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Abstract. We provide sharp conditions for the finiteness and the continuity of multimarginal
optimal transport with repulsive cost, expressed in terms of a suitable concentration property of the
measure. To achieve this result, we analyze the Kantorovich potentials of the optimal plans, and we
estimate the distance of any optimal plan from the regions where the cost is infinite.
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1. Introduction. In recent years, a new mathematical model for the strong
interaction limit of the density functional theory (DFT) has been considered. For in-
stance, in [6], Buttazzo, De Pascale, and Gori-Giorgi show that the model for the min-
imal interaction of N electrons can be formulated in terms of a multimarginal Monge
transport problem. At the same time, in [10], Cotar, Friesecke, and Kl\"uppelberg show
that an analogous optimal transportation problem describes the semiclassical limit of
DFT in the case of two electrons and provides estimates from below in the general
case.

In this article we prove the finiteness and continuity of multimarginal optimal
transport with repulsive cost under the assumption that the measure does not con-
centrate too much. The article is a refinement of the results presented in [5], especially
from the point of view of the assumptions, which in our work are shown to be sharp.
We acknowledge also the recent preprint [2] in which the finiteness of the cost is proved
in a similar fashion by dimension reduction.

To describe the problem, we fix a complete and separable (Polish) metric space
(X, \sansd ). We consider a repulsive interaction cost given by a symmetric lower semicon-
tinuous function c : X \times X \rightarrow [0,\infty ] for which there exist two nonincreasing right-
continuous (or, equivalently, lower semicontinuous) functions m,M : (0,\infty ) \rightarrow [0,\infty )
satisfying

(1.1) m
\bigl( 
\sansd (x1, x2)

\bigr) 
\leq c(x1, x2) \leq M

\bigl( 
\sansd (x1, x2)

\bigr) 
\forall x1, x2 \in X.

Moreover, sometimes we will need a strong repulsion assumption, namely

(1.2) c(x, x) = \infty \forall x \in X and lim
r\rightarrow 0+

m(r) = lim
r\rightarrow 0+

M(r) = \infty .

Extending m(0) = M(0) = \infty for this last case, the inequality (1.1) still holds for
all x1, x2 \in X. The Coulomb cost fits into this framework as c(x1, x2) =

1
| x1 - x2| on

X = \BbbR d, d \in \BbbN , and one can take m(r) = M(r) = 1
r .
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2904 MARIA COLOMBO, SIMONE DI MARINO, AND FEDERICO STRA

For every integer N \geq 2, define the symmetric interaction cost c : XN \rightarrow [0,\infty ]
by

c(x1, . . . , xN ) :=
\sum 

1\leq i<j\leq N

c(xi, xj),

the cost of a plan C : P
\bigl( 
XN

\bigr) 
\rightarrow [0,\infty ] by

(1.3) C(\pi ) :=

\int 
XN

c(x1, . . . , xN ) d\pi (x1, . . . , xN ),

and lastly, the optimal transport cost C : P(X) \rightarrow [0,\infty ] associated to a marginal
by

(1.4) C (\rho ) := inf\{ C(\pi ) : \pi \in \Pi N (\rho )\} ,

where
\Pi N (\rho ) :=

\bigl\{ 
\pi \in P

\bigl( 
XN

\bigr) 
: P i

\#\pi = \rho for i = 1, . . . , N
\bigr\} 

denotes the set of admissible transport plans and P i : XN \rightarrow X are the projections
on the ith component for i = 1, . . . , N . The existence of a minimizer for the infimum
problem in (1.4) follows from standard methods in the calculus of variations as long
as c is lower semicontinuous (see, for example, [1, 31, 29]).

Besides exploring the connection with density functional theory [6, 10, 3, 20],
several authors investigated the mathematical properties of the minimizer. A natural
question is whether the optimizer is induced by a map, namely if there exists a Borel
map T : X \rightarrow X such that T\#\rho = \rho (where T\#\rho represents the pushforward measure
of the measure \rho through the Borel map T ) and an optimizer \pi in the minimization
problem in (1.4) can be represented as (Id, T, T (2), . . . , T (n - 1))\#\rho . This question is
still widely open, though some results have been obtained in [8, 7, 9, 30] regarding
the possibility of approximating the cost of a minimizer with costs of these particular
plans, the 1-dimensional case, and the radial case (see also the survey [15]). It is
important to also mention here the negative result in [18], where they show (in the
case of the repulsive harmonic cost c(x, y) =  - | x - y| 2) an explicit density \rho , absolutely
continuous with respect to the Lebesgue measure, such that there is a unique optimal
symmetric plan, which is not induced by a map.

The asymptotic behavior as N \rightarrow \infty for the Coulomb were presented in [11, 28]
and then more precisely (up to the first order) in [25, 12].

In [13, 5], instead, the authors prove a duality result, which shows that the value
in (1.4) can be represented via a duality argument as

(1.5) sup
\Bigl\{ 
N

\int 
X

\varphi d\rho : \varphi (x1) + \cdot \cdot \cdot + \varphi (xN ) \leq c(x)
\Bigr\} 
;

the proof is carried out for the Coulomb cost but adapts to the assumption that c
is lower continuous; moreover, the existence of an optimal potential \varphi in the dual
formulation (1.5) is also proved (see also [17] for a generalization to costs not nec-
essarily bounded from below). We remark that a general duality result has already
been proven by Kellerer in [22], but the hypothesis on the cost function could not be
adapted to a Coulomb-type cost.

Finally, we remark that in the context of multimarginal optimal transport prob-
lems several of the questions mentioned above are open, even with more classi-
cal cost functions such as the quadratic cost; recent developments can be found in
[16, 27, 24, 19, 15].

D
ow

nl
oa

de
d 

08
/1

5/
19

 to
 1

92
.1

67
.2

04
.1

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTINUITY OF MULTIMARGINAL OT WITH REPULSIVE COST 2905

In this paper we prove the finiteness and continuity of multimarginal optimal
transport with repulsive cost under the assumption that the measure does not con-
centrate too much. This issue was already partly addressed in [5], where the authors
present sufficient conditions for the continuity of the cost and where they analyze the
Kantorovich potentials. We improve the previous results especially from the point of
view of the assumptions, which in our work are shown to be sharp. The continuity
of the optimal cost under the sharp conditions of the present paper is useful, for in-
stance, in [4] to study the bond dissociation problem of certain molecules in density
functional theory.

Our results depend on assumptions regarding the concentration of mass of the
marginal \rho ; therefore we introduce two quantities measuring it. Given \mu \in P(X), we
consider the pointwise concentration of \mu , namely its biggest atom

(1.6) a(\mu ) := max
x\in X

\mu (\{ x\} ),

and the concentration on balls defined as

\kappa (\mu , r) := sup
x\in X

\mu 
\bigl( 
\=B(x, r)

\bigr) 
,

which gives more quantitative information, since limr\rightarrow 0 \kappa (\mu , r) = a(\mu ). In terms of
the first concentration property, we characterize the finiteness of the cost.

Theorem 1.1 (finiteness of the cost). Let \rho \in P(X), let C be the cost introduced
in (1.4) under the assumptions (1.1), (1.2), and (1.3), and let a(\rho ) be as in (1.6).
Then we have that
(i) if a(\rho ) < 1

N , then C (\rho ) < \infty ;
(ii) if a(\rho ) > 1

N , then C (\rho ) = \infty ;
(iii) if a(\rho ) = 1

N , then C (\rho ) < \infty if and only if

(1.7)

\int 
X\setminus \{ \=x\} 

c(\=x, x) d\rho (x) < \infty \forall \=x : \rho (\{ \=x\} ) = 1

N
.

We acknowledge here also the recent paper [2] in which the first two parts of
the theorem above are proved by a slicing method and by induction on the number
of atoms. Our proof is considerably shorter, and it is based instead on a dimension
reduction argument, which allows us to reduce the problem to a 1-dimensional problem
via a suitably chosen projection.

Next, we address in our main theorem the problem of the continuity of the cost,
in which we will also use the ``enlarged diagonal"" for any \alpha > 0:

D\alpha =
\bigl\{ 
x = (x1, . . . , xN ) \in XN : \sansd (xi, xj) < \alpha for some i \not = j

\bigr\} 
.

Theorem 1.2. Let C be the cost introduced in (1.4) under the assumptions (1.1),
(1.2), and (1.3). Let r > 0, \delta \in (0, 1/N), and consider the set

(1.8) Kr,\delta := \{ \rho \in P(X) : \kappa (\rho , r) < \delta \} .

Then we have the following:
(i) C is Lipschitz in Kr,\delta with respect to the total variation norm on P(X).
(ii) If, in addition, the cost c is continuous, C is continuous in \{ \rho \in P(X) :

a(\rho ) < 1/N\} with respect to the weak topology, or equivalently with respect to
the Wasserstein distance W1.
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(iii) If the cost c is Lipschitz outside D\alpha for every \alpha > 0, then C is Lipschitz in Kr,\delta 

with respect to the Wasserstein W1 distance on P(X).

A consequence of Theorem 1.2(i) is that C is locally Lipschitz on \{ \rho \in P(X) :
a(\rho ) < 1/N\} with respect to the strong topology on P(X). Similarly, under the
assumptions on the cost in Theorem 1.2(iii), C is locally Lipschitz in \{ \rho \in P(X) :
a(\rho ) < 1/N\} with respect to the Wasserstein distance. On the other hand, it is
not true that the cost is continuous, even with the strong topology, on the set \{ \rho \in 
P(X) : C (\rho ) < \infty \} , even in the case of the Coulomb cost in X = \BbbR d. Indeed, it is
clear that if a(\rho ) = 1/N for some \rho of finite cost, we can enlarge the Dirac delta of
size 1/N in \rho (reducing the mass slightly elsewhere) to obtain a sequence of measures
of infinite cost which converge strongly to \rho . On the other side, with a little bit more
work we can approximate any \rho of this type with measures of finite energy creating a
discontinuity in \rho ; see Lemma 3.5 below.

The result in Theorem 1.2 is based on two key ideas. First, in Theorem 1.3 we
provide quantitative bounds regarding the distance of the support from the diagonals
xi = xj , i \not = j (where the cost is infinite). Once this result is established, the
minimization problem (1.4) becomes fully equivalent to the same problem with a cost
truncated from above (see Lemma 5.1). Under the boundedness assumption for the
cost, we can refer to more classical optimal transport results to obtain the existence
of optimal potentials as well as their estimates. Since these results might have an
interest which goes beyond the proof of Theorem 1.2, we describe them in the next
two subsections.

1.1. Diagonal bounds. For \alpha > 0 define the ``enlarged diagonals""

D\alpha =
\bigl\{ 
x = (x1, . . . , xN ) \in XN : \sansd (xi, xj) < \alpha for some i \not = j

\bigr\} 
,

\=D\alpha =
\bigl\{ 
x = (x1, . . . , xN ) \in XN : \sansd (xi, xj) \leq \alpha for some i \not = j

\bigr\} 
.

Notice that in general \=D\alpha is not the closure of D\alpha (which would be denoted by D\alpha if
needed) but rather contains it. We also introduce an enlarged diagonal which is more
intrinsic in terms of the cost, rather than of the distance

Dh =
\bigl\{ 
x = (x1, . . . , xN ) \in XN : c(xi, xj) > h for some i \not = j

\bigr\} 
.

The set Dh is a more tailored version of D\alpha , but of course we have DM(\alpha ) \subseteq D\alpha \subseteq 
Dm(\alpha ), and, for example, in the case c(x, y) = f(d(x, y)) they coincide up to a com-
position with f or its inverse.

We can provide some diagonal bounds for the optimal plan, improving the cor-
responding result in [5, Theorem 2.4]. Notice that in this theorem we do not require
the strong repulsion assumption (1.2); this is important since in the crucial Lemma
5.1 we in fact apply it to a bounded cost.

Theorem 1.3 (diagonal bounds). Let \rho \in P(X), r > 0; let us consider an
optimal plan \pi \in \Pi (\rho ) in (1.4) under the assumptions (1.1) and (1.3), and let \kappa (\rho , r)
be as in (1.6). Then we have the following:

(i) If \kappa (\rho , r) < 1
2(N - 1) and h > 2(N  - 1)M(r), then \pi (Dh) = 0.

(ii) If \kappa (\rho , r) < 1
N whenever we have h, \beta > 0 satisfying

(1.9) h > 2(N  - 1)M(\beta /2), m(\beta ) >
C (\rho )

1 - N\kappa (\rho , r)
, \beta /2 \leq r,

D
ow

nl
oa

de
d 

08
/1

5/
19

 to
 1

92
.1

67
.2

04
.1

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTINUITY OF MULTIMARGINAL OT WITH REPULSIVE COST 2907

then we have \pi (Dh) = 0. Moreover, under assumption (1.2), there always
exist such h, \beta > 0, and they can be also chosen depending only on r, N , and
\delta := 1 - N\kappa (\rho , r).

In particular, in both cases we have \pi (D\alpha ) = 0 whenever m(\alpha ) \geq h.

Notice that, while in (ii) the assumption on the measure is sharp, the behavior
of the estimate of h with respect to N and r is not very nice. Indeed, it depends on
C (\rho ), which can be avoided by using Theorem 4.1, at the cost of losing a factor

\bigl( 
N
2

\bigr) 
.

This is why we also kept estimate (i), which is sharper in the behavior on N and r
despite not being optimal on the assumption.

1.2. Kantorovich potentials. We recall here the existence of optimal poten-
tials, which is the main result of [13]. In the paper the proof is written for the Coulomb
cost and for probabilities \rho with no atoms. Using some ideas present in [5], we provide
a sharper version that works for every \rho such that a(\rho ) < 1/N .

Theorem 1.4. Let C be the cost introduced in (1.4) under the assumptions (1.1),
(1.2), and (1.3), and let \rho \in P(X) with a(\rho ) < 1/N . Then the duality formula

C (\rho ) = sup
\Bigl\{ 
N

\int 
X

\varphi d\rho : \varphi (x1) + \cdot \cdot \cdot + \varphi (xN ) \leq c(x)
\Bigr\} 

holds, and the supremum in the right-hand side is realized by a potential \varphi \in L1 \cap 
L\infty (\rho ).

Proof. We deduce this theorem since by Lemma 2.1 we have \rho \in Kr,\delta for some
r > 0 and \delta < 1/N ; then we use Lemma 5.1, which in turn uses the existence of
optimal potentials for bounded costs, which was proved in [22].

To prove the continuity of the cost in Theorem 1.2, we need to obtain uniform
estimates on these potentials when \rho varies in a set Kr,\delta . Notice that in the following
theorem we do not assume the strong repulsion assumption (1.2).

Proposition 1.5 (L\infty and Lip bounds on the Kantorovich potential). Let C
be the cost introduced in (1.4) under the assumptions (1.1) and (1.3). Let r > 0,
\delta \in (0, 1/N), and consider the set Kr,\delta introduced in (1.8).

Then there exists a function h := h(r, \delta ) (given, for example, by (5.3)) such that
the following hold:
(i) There exist Kantorovich potentials \varphi \rho which are uniformly bounded in Kr,\delta :

sup
\rho \in Kr,\delta 

\| \varphi \rho \| L\infty (X) <

\biggl( 
N

2

\biggr) 
\cdot h(r, \delta ).

(ii) If the cost c is Lipschitz outside D\alpha for every \alpha > 0, then there exist Kantorovich
potentials \varphi \rho which are uniformly Lipschitz in Kr,\delta :

sup
\rho \in Kr,\delta 

\| \varphi \rho \| Lip(X) < (N  - 1) \cdot \| ch(r,\delta )\| Lip(X),

where ch is defined as in (5.1).

1.3. Examples. We summarize here three particular examples that fall inside
the setting of the previous theorems.

Coulomb in \BbbR d. The model case is the Coulomb interaction in \BbbR 3. This is how
the problem originated in the context of DFT. The ambient space is \BbbR d, and the cost
c(x, y) = 1/| x  - y| . In this case we have m(t) = M(t) = 1

t . Since this is maybe
the most interesting example, we provide specific and quantitative estimates for every
theorem in section 6.
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Case c = \phi \circ \sansd . A specific instance of this kind would be a cost of the form
c(x1, x2) = \phi 

\bigl( 
\sansd (x1, x2)

\bigr) 
, where \phi : [0,\infty ) \rightarrow [0,\infty ] is a lower semicontinuous function

such that
\bullet \phi (0) = \infty , and hence limr\rightarrow 0+ \phi (r) = \infty , and
\bullet \phi | [r,\infty ) is bounded for every r > 0.

In this case, m and M could be given by

m(r) := min
r\prime \in [0,r]

\phi (r\prime ), M(r) := sup
r\prime \in [r,\infty )

\phi (r\prime ).

From the definition it follows that m and M are nonincreasing and right-continuous,
m(r) \leq \phi (r) \leq M(r), and limr\rightarrow 0+ m(r) = \infty . We define also the pseudoinverse
m - 1 : [0,\infty ) \rightarrow (0,\infty ] by

m - 1(t) := max\{ r \in (0,\infty ] : m(r) \geq t\} .

Then m - 1 is nonincreasing and left-continuous and satisfies the important relation
m
\bigl( 
m - 1(t)

\bigr) 
\geq t.

Green function of \Delta . Noticing that the potential 1/| x  - y| is the fundamental
solution of the Laplacian in \BbbR 3, the first case can be generalized to a Riemannian
manifold M where the cost is given by c(x, y) = G(x, y), the fundamental solution
of \Delta xG(x, y) = \delta y. If the manifold is compact, then it is clear that c satisfies the
previous hypotheses, but they could be verified also on some noncompact manifolds,
like they are in \BbbR d because of the translation invariance.

2. Preliminary results. For all the functions introduced so far, sometimes we
will drop the N dependence whenever it will be clear from the context.

We will use the notation P i : XN \rightarrow X to denote the projection on the ith co-
ordinate and also P i1,...,ik : XN \rightarrow Xk to denote the projection on the coordinates
i1, . . . , ik. Moreover, given \pi \in P(XN ) we denote Psym(\pi ) = 1

N !

\sum 
\sigma \in SN

\bigl( 
P\sigma (1),...,\sigma (N)

\bigr) 
\#
\pi 

and notice that C(\pi ) = C(Psym(\pi )) thanks to the symmetry of the cost. Here SN

denotes the group of all permutations of \{ 1, . . . , N\} .

2.1. Properties of the concentration. Clearly the uniform concentration con-
dition measured by \kappa is stronger than the pointwise one encoded by a. However,
thanks to a compactness argument, the next lemma shows that the two are in fact
almost equivalent.

Lemma 2.1. Let \rho \in P(X), and assume that a(\rho ) < \delta . Then there exists r > 0
such that \kappa (\rho , r) < \delta .

Proof. Fix \delta \prime such that a(\rho ) < \delta \prime < \delta . Since \rho is tight, we can find a compact
subset K \subset X such that \rho (Kc) < \delta \prime . Given x \in X, one has limr\rightarrow 0+ \rho 

\bigl( 
\=B(x, r)

\bigr) 
=

\rho (\{ x\} ) \leq a(\rho ) < \delta \prime ; therefore, for every x there exists a positive radius rx such that

\rho 
\bigl( 
\=B(x, 3rx)

\bigr) 
< \delta \prime .

Since K is compact, we can find a finite number of points x1, . . . , xk such that K \subset \bigcup k
i=1

\=B(xi, rxi). Let r = min\{ rx1 , . . . , rxk
\} . If \sansd (x,K) > r, then \=B(x, r) \subset Kc;

hence \rho 
\bigl( 
\=B(x, r)

\bigr) 
< \delta \prime . If \sansd (x,K) \leq r, then \sansd (x, xi) \leq r + rxi \leq 2rxi for some

i = 1, . . . , k; therefore, \=B(x, r) \subset \=B(xi, 3rxi
), and hence \rho 

\bigl( 
\=B(x, r)

\bigr) 
< \delta \prime . This implies

\kappa (\rho , r) \leq \delta \prime < \delta .

Lemma 2.2. Assume that \rho , \eta \in P(X). Then for every r, r\prime > 0 we have

(r  - r\prime ) \cdot (\kappa (\eta , r\prime ) - \kappa (\rho , r)) \leq W1(\rho , \eta ).
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Proof. By symmetry we can assume r > r\prime . For any \varepsilon > 0 small, let us take
x \in X such that \eta (B(x, r\prime )) \geq \kappa (\eta , r\prime )  - \varepsilon . Then we can consider an optimal plan \gamma 
between \eta and \rho , and let A = B(x, r\prime )\times (X \setminus B(x, r)); we have that

\gamma (A) = \gamma (B(x, r\prime )\times X) - \gamma (B(x, r\prime )\times B(x, r))

\geq \gamma (B(x, r\prime )\times X) - \gamma (X \times B(x, r))

= \eta (B(x, r\prime )) - \rho (B(x, r)) \geq \kappa (\eta , r\prime ) - \varepsilon  - \kappa (\rho , r).

Hence we can estimate

W1(\rho , \eta ) \geq 
\int 
A

d(x, y) d\gamma (x, y) \geq (r  - r\prime )\gamma (A) \geq (r  - r\prime ) \cdot 
\bigl( 
\kappa (\eta , r\prime ) - \varepsilon  - \kappa (\rho , r)

\bigr) 
,

and we conclude by the arbitrariness of \varepsilon .

Lemma 2.3. Assume that \rho \in P(X) satisfies \kappa (\rho , r) < \delta for some r > 0, and let
\rho n \rightharpoonup \rho . Then for every r\prime \in (0, r) one has \kappa (\rho n, r

\prime ) < \delta for n large enough.
In particular, if a(\rho ) < \delta , then a(\rho n) < \delta definitely in n.

Proof. We can assume that the distance is bounded, considering the modified
distance dM (x, y) = min\{ M,d(x, y)\} , for M big enough. If the distance is bounded,
we have that \rho n \rightarrow \rho if and only if W1(\rho n, \rho ) \rightarrow 0. But then for r\prime < r we can apply
Lemma 2.2 in order to get

lim sup
n\rightarrow \infty 

\kappa (\rho n, r
\prime ) \leq lim sup

n\rightarrow \infty 

\biggl\{ 
\kappa (\rho , r) +

W1(\rho n, \rho )

r  - r\prime 

\biggr\} 
= \kappa (\rho , r) < \delta .

Proposition 2.4 (good projection). Let \rho \in P(X) with a(\rho ) < \delta . Then there
exists P \in Lip1(X) such that a(P\#\rho ) < \delta . Such a P will be called a good projection.

Proof. We start from the case where X is a finite-dimensional normed vector
space, i.e., X \simeq \BbbR d. It is sufficient to show that there exists Pd \in Lip(\BbbR d;\BbbR d - 1) such
that a(Pd\#\rho ) < \delta . Then we conclude by taking P = P2 \circ \cdot \cdot \cdot \circ Pd. The statement is
true if we are able to find a direction v \in \BbbR d such that \rho (l) < \delta for every line l parallel
to v. In fact, then we can write \BbbR d \simeq \BbbR d - 1\oplus \langle v\rangle and take Pd to be the projection onto
the first factor. Fix a positive \varepsilon < [\delta  - a(\rho )]/2. Let \{ xi\} i be the at most countable
set of atoms of \rho . Take out a finite number of them, x1, . . . , xn, such that the mass
of the remaining ones is small, namely\sum 

i>n

\rho (\{ xi\} ) < \varepsilon .

The directions vij = xi  - xj are forbidden. Consider the nonatomic measure

\~\rho = \rho  - 
\sum 
i\geq 1

\rho (\{ xi\} )\delta xi .

This measure is additive on finite unions of distinct lines, because the intersections
are finite sets of points, which have zero measure with respect to \~\rho . Therefore, there
is only a finite number of lines l1, . . . , lk with \~\rho (li) \geq \varepsilon . Let vi denote a direction
parallel to li. This procedure rules out another finite number of directions, v1, . . . , vk.
Now take a direction v which is not parallel to any of the vij or vi. If l is a line parallel
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2910 MARIA COLOMBO, SIMONE DI MARINO, AND FEDERICO STRA

to v, l can contain at most one of the points x1, . . . , xn (otherwise v would be parallel
to some vij) and \~\rho (l) < \varepsilon (otherwise v would be parallel to some vi). Therefore,

\rho (l) \leq \~\rho (l) + max
i=1,...,n

\rho (\{ xi\} ) +
\sum 
i>n

\rho (\{ xi\} ) < \varepsilon + a(\rho ) + \varepsilon < \delta .

Assume now that X = \ell \infty and \rho \in P(\ell \infty ) is tight. It is well known (see, for
instance, [26, Lemma 5.7]) that \ell \infty has the metric approximation property; that is,
for every compact set K \subset \ell \infty and every \varepsilon > 0 there is a linear operator T : \ell \infty \rightarrow \ell \infty 

of finite rank with operator norm \| T\| \leq 1 and supx\in K\| Tx  - x\| \infty \leq \varepsilon . Since \rho 
is tight, there are increasing compact sets Kn such that \rho (Kc

n) < 1/n. \rho is clearly
concentrated on the set H =

\bigcup 
n Kn. Let Tn : \ell \infty \rightarrow \ell \infty be a finite-rank linear

operator with \| Tn\| \leq 1 and supx\in Kn
\| Tnx  - x\| \infty \leq 1/n. For every x \in H we have

Tnx \rightarrow x as n \rightarrow \infty ; therefore, Tn\#\rho \rightharpoonup \rho .1 But then, by Lemma 2.3, a(Tn\#\rho ) < \delta 
for n sufficiently large. The measure Tn\#\rho is supported on a finite-dimensional vector
subspace of \ell \infty (the image of Tn); therefore, we already know that there is a good
projection Q for it. A good projection for \rho itself is then given by P = Q \circ Tn.

In the general case of a Polish space (X, \sansd ), we simply need to embed it isomet-
rically, \iota : X \rightarrow \ell \infty , by means of \iota (x) = (\varphi n(x))n, where \varphi n(x) = \sansd (x, xn)  - \sansd (x, x0)
and \{ xn\} n \subset X is a countable dense set. By the Ulam lemma, \rho is tight, and so is
\iota \#\rho \in P(\ell \infty ). Clearly a(\iota \#\rho ) = a(\rho ) < \delta ; therefore, we can find a good projection Q
for \iota \#\rho and a good projection for \rho is given by P = Q \circ \iota .

Remark 2.5. The previous proposition remains true when \rho is a tight finite non-
negative measure on a generic metric space X. The only modification is to observe
that we just need to embed only supp(\rho ) \lhook \rightarrow \ell \infty , which is \sigma -compact and closed and
thus Polish.

Proposition 2.4 will be used to prove the finiteness of the cost under the assump-
tion that a(\rho ) < 1/N . To deal with the other concentration condition \kappa (\rho , r) < 1/N ,
one could hope to extend the good projection in the following way. However, we have
not been able to establish the truth of the next conjecture; therefore, we had to find
another way to get the bound of the cost (see Theorem 4.1). The conjecture, how-
ever, seems interesting enough from the measure theoretic perspective, so we state it
anyway.

Conjecture 2.6 (good projection, quantitative version). Let \rho \in P(\BbbR d) with
\kappa (\rho , r) < \delta . Then for every \varepsilon > 0 there exists P \in Lip1(\BbbR d) such that \kappa (P\#\rho , r

\prime ) <
\delta + \varepsilon for some r\prime (r, d, \delta , \varepsilon ) > 0.

3. Characterization of finiteness of the cost.

Lemma 3.1 (monotone plan). Let \rho \in P(\BbbR ). Then there exists \pi \rho \in \Pi N (\rho ) such
that for \pi \rho -a.e. x \in \BbbR N and for every i \not = j we have \rho ([xi, xj ]) \geq 1

N . In particular, if
\kappa (\rho , r) < 1

N , then \pi \rho (D2r) = 0.

Remark 3.2. In the following proof we will consider \pi \rho as the unique symmetric
monotone plan (which is a plan with the property that every x, y in its support are
well ordered, as defined in [7]). Since we are only interested in its final properties,
we will not prove that it is monotone (even if it is obvious), nor will we discuss its
uniqueness; a proof of these properties in the case of atomless \rho can be found in [7].

1Indeed, if f \in Cb(\ell 
\infty ), one has

\int 
f dTn\#\rho =

\int 
f \circ Tn d\rho \rightarrow 

\int 
f d\rho by dominated convergence.
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CONTINUITY OF MULTIMARGINAL OT WITH REPULSIVE COST 2911

Proof. Let us consider F : [0, 1] \rightarrow \BbbR defined as F (t) = sup\{ x : \rho (( - \infty , x]) < t\} .
Then let us define

\pi \rho = N \cdot Psym

\Bigl( \bigl( 
F (t), F (t+ 1

N ), . . . , F (t+ N - 1
N )

\bigr) 
\#
\scrL | [0, 1

N ]

\Bigr) 
.

We claim that \pi \rho is a plan with the properties we want.
It is clear to see that F is a pseudoinverse of the cumulative distribution function

of \rho . In particular, we have F\#\scrL [0,1] = \rho , and so we obtain that \pi \rho \in \Pi N (\rho ).
Moreover, from the definition of F we deduce

\rho 
\bigl( 
 - \infty , F (t)

\bigr) 
\leq t \leq \rho 

\bigl( 
( - \infty , F (t)]

\bigr) 
.

In particular, we get immediately \rho 
\bigl( 
[F (t+ i

N ), F (t+ j
N )]
\bigr) 
\geq | i - j| 

N , which implies the
wanted property on \pi \rho .

Now, if we add the hypothesis that \kappa (\rho , r) < 1
N , we have that \rho ([xi, xj ]) \geq 1

N
implies | xi  - xj | \geq 2r. In fact, if this were not the case, then

1

N
\leq \rho ([xi, xj ]) \leq \rho 

\Bigl( 
B
\bigl( xi+xj

2 , r
\bigr) \Bigr) 

\leq \kappa (\rho , r) <
1

N
.

But then D2r \subseteq 
\bigcup 

i \not =j\{ x : \rho ([xi, xj ]) <
1
N \} , and since we know that the second set is

\pi \rho -null, we have also that \pi \rho (D2r) = 0.

We present here a simple proof of the finiteness of the cost depending on the
existence of good projections, before moving on to the more powerful, but maybe less
intuitive, Theorem 4.1. This result appears also in the recent preprint [2, Theorem
1.1], where it is proved in a longer way using at the core a dimension reduction
argument similar to our good projection, but working always in the original ambient
space and therefore not fully exploiting the simpler structure of the 1-dimensional
problem.

Proof of Theorem 1.1(i). We claim that, given \rho \in P(X) such that a(\rho ) < 1/N ,
there exists a plan \pi \in \Pi (\rho ) such that \pi (D\alpha ) = 0 for some \alpha > 0. In particular, the
statement follows since

C (\rho ) \leq C(\pi ) \leq 
\biggl( 
N

2

\biggr) 
M(\alpha ) < \infty .

To show the claim, take a good projection P \in Lip1(X) given by Proposition 2.4,
and consider the measure \nu = P\#\rho ; in particular, we have a(\nu ) < 1

N and, thanks to
Lemma 2.1, also that \kappa (\nu , r) < 1

N for some r > 0. By the disintegration theorem
there are probabilities \rho t \in P(X) such that \rho = \rho t \otimes \nu (t) and t \mapsto \rightarrow \rho t is Borel (see,
for example, [14, section III-70]).

Let \~\pi \in \Pi (\nu ) be a plan given by Lemma 3.1, and let \pi \in \Pi (\rho ) be any plan such
that (P, . . . , P )\#\pi = \~\pi . Such a plan can be built by arbitrarily mapping the measures
\rho t onto one another. In particular, we will have that for every (x1, . . . , xN ) \in supp(\pi )
we have (P (x1), . . . , P (xn)) \in supp(\~\pi ), and so we get that \pi (D\alpha ) = 0 as long as
\~\pi (D\alpha ) = 0, thanks to the fact that P is 1-Lipschitz.

Since we have \kappa (\nu , r) < 1
N , Lemma 3.1 gives that \~\pi (D2r) = 0, and so we can

conclude \pi (D2r) = 0.

Proof of Theorem 1.1(ii). We prove that every \rho \in P(X) such that C (\rho ) < \infty 
satisfies a(\rho ) \leq 1/N . Let \pi \in \Pi (\rho ) be an optimal plan. Since C (\rho ) = C(\pi ) < \infty , we
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2912 MARIA COLOMBO, SIMONE DI MARINO, AND FEDERICO STRA

infer that \pi (D) = 0. Let \=x \in argmax\{ \rho (\{ x\} ) : x \in X\} , so that \rho (\{ \=x\} ) = a(\rho ), and
define X\ast = \{ \=x\} c. For every i = 1, . . . , N one has

\rho (\{ \=x\} ) = P i
\#\pi (\{ \=x\} ) = \pi 

\bigl( 
XN - 1 \times i \{ \=x\} 

\bigr) 
= \pi 

\bigl( 
XN - 1

\ast \times i \{ \=x\} 
\bigr) 
,

where the notation EN - 1 \times i F means Ei - 1 \times F \times EN - i. Notice that the N sets
XN - 1

\ast \times i \{ \=x\} are disjoint; therefore, adding over i = 1, . . . , N , we get

N\rho (\{ \=x\} ) =
N\sum 
i=1

\pi 
\bigl( 
XN - 1

\ast \times i \{ \=x\} 
\bigr) 
= \pi 

\Biggl( 
N\bigcup 
i=1

XN - 1
\ast \times i \{ \=x\} 

\Biggr) 
\leq \pi 

\bigl( 
XN

\bigr) 
= 1,

from which a(\rho ) \leq 1/N .

Proposition 3.3. Let C be the cost introduced in (1.4) under the assumptions
(1.1), (1.2), and (1.3), and let a(\rho ) be as in (1.6). Let \rho \in P(X) and \=x \in X such
that \rho (\{ \=x\} ) = 1

N . Then, letting X\ast = X \setminus \{ \=x\} and \~\rho = N
N - 1\rho | X\ast , we have

(3.1) CN (\rho ) = (N  - 1)

\int 
X\ast 

c(\=x, y) d\rho (y) + CN - 1(\~\rho ).

Proof. Let \pi \in \Pi N - 1(\~\rho ); then we have that Psym(\delta \=x \otimes \pi ) \in \Pi N (\rho ), and so

CN (\rho ) \leq CN (Psym(\delta \=x \otimes \pi )) = CN (\delta \=x \otimes \pi ) = (N  - 1)

\int 
X\ast 

c(\=x, y) d\rho (y) + CN - 1(\pi );

taking the infimum in \pi , we obtain the first inequality.
In order to prove the other inequality, we can assume CN (\rho ) < \infty . Let us consider

\pi is a symmetric optimal coupling for CN (\rho ), which is therefore concentrated outside
the diagonals, and let us define Xi = XN - 1

\ast \times i \{ \=x\} ; we know that Xi are disjoint and
\pi (Xi) = P i

\#\pi (\{ \=x\} ) = 1
N . This means that \pi is concentrated on

\bigcup 
Xi.

We can define \pi 1 through the implicit equality

\pi | \{ \=x\} \times XN - 1 = \pi | X1 =
1

N
\delta \=x \times \pi 1

with \pi 1(X
N - 1
\ast ) = \pi 1(X

N - 1) = 1, and, thanks to the symmetry of \pi , by considering
only permutations which fix the first coordinate, we deduce that also \pi 1 is symmetric
in its N  - 1 variables. A simple computation then shows that

(3.2) \pi = Psym(\delta \=x \otimes \pi 1)

and that

(3.3) P i
\#(\pi 1) = \~\rho =

N

N  - 1
\rho | X\ast for every i = 1, . . . , N  - 1.

Indeed, for every permutation which fixes x1, we know that the measure is unchanged.
On the other side, every permutation of coordinates can be written as the composition
of one of these permutations with a pi : XN \rightarrow XN which exchanges x1 and xi for
some i = 2, . . . , N and leaves all other coordinates fixed. For every i = 2, . . . , N , we
know that pi\#(\delta \=x\otimes \pi 1) goes to a nonnegative measure of total mass 1/N , concentrated

on Xi and hence orthogonal to \delta \=x \otimes \pi 1 (and to any other permutation pj with j \not = i),
which is also a submeasure of \pi . Hence, we conclude that (3.2) holds. Define \~\rho to
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be any marginal of \pi 1, so that \delta \=x \otimes \pi 1 has all marginals equal to \~\rho apart from one,
which equals \delta \=x. Symmetrizing, we find that \rho , which is any marginal of \pi , equals
1/N\delta \=x + (N  - 1)/N \~\rho , which proves (3.3).

Then, thanks to (3.2) and (3.3), we can rewrite the energy of \pi as

CN (\rho ) = CN (\delta \=x \otimes \pi 1) = (N  - 1)

\int 
X\ast 

c(\=x, y) d\rho (y) + CN - 1(\pi 1)

\geq (N  - 1)

\int 
X\ast 

c(\=x, y) d\rho (y) + CN - 1(\~\rho ).

At the threshold level 1/N anything can happen: the cost can be finite or infinite,
depending on the specific distribution of the mass.

Remark 3.4. If X is a space with at least one accumulation point, and C and
a are as in Proposition 3.3, then there exists \rho \in P(X) such that a(\rho ) = 1/N and
supp(\pi ) \cap D \not = \emptyset for every \pi \in \Pi (\rho ) (thus \pi (D\alpha ) > 0 for every \alpha > 0). This shows
that the assumption on the concentration in Theorem 1.3 is necessary. Moreover,
there is one such \rho with C (\rho ) < \infty and one with C (\rho ) = \infty .

Indeed, let x \in X be a limit point, (xn)n\in \BbbN \subset X \setminus \{ x\} be a sequence of distinct
points converging to x, and

\rho :=
1

N
\delta x +

N  - 1

N

\sum 
n

pn\delta xn
,

where (pn)n\in \BbbN \in \ell 1 with pn \in (0, 1/N) and
\sum \infty 

n=1 pn = 1.
With the notation of the proof of Proposition 3.3, we have

\pi (D\alpha ) \geq \pi 
\Bigl( 
\{ x\} \times XN - 2

\ast \times B(x, \alpha )
\Bigr) 
= \pi 1

\Bigl( 
XN - 2

\ast \times B(x, \alpha )
\Bigr) 

= Pn - 1
\# \pi 1(B(x, \alpha )) = \~\rho (B(x, \alpha )) > 0.

Finally, since a(\~\rho ) < 1
N < 1

N - 1 , we have CN - 1(
\sum 

n pn\delta xn
) < \infty , and so, again

by Proposition 3.3, CN (\rho ) is finite if and only if\int 
X\ast 

c(\=x, y) d\rho (y) =
\sum 
n

pnc(\=x, xn)

is finite; one can choose the weights (pn)n appropriately, taking into account (1.2), in
order to make the cost finite or infinite.

Proof of Theorem 1.1(iii). We argue inductively on the number i of atoms in \mu 
of mass 1/N . If \mu has exactly one atom of mass 1/N at \=x, namely, if i = 1, from
Proposition 3.3 we know that the cost of CN is finite if and only if condition (1.7) is
in force at \=x and N

N - 1\rho | X\setminus \{ \=x\} has finite CN - 1 cost. On the other side, this second

condition is always verified because N
N - 1\rho | X\setminus \{ \=x\} does not have atoms of the critical

mass 1/(N  - 1); hence the first part of Theorem 1.1 applies.
If we assume the statement to be true when there are i atoms in \mu of mass 1/N

and we want to prove it for i+1, we consider \mu with i+1 atoms of mass 1/N , one of
which at \=x; next we apply Proposition 3.3, and we reduce to studying the finiteness of
the cost of N

N - 1\rho | X\setminus \{ \=x\} , which in turn has exactly i atoms of mass 1/(N  - 1). Hence,
applying the inductive assumption to this measure, we conclude the proof.
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2914 MARIA COLOMBO, SIMONE DI MARINO, AND FEDERICO STRA

For simplicity we give the following example of discontinuity of the cost for the
Coulomb cost in \BbbR d; of course, it can be generalized to metric spaces with costs as in
assumptions (1.1) and (1.2).

Proposition 3.5. Let c(x, y) = | x - y|  - 1 in \BbbR d\times \BbbR d, and consider the minimiza-
tion problem (1.4). Let \rho \in P(\BbbR d) be such that a(\rho ) = 1

N . Then for every \varepsilon > 0
small there exists \~\rho such that | \rho  - \~\rho | (\BbbR d) \leq \varepsilon and

(3.4) 1 + C (\rho ) < C (\~\rho ) < \infty .

Proof. Let \=x \in X and \mu \in M+(X) be such that \rho = 1
N \delta \=x+\mu . Then by Proposition

3.3 we know that

(3.5) N

\int 
\BbbR d

c(\=x, y) d\mu (y) + CN - 1

\Bigl( N

N  - 1
\mu 
\Bigr) 
= CN (\rho ) < \infty .

Let \varepsilon < 1/N and y\varepsilon \in \BbbR d such that \varepsilon < | \=x - y\varepsilon | \leq 2\varepsilon and \mu (y\varepsilon ) = 0. We consider

\rho \varepsilon :=
1

N
\delta \=x + \varepsilon \delta y\varepsilon 

+ (1 - \varepsilon )\mu \in P(\BbbR d),

we notice that | \rho  - \rho \varepsilon | (\BbbR d) = \varepsilon |  - \delta y\varepsilon + \varepsilon \mu | (\BbbR d) \leq 2\varepsilon , and we estimate its cost thanks
to Proposition 3.3 as

CN (\rho \varepsilon ) = N

\int 
\BbbR d

c(\=x, y) d(\varepsilon \delta y\varepsilon 
+ (1 - \varepsilon )\mu )(y) + CN - 1

\Bigl( N

N  - 1
(\varepsilon \delta y\varepsilon 

+ (1 - \varepsilon )\mu )
\Bigr) 
.

The last term is finite because a(\varepsilon \delta y\varepsilon 
+ (1 - \varepsilon )\mu ) \leq 1 - \varepsilon 

N , and the first one thanks to
(3.5). On the other side, we estimate the cost from below by

CN (\rho \varepsilon ) \geq N\varepsilon c(\=x, y\varepsilon ) +N(1 - \varepsilon )

\int 
\BbbR d

c(\=x, y) d\mu (y) + CN - 1

\Bigl( N

N  - 1
(\varepsilon \delta y\varepsilon 

+ (1 - \varepsilon )\mu )
\Bigr) 

\geq N

2
+N(1 - \varepsilon )

\int 
\BbbR d

c(\=x, y) d\mu (y) + CN - 1

\Bigl( N

N  - 1
(\varepsilon \delta y\varepsilon 

+ (1 - \varepsilon )\mu )
\Bigr) 
.

(3.6)

By the lower semicontinuity of the cost CN - 1, we know that the last two terms on
the right-hand side are, in the limit, greater than or equal to the quantity in (3.5),
namely CN (\rho ). Hence, for \varepsilon small enough we obtain (3.4).

4. Uniform bounds on the cost and diagonal bounds.

Theorem 4.1 (uniform bound on the cost in terms of the concentration). Let \rho \in 
P(X) be such that \kappa (\rho , r) \leq 1

N for some r > 0. Let r(x) be such that \rho (B(x, r(x))) \leq 
1/N for every x. Then we have

C (\rho ) \leq 
\biggl( 
N

2

\biggr) \int 
M(max\{ r(x)

2 , r\} ) d\rho .

Remark 4.2. Under the assumptions of Theorem 4.1, the slightly weaker bound

C (\rho ) \leq 
\biggl( 
N

2

\biggr) 
M(r)

can be achieved in a simpler way. Indeed, this is a straightforward application of
Theorem 4.3 with the set D = \{ d(x, y) < r\} , which guarantees us the existence of a
plan \pi \in \Pi N (\rho ), concentrated outside Dr; in particular we have c(xi, xj) \leq M(r) for

every i \not = j, for \pi -a.e., and so we have C(\pi ) \leq 
\bigl( 
N
2

\bigr) 
M(r).
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Proof of Theorem 4.1. Without loss of generality we can assume that r(x) is the
maximum radius such that \rho 

\bigl( 
B(x, r(x))

\bigr) 
\leq 1/N . We first notice that r(x) is 1-

Lipschitz; in fact, since B(x, r(x)+ \varepsilon ) \subseteq B(y, r(x)+ \varepsilon + d(x, y)) by the maximality of
r(x) we deduce that \rho 

\bigl( 
B(y, r(x) + \varepsilon + d(x, y))

\bigr) 
> 1

N . This is true for every \varepsilon > 0, so
we get

r(y) \leq r(x) + d(x, y).

Since we can reverse the roles of x and y, we obtain that r is 1-Lipschitz.
Let D = \{ (x, y) : 2d(x, y) < max\{ r(x), r(y), 2r\} \} ; since both d and r are con-

tinuous, we have that D is an open symmetric set. Moreover, defining B(x) = \{ x\prime :
(x, x\prime ) \in D\} we have

B(x) = B(x, r) \cup B(x, r(x)
2 ) \cup 

\Bigl\{ 
x\prime : d(x, x\prime ) < r(x\prime )

2

\Bigr\} 
\subseteq B(x, r) \cup B(x, r(x)

2 ) \cup 
\Bigl\{ 
x\prime : d(x, x\prime ) < d(x,x\prime )+r(x)

2

\Bigr\} 
= B(x, r) \cup B(x, r(x)),

where we used the fact that r is 1-Lipschitz. Clearly we thus have \rho (B(x)) \leq 1
N ; so

we can use Theorem 4.3 in order to get a plan \pi \in \Pi N (\rho ) such that (xi, xj) \not \in D for
i \not = j, for \pi -a.e., x \in Xk. But this means that d(xi, xj) \geq max\{ r(xi), r(xj)\} /2 for
\pi -a.e. x: we then get

C (\rho ) \leq C(\pi ) \leq 
\int 
XN

\sum 
i<j

M(
max\{ r(xi),r(xj)\} ,2r

2 ) d\pi 

\leq 
\int 
X

\sum 
i<j

M(max\{ r(xi)
2 , r\} ) +M(max\{ r(xj)

2 , r\} )
2

d\pi 

=

\biggl( 
N

2

\biggr) \int 
X

M(max\{ r(x)
2 , r\} ) d\rho .

In graph theory, a consequence of the Hajnal--Szemer\'edi theorem [21, 23] is a
simplified multimarginal version of the marriage theorem (a multimarriage theorem):
let us suppose we have kN people, and everyone has a list of hated people, which
always has fewer than k people on it (hatred is a reciprocal sentiment, at least in this
example). Then we can form k groups of N people such that in every group we do
not have people who hate each other.

The following theorem can be seen as the continuous analogue of this multimar-
riage theorem (B(x) is the list of people disliked by x).

Theorem 4.3 (existence of a plan outside the diagonal). Let X be a Polish space,
and let D \subset X2 be a symmetric open set; let us denote B(x) = \{ x\prime : (x, x\prime ) \in D\} . Let
us suppose that \rho (B(x)) \leq 1/N for every x \in X; then there exists a plan \pi \in \Pi N (\rho )
that is concentrated on Ac, where

A =
\bigcup 
XN

\bigcup 
i \not =j

\{ (xi, xj) \in D\} ;

that is, we have (xi, xj) \not \in D for i \not = j, for \pi -a.e. x \in XN .

Proof. The proof exploits the duality formula for bounded costs. In order to show
that there exists an admissible plan \pi \in \Pi N (\rho ) such that \pi (A) = 0, we will analyze
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2916 MARIA COLOMBO, SIMONE DI MARINO, AND FEDERICO STRA

the minimizer of the multimarginal optimal transport with respect to the following
bounded cost:

\~c(x1, . . . , xN ) = inf
\bigl\{ 
d((x1, . . . , xN ), Ac), 1

\bigr\} 
.

For this cost it is known that the duality formula holds [13]:

inf
\pi \in \Pi (\rho )

\int 
XN

\~cd\pi = sup
\varphi (x1)+\cdot \cdot \cdot +\varphi (xN )\leq \~c(x)

N

\int 
X

\varphi d\rho .

The optimal \pi \in \Pi N (\rho ) will satisfy \pi (A) = 0 if we show that\int 
X

\varphi d\rho \leq 0 for all admissible \varphi .

In fact, in such a case the optimal value of the previous problems must be 0; therefore,
\pi has to be supported on Ac, thanks to the fact that A is open.

Actually, the crucial constraint on \varphi that will be needed for the proof is

\varphi (x1) + \cdot \cdot \cdot + \varphi (xN ) \leq 0 if x \in Ac.

The only role that the cost \~c on A plays is telling us that \varphi is bounded from above,
since N\varphi (x) \leq \~c(x, . . . , x) \leq 1; indeed, one would like to consider the cost which takes
the value \infty in this region if there were not the problem of the validity of the duality
formula for such a cost and the boundedness of the potential.

After having fixed a small \varepsilon > 0, we do the following iterative construction of
\eta i, zi, and Bi. For i = 1, we define \eta 1 = supX \varphi , we select z1 \in X such that
\varphi (z1) \geq \eta 1  - \varepsilon , and we let B1 = B(z1); for i > 1 we proceed analogously according
to the following:

\eta 1 = sup
X

\varphi , z1 \in X, \varphi (z1) \geq \eta 1  - \varepsilon , B1 = B(z1),

\eta 2 = sup
Bc

1

\varphi , z2 \in Bc
1, \varphi (z2) \geq \eta 2  - \varepsilon , B2 = B(z2),

...
...

...

\eta k = sup
(B1\cup \cdot \cdot \cdot \cup Bk - 1)c

\varphi , zk \in (B1 \cup \cdot \cdot \cdot \cup Bk - 1)
c, \varphi (zk) \geq \eta k  - \varepsilon , Bk = B(zk).

Notice that the sequence r/N \geq \eta 1 \geq \eta 2 \geq . . . is monotone.
At each step we check the sign of the quantity

\eta 1 + \cdot \cdot \cdot + \eta k - 1 + (N  - k + 1)\eta k  - (k  - 1)\varepsilon .

As soon as it is nonpositive we stop the process and estimate the quantity
\int 
X
\varphi d\rho .

Notice that this will surely happen by the time we reach k = N , because if z \in 
(B1 \cup \cdot \cdot \cdot \cup BN - 1)

c, then (z1, . . . , zN - 1, z) \in Ac (in fact, letting zN := z, we have
(zi, zj) \not \in D for every i \not = j), so

(\eta 1  - \varepsilon ) + \cdot \cdot \cdot + (\eta N - 1  - \varepsilon ) + \varphi (z) \leq \varphi (z1) + \cdot \cdot \cdot + \varphi (zN - 1) + \varphi (z) \leq 0,

and \eta 1 + \cdot \cdot \cdot + \eta N  - (N  - 1)\varepsilon \leq 0 follows by taking the supremum over z.
Calling k the smallest integer for which this happens, by construction we have

(4.1) \eta k \leq  - 1

N  - k + 1

k - 1\sum 
j=1

\eta j +
k  - 1

N  - k + 1
\varepsilon ,
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while the preceding inequalities are reversed.
Letting \~Bj = Bj \setminus (B1 \cup \cdot \cdot \cdot \cup Bk - 1) so that they are disjoint, we can estimate

\int 
X

\varphi d\rho =

k - 1\sum 
i=1

\int 
\~Bi

\varphi d\rho +

\int 
(B1\cup \cdot \cdot \cdot \cup Bk - 1)c

\varphi d\rho 

\leq 
k - 1\sum 
i=1

\eta i\rho ( \~Bi) + \eta k

\Biggl( 
1 - 

k - 1\sum 
i=1

\rho ( \~Bi)

\Biggr) 

\leq 
k - 1\sum 
i=1

\eta i\rho ( \~Bi) +

\left(   - 1

N  - k + 1

k - 1\sum 
j=1

\eta j +
k  - 1

N  - k + 1
\varepsilon 

\right)  \Biggl( 1 - k - 1\sum 
i=1

\rho ( \~Bi)

\Biggr) 

=

k - 1\sum 
i=1

\rho ( \~Bi)

\left(  \eta i +
1

N  - k + 1

k - 1\sum 
j=1

\eta j  - 
k  - 2

N  - k + 1
\varepsilon 

\right)  
\underbrace{}  \underbrace{}  

\geq 0

 - 1

N  - k + 1

k - 1\sum 
j=1

\eta j +
k  - 1

N  - k + 1
\varepsilon  - 1

N  - k + 1
\varepsilon 

k - 1\sum 
i=1

\rho ( \~Bi),

where we used (4.1) in the second inequality and then

(N  - k + 1)\eta i +

k - 1\sum 
j=1

\eta j  - (k  - 2)\varepsilon 

\geq (N  - k + 1)\eta k - 1 +

k - 1\sum 
j=1

\eta j  - (k  - 2)\varepsilon 

= (N  - (k  - 1) + 1)\eta k - 1 +

k - 2\sum 
j=1

\eta j  - (k  - 2)\varepsilon \geq 0

in the underlined part in the last equation; in particular, we can use \rho (Bi) \leq 1/N for
i < k:\int 
X

\varphi d\rho \leq 
k - 1\sum 
i=1

1

N

\Biggl( 
\eta i +

1

N  - k + 1

k - 1\sum 
j=1

\eta j  - 
k  - 2

N  - k + 1
\varepsilon 

\Biggr) 
 - 1

N  - k + 1

k - 1\sum 
j=1

\eta j +
k  - 1

N  - k + 1
\varepsilon 

\leq 
\biggl( 

1

N
+

k  - 1

N(N  - k + 1)
 - 1

N  - k + 1

\biggr) k - 1\sum 
j=1

\eta j +
k  - 1

N  - k + 1
\varepsilon 

=
k  - 1

N  - k + 1
\varepsilon \leq N\varepsilon .

Letting \varepsilon \rightarrow 0 shows that
\int 
X
\varphi d\rho \leq 0 as desired.

Proof of Theorem 1.3(ii). First, we can assume without loss of generality that the
plan \pi is symmetric, since \pi sym has the same cost of \pi and \pi sym( \=D\alpha ) = \pi ( \=D\alpha ) for
every \alpha \geq 0.

Assume by contradiction that \pi ( \=D\alpha ) > 0. Then there exists x \in supp(\pi ) \cap D\alpha .
We may assume without loss of generality that | x1 - x2| \leq \alpha . For notational simplicity,
let \gamma = \beta /2 \leq r. We claim that there is a point

y \in supp(\pi ) \setminus \=D\beta \cap 
\bigl( 
\=B(x1, \gamma )

c
\bigr) N

.
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2918 MARIA COLOMBO, SIMONE DI MARINO, AND FEDERICO STRA

To prove that such a point exists, it is sufficient to show that

\pi 
\Bigl( 
\=Dc
\beta \cap 

\bigl( 
\=B(x1, \gamma )

c
\bigr) N\Bigr) 

> 0.

But this is true since we can estimate the mass of the complement as

\pi 
\Bigl( \Bigl[ 

\=Dc
\beta \cap 

\bigl( 
\=B(x1, \gamma )

c
\bigr) N\Bigr] c\Bigr) 

= \pi 
\Bigl( 
\=D\beta \cup 

\Bigl[ \bigl( 
\=B(x1, \gamma )

c
\bigr) N\Bigr] c\Bigr) 

\leq \pi ( \=D\beta ) + \pi 

\Biggl( 
N\bigcup 
i=1

XN - 1 \times i
\=B(x1, \gamma )

\Biggr) 

\leq C(\pi )

m(\beta )
+N\rho 

\bigl( 
\=B(x1, \gamma )

\bigr) 
< 1 - N\kappa (\rho , r) +N\kappa (\rho , \gamma ) \leq 1.

Next we prove that there exists i \in \{ 1, . . . , N\} such that d(yi, xj) > \gamma for every
j = 1, . . . , N . Indeed, by definition of y, the set \=B(x1, \gamma ) does not contain any of the
points yi; furthermore, the N  - 1 sets \=B(x2, \gamma ), \=B(x3, \gamma ), . . . , \=B(xN , \gamma ) have diameter
at most 2\gamma = \beta ; therefore, at least one of the N points yi does not belong to any
of them; otherwise, by the pigeonhole principle one of the aforementioned sets would
contain two of the points yi, which is impossible because they are pairwise spaced
apart by more than \beta . Since we are dealing with a symmetric plan, we may assume
that d(y1, xj) > \gamma for every j = 1, . . . , N .

Now we introduce the two points \~x and \~y obtained by swapping the coordinates
x1 and y1, namely

\~x = (y1, x2, . . . , xN ), \~y = (x1, y2, . . . , yN ).

Thanks to the c-monotonicity we then have c(x) + c(y) \leq c(\~x) + c(\~y). In this last
inequality many terms cancel out; in fact, the interaction between xi and xj for i, j \geq 2
and between yi and yj for i, j \geq 2 are present on both sides. Thus, the inequality is
equivalent to

N\sum 
i=2

c(x1, xi) + c(y1, yi) \leq 
N\sum 
i=2

c(y1, xi) + c(x1, yi).

Now we can use d(x1, x2) \leq \alpha , d(x1, yi) > \gamma , and d(y1, xi) > \gamma to get

m(\alpha ) \leq 
N\sum 
i=2

c(x1, xi) + c(y1, yi) \leq 
N\sum 
i=2

c(y1, xi) + c(x1, yi) \leq 2(N  - 1)M(\gamma ),

and so we have reached a contradiction.

Proof of Theorem 1.3(i). As in the proof of Theorem 1.3(ii) we can assume that
\pi is symmetric. Assume by contradiction that \pi ( \=D\alpha ) > 0. Then there exists x \in 
supp(\pi ) \cap D\alpha . We may assume without loss of generality that d(x1, x2) \leq \alpha . We
claim that there is a point y \in supp(\pi ) such that

y \in 
\Bigl( N\bigcup 
i=2

\=B(xi, r)
\Bigr) c

\times ( \=B(x1, r)
c)N - 1.
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For notational convenience, let us denote A1 =
\bigcup N

i=2
\=B(xi, r) and A = \=B(x1, r). To

prove that such a point exists, it is sufficient to show that

\pi 
\bigl( 
Ac

1 \times (Ac)N - 1
\bigr) 
> 0.

But this is true since we can estimate the mass of the complement as

\pi 
\Bigl( \bigl[ 

Ac
1 \times (Ac)N - 1

\bigr] c\Bigr) \leq \pi 

\Biggl( 
A1 \times XN - 1 \cup 

N\bigcup 
i=2

A\times i X
N - 1

\Biggr) 
\leq \rho (A1) + (N  - 1)\rho (A)

\leq 
N\sum 
i=2

\rho (B(xi, r)) + (N  - 1)\rho (B(x1, r)) < 1.

Now we introduce the two points \~x and \~y obtained by swapping the coordinates
x1 and y1, namely

\~x = (y1, x2, . . . , xN ), \~y = (x1, y2, . . . , yN ).

Thanks to the c-monotonicity we then have c(x) + c(y) \leq c(\~x) + c(\~y). In this last
inequality many terms cancel out; in fact, the interactions between xi and xj for
i, j \geq 2 and between yi and yj for i, j \geq 2 are present on both sides. Thus, the
inequality is equivalent to

N\sum 
i=2

c(x1, xi) + c(y1, yi) \leq 
N\sum 
i=2

c(y1, xi) + c(x1, yi).

Now we can use d(x1, x2) \leq \alpha , d(x1, yi) > r and d(y1, xi) > r to get

m(\alpha ) \leq 
N\sum 
i=2

c(x1, xi) + c(y1, yi) \leq 
N\sum 
i=2

c(y1, xi) + c(x1, yi) \leq 2(N  - 1)M(r),

and so we have reached a contradiction.

5. Estimates on the potentials and continuity of the cost. Putting to-
gether the previous results, it is possible to show the continuity of the cost function
C under a more general hypothesis than the one assumed in [5], following the same
strategy; we sketch the short argument for completeness. Moreover, as Remark 3.4
tells us, the threshold 1/N is sharp. An important role will be played by truncated
cost, which we therefore introduce: we define

(5.1) ch(x, y) := min\{ c(x, y), h\} .

Then, similarly to (1.3)--(1.4) we define ch(x1, . . . , xN ) =
\sum 

i<j c
h(xi, xj) and

(5.2) Ch(\pi ) =

\int 
XN

ch d\pi , C h(\rho ) = min
\bigl\{ 
Ch(\pi ) : \pi \in \Pi (\rho )

\bigr\} 
.

The following lemma uses the diagonal bounds on the truncated cost to prove that
for h sufficiently big we have that the minimizing problems with C h and C have in
fact the same minimizers.
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Lemma 5.1 (equivalence with a truncated cost). Let us consider a cost c satisfying
assumptions (1.1) and (1.2), and let r > 0 and \delta < 1

N . Then there exists h = h(r, \delta )
such that for every \rho belonging to the set Kr,\delta introduced in (1.8) we have the following:

(i) \pi is a minimizer for C h(\rho ) if and only if it is a minimizer for C (\rho ).
(ii) If \varphi h is an optimal potential for C h(\rho ), then it is also an optimal potential

for C (\rho ).
In particular, we have that C = C h on Kr,\delta .

Proof. Let us consider \rho \in Kr,\delta .
(i) Let us consider a plan \pi which is optimal for the problem C (\rho ) and a plan

\pi h which is optimal for C h(\rho ). First we prove that we can choose \beta in Theo-
rem 1.3(ii) depending only on r, \delta and not on \rho specifically. In fact, we could
consider \beta such that

m(\beta ) >

\bigl( 
N
2

\bigr) 
M(r)

1 - N\delta 
,

and this is sufficient to satisfy (1.9); in fact, thanks to Remark 4.2, we have
C (\rho ) \leq 

\bigl( 
N
2

\bigr) 
M(r), and so in particular

m(\beta ) >

\bigl( 
N
2

\bigr) 
M(r)

1 - N\delta 
\geq C (\rho )

1 - N\kappa (\rho , r)
.

Now, fix h > h\prime > max\{ 2(N - 1)M(\beta /2),m(\beta )\} and definemh(r) = min\{ m(r), h\} 
and Mh(r) = min\{ M(r), h\} . We apply again Theorem 1.3(ii) with the cost ch,
mh(r), and M(r), which satisfy assumption (1.1) too. Notice that h > m(\beta ) by
construction, and in particular we have m(\beta ) = mh(\beta ), and so we get

mh(\beta ) = m(\beta ) >

\bigl( 
N
2

\bigr) 
M(r)

1 - N\delta 
\geq C h(\rho )

1 - N\kappa (\rho , r)
.

Since h\prime > 2(N  - 1)M(\beta /2), we must have \pi h(D
h\prime 

ch) = 0 for every \pi h optimal
plan for the problem C h(\rho ). However, since h\prime < h, it is clear that whenever
ch(x, y) \leq h\prime we have ch(x, y) = c(x, y). But then we have c = ch on the support
of \pi h, and so \int 

ch d\pi h =

\int 
cd\pi h \geq 

\int 
cd\pi \geq 

\int 
ch \pi \geq 

\int 
ch d\pi h,

where all the other inequalities are true for the optimality, or from c \geq ch. Since
the first term and the last term are equal, we deduce that they are all equal,
and, in particular, \pi is a minimizer also for C h and \pi h is a minimizer also for
C , concluding the proof.

(ii) First, if \varphi h is an optimal potential for C h(\rho ), then of course it is admissible also
for c \geq ch. Moreover, by (i), we have C (\rho ) = C h(\rho ) =

\int 
\varphi h d\rho , proving also the

maximality of \varphi h.

We state explicitly what we can choose for h(r, \delta ):

(5.3) h(r, \delta ) > 2(N  - 1) \cdot M

\Biggl( 
1

2
m - 1

\Bigl( \bigl( N
2

\bigr) 
M(r)

1 - N\delta 

\Bigr) \Biggr) 
.

This expression is very complicated since it is also in terms of m,M ; however, if, for
example, we have M(r) \leq \alpha m(r) for some \alpha > 0, we can choose a more explicit form
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for h(r, \delta ):

h(r, \delta ) >
\alpha N(N  - 1)2

1 - N\delta 
\cdot M(r).

In the following theorem we want to recall typical regularity results that the
potentials can inherit from the cost.

Theorem 5.2 (regularity of the potential). Assume that c : X \times X \rightarrow [0,\infty )
is a lower semicontinuous bounded cost. Then for every \rho \in P(X) there exists an
optimal potential \varphi such that the following hold:

\bullet \varphi is bounded and

 - (N  - 1)2

2
\| c\| \infty \leq \varphi (x) \leq N  - 1

2
\| c\| \infty .

\bullet If, moreover, c is Lipschitz, then \varphi is Lipschitz and

\| \varphi \| Lip \leq (N  - 1)\| c\| Lip.

\bullet If X is geodesic and c is K-concave, then \varphi can be assumed to be (N  - 1)K-
concave.

Proof. Let \varphi 1, . . . , \varphi N be admissible potentials. We will now construct new po-
tentials \~\varphi 1, . . . , \~\varphi N which will be admissible and satisfy the regularity assumption,
and moreover \varphi i \leq \~\varphi i.

First we have that sup\varphi i = ti < \infty ; otherwise they are not admissible potentials;
moreover, we have, for the admissibility, that t1 + \cdot \cdot \cdot + tN \leq 

\bigl( 
N
2

\bigr) 
\| c\| \infty .

We can then modify the potential \varphi 1 taking

\~\varphi 1(x) = inf

\Biggl\{ 
c(x, . . . , xn) - 

N\sum 
i=2

\varphi i(x)

\Biggr\} 
.

Of course, by construction ( \~\varphi 1, \varphi 2, . . . , \varphi N ) are admissible potentials, and more-
over we have \varphi 1 \leq \~\varphi 1. Denoting \~t1 = sup \~\varphi 1, in particular we can now say that

\~\varphi 1(x) \geq  - t2  - \cdot \cdot \cdot  - tN = \~t1  - (\~t1 + \cdot \cdot \cdot + tN ) \geq \~t1  - 
\biggl( 
N

2

\biggr) 
\| c\| \infty ,

inf \~\varphi 1  - sup \~\varphi 1 \geq  - 
\biggl( 
N

2

\biggr) 
\| c\| \infty .

Notice also that if c is L-Lipschitz (respectively,K-concave), then \~\varphi 1 is an infimum
of (N - 1)L-Lipschitz (respectively, (N - 1)K-concave) functions, and so we have that
\~\varphi 1 is (N  - 1)L-Lipschitz (respectively, (N  - 1)K-concave).

We can iterate this construction in order to get \~\varphi 1, . . . , \~\varphi N that are still an ad-
missible N -tuple of potentials such that \varphi i \leq \~\varphi i and

inf \~\varphi i  - sup \~\varphi i \leq  - 
\biggl( 
N

2

\biggr) 
\| c\| \infty .

Now if \varphi 1, . . . , \varphi N were maximizing potentials (their existence is proven, for ex-
ample, in [22, Proposition 2.3 and Theorem 2.21]), we would have that \~\varphi i are also
maximizing potentials. We can then assume that sup \~\varphi i = t > 0 is independent of i,
implying also that t \leq N - 1

2 \| c\| \infty .

Then we can consider \varphi (x) = 1
N

\sum N
i=1 \~\varphi i(x), which will be a maximizing potential

with the required property (also in the Lipschitz and concave hypothesis).
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Proof of Proposition 1.5. We can just apply Lemma 5.1 and then Theorem 5.2.

We are now ready to prove one of the main results.

Proof of Theorem 1.2. We deal separately with each individual point.
(i) Let \rho , \mu \in Kr,\delta and h := h(r, \delta ) be given by (5.3). We can assume C (\rho ) \geq C (\mu );

let us consider then a potential \varphi \mu relative to \mu given by Theorem 1.5. In
particular, we have

C (\mu ) - C (\rho ) \leq 
\int 

\varphi \mu d(\mu  - \rho ) \leq \| \varphi \mu \| \infty \cdot \| \mu  - \rho \| TV \leq 
\biggl( 
N

2

\biggr) 
h \cdot \| \mu  - \rho \| TV.

(ii) If \rho n \rightharpoonup \rho , they all satisfy \kappa (\rho n, r
\prime ) < 1/N  - \delta for some r\prime > 0, thanks to

Lemma 2.3. But then by Lemma 5.1 there exists h > 0 such that C h coincides
with C on the whole sequence. Thanks to the fact that ch is continuous and
bounded, the corresponding functional C h is weakly continuous, and so we reach
the conclusion.

(iii) Let \rho , \mu \in Kr,\delta and h := h(r, \delta ) be given by (5.3). We can assume C (\rho ) \geq C (\mu );
let us consider then a potential \varphi \mu relative to \mu given by Proposition 1.5. In
particular, we have that

\varphi \mu 

(N - 1)\| ch\| Lip
is 1-Lipschitz; by the duality formula for

W1 we then have

C (\mu ) - C (\rho ) \leq 
\int 

\varphi \mu d(\mu  - \rho ) = (N  - 1)\| ch\| Lip
\int 

\varphi \mu 

(N  - 1)\| ch\| Lip
d(\mu  - \rho )

\leq (N  - 1)\| ch\| Lip \cdot W1(\mu , \rho ).

Remark 5.3. It is not necessary for the cost to be Lipschitz outside each D\alpha ;
it would be enough to have it be Lipschitz where the plans are supported; see, for
example, subsection 6.1.

6. The case of Coulomb cost. In this section we will resume the main results
of the paper in the case of X = \BbbR d and c(x, y) = 1

| x - y| . First we can take m(r) =

M(r) = r - 1. In particular, the assumptions (1.1) and (1.2) are satisfied. In what
follows, the gauge function g will also be useful for summarizing some estimates:

(6.1) g(\delta ) =

\left\{     
2(N  - 1) if \delta < 1

2(N - 1) ,
N2(N - 1)
2(1 - N\delta ) if 1

2(N - 1) \leq \delta < 1
N ,

+\infty otherwise.

In this section C will be the cost introduced in (1.4) with the choice c(x, y) =
1

| x - y| . Whenever used, we will have that \rho \in P(\BbbR d), r > 0, \delta \in (0, 1/N), and Kr,\delta 

will be defined as in (1.8). Moreover, \pi will denote any optimal plan for problem (1.4)
relative to \rho . All the results of the paper concerning the Coulomb case are collected
in Table 1.

A couple of remarks are in order: the finiteness conditions of Theorem 1.1 and the
bound in Remark 4.2 are already clear. As for the diagonal bounds, when we consider
the Coulomb cost, of course we have Dr = D1/r, and so we will work directly with the
more geometric Dr. The results Theorem 1.3(i) and (ii), which involve an estimate
of the cost, are unified thanks to the gauge function g defined in (6.1).

It is worthwhile to add here a statement that goes in the opposite direction.

Lemma 6.1. Let \rho \in P(X) and \pi \in \Pi N (\rho ). Then if \kappa (\rho , r) > 1
N , we have

\pi (D2r) \not = 0.
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Proof. The same reasoning behind the proof of Theorem 1.1(ii) allows us to prove
the following: whenever \rho (A) > 1

N , we have \pi (
\bigcup 

i \not =j\{ xi, xj \in A\} ) \not = 0. But then, by

hypothesis there exists x \in X such that \rho (B(x, r)) > 1
N , and in particular there exists

(x1, . . . , xN ) in the support of \pi such that xi, xj \in B(x, r) and i \not = j; this means that
| xi  - xj | < 2r, and so we can conclude that \pi (D2r) \not = 0.

The estimates for the potential are clear once we observe that for the Coulomb
cost c(x, y) = 1

| x - y| we have the following:

\bullet ch is h2-Lipschitz.
\bullet ch is  - 3

2h
3-concave.

Then it is sufficient to combine Theorem 5.2 with Lemma 5.1 to obtain the estimate
for the potential. In Table 1 we also present two sharper results for the regularity of
the potential in the case when supp \rho = \BbbR d; these will be proved in subsection 6.1.

Finally, the explicit Lipschitz constants in Theorem 1.2 are found using the ex-
plicit estimates for the potentials.

6.1. Sharper estimates for the potentials. Here we discuss a different ap-
proach for the estimates of the potentials; this approach is tailored for \BbbR d and the
Coulomb cost in the case where we also have supp \rho = \BbbR d. First, in the proof of
Theorem 1.3, we can prove the sharper estimate

N - 1\sum 
i=2

1

| x1  - xi| 
\leq g(\delta )

r
for \pi -almost every (x1, x2, . . . , xN ).

In particular, then, when we consider the optimal potential \varphi (which is unique
thanks to the assumption supp \rho = \BbbR d), since we have

\varphi (x1) + \cdot \cdot \cdot + \varphi (xN ) \leq c(x1, . . . , xN ) \forall x1, . . . , xN \in \BbbR d,

\varphi (x1) + \cdot \cdot \cdot + \varphi (xN ) = c(x1, . . . , xN ) on supp\pi ,

letting A(x) =
\Bigl\{ 
(x2, x3, . . . , xN ) :

\sum N - 1
i=2

1
| x - xi| \leq 

g(\delta )
r

\Bigr\} 
we can say

\varphi (x) = min
\bigl\{ 
c(x, . . . , xN ) - 

\bigl( 
\varphi (x2) + \cdot \cdot \cdot + \varphi (xN )

\bigr) 
: (x, x2, . . . , xN ) \in supp(\pi )

\bigr\} 
= min

\bigl\{ 
c(x, . . . , xN ) - 

\bigl( 
\varphi (x2) + \cdot \cdot \cdot + \varphi (xN )

\bigr) 
: (x2, . . . , xN ) \in A(x)

\bigr\} 
.

Now it is sufficient to study the regularity knowing this representation. In general,
we could think of something like

\varphi (x) = min\{ fi(x) : i \in I\} = min\{ fi(x) : i \in I(x)\} .

For representations like this the idea for controlling the regularity is to consider
I\varepsilon (x) such that I(y) \subset I\varepsilon (x) for every y in a neighborhood of x; then we estimate
the Lipschitz constant and the concavity of \varphi pointwise and then let \varepsilon \rightarrow 0. If the
functions fi are uniformly C3 around x for i \in I\varepsilon (x), we could say

| \nabla \varphi | (x) \leq lim
\varepsilon \rightarrow 0

sup
i\in I\varepsilon (x)

| \nabla fi| (x), D2\varphi (x) \leq lim
\varepsilon \rightarrow 0

sup
i\in I\varepsilon (x)

D2fi(x).

In our case, for example, we can say

| \nabla \varphi | (x) \leq lim
\varepsilon \rightarrow 0

sup

\Biggl\{ 
| \nabla xc(x, x2, . . . , xN )| :

N - 1\sum 
i=2

1

| x - xi| 
\leq g(\delta ) + \varepsilon 

r

\Biggr\} 
\leq g(\delta )2

r2
,
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D2\varphi (x) \leq lim
\varepsilon \rightarrow 0

sup

\Biggl\{ 
D2

xc(x, x2, . . . , xN ) :

N - 1\sum 
i=2

1

| x - xi| 
\leq g(\delta ) + \varepsilon 

r

\Biggr\} 
\leq 3g(\delta )3

2r3
Id,

where we used | \nabla xc(x, x2, . . . , xN )| \leq 
\sum 

i
1

| x - xi| 2 \leq (
\sum 

i
1

| x - xi| )
2 and similar reasoning

for the estimate of D2\varphi .

Table 1
This is a summary of results for the Coulomb cost. All the results are derived directly from

the theorems in the paper, written down directly in the case when c is the Coulomb cost. The only
sharper result is for the potential estimates in the case when supp \rho is the whole \BbbR d; those estimates
are proved in section 6.1.

Cost finiteness If a(\rho ) < 1
N
, then C (\rho ) < \infty .

If a(\rho ) > 1
N
, then C (\rho ) = \infty .

If a(\rho ) = 1
N
, then C (\rho ) < \infty if and only if

1

| x - x0| 
\in L1

loc(\rho ) \forall x0 \in \BbbR d s.t. \rho (\{ x0\} ) =
1

N
.

Cost estimate If \kappa (\rho , r) \leq 1
N
, then C (\rho ) \leq 

\Bigl( N
2

\Bigr) 1

r
.

Diagonal estimate If \rho \in Kr,\delta and r\prime <
r

g(\delta )
, then \pi (Dr\prime ) = 0.

Potential estimates If \rho \in Kr,\delta , there exists a potential \varphi such that

 - 
\Bigl( N
2

\Bigr) g(\delta )

r
\leq \varphi (x) \leq 

g(\delta ) \cdot (N  - 1)

2r
,

\| \varphi \| Lip \leq 
(N  - 1) \cdot g(\delta )2

r2
,

D2\varphi \leq 
3(N  - 1) \cdot g(\delta )3

2r3
Id .

If, moreover, we have supp \rho = \BbbR d, we can also assume

\| \varphi \| Lip \leq 
g(\delta )2

r2
, D2\varphi \leq 

3g(\delta )3

2r3
Id .

Continuity for C For every \rho 1, \rho 2 \in Kr,\delta we have

| C (\rho 1) - C (\rho 2)| \leq 
(N  - 1) \cdot g(\delta )2

r2
\cdot W1(\rho 1, \rho 2),

| C (\rho 1) - C (\rho 2)| \leq 
N(N  - 1) \cdot g(\delta )

2r
\cdot \| \rho 1  - \rho 2\| TV.
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