequences are segmented similarly.

118

Dependent Tests. After segmentation, the resulting test cases may be dependent. Test depen-
dencies are due to the application state being modified by the actions the crawler performed in
previously executed tests. For instance, sub-sequence · (i.e., updating the name of the list for
the first board) depends on sub-sequence ¶ (i.e., creating the list for the first board). Similarly,
sub-sequence ¹ depends on sub-sequence ¸.

If we execute each of those tests in isolation, the first test ¶ executes correctly, while the second
one · breaks. Indeed, the initial application state does not contain the list that the second test
needs to update, since that item is created by the first test.

On the contrary, if tests obtained after segmentation are executed in the same order in which they
were crawled, no breakage occurs (i.e., by running in sequence tests ¶–¹). If we want to remove
redundant test cases, the dependencies between tests should be known and should be taken into
account [ZJW+14, LZE15, GBZ18, BK14, RUCH01, GEM15, VSM18].

Redundant Tests. The test cases shown in Figure 6.1 may be redundant for a given test ade-
quacy criterion, such as client-side code coverage. The first two sub-sequences ¶–· cover a test
scenario in which a board is selected and the name of its list updated. Sub-sequences ¸–¹ essen-
tially repeat the same scenario, with different data. If such boards are retrieved by the server-side
of the web application, the overall client-side code coverage would not change when executing
these last two sub-sequences. Therefore, if the adequacy criterion is client-side code coverage,
one of these two sub-sequences could be safely removed without affecting the adequacy of the
test suite.

6.2 Approach

Figure 6.2 illustrates the overall approach, which takes as input a segmented crawling sequence
retrieved by a crawler when executed on a given web application. Test dependency analysis
is used to retrieve and validate the dependencies between each sub-sequence (Test Dependency
Analysis), which are subsequently used as a set of constraints within a SAT solver to eliminate
redundant test cases (SAT solver-based Test Minimization).

Test dependency analysis is however a computationally expensive task, because the total num-
ber of possible dependencies is quadratic in the number of test cases and research has shown
that automatically identifying the subset of true dependencies may require exponential analysis
time [BKMD15, GBZ18, ted19]. In fact, in the absence of any preliminary filtering, each test
case in the original sequence must be assumed as possibly dependent on all its predecessors,
resulting in n(n− 1)/2 (with n the number of test cases) candidate dependencies to be validated
by dependency analysis, of which only a small subset may actually result in true dependencies.

To reduce the cost of dependency analysis, in this work we propose and evaluate two alternative
filtering heuristics that can reduce the initial number of dependencies to be validated.

119

Test/Dependency
Filtering and
Validation

SAT-solver based
Test Minimization

1
Initial

Test Dependency
Graph

t1

t2 t3

t5

t4

2

Coverage
Reports

Bi-objective Filter

t1 t2 t3t4 t5 t6t7 t8 t9
Coverage-Driven Filter

Test Dependency
Validation

Web App
Crawling

t1 t2 t3t4 t5 t6

Dependant & Redundant
Sub-sequences

t7 t8 t9

Minimized
Test Suite

t1 t2
t4 t5

t1

t2

t5

Reduced
Test Dependency

Graph

t4

Figure 6.2: High-level overview of our approach for dependency-aware web test generation and
minimization

The first filtering heuristics is based on pre-selecting only the tests that contribute to web applica-
tion coverage (coverage-driven filter), while eliminating the unnecessary ones, and making sure
that dependents of the selected tests are included.

The second filtering heuristics is based on bi-objective optimization (bi-objective filter), where
the two objectives being minimized are (1) the number of dependencies kept for successive de-
pendency validation, and (2) the estimated cost of recovery of the incorrectly filtered dependen-
cies.

In the second phase, test suite minimization aims at eliminating all redundant test cases, i.e.,
tests that do not contribute to coverage and are not needed due to some dependency. This second
phase coverage based minimization is still needed to eliminate all redundant tests even if the first
filtering heuristics (based on coverage as well) is applied. The reason is that spurious redundant
tests can be included by the non-optimal (i.e. non-minimal) coverage-driven filter.

120

The output of our approach is therefore a minimized test suite in which (1) no redundant test case
are present, and (2) all test schedules that respect the dependencies can execute independently
and without errors.

6.2.1 Test Dependency Analysis

For dependency retrieval and validation we use our existing tool named TEDD (see chapter 5),
which automatically detects the occurrence of dependencies among web tests. From a given test
suite, TEDD retrieves an initial set of dependencies to be validated, which may include both
spurious dependencies to be removed and missing dependencies to be recovered. The output
of TEDD is a test dependency graph such that all test schedules that respect its dependencies
execute correctly.

We proposed TEDD and evaluated it for validating dependencies in human-written tests, for
which appropriate filtering techniques, based on natural language processing of the test case
identifiers (i.e. test case names), have been evaluated. In this work, we target automatically
generated test suites, which do not include meaningful identifiers. Our preliminary experimental
results have shown that TEDD does not terminate within a timeout of 48 hours (2 days), when
applied to the complete (quadratic), unfiltered test dependency graph. Hence, we designed two
novel filtering heuristics, aiming at making TEDD applicable to automatically generated test
cases.

6.2.1.1 Coverage-Driven Filter

The first proposed filter consists of retaining only the tests that contribute to the coverage of the
web application, along with their dependent tests. The filter is independent from the coverage
criterion (e.g., any of model/transition or code/branch coverage could be adopted). We hereafter
refer to element as the unit of coverage specific to the selected coverage criterion (e.g., a transition
for transition coverage, or a branch for branch coverage).

The filtering is performed as follows. The initial test sequence is executed in the order retrieved
by the crawler, to gather the needed coverage information. A greedy algorithm starts by selecting
the test that achieves maximum coverage. Then, it repeatedly adds the test that covers more
additional elements, with respect to the coverage achieved by the already selected test cases,
until the final coverage of the whole test suite is reached. Then, the so obtained filtered test
suite is executed. If no breakages occur, our approach continues with the dependency analysis
by TEDD. On the contrary, if tests break because some other test needs to be executed first, an
automated fixing procedure is triggered, which we detail next.

Fixing Missing Test Dependencies.

121

Algorithm 7: Test suite fixing algorithm
Input : Ts: test suite with coverage driven selected test cases

To: test suite in its original order o
Output: Ts: updated test suite with test dependencies fixed

1 brokenTest← EXECUTETESTSUITE(Ts)
2 if brokenTest = null then
3 return Ts
4 end
5 windowLength← 1
6 while true do
7 preconditions← COMPUTEPRECONDITIONS(To, Ts, brokenTest)
8 newBrokenTest← null
9 i← windowLength

10 while i < |preconditions| do
11 preconditionsToAdd← SUBSET(preconditions, i, windowLength)
12 newBrokenTest← ADDANDEXECUTE(preconditionsToAdd, Ts)
13 if newBrokenTest = null then
14 return Ts
15 end
16 if newBrokenTest 6= brokenTest ∧ ORDER(newBrokenTest) > ORDER(brokenTest) then
17 break
18 end
19 Ts← REMOVEPRECONDITIONS(preconditionsToAdd, Ts)
20 i← i + windowLength
21 end
22 if newBrokenTest = brokenTest then
23 windowLength← windowLength + 1
24 else
25 brokenTest← newBrokenTest
26 end
27 end

Algorithm 7 shows our automated procedure for fixing missing dependencies. The algorithm
takes as input the selected test suite Ts and the original test suite To as generated by the crawler.

The EXECUTETESTSUITE procedure executes Ts and, if no breakages are detected (line 3), the
algorithm terminates. On the contrary, the first test case that breaks is returned (brokenTest), and
considered for dependency fixing.

The algorithm computes the preconditions of brokenTest (line 7) by considering all tests in the
original test suite To that are placed before it, and that are not yet included in Ts. The loop
(lines 6–27) adds one precondition at a time (initially, windowLength = 1), and checks if the

122

test suite with the added precondition executes correctly (line 12). If so (newBrokenTest = null),
the algorithm terminates. Otherwise, the previously added preconditions are removed from Ts
(line 19) and the loop (lines 6–27) continues. The loop is interrupted also when newBrokenTest
follows (hence, it has to replace) brokenTest (lines 16–17). The ORDER function computes the
index of the test case given as input in the original test suite To. Such index defines an order
relation between test cases that corresponds to the execution order given by crawler segmentation
(Section 6.1.1). If newBrokenTest is equal to brokenTest (lines 22–23), the size of the window is
increased.

Let us consider the test suite T = {t1, t2, t3, t4, t5, t6, t7, t8, t9}. Suppose that the coverage-driven
filter selects t1 and t5, hence Ts = {t1, t5}. Now let us suppose that t5 depends only on t2 and
on t4 (indicated as t5 → t2 and t5 → t4). Algorithm 7 tries to execute Ts but t5 breaks. The
preconditions of t5 are {t2, t3, t4}. The algorithm tries to add them one at a time, but each one
in isolation is not sufficient to fix t5. Then, at the end of the first iteration, the window size is
increased to 2. The algorithm adds {t2, t3} first and then {t3, t4} but none of the two sets of tests
fixes t5, therefore they are both removed from Ts. Finally, the window length is increased to 3 and
the tests {t2, t3, t4} are added. The broken test t5 passes and Ts = {t1, t2, t3, t4, t5} is the fixed
filtered test suite. It can be noticed that Ts contains one spurious dependency, t3, to be removed
by TEDD during dependency analysis. Such a spurious dependency is a consequence of the
adopted heuristics, which adds all test cases inside the current window, rather than taking all the
possible subsets of the current window (the latter would incur an exponential computational cost).
Moreover, the test suite minimization phase makes sure that the redundant test t3 is eliminated
from the final test suite.

6.2.1.2 Bi-objective Filter

While the first proposed filter aims to reduce the number of initial tests (thus making the ini-
tial test dependency graph smaller), the second proposed filtering aims at reducing the number of
dependencies from the complete (quadratic) graph. The general idea is to execute TEDD on a fil-
tered graph that contains as few dependencies as possible, while at the same time minimizing the
estimated (worst case) recovery cost that TEDD may incur when identifying and re-introducing
missing dependencies.

Let T = {t1, . . . , tn} be the set of all tests and let D = {d11, . . . , dnn} be the set of all depen-
dencies associated with the original crawl order. Each dependency dij is defined as:

dij =

{
1, if i > j.

0 otherwise.

Let S = {s11, . . . , snn} be a filtering matrix over D (sij is 0 if the dependency is filtered; 1
otherwise; moreover, sij = 0 for all j ≥ i). For each test ti with 2 ≤ i ≤ n, let us consider all

123

t1

t2 t3

t4

cost(S) = 1/2 + 1 = 1.5

deps(S) = 4

S = 1 1 1 0 1 0
s21 s31 s32 s41 s42 s43

Id(S4) = {s41}

Dd(S4) = {s43}

Figure 6.3: Bi-objective filtering example

outgoing dependencies that are filtered in S (i.e. sij = 0, while dij = 1). Let Dd(Si) be the set of
filtered dependencies of node i which are direct, i.e. there exists a path in S that could connect
such pair of tests. Let Id(Si) be the set of filtered dependencies of node i which are indirect, i.e.,
no other path in S exists between such pair of tests. By construction, these two sets are disjoint
(Dd(Si) ∩ Id(Si) = ∅). Correspondingly, we define the following two objective functions:

minimize deps(S) =
∑
sij∈S

sij (6.1)

minimize cost(S) =
n∑

i=2

(
|Dd(Si)|+

1

2
|Id(Si)|

)
(6.2)

Equation 6.1 simply counts the number of unfiltered dependencies in S; such sum has to be min-
imized. Equation 6.2 estimates the cost of recovery of each dependency that is filtered in S. In
the worst case, all filtered direct (Dd(Si)) and indirect (Id(Si)) dependencies must be recovered.
However, the second contribution to the cost is divided by two, because each indirect filtered
dependency might be already included in the graph through other dependencies, provided the
validity of each dependency in the indirect path has already been confirmed by the dependency
analysis (i.e., TEDD).

We solve this minimization problem by means of bi-objective optimization [ES+03]. The optimal
solution is a Pareto front with two dimensions (deps and cost), populated by the non-dominated
solutions (i.e., filtering matrices) discovered by the algorithm (see Section 5.3.3 for an example of
Pareto front). To obtain one single filtering matrix from the Pareto front of solutions, we compute
the derivative on each point in the Pareto front and choose the point with highest derivative (i.e.,
highest gain on both deps and cost).

Figure 6.3 shows an example of how the two objective functions are computed. S is the specific
dependency filter that is represented by the dependency graph on the right hand side of the figure,

124

with dashed arrows representing filtered dependencies. There are only two filtered dependencies
in S, hence deps(S) = 4. The first one s41, which corresponds to t4 → t1, is a filtered indirect
dependency, because there is a path between t4 and t1 that passes through t2. If t4 → t1 were
true, it would have to be recovered only if t4 → t2 or t2 → t1 are deemed as invalid during
dependency validation. This is why the cost of recovering an indirect dependency has a lower
(half) weight than the cost of recovering a direct dependency, such as s43.

6.2.2 SAT solver-based Test Minimization

Our approach adopts a SAT solver [ACA12] to find optimal solutions to the test suite minimiza-
tion problem. We encode the test dependencies as a set of pseudo-boolean constraints that are
translated to a SAT instance. Then, the SAT instance is solved using a SAT solver.

The problem formalization is as follows. Let us introduce n boolean variables ti ∈ {0, 1}, one
for each test case in T . If ti = 1 then the corresponding test case is included in the solution,
otherwise (ti = 0) the test case is excluded. Let C = {c1, . . . , cn} be the set of execution costs
of running each test (with ci ∈ R) and let E = {e1, . . . , el} be the set of elements that we want
to cover with the tests. Let matrix M = {mik}, of dimension n× l, be defined as:

mik =

{
1, if ek is covered by test ti.
0, otherwise.

The objective of minimization is to find a subset of tests X ⊆ T with minimum cost such that
all the elements in E are covered and the validated dependencies D = {dij} between tests are
respected. Formally:

minimize
n∑

i=1

citi (6.3)

subject to:

n∑
i=1

mikti ≥ 1, 1 ≤ k ≤ l (6.4)

∀dij ∈ D, dij = 1 ∧ ti = 1 =⇒ tj = 1 (6.5)

Equation 6.3 is the objective function. It is a linear combination of selected tests along with the
related execution cost coefficients. The goal is to find a test suite having the smallest execution

125

t1

t2 t3 t4

t6e1 e2 e3 e4 e5 e6
t1 1 0 1 1 0 0
t2 0 1 1 1 0 0
t3 1 0 0 0 1 0
t4 1 1 0 0 1 0
t5 0 0 1 1 1 0
t6 0 0 0 0 0 1

M

d21

d62
t5

Figure 6.4: Minimization example

cost. Equation 6.4 represents the coverage constraints, one for each element ek to be covered.
Each coverage constraint specifies that at least one test covering each element ek must be in-
cluded in the final test suite X . Equation 6.5 represents the dependency constraints, one for each
validated dependency dij = 1. The dependency constraint states that if a dependee test ti is
included in the final test suite X then its dependent tj must be included as well.

For example, let us consider T = {t1, t2, t3, t4, t5, t6} and C = {3.0, 3.0, 2.5, 3.5, 4.0, 1.0}.
Figure 6.4 shows the coverage matrix M on the left hand side and the test dependency graph
TDG on the right hand side. Below, we list both the coverage constraints, on the left hand side,
and the dependency constraints, on the right hand side:

t1 + t3 + t4 ≥ 1 (e1) t2 = 1 =⇒ t1 = 1 (d21)

t2 + t4 ≥ 1 (e2) t6 = 1 =⇒ t2 = 1 (d62)

t1 + t2 + t5 ≥ 1 (e3, e4)

t3 + t4 + t5 ≥ 1 (e5)

t6 = 1 (e6)

The first coverage constraint (top left) tells the solver that at least one of the tests {t1, t3, t4}must
be included in the solution because those tests cover the element e1. The first dependency con-
straint (top right) is related to the dependency d21 in the dependency graph shown in Figure 6.4.
The dependency states that t2 → t1, hence if t2 is included in the solution (t2 = 1) then the tests
t2 depends on, i.e. t1, must be included as well (t1 = 1).

The objective function for this problem instance is (3.0t1+3.0t2+2.5t3+3.5t4+4.0t5+1.0t6).
The only solution is given by X = {t1, t2, t3, t6}, where ti = 1, ∀ti ∈ X .

126

6.2.3 Implementation

We implemented our approach in a tool called DANTE (Dependency-Aware, Crawling-Based
Web Test Generator) which is publicly available 1. The tool is written in Java, and generates
Selenium WebDriver Java web test suites. We used Crawljax 4.1 [MvDL12] for generating
crawling-based test suites as input to our tool. DANTE integrates TEDD 2, to compute the test
dependencies, the Java bindings of Z3 [z319] 4.8.4, a state-of-the-art SAT solver, to compute the
minimization, and NSGAII [DPAM02] for the bi-objective optimization. The output of DANTE
is a minimized test suite and a list of validated dependencies.

6.3 Empirical Evaluation

6.3.1 Research Questions

We conducted an empirical study to answer the following research questions:

RQ1 (breakage rate). What is the breakage rate of the segments generated by Crawljax?

RQ2 (minimization). What is the test suite reduction rate achieved by DANTE?

RQ3 (performance). What is the runtime of DANTE and of DANTE’s steps?

RQ4 (filtering heuristics). What is the contribution of coverage-driven filtering and bi-objective
filtering in making test dependency validation efficient?

RQ5 (coverage). How does DANTE compare to web test generators based on a navigation
model obtained through crawling in terms of client side code coverage and breakage rate?

RQ1 and RQ2 are the core questions for the validation of the approach. In fact, DANTE produces
minimized test suites with zero breakage rate (thanks to dependency analysis) by construction.
So, it is important to understand the improvement achieved over the initial breakage rate, which
might be non zero, and over the initial test suite size, which might be substantially larger than
the final one. These two research questions assess the practical effects of dependency analysis
and test suite minimization.

The next research question, RQ3, is about the tool’s performance. RQ4 is about the contribution
of the two proposed filters to the performance of DANTE. The final research question, RQ5,
compares the coverage achieved by our approach with that achieved by existing crawling and
model based approaches (resp. Crawljax and Ext-Crawljax, our reimplementation of Atusa).

1https://github.com/anon-icst2020/ICST20-submission-material-DANTE
2https://www.github.com/matteobiagiola/FSE19-submission-material-TEDD

127

https://github.com/anon-icst2020/ICST20-submission-material-DANTE
https://www.github.com/matteobiagiola/FSE19-submission-material-TEDD

6.3.2 Subject Systems

For the evaluation of this work we took the subjects selected for our work on test case generation
(see Section 4.8), except the subject pagekit [pag18]. For the sake of completeness, we report
their features in the table below. The reason regarding our focus on SPA is given in Section 4.8.2
since also in the empirical evaluation in this chapter we measure code coverage.

Table 6.1: Experimental subjects

Subject Framework LOC (JS) Stars Commits Last Commit

dimeshift [dim18] Backbone 5,140 143 201 2019
splittypie [spl18] Ember.js 2,710 75 331 2017
Phoenix Trello [pho18] React 2,368 2,233 422 2016
retroboard [ret18] React 2,144 420 487 2018
petclinic [Pet18] AngularJS 2,939 80 78 2019

6.3.3 Procedure and Metrics

Procedure. First, we executed Crawljax on each subject system. We configured the crawler
to run on the Chrome browser, with the default exploration strategy (depth-first visit) and state
abstraction function (DOM string comparison), and a runtime limit of 30 minutes. Crawljax
segments the sequence of crawled states following the strategy described in Section 6.1, and
returns a test suite. Then, we manually fixed the flakiness of such test suite by adding delays
where appropriate. We executed each test suite 10 times to check that identical outcomes are
obtained across all executions.

To answer our research questions, we evaluated two different configurations of DANTE, by en-
abling in turn only one of the proposed filtering mechanisms, followed by test suite minimization
(in both cases): (1) coverage-driven filter & minimization, and (2) bi-objective filter & minimiza-
tion. We did not enable both filters at the same time because we experimentally found that the
latter becomes useless if the former is applied.

Metrics. Concerning the breakage rate of the test segments generated by Crawljax (RQ1), we
measured the number of generated test cases that broke when executed in isolation. To assess the
reduction rate (RQ2), we measured the number of test cases in the minimized test suite produced
by DANTE with respect to the original test suite generated by the crawler.

We evaluated performance (RQ3) by measuring the execution time (in minutes) of DANTE’s
components. To asses the impact of the filtering heuristics (i.e., coverage-driven filter vs bi-

128

objective filter) on the test dependency validation time (RQ4), we executed DANTE twice on
each subject, by enabling in turn only one of the proposed filtering mechanisms, and compared
the running time to complete the dependency validation in each configuration.

Concerning coverage (RQ5), we compared DANTE against Crawljax and Ext-Crawljax, our
reimplementation of Atusa [MvD09], a state-of-the-art model-based web test generator, in terms
of client-side coverage and breakage rate (only tests that do not break during execution are con-
sidered for coverage). We configured Ext-Crawljax to use the same inputs used during crawling
following the indications of the authors of Atusa [MvD09]. To measure coverage, we used cdp4j
3.0.8 [cdp19], the Java implementation of Chrome DevTools [Chr19], which outputs the byte
coverage of the executed client-side JavaScript code reached by each test case. The reason why
we chose a different code coverage tool with respect to the empirical evaluation in the test case
generation chapter in Section 4.8 is that the Chrome DevTools [Chr19] does not require any in-
strumentation of the JS code and it can be applied on any web application. On the other hand,
the code coverage tool Istanbul [Ist18] cannot be easily applied to web application whose
client side is written in TypeScript 3 (a typed superset version of JavaScript that compiles to
plain JavaScript).

6.3.4 Results

RQ1 (brekage rate). Table 6.2 (macro-column Breakage Rate) shows the number of tests gen-
erated by Crawljax on each subject system within the 30 minutes time budget (Column 2).
Columns 3-4 show the breakage rate of such test suites when test cases are executed in isola-
tion, both numerically and percentage-wise. On average, 69 tests were generated by the crawler,
of which 85% break when executed in isolation.

The minimum breakage rate occurred for petclinic (24 broken tests), whereas for the remaining
subjects almost all test cases broke (96–98% breakage rates). These empirical results essentially
show that tests generated from the output of a crawler cannot be executed without taking into
account the hidden test dependencies among them, due to the shared web application states.

We manually investigated such high breakage rates and found that they are due to states created
by the initial tests, which the next tests rely upon. For example, in retroboard, Phoenix Trello and
dimeshift, the first tests perform a login operation; the next tests are supposed to be executed in
a state (browser and database state) in which the login has already been performed. In splittypie,
an expense splitting application, the second test creates an event for splitting expenses among
participants. After the event is created, the event page view becomes the new application home
page (a refresh redirects the browser to the event page), and all tests executed after the second
one expect such page as starting page (unless a test case removes that event). petclinic’s tests
have a lower breakage rate. Nevertheless, its tests still exhibit breakages due to shared states

3https://www.typescriptlang.org/

129

https://www.typescriptlang.org/

produced by previous tests (for instance, a certain pet must be created prior to schedule a visit
with a veterinarian).

From our experiments, no test breakages occurred in test suites generated by DANTE, as test
dependencies are revealed and each test is executed under the proper state preconditions. As
such, in Table 6.2, we do not report the breakage rates of DANTE as they are all zero.

RQ2 (minimization). Table 6.2 (macro-column Minimization) shows the minimization results
achieved by both configurations of DANTE on our subjects. For each configuration, the table
shows the number of tests removed at each step of the approach (coverage-based/bi-objective
filter; test suite minimization), the final test suite size, and the minimization rate achieved with
respect to the initial test suites.

In the first configuration (Coverage-driven filter & Minimization), the main contribution to min-
imization is given by the coverage-driven filter (columns 5–6), which removed 83% of the initial
test cases on average, with minimization scores greater than 70% across our subjects. The great-
est minimization score occurred for retroboard (95%), whereas the lowest occurred for Phoenix
Trello (72%). SAT solver-based minimization (columns 7–8) reduced, on average, only by 1%
the original test suite size. Therefore, in this configuration, the coverage-driven filter contributes
substantially more than the minimization step to the reduction of the size of the initial test suites.
Overall, in the first configuration, the final test suites generated by DANTE for our subjects are
84% smaller than the initial ones generated by Crawljax (columns 9–10). The biggest reduction
occurred for retroboard (96%), whereas the lowest occurred for Phoenix Trello (72%).

In the second configuration (Bi-objective filter & Minimization), the SAT solver-based minimiza-
tion is responsible for the whole initial test suite reduction, since the bi-objective filter does not
eliminate tests but dependencies. The minimization step removed, on average, as much as 81%
of the initial tests (columns 11–13). Similarly to the first configuration, the biggest reduction
occurred for retroboard (96%), whereas the lowest occurred for Phoenix Trello (64%).

The two evaluated configurations of DANTE achieve similar minimization scores on our subject
systems (84% vs 81%).

The difference is explained by the different instances of the problem that the SAT solver must
solve, and by the functioning of TEDD, which does not ensure having a minimal test dependency
graph. In particular, the set of dependency constraints is different among configurations because
the two different filtering techniques produce two different initial test dependency graphs (in
terms of number of tests, hence in terms of dependencies) as input for TEDD. Consequently,
TEDD produces two slightly different, yet valid, test dependency graphs. Thus, the SAT solver
formulation takes into account two different sets of dependency constraints.

130

Table 6.2: Results for Feasibility (RQ1), Effectiveness (RQ2), Performance (RQ3) and Filtering Heuristics (RQ4).

BREAKAGE RATE MINIMIZATION PERFORMANCE

Coverage-driven Filter Bi-objective Coverage-driven Filter Bi-objective Filter Relative
& Minimization & Minim. & Minimization & Minimization Saving

G
en

er
at

ed
Te

st
s

(#
)

B
ro

ke
n

Te
st

s
(#

)

B
re

ak
ag

e
R

at
e

(%
)

R
em

ov
ed

by
C

ov
er

ag
e-

dr
iv

en
(#

)

% R
em

ov
ed

by
M

in
im

iz
at

io
n

(#
)

% Fi
na

lN
um

of
Te

st
s

(#
)

% R
em

ov
ed

by
M

in
im

iz
at

io
n

(#
)

Fi
na

lN
um

of
Te

st
s

(#
)

% C
ov

er
ag

e-
dr

iv
en

Fi
lte

r(
m

in
)

D
ep

en
de

nc
y

V
al

id
at

io
n

(m
in

)

M
in

im
iz

at
io

n
(m

in
)

To
ta

l(
m

in
)

B
i-

ob
je

ct
iv

e
Fi

lte
r(

m
in

)

D
ep

en
de

nc
y

V
al

id
at

io
n

(m
in

)

M
in

im
iz

at
io

n
(m

in
)

To
ta

l(
m

in
)

D
iff

(m
in

)

% Sp
ee

d-
up

(×
)

petclinic 65 24 37 54 83 0 0 11 83 56 9 86 50.2 25.6 0.3 76.1 23.5 1,005.6 0.3 1,005.9 953.4 93 13×
splittypie 69 66 96 59 86 1 1 9 87 56 13 81 39.1 22.6 0.2 61.9 27.7 1,842.0 0.2 1,842.2 1,808.0 97 30×
retroboard 100 98 98 95 95 1 1 4 96 96 4 96 0.5 1.7 0.6 2.8 97.2 2,026.8 0.6 2,027.4 2,096.4 99 730×
Phoenix Trello 53 51 96 38 72 0 0 15 72 34 19 64 13.2 58.2 0.2 71.6 12.2 1,242.0 0.2 1,242.2 1,182.9 94 17×
dimeshift 56 55 98 44 79 2 4 10 82 44 12 79 50.6 36.9 0.2 87.7 15.2 2,178.6 0.2 2,178.8 2,106.4 96 25×

Average 69 59 85 58 83 1 1 10 84 57 11 81 30.7 29.0 0.3 60.0 35.2 1,659.0 0.3 1,659.3 1,629.4 95 28X

131

RQ3 (performance). Table 6.2 (macro column Performance) shows the running time (in min-
utes) of each step of DANTE for all subject systems and for both configurations.

The coverage-driven filter, which includes greedy coverage-driven test selection and test suite
fixing (Algorithm 1), takes 30.7 min on average (columns 14–16). Most of such execution time
is devoted to test suite fixing, whereas the cost of the greedy coverage-driven test selection is
negligible (order of few seconds per subject). The fastest execution of the coverage-driven filter
occurs for retroboard (25 seconds), while the slowest occurs for dimeshift (51 minutes).

On average, dependency validation takes as much as coverage-driven filtering (29 minutes),
whereas the cost of the minimization step is negligible (18 seconds). Recall that the depen-
dency validation runtime grows more than linearly with the number of dependencies in the test
dependency graph, and such number is reduced due to filtering. For instance, in Phoenix Trello,
15 (53-38) tests are retained after the coverage-driven filter, whereas in retroboard only 5 are left
(100-95). In the former case, dependency validation takes 58 minutes, whereas in the latter case
it takes 2 minutes. Overall, the first configuration of DANTE takes on average 60 minutes to
compute the final minimized test suite (column 17).

Columns 18–20 present the runtime results for each step of the second configuration, i.e., when
the bi-objective filter is enabled. The bi-objective filter (Column 18) was configured with a
population size of 100 and was granted 1 million fitness evaluations for each subject (such hyper-
parameters have been fine tuned by means of a few preliminary runs of the algorithm). The
runtime of the bi-objective filter depends on the number of dependencies (hence, on the initial
number of tests). The slowest case occurs for retroboard (100 tests), in which the filter runtime
takes 97 minutes (1.6 hours), whereas the fastest case occurs for Phoenix Trello (53 tests), with
12 min.

On average, the bi-objective filter runtime is 35 minutes across all subjects. The dependency
validation runtime (Column 19) is as high as 27 hours, taking 16 hours in the best case (pet-
clinic), and up to 36 hours in the worst case (dimeshift). Also in this configuration, the cost of
the minimization step (Column 20) is negligible (18 seconds on average). Overall, the second
configuration of DANTE takes on average 27 hours to compute the final minimized test suite,
due to the high cost of the dependency validation on large test dependency graphs.

RQ4 (filtering heuristics). Table 6.2 (macro column Relative Saving) compares the two config-
urations of DANTE further. Specifically, Columns 21-23 show the relative saving, in minutes
and percentage-wise, of the first configuration with respect to the second configuration. Finally,
Column 23 shows also the relative speed-up.

To fully highlight the importance of filtering the test dependencies prior to the minimization
step, we recall that, when none of the two filters was active, the dependency validation never
terminated within 48 hours (2 days) for all subject systems. So, it is critical to enable one of the
two filters and among them, on average, the coverage-driven filter allows saving 26 hours with
respect to the bi-objective filter, with a speed-up of 28×.

132

Table 6.3: Comparison between DANTE, Ext-Crawljax and Crawljax in terms of client-side byte
coverage and breakage rate across all subjects (RQ5).

DANTE Crawljax Ext-Crawljax

N
um

of
Te

st
s

(#
)

B
re

ak
ag

e
R

at
e

(%
)

C
ov

er
ag

e
(%

)

N
um

of
Te

st
s

(#
)

C
ov

er
ag

e
(%

)

N
um

of
Te

st
s

(#
)

B
re

ak
ag

e
R

at
e

(%
)

C
ov

er
ag

e
(%

)

petclinic 11 28.22 65 36.92 26.04 259 84.55 23.05
splittypie 9 24.32 69 95.65 15.18 54 9.26 21.41
retroboard 4 40.50 100 98.00 37.93 99 37.37 38.80
phoenix 15 53.93 53 96.22 36.21 57 42.10 47.33
dimeshift 10 42.07 56 98.21 26.53 73 91.32 29.37

Average 10 37.81 69 85.00 28.38 108 52.92 31.99

RQ5 (coverage). Table 6.3 compares the best configuration of DANTE (Coverage-driven fil-
ter & Minimization) with Crawljax and Ext-Crawljax in terms of client-side byte coverage and
breakage rate. On average, the final test suites generated by DANTE are composed of 10 tests,
whereas those generated by Crawljax and Ext-Crawljax contain 69 and 128 tests, respectively
(+590% and +1180%). Concerning the breakage rates, 53% of tests generated by Ext-Crawljax
broke when executed in isolation, whereas none of the tests generated by DANTE breaks. This
means that a substantial proportion of test cases generated by Ext-Crawljax has to be discarded
because they are infeasible, hence those tests do not contribute to increase the coverage of the
application under test. Overall, tests generated by DANTE have a coverage increase of 33% with
respect to Crawljax, and 18% with respect to Ext-Crawljax.

6.3.5 Threats to Validity

Using a limited number of subject systems in our evaluation poses an external validity threat, in
terms of generalizability of our results. We tried to mitigate this threat by choosing five single-
page JavaScript web applications, developed with popular frameworks and pertaining to different
domains, although more subject systems are needed to fully address the generalization threat.

133

Threats to internal validity might come from confounding factors of our experiments. We com-
pared all competing algorithms under identical parameter settings. Our choice of Crawljax as
baseline for crawling-based test suites might pose another threat, as well as Ext-Crawljax, which
is also based on the navigational model provided by Crawljax. However, Crawljax is a notable,
well-known and maintained research tool (it now comes with release 4.1), and, to our knowl-
edge, no better alternatives have been proposed yet. For RQ5, we adopted a tool that computes
byte coverage, instead of the classical statement or branch coverage. However, byte coverage is
a fine-grained, precise coverage metric, which can be turned into more coarse-grained coverage
metrics, e.g. line coverage, if needed. Moreover, the reimplementation of Atusa’s extraction
algorithm constitutes an internal validity threat. However, we followed the algorithm description
reported in the Atusa’s paper [MvD09] for our reimplementation.

With respect to reproducibility, we will make the source code of DANTE and all subject systems
available 4, to ensure that the evaluation is repeatable and our results reproducible.

6.3.6 Discussion

Dependency and Redundancy. Our empirical results confirm that web tests generated from
crawler’s navigations often break because they involve hidden test dependencies. Moreover,
from our experiments, most of such tests are redundant and can be removed without compro-
mising coverage. DANTE was able to make all crawler-generated tests executable, reducing the
breakage rate to zero. It does so by automatically detecting their dependencies and producing
only test schedules that respect them. In our experiments, DANTE eliminated all redundant test
cases in the initial test suites that do not contribute to coverage and can be safely removed since
they do not involve any required dependency.

Crawler based and Model based Web Test Generation. Our empirical results show that our
approach to web test generation outperforms both crawler based test generation, which is lim-
ited by the problems of test dependency and test redundancy, as well as model based web test
generation, which is affected by path and input infeasibility. DANTE overcomes the limitations
of both approaches by retaining the feasible inputs and sequences provided by a crawler, while
fixing the test dependencies required to ensure feasibility and eliminating unnecessary test cases.

Filtering Techniques. Both evaluated configurations of DANTE have shown significant effec-
tiveness (RQ2). Moreover, both proposed filtering techniques allowed reducing the cost of test
dependency validation (RQ3), which is known to be in general a computationally expensive step,
and our work makes no exception. To this aim, the coverage-driven filter has shown better re-
sults than the filter based on bi-objective optimization. The reason behind this is the huge size
of the initial test dependency graph (on average, 2,453 dependencies). The coverage-driven fil-

4https://github.com/anon-icst2020/ICST20-submission-material-DANTE

134

https://github.com/anon-icst2020/ICST20-submission-material-DANTE

ter allowed removing many false dependencies prior to the expensive validation phase, which
explains the 28× time speed-up over the bi-objective filter.

Limitations. Our approach assumes that tests execute deterministically. DANTE does not in-
clude a procedure to automatically fix the flakiness of the test cases generated by the crawler,
which is a non-trivial task. For instance, simply adding wait statements systematically within
the test code may unnecessarily and artificially increase the runtime of the test suite, and it may
not work when tests are executed on different browsers or hardware configurations. For such
reasons, in our experiments, test flakiness was fixed manually after the crawling step.

Moreover, test cases generated by DANTE do not include any explicit functional oracle, such as
test case assertions. Hence, only the implicit assertions (application crashes or runtime errors)
can expose faults in the apps under test, unless the automatically generated tests are augmented
with manually written assertions. It would be however possible to automatically generate asser-
tions that capture the observed (instead of the intended) behaviour for regression testing.

135

Chapter 7

Conclusions and Future Work

7.1 Summary of Achievements

• Model based test case generator. We have proposed a diversity based approach for web
test generation implemented in our tool DIG 1. DIG can assess a high number of test case
candidates without executing them in the browser, making test generation significantly
more efficient than state-of-the-art techniques. Differently from search based approaches
(i.e. SUBWEB), DIG is fully automated, and it does not require any specific guidance to
generate feasible test cases. Our empirical evaluation on six real-world web applications
shows that DIG achieves higher coverage and fault detection rates significantly earlier
than crawling based (i.e. Atusa) and search based web test generators (i.e. SUBWEB).
Regarding effectiveness there is no statistical evidence that DIG and SUBWEB are dif-
ferent in terms of coverage and fault detection; the difference is that DIG does not require
the manual step of writing the guards which are needed for SUBWEB.

• Approach to detect dependencies in E2E web test suites. We introduced a novel notion
of persistent read-after-write (PRAW) dependencies, which extends the standard notion of
RAW dependencies to the web domain. Then, we proposed a test dependency technique
for E2E web test cases based on string analysis and NLP implemented in a tool called
TEDD 2. TEDD achieves an optimal trade off between false dependencies to be removed
and missing dependencies to be recovered in six web test suites. Specifically, our results
show that TEDD can correctly detect and validate test dependencies up to 72% faster
than the baseline in which the graph contains all possible dependencies associated with
the original test ordering. The test dependency graphs produced by TEDD enable test
parallelization, with a speed-up factor of up to 7×.

1 https://github.com/matteobiagiola/FSE19-submission-material-DIG
2https://github.com/matteobiagiola/FSE19-submission-material-TEDD

136

https://github.com/matteobiagiola/FSE19-submission-material-DIG
https://github.com/matteobiagiola/FSE19-submission-material-TEDD

• Turn web crawler into a test generator. Web crawlers have long been adopted to gen-
erate test cases for web applications, mostly following a model based approach. We show
that the raw output of a crawler, i.e., a navigation sequence, cannot be easily turned into
individual test cases that can be replayed as-is, since 85% of them fail when executed in
isolation. To this aim, we propose a novel approach to web test generation, implemented in
a tool called DANTE 3, that transforms the output of a crawler into executable test cases.
DANTE analyzes the test sequences produced by a crawler and determines the test de-
pendencies occurring between pairs of test cases. It also removes the redundant tests by
means of a coverage based pre-filter and a SAT based minimization step. Our experimen-
tal results show that test suites generated by DANTE are 84% smaller on average than the
ones produced by the crawler, and never exhibit test failures. Our results also show that
DANTE outperforms a state-of-the-art model based test generator (i.e. Atusa) in terms of
coverage and failure rate.

7.2 Discussion

With respect to the problem statement (see Section 1.2) we explored three ways to address it.
Table 7.1 shows a qualitative analysis that compare the three approaches along different dimen-
sions.

The first dimension we consider is how the different approaches handle the feasibility problem
(first column in Table 7.1). SUBWEB uses a search based approach to guide the search towards
feasible individuals, whereas DIG uses diversity to explore the space of feasible test paths at
large and execute only those that are far from the already executed ones. Moreover, our results
show that promoting diversity is beneficial not only to a thorough exploration of the application
behaviours, but also to the feasibility of automatically generated test cases. On the other hand,
DANTE uses a crawling based approach to generate test cases bypassing the construction of the
model of the web application under test. While the model based approaches of SUBWEB and
DIG have to cope with the feasibility problem, DANTE is not affected by it, since it directly
generates concrete test cases.

Regarding the test quality assessment point of view (second column of Table 7.1), both SUB-
WEB and DIG have quality metrics that guide the search/exploration towards feasible paths. In
particular SUBWEB uses the guards or preconditions of each PO method (e.g. transition of the
navigation graph) to understand how good is a test case with respect to another. In fact, guards
define the fitness function that guides the search towards feasible paths. A test is as good as it is
close to satisfy the conditions specified in each PO method. Differently from SUBWEB, DIG
establishes the quality of a test case by computing its distance with respect to already executed
test cases. The best test case is the farthest from those already executed. On the other hand,

3https://github.com/anon-icst2020/ICST20-submission-material-DANTE

137

https://github.com/anon-icst2020/ICST20-submission-material-DANTE

Table 7.1: Qualitative comparison between SUBWEB, DIG and DANTE.

Approach Feasibility Test Quality Automation Efficiency Independent

Assessment Tests

SUBWEB Yes (search) Yes (guards/feasibility) No (guards) No (execution) Yes

DIG Indirectly (diversity) Yes (distance metric) Yes Yes (static comparison) Yes

DANTE Not affected (crawling) No (no quality metric) Yes Yes No

DANTE does not use any quality metric to decide whether a test case is better than another. In
fact, DANTE uses a web crawler whose exploration of the web application under test is guided
by the state abstraction function and by the unfired candidate actions in each state.

Considering the automation point of view (third column of Table 7.1), SUBWEB relies on pre-
conditions of PO methods which depend on the business logic of the web application under test,
hence they cannot be generated fully automatically. DIG does not need preconditions to evaluate
the distance between test cases, as well as DANTE where every step is automatic (except for the
configuration of the crawler which may need to be done manually for each web application in
order to achieve a thorough exploration). In the automation point of view we do not consider
the flakiness problem which affects E2E test cases. In fact, the three approaches presented in
this thesis do not tackle the flakiness problem, which needs to be solved manually. In DIG and
SUBWEB, which are PO based test generators, the process of fixing flaky tests is easier for de-
velopers since flakiness can be fixed at the PO level. On the other hand, DANTE generates test
cases composed of bare Selenium statements, therefore if a test is flaky it may need to be fixed
multiple times.

Another interesting dimension to explore is efficiency (fourth column of Table 7.1), which we
consider as the number of executions needed for feasibility assessment. The reason is that,
in the context of E2E web testing, the execution of a test case is computationally expensive
since the test execution environment is the browser. SUBWEB directly evaluates feasibility
and, in order to establish the feasibility of a test, it needs to execute it. Every generated test
is executed and, if the test is infeasible, the execution time is wasted because the test does not
contribute to increase the coverage of the navigation graph. Therefore, the search based approach
employed by SUBWEB is not efficient. DIG, instead, evaluates diversity which can be seen as a
surrogate of feasibility and, most importantly, it can be computed statically. DIG generates more
test cases than SUBWEB but it only executes the most diverse with respect to those already
executed, therefore it is an efficient method. DANTE does not need to assess feasibility since
each generated test is executed but it is feasible by construction (i.e. it is concrete). Therefore, if
efficiency is a measure of feasibility assessment, DANTE is an efficient method.

Both DIG and SUBWEB generate independent test cases (fifth column of Table 7.1). Each test
exercises its own scenario and it does not depend on the execution of other tests, since the state

138

of the web application under test is reset to its starting condition after each test execution. On the
contrary, DANTE generates dependent tests because it is based on a web crawler. After crawling
DANTE detects the dependencies and minimizes the generated test suite. The drawback of
dependency aware test generators is that test optimization techniques, such as test parallelization,
test minimization, test prioritization and test selection, have been formulated for independent test
suites and they need to be reformulated to take into account the detected dependencies.

To conclude, DIG and SUBWEB are model based approaches and the model represents the high
level functionalities of the web application under test, while DANTE resorts to a web crawler,
which generates tests by randomly exploring the web application. The other important difference
is that DANTE does not require manual intervention (except for crawling configuration) whereas
DIG and SUBWEB can either resort to a web crawler to extract the navigation graph of the web
application or to manually written POs from which the navigation graph can be extracted. If
manually written POs are available DIG and SUBWEB are preferable to DANTE, since the
navigation graph extracted from manually written POs contains all the functionalities that are
worth testing, whereas the exploration performed by DANTE can be incomplete (i.e. it is limited
by the exploration strategy of the web crawler and by its state abstraction function). In such
context, DIG is preferable to SUBWEB since PO methods preconditions are usually not written
by PO developers and it is difficult to extract them automatically. On the other hand, if manually
written POs are not available both DIG and DANTE are based on the performance of a web
crawler. Particularly, DIG is less sensitive to the web crawler, since it is sufficient that the crawler
explores a certain state for the respective PO to be created by Apogen. In fact Apogen, that
generates the PO classes from the output of the web crawler, creates the PO methods (e.g. form
submission, transition to other POs) independently from the fact that those actions have been
performed during crawling. On the contrary, tests generated by DANTE will not exercise specific
parts of the web application if the corresponding actions have not been fired during crawling.
However, since DIG is based on Apogen, it is affected by its limitations, for instance clustering
limitations that could result in state/PO redundancy and not meaningful DOM elements ids which
create not meaningful method names. Those issues may need to be addressed manually, whereas
DANTE can be seen as a completely automatic approach.

7.3 Future Work

Empirical comparison between DIG and DANTE. In order to evaluate which approach per-
forms better, we plan to carry out an empirical comparison between the model based approach
used by DIG with the crawling based approach DANTE resorts to. A way to compare them
is to measure effectiveness and efficiency in terms of client side code coverage, since DANTE
does not use a navigation graph. In order for the comparison to be fair the crawling timeout
for both approaches should be the same. Furthermore, the time taken by DIG to cover all the
transitions of the PO based navigation graph should be measured, together with the time taken

139

by DANTE to perform the filtering, validation and minimization steps. Finally, the time to fix
the POs generated by Apogen, if any, should also be measured.

Crawling. An important crawling parameter that can significantly impact the exploration of the
crawler (in particular Crawljax [MvDL12]) given a target web application, is the exploration
strategy, i.e. the strategy that decides which state to expand next at each crawling step. The
feedback-directed exploration proposed by Fard et al. [MFM13] incorporates different coverage
metrics to guide the exploration. Experimental results are promising w.r.t extensive exploration
strategies such as depth-first, breadth-first and random. Another interesting direction to explore is
the use of search based techniques to guide the crawler during the exploration and compare them
with the feedback-directed technique. A multi-objective algorithm has been applied successfully
to automatically explore the behaviours of Android applications [MHJ16]. Promising results can
be envisioned also in the context of web applications. Improving the exploration strategy would
exercise more thoroughly the web application under test with the possibility of covering more
functionalities and, hence, finding more bugs.

Automatic Test Suite Augmentation. An interesting line for further research is that of automatic
test suite augmentation, i.e. an approach to test generation that considers code changes relative to
the web application under test and their effects on past test suites. Test suite augmentation often
implies fixing test cases that break in previously available test suites and producing new test
cases that exercise new behaviours. Moreover, it can exploit information available from existing
test suites for a previous version of the web application under test (i.e., seeding). Two directions
can be promising, one more manual and straightforward, the other more automated and more
challenging. The manual direction is a direct extension of SUBWEB and DIG. Indeed, in both
cases the test generation process starts from a model of the web application under test built with
POs. When the web application under test changes, the POs need to be manually modified by
testers to address those changes. The test suite generated for the previous version is seeded into
the test generation algorithm (either search based or diversity based) and executed. The tests that
break would be discarded while the others constitute a good starting point to start exploring new
behaviours.

The automated direction regards the use of a web crawler, in particular of DANTE. The idea
would be to re-execute the test suite generated for the previous version (generated in a depen-
dency aware manner), in order to build a model of the web application under test after the
changes [MFMM14]. Then, the new model can be expanded using any exploration strategy
(exhaustive, feedback-directed, search based), in order to exercise new behaviours. Finding ef-
fective techniques for test suite augmentation could improve the efficiency and the effectiveness
of test case generation, especially in the context of continuous integration [CAFA14].

Test Dependency Detection. In the research line of test dependency detection we are currently
studying the cost-effectiveness of TEDD during test suite evolution. The hypothesis is that
dependency detection, as proposed in TEDD, is expensive (≈ hours) only when no test depen-
dencies are known. Given the validated dependency graph of a test suite of a version x of the web

140

application under test, the objective is to study the runtime of TEDD when the web application
evolves (version y > x), which implies changes in the test suite. In particular, test cases that
break have to be fixed or removed (if a certain functionality is removed), and new test cases have
to be written for functionalities added in the new version. The incremental version of TEDD
should, given the validated dependency graph for version x and the evolved test suite for version
y, generate the validated dependency graph for version y.

Besides evaluating the cost-effectiveness of TEDD upon test suite evolution we can improve
the dependency detection process to make it more efficient. For example we can define new
methods to find dependencies between tests before the actual validation (the expensive process)
starts. One possibility is to analyze the requests the REST client is making towards the REST
server during test case execution. By the analysis of the HTTP request verb, the body of the
request and the server response, it is possible to extract some information related to what the test
is doing (reading/writing) and its relation with other tests. The advantage is that this heuristic
can be applied to automatically generated tests but, on the other hand, it will be effective only
with those web applications that implement the REST protocol.

Another direction regards the actual validation of the dependency graph, regardless of how those
dependencies are extracted. The validation algorithm implemented in TEDD validates one de-
pendency at a time. In order to improve efficiency, the validation can be parallelized by analyzing
dependencies that belong to different weakly connected components in parallel. The paralleliza-
tion algorithm should also take into account that dependencies can be added automatically (and
not only removed) during the validation. The initial dependency graph may indeed have false
negatives (missing true dependencies), which are added back by TEDD’s recovery procedure.
Speeding up the test dependency detection would also bring benefits to the dependency aware
test case generation in which dependency detection is a necessary precondition.

141

Bibliography

[AB11] Andrea Arcuri and Lionel Briand. Adaptive random testing: An illusion of ef-
fectiveness? In Proceedings of the 2011 International Symposium on Software
Testing and Analysis, pages 265–275. ACM, 2011.

[AB14] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for as-
sessing randomized algorithms in software engineering. Software Testing, Verifi-
cation and Reliability, 24(3):219–250, 2014.

[ACA12] Franco Arito, Francisco Chicano, and Enrique Alba. On the application of sat
solvers to the test suite minimization problem. In International Symposium on
Search Based Software Engineering, pages 45–59. Springer, 2012.

[ADJ+11] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. A
framework for automated testing of javascript web applications. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE ’11, pages
571–580, New York, NY, USA, 2011. ACM.

[AH11] Nadia Alshahwan and Mark Harman. Automated web application testing using
search based software engineering. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, pages 3–12. IEEE
Computer Society, 2011.

[AIB10] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. Formal analysis of
the effectiveness and predictability of random testing. In Proceedings of the 19th
international symposium on Software testing and analysis, pages 219–230. ACM,
2010.

[aja05] Ajax: A new approach to web applications. adaptive path. https://immagic.
com/eLibrary/ARCHIVES/GENERAL//ADTVPATH/A050218G.pdf,
2005.

[AKD+08] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar,
and Michael D. Ernst. Finding bugs in dynamic web applications. In Proceedings

142

https://immagic.com/eLibrary/ARCHIVES/GENERAL//ADTVPATH/A050218G.pdf
https://immagic.com/eLibrary/ARCHIVES/GENERAL//ADTVPATH/A050218G.pdf

of the 2008 international symposium on Software testing and analysis, ISSTA ’08,
pages 261–272, New York, NY, USA, 2008. ACM.

[Arc13] Andrea Arcuri. It really does matter how you normalize the branch distance
in search-based software testing. Software Testing, Verification and Reliability,
23(2):119–147, 2013.

[Arc17] Andrea Arcuri. Many independent objective (MIO) algorithm for test suite gen-
eration. In Search Based Software Engineering - 9th International Symposium,
SSBSE 2017, Paderborn, Germany, September 9-11, 2017, Proceedings, pages 3–
17, 2017.

[Ava14] Satya Avasarala. Selenium WebDriver practical guide. Packt Publishing Ltd, 2014.

[Bin96] Robert V. Binder. Testing object-oriented software: a survey. Software Testing,
Verification and Reliability, 6(3-4):125–252, 1996.

[BK14] Jonathan Bell and Gail Kaiser. Unit test virtualization with vmvm. In Proceedings
of the 36th International Conference on Software Engineering, ICSE 2014, pages
550–561. ACM, 2014.

[BKMD15] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. Efficient depen-
dency detection for safe java test acceleration. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 770–781. ACM,
2015.

[BWK05] Stefan Berner, Roland Weber, and Rudolf K. Keller. Observations and lessons
learned from automated testing. In Proceedings of 27th International Conference
on Software Engineering, ICSE 2005, pages 571–579. IEEE Computer Society,
2005.

[CAFA14] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. Continuous test
generation: enhancing continuous integration with automated test generation. In
Proceedings of the 29th ACM/IEEE international conference on Automated soft-
ware engineering, pages 55–66. ACM, 2014.

[CCC+13] TY Chen, I Clark, MB Cohen, W Grieskamp, et al. An orchestrated survey on
automated software test case generation. Journal of Systems and Software, 2013.

[CCT06] Kwok Ping Chan, TY Chen, and Dave Towey. Forgetting test cases. In 30th Annual
International Computer Software and Applications Conference (COMPSAC’06),
volume 1, pages 485–494. IEEE, 2006.

[cdp19] Chrome devtools protocol for java. https://github.com/webfolderio/
cdp4j, 2019.

143

https://github.com/webfolderio/cdp4j
https://github.com/webfolderio/cdp4j

[CGK+11] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Pasareanu, Koushik
Sen, Nikolai Tillmann, and Willem Visser. Symbolic execution for software testing
in practice: preliminary assessment. In 2011 33rd International Conference on
Software Engineering (ICSE), pages 1066–1071. IEEE, 2011.

[Chr19] Css and js code coverage. https://developers.google.com/web/
updates/2017/04/devtools-release-notes#coverage, 2019.

[CKL09] Tsong Yueh Chen, Fei-Ching Kuo, and Huai Liu. Adaptive random testing based
on distribution metrics. Journal of Systems and Software, 82(9):1419–1433, 2009.

[CKM06] Tsong Yueh Chen, Fei-Ching Kuo, and Robert Merkel. On the statistical properties
of testing effectiveness measures. Journal of Systems and Software, 79(5):591–
601, 2006.

[CKMN04] Tsong Yueh Chen, F-C Kuo, Robert G Merkel, and Sebastian P Ng. Mirror adap-
tive random testing. Information and Software Technology, 46(15):1001–1010,
2004.

[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive ran-
dom testing: The art of test case diversity. Journal of Systems and Software,
83(1):60–66, 2010.

[CLM04] Tsong Yueh Chen, Hing Leung, and IK Mak. Adaptive random testing. In Annual
Asian Computing Science Conference, pages 320–329. Springer, 2004.

[CLOM08] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Artoo: adaptive
random testing for object-oriented software. In Proceedings of the 30th interna-
tional conference on Software engineering, pages 71–80. ACM, 2008.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill, 2001.

[Coh10] Mike Cohn. Succeeding with agile: software development using Scrum. Pearson
Education, 2010.

[Cor19] Stanford corenlp – natural language software. https://stanfordnlp.
github.io/CoreNLP/, 2019.

[CRU19] Create, read, update and delete. https://en.wikipedia.org/wiki/
Create,_read,_update_and_delete, 2019.

[DDM06] Bruno Dutertre and Leonardo De Moura. A fast linear-arithmetic solver for dpll
(t). In International Conference on Computer Aided Verification, pages 81–94.
Springer, 2006.

144

https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage
https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

[DHHG06] Karnig Derderian, Robert M Hierons, Mark Harman, and Qiang Guo. Automated
unique input output sequence generation for conformance testing of fsms. The
Computer Journal, 49(3):331–344, 2006.

[Dij59] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[dim18] DimeShift: easiest way to track your expenses. https://github.com/
jeka-kiselyov/dimeshift, 2018.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[DNSVT07] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travas-
sos. A survey on model-based testing approaches: a systematic review. In Pro-
ceedings of the 1st ACM international workshop on Empirical assessment of soft-
ware engineering languages and technologies: held in conjunction with the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE)
2007, pages 31–36. ACM, 2007.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolu-
tionary computation, 6(2):182–197, 2002.

[ERKI05] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher II. Lever-
aging user-session data to support web application testing. IEEE Transactions on
Software Engineering, 31(3):187–202, 2005.

[ES+03] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing,
volume 53. Springer, 2003.

[FA13] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276 –291, feb. 2013.

[FG99] Mark Fewster and Dorothy Graham. Software Test Automation: Effective Use of
Test Execution Tools. Addison-Wesley Longman Publishing Co., Inc., 1999.

[FPCY16] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. Test set diameter:
Quantifying the diversity of sets of test cases. In 2016 IEEE International Con-
ference on Software Testing, Verification and Validation (ICST), pages 223–233.
IEEE, 2016.

[FT00] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures, volume 7. University of California, Irvine
Doctoral dissertation, 2000.

145

https://github.com/jeka-kiselyov/dimeshift
https://github.com/jeka-kiselyov/dimeshift

[GBZ18] Alessio Gambi, Jonathan Bell, and Andreas Zeller. Practical test dependency de-
tection. In Proceedings of the 2018 IEEE Conference on Software Testing, Valida-
tion and Verification, pages 1–11, April 2018.

[GD07] Vijay Ganesh and David L Dill. A decision procedure for bit-vectors and ar-
rays. In International Conference on Computer Aided Verification, pages 519–531.
Springer, 2007.

[GEM15] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test
selection with dynamic file dependencies. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, pages 211–222, New
York, NY, USA, 2015. ACM.

[Git12] Test execution order in junit 4.11. https://github.com/junit-team/
junit4/blob/master/doc/ReleaseNotes4.11.html, 2012.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated
random testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

[Goo14] Testing on the toilet: Writing descriptive test names.
https://testing.googleblog.com/2014/10/
testing-on-toilet-writing-descriptive.html, 2014.

[Goo19] Google java style guide. naming convention for junit tests. https:
//google.github.io/styleguide/javaguide.html#s5.2.
3-method-names, 2019.

[GSHM15] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. Reliable testing: De-
tecting state-polluting tests to prevent test dependency. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, pages
223–233, New York, NY, USA, 2015. ACM.

[Har11] Mark Harman. Software engineering meets evolutionary computation. Computer,
44(10):31–39, 2011.

[HJ01] Mark Harman and Bryan F Jones. Search-based software engineering. Information
and software Technology, 43(14):833–839, 2001.

[HJL+01] Mary Jean Harrold, James A Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S Alexander Spoon, and Ashish Gujarathi. Re-
gression test selection for java software. In ACM Sigplan Notices, volume 36,
pages 312–326. ACM, 2001.

146

https://github.com/junit-team/junit4/blob/master/doc/ReleaseNotes4.11.html
https://github.com/junit-team/junit4/blob/master/doc/ReleaseNotes4.11.html
https://testing.googleblog.com/2014/10/testing-on-toilet-writing-descriptive.html
https://testing.googleblog.com/2014/10/testing-on-toilet-writing-descriptive.html
https://google.github.io/styleguide/javaguide.html#s5.2.3-method-names
https://google.github.io/styleguide/javaguide.html#s5.2.3-method-names
https://google.github.io/styleguide/javaguide.html#s5.2.3-method-names

[HJZ15] Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open problems and
challenges for search based software testing. In 2015 IEEE 8th International Con-
ference on Software Testing, Verification and Validation (ICST), pages 1–12. IEEE,
2015.

[HKL+10] Mark Harman, Sung Gon Kim, Kiran Lakhotia, Phil McMinn, and Shin Yoo. Opti-
mizing for the number of tests generated in search based test data generation with
an application to the oracle cost problem. In Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference on, pages
182–191. IEEE, 2010.

[HM09] Mark Harman and Phil McMinn. A theoretical and empirical study of search-
based testing: Local, global, and hybrid search. IEEE Transactions on Software
Engineering, 36(2):226–247, 2009.

[HN15] Kim Herzig and Nachiappan Nagappan. Empirically detecting false test alarms
using association rules. In Proceedings of the 37th International Conference on
Software Engineering - Volume 2, ICSE ’15, pages 39–48, Piscataway, NJ, USA,
2015. IEEE Press.

[HRS16] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. WATERFALL: An
incremental approach for repairing record-replay tests of web applications. In
Proceedings of 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE ’16, pages 751–762. ACM, 2016.

[Inv05] Inversion of control. https://martinfowler.com/bliki/
InversionOfControl.html, 2005.

[Ist18] Istanbul: JavaScript test coverage made simple. https://istanbul.js.
org, 2018. Accessed: 2018-08-01.

[JS-18] Front-end JavaScript frameworks. https://github.com/collections/
front-end-javascript-frameworks, 2018.

[jso19] Json vs xml. https://www.w3schools.com/js/js_json_xml.asp,
2019.

[JUn19] Junit5 test execution order. https://junit.
org/junit5/docs/current/user-guide/
#writing-tests-test-execution-order, 2019.

[Kap16] Sebastian Kappler. Finding and breaking test dependencies to speed up test exe-
cution. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 1136–1138. ACM, 2016.

147

https://martinfowler.com/bliki/InversionOfControl.html
https://martinfowler.com/bliki/InversionOfControl.html
https://istanbul.js.org
https://istanbul.js.org
https://github.com/collections/front-end-javascript-frameworks
https://github.com/collections/front-end-javascript-frameworks
https://www.w3schools.com/js/js_json_xml.asp
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-execution-order
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-execution-order
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-execution-order

[Kin75] James C King. A new approach to program testing. In ACM SIGPLAN Notices,
volume 10, pages 228–233. ACM, 1975.

[Kor90] Bogdan Korel. Automated software test data generation. IEEE Transactions on
software engineering, 16(8):870–879, 1990.

[Kor04] O. Koresteleva. Nonparametric Methods in Statistics with SAS Applications. CRC
Press, Boca Raton, FL, 2004.

[LAG14] Guodong Li, Esben Andreasen, and Indradeep Ghosh. Symjs: automatic symbolic
testing of javascript web applications. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 449–
459. ACM, 2014.

[LCRT13] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. Capture-replay
vs. programmable web testing: An empirical assessment during test case evolution.
In Proceedings of 20th Working Conference on Reverse Engineering, WCRE ’13,
pages 272–281. IEEE Computer Society, 2013.

[LCRT16] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. Approaches
and tools for automated end-to-end web testing. Advances in Computers, 101:193–
237, 2016.

[LDD14] Yuan-Fang Li, Paramjit K Das, and David L Dowe. Two decades of web applica-
tion testing—a survey of recent advances. Information Systems, 43:20–54, 2014.

[Lee61] Chin Yang Lee. An algorithm for path connections and its applications. IRE
transactions on electronic computers, (3):346–365, 1961.

[Lev66] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[LHEM14] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical
analysis of flaky tests. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 643–653,
New York, NY, USA, 2014. ACM.

[lib10] Why libraries are better than frameworks. http://tom.lokhorst.eu/
2010/09/why-libraries-are-better-than-frameworks, 2010.

[LSRT15] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Using multi-
locators to increase the robustness of web test cases. In Proceedings of 8th IEEE
International Conference on Software Testing, Verification and Validation, ICST
’15, pages 1–10. IEEE, 2015.

148

http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks
http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks

[LSRT16] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Robula+: an
algorithm for generating robust xpath locators for web testing. Journal of Soft-
ware: Evolution and Process, 28(3):177–204, 2016.

[LSRT18] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. PESTO: Auto-
mated migration of DOM-based web tests towards the visual approach. Software
Testing, Verification And Reliability, 28(4), 2018.

[LTCZ09] Yu Lin, Xucheng Tang, Yuting Chen, and Jianjun Zhao. A divergence-oriented
approach to adaptive random testing of java programs. In Automated Software
Engineering, 2009. ASE’09. 24th IEEE/ACM International Conference on, pages
221–232. IEEE, 2009.

[Luk13] Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[LZE15] Wing Lam, Sai Zhang, and Michael D. Ernst. When tests collide: Evaluating and
coping with the impact of test dependence. Technical Report UW-CSE-15-03-
01, University of Washington Department of Computer Science and Engineering,
Seattle, WA, USA, March 2015.

[M+12] Tim Miller et al. Using dependency structures for prioritization of functional test
suites. IEEE transactions on software engineering, 39(2):258–275, 2012.

[MC13] Atif M Memon and Myra B Cohen. Automated testing of gui applications: models,
tools, and controlling flakiness. In Proceedings of the 2013 International Confer-
ence on Software Engineering, pages 1479–1480. IEEE Press, 2013.

[McM04] Phil McMinn. Search-based software test data generation: a survey. Software
testing, Verification and reliability, 14(2):105–156, 2004.

[Mes15] Ali Mesbah. Advances in Testing JavaScript-based Web Applications, volume 97
of Advances in Computers, chapter 5, pages 201–235. Elsevier, 2015.

[MFM13] Amin Milani Fard and Ali Mesbah. Feedback-directed exploration of web appli-
cations to derive test models. In Proceedings of the International Symposium on
Software Reliability Engineering (ISSRE), pages 278–287. IEEE Computer Soci-
ety, 2013.

[MFMM14] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. Leveraging existing
tests in automated test generation for web applications. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, pages
67–78. ACM, 2014.

149

[MGN+17] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. Taming google-scale continuous testing. In Proceedings
of the 39th International Conference on Software Engineering: Software Engi-
neering in Practice Track, ICSE-SEIP ’17, pages 233–242, Piscataway, NJ, USA,
2017. IEEE Press.

[MHJ16] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing
for android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 94–105. ACM, 2016.

[Mil95] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[MSW11] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. Finding bugs by isolating unit
tests. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages
496–499, New York, NY, USA, 2011. ACM.

[MT11] Alessandro Marchetto and Paolo Tonella. Using search-based algorithms for
ajax event sequence generation during testing. Empirical Software Engineering,
16(1):103–140, 2011.

[MTR08] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. State-based testing of
ajax web applications. In Proceedings of the 2008 International Conference on
Software Testing, Verification, and Validation, ICST ’08, pages 121–130, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[MTR12] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. Reajax: a reverse engi-
neering tool for ajax web applications. IET software, 6(1):33–49, 2012.

[MvD09] Ali Mesbah and Arie van Deursen. Invariant-based automatic testing of ajax user
interfaces. In Proceedings of the 31st International Conference on Software Engi-
neering, ICSE ’09, pages 210–220, Washington, DC, USA, 2009. IEEE Computer
Society.

[MvDL12] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based web
applications through dynamic analysis of user interface state changes. ACM Trans-
actions on the Web, 6(1):3:1–3:30, 2012.

[MvDR12] Ali Mesbah, Arie van Deursen, and Danny Roest. Invariant-based automatic test-
ing of modern web applications. IEEE Transactions on Software Engineering,
38(1):35–53, 2012.

150

[OJPM17] Frolin S Ocariza Jr, Karthik Pattabiraman, and Ali Mesbah. Detecting unknown
inconsistencies in web applications. In Proceedings of the 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 566–577. IEEE
Press, 2017.

[pag18] Pagekit: modular and lightweight CMS. https://github.com/pagekit/
pagekit, 2018.

[Pet18] Angular version of the Spring PetClinic web application. https://github.
com/spring-petclinic/spring-petclinic-angular, 2018.

[pho18] Phoenix: Trello tribute done in Elixir, Phoenix Framework, React and Redux.
https://github.com/bigardone/phoenix-trello, 2018.

[PKT15] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating
branch coverage as a many-objective optimization problem. In 8th IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST 2015,
Graz, Austria, April 13-17, 2015, pages 1–10, 2015.

[PKT18a] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated
test case generation as a many-objective optimisation problem with dynamic se-
lection of the targets. IEEE Transactions on Software Engineering, 44(2):122–158,
2018.

[PKT18b] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Incremental
control dependency frontier exploration for many-criteria test case generation. In
International Symposium on Search Based Software Engineering, pages 309–324.
Springer, 2018.

[PLEB07] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball.
Feedback-directed random test generation. In Proceedings of the 29th interna-
tional conference on Software Engineering, pages 75–84. IEEE Computer Society,
2007.

[PMP+15] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. Spoon: A library for implementing analyses and transformations of java
source code. Software: Practice and Experience, 46:1155–1179, 2015.

[PPM04] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet:: Similarity:
measuring the relatedness of concepts. In Demonstration papers at HLT-NAACL
2004, pages 38–41. Association for Computational Linguistics, 2004.

[PY08] Mauro Pezze and Michal Young. Software testing and analysis: process, princi-
ples, and techniques. John Wiley & Sons, 2008.

151

https://github.com/pagekit/pagekit
https://github.com/pagekit/pagekit
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/bigardone/phoenix-trello

[PZ17] F. Palomba and A. Zaidman. Does refactoring of test smells induce fixing flaky
tests? In Proceedings of the 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, pages 1–12, Sep. 2017.

[RCV+15] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Ar-
curi. Combining multiple coverage criteria in search-based unit test generation. In
International Symposium on Search Based Software Engineering, pages 93–108.
Springer, 2015.

[ret18] Retrospective Board. https://github.com/antoinejaussoin/
retro-board, 2018.

[RHVRH02] Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong. Em-
pirical studies of test-suite reduction. Software Testing, Verification and Reliability,
12(4):219–249, 2002.

[Ric04] Filippo Ricca. Analysis, testing and re-structuring of web applications. In 20th
IEEE International Conference on Software Maintenance, 2004. Proceedings.,
pages 474–478. IEEE, 2004.

[RT01] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In Pro-
ceedings of the 23rd International Conference on Software Engineering (ICSE),
pages 25–34, 2001.

[RUCH01] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. Pri-
oritizing test cases for regression testing. IEEE Transactions on software engi-
neering, 27(10):929–948, 2001.

[SJR+15] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. Do automatically generated unit tests find real faults? an em-
pirical study of effectiveness and challenges (t). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 201–211.
IEEE, 2015.

[SKBG13] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi:
a selective record-replay and dynamic analysis framework for javascript. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 488–498. ACM, 2013.

[SLRT17] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. APOGEN:
Automatic Page Object Generator for Web Testing. Software Quality Journal,
25(3):1007–1039, September 2017.

152

https://github.com/antoinejaussoin/retro-board
https://github.com/antoinejaussoin/retro-board

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine
for c. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 263–272.
ACM, 2005.

[spl18] Splittypie: easy expense splitting. https://github.com/cowbell/
splittypie, 2018.

[STM12] Ali Shahbazi, Andrew F Tappenden, and James Miller. Centroidal voronoi
tessellations-a new approach to random testing. IEEE Transactions on Software
Engineering, 39(2):163–183, 2012.

[SWH11] Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Programs, tests, and
oracles: The foundations of testing revisited. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE ’11, pages 391–400, New York,
NY, USA, 2011. ACM.

[SYM18] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. Visual web test re-
pair. In Proceedings of the 26th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE
’18. ACM, 2018.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

[ted19] Web test dependency detection using nlp. https://github.com/
matteobiagiola/FSE19-submission-material-TEDD, 2019.

[Tes19] Testng documentation. https://testng.org/doc/
documentation-main.html#annotations, 2019.

[TLS+13] Suresh Thummalapenta, K. Vasanta Lakshmi, Saurabh Sinha, Nishant Sinha, and
Satish Chandra. Guided test generation for web applications. In Proceedings
of the 2013 International Conference on Software Engineering, ICSE ’13, pages
162–171, Piscataway, NJ, USA, 2013. IEEE Press.

[TMN+12] Paolo Tonella, Alessandro Marchetto, Cu Duy Nguyen, Yue Jia, Kiran Lakhotia,
and Mark Harman. Finding the optimal balance between over and under approx-
imation of models inferred from execution logs. In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference On, pages 21–
30. IEEE, 2012.

[TNM+13] Paolo Tonella, Cu Duy Nguyen, Alessandro Marchetto, Kiran Lakhotia, and Mark
Harman. Automated generation of state abstraction functions using data invariant
inference. In Automation of Software Test (AST), 2013 8th International Workshop
on, pages 75–81. IEEE, 2013.

153

https://github.com/cowbell/splittypie
https://github.com/cowbell/splittypie
https://github.com/matteobiagiola/FSE19-submission-material-TEDD
https://github.com/matteobiagiola/FSE19-submission-material-TEDD
https://testng.org/doc/documentation-main.html#annotations
https://testng.org/doc/documentation-main.html#annotations

[Ton04] Paolo Tonella. Evolutionary testing of classes. In ACM SIGSOFT Software Engi-
neering Notes, volume 29, pages 119–128. ACM, 2004.

[TRM14] Paolo Tonella, Filippo Ricca, and Alessandro Marchetto. Recent advances in web
testing. In Advances in Computers, volume 93, pages 1–51. Elsevier, 2014.

[TTN14] Paolo Tonella, Roberto Tiella, and Cu Duy Nguyen. Interpolated n-grams for
model based testing. In Proceedings of the 36th International Conference on Soft-
ware Engineering, pages 562–572. ACM, 2014.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification and Reliability,
22(5):297–312, 2012.

[vD15] Arie van Deursen. Beyond page objects: Testing web applications with state ob-
jects. ACM Queue, 13(6):20, 2015.

[vDMBK02] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring test code.
In Extreme Programming Perspectives, pages 141–152. Addison-Wesley, 2002.

[VPK04] Willem Visser, Corina S Pǎsǎreanu, and Sarfraz Khurshid. Test input generation
with java pathfinder. In ACM SIGSOFT Software Engineering Notes, volume 29,
pages 97–107. ACM, 2004.

[VSM18] Arash Vahabzadeh, Andrea Stocco, and Ali Mesbah. Fine-grained test minimiza-
tion. In Proceedings of the 40th International Conference on Software Engineer-
ing, pages 210–221. ACM, 2018.

[WB04] Joachim Wegener and Oliver Bühler. Evaluation of different fitness functions for
the evolutionary testing of an autonomous parking system. In Genetic and Evolu-
tionary Computation Conference, pages 1400–1412. Springer, 2004.

[WC80] Lee J White and Edward I Cohen. A domain strategy for computer program testing.
IEEE Transactions on Software Engineering, (3):247–257, 1980.

[WG98] Joachim Wegener and Matthias Grochtmann. Verifying timing constraints of real-
time systems by means of evolutionary testing. Real-Time Systems, 15(3):275–
298, 1998.

[WP94] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceed-
ings of the 32nd annual meeting on Association for Computational Linguistics,
pages 133–138. Association for Computational Linguistics, 1994.

[YH12] Shin Yoo and Mark Harman. Regression testing minimization, selection and pri-
oritization: a survey. Software Testing, Verification and Reliability, 22(2):67–120,
2012.

154

[YM07] Xun Yuan and Atif M. Memon. Using GUI run-time state as feedback to generate
test cases. In ICSE ’07: Proceedings of the 29th International Conference on
Software Engineering, pages 396–405, Washington, DC, USA, May 23–25, 2007.
IEEE Computer Society.

[YMZ15] Bing Yu, Lei Ma, and Cheng Zhang. Incremental web application testing using
page object. In Proceedings of the 2015 Third IEEE Workshop on Hot Topics in
Web Systems and Technologies (HotWeb), HOTWEB ’15, pages 1–6, Washington,
DC, USA, 2015. IEEE Computer Society.

[z319] The z3 theorem prover. https://github.com/Z3Prover/z3, 2019.

[Zel17] Andreas Zeller. Search-based testing and system testing: A marriage in heaven.
In Proceedings of 2017 IEEE/ACM 10th International Workshop on Search-Based
Software Testing, SBST ’17, pages 49–50, May 2017.

[ZJW+14] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivanç Muslu, Wing Lam, Michael D.
Ernst, and David Notkin. Empirically revisiting the test independence assump-
tion. In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, pages 385–396, New York, NY, USA, 2014. ACM.

155

https://github.com/Z3Prover/z3

	Chapter Introduction
	Motivations
	Problem Statement
	Objectives
	Organization of the Thesis
	Origin of Chapters

	Chapter Web Application Testing: Background
	Preliminaries
	Web Applications
	Software Testing
	Metaheuristic Algorithms

	Web Application Testing
	E2E Testing
	Test Dependency

	Automatic Web Application Testing
	Model Based Testing
	Web Crawling

	Chapter State of the Art
	Test Case Generation
	Traditional Software
	Web Testing Techniques
	Limitations and Open Problems

	Test dependency
	Tools Supporting Test dependency Management
	Regression Testing Techniques Assuming independence
	Test Flakiness
	Limitations and Open Problems

	Chapter Test Case Generation
	Overall Approach
	Testing Model Extraction
	Guards

	Test Generation Problem Definition
	Search Based Web Test Generation
	Guards Specification in PO Methods
	Problem Reformulation
	Genetic Operators
	Implementation

	Empirical Evaluation
	Subject
	Procedure and Metrics
	Results
	Threats to Validity

	Limitations of Search Based Web Test Generation
	Diversity Based Web Test Generation
	Distance Between Test Cases
	Example of Distance Computation
	Implementation

	Empirical Evaluation
	Research Questions
	Subject Systems
	Procedure and Metrics
	Results
	Threats To Validity
	Discussion

	Chapter Web Test Dependency Detection
	Motivating Example
	Approach
	Dependency Graph Extraction
	Filtering
	Dependency Validation and Recovery
	Disconnected Dependency Recovery
	Implementation

	Empirical Evaluation
	Subject Systems
	Procedure and Metrics
	Results
	Threats to Validity
	Discussion

	Chapter Dependency Aware Test Case Generation
	Motivating Example
	Crawling Trace Based Test Generation and its Limitations

	Approach
	Test Dependency Analysis
	SAT solver-based Test Minimization
	Implementation

	Empirical Evaluation
	Research Questions
	Subject Systems
	Procedure and Metrics
	Results
	Threats to Validity
	Discussion

	Chapter Conclusions and Future Work
	Summary of Achievements
	Discussion
	Future Work

	Bibliography

