NEUROMORPHIC SYSTEMS

Neuromorphic systems is the field of engineering that
attempts to imitate the operation and structure of biologi-
cal sensing and information processing nervous systems.
The word “neuromorphic,” originally introduced by Carver
Mead (1, 2), is understood here as something that attempts
to artificially recreate biological nervous systems. The way
simple living beings sense and process information so very
efficiently, relying on slow and often defective components
called “neurons” and yet consuming so very little power, is
truly amazing. Human beings have no difficulty in recog-
nizing sophisticated objects within complex moving scenes
and commanding our arms and fingers to grasp them
naturally and effortlessly. However, we have still not yet
succeeded in building machines that can do similar tasks at
speeds and with power consumption similar to those of
their biological counterparts.

In this article, our aim is to provide an overview of the
core elements of artificial neuromorphic systems as they
are understood today (although we realize that the result
will almost inevitably be incomplete). First, neuromorphic
systems can be divided into two main (and not necessarily
overlap-free) categories: “sensory subsystems” (corre-
sponding to biological organs such as eyes, ears, noses,
and skin) and “processing subsystems” (corresponding to
the biological brain). But neuromorphic systems must also
take into account three separate, complementary pro-
cesses: (a) information computation, (b) information com-
munication, and (¢) information storage. These three
processes are habitually performed in standard man-
made computers, but there they are typically implemented
on separate, physical “pieces of hardware” (either chips or
circuits within chips). In neuromorphic systems, such
separation is not so clear-cut and all three processes are
often implemented in one and the same physical element
over and over again. For example, a synapse connecting
two neurons performs computing, communication, and
storage tasks.

In biological neural systems, information is typically
exchanged through electrical spikes, except when some
local tissue is used such as the retina, where continuous
signals transmit information to neighboring cells. Here we
will focus mainly on artificial neuromorphic systems that
encode, transmit, and process information in the form of
spikes. We will use the term “events” to reference such
spikes. In general, the events discussed will be digital
electronic multibit signals capable of traveling very quickly
(typically, in fractions of microseconds) between electronic
components. Artificial systems of this type are commonly
known as “event-driven neuromorphic systems” (3), and
their event-driven intercommunication strategy is called
“address event representation” (AER) (4-9).

In the following sections, we will very briefly describe
some of the principles involved (components, communica-
tions, learning) and look at some examples of sensors
(retinas, cochleae, skins noses) and event computing sys-
tems. Sources or material will also be referenced for further
reading.

1. PRINCIPLES

Figure 1 illustrates the conceptual differences between
conventional computers and biological neural systems
with regard to “processing,” “communication,” and mass
information “storage.” In a conventional computer, these
three concepts are physically clearly separated, as illus-
trated in Figure 1a. Data computations are performed by a
CPU (or several CPUs). CPUs are highly complex circuits
capable of performing an extensive catalog of instructions.
The data are stored in a physical memory, as is the algo-
rithm or set of instructions that need to be executed on the
data. Between the data memory storage devices and the
CPU(s), there are one or more communication networks. If
there are sensors or other devices, these are typically “seen”
by the CPUs as additional memory locations. The CPUs
read the instructions one by one from the “instruction
memory,” read the data required by the instructions
from the “data memory,” execute the instructions sequen-
tially, and then save the data again in the data memory.
This results in heavy use of the communication network,
which is a shared resource. Nowadays, the timescales
involved are usually subnanosecond. Computer engineer-
ing has evolved during the course of many decades, and
there are now many ways of distributing physical memo-
ries, communications networks, and processing CPUs as
more or less hierarchical structures and layouts. However,
in the end, processors, memory, and communication net-
works are still clearly separated.

In contrast, biological neural sensory and processing
systems are structured very differently, as is illustrated
in a highly simplified manner in Figure 1b. The main
processing element is the neuron, which always performs
the same function: It accumulates input spikes and, when
enough of these have been received within a given time, it
produces its own output spike and resets itself. Neurons
are interconnected by “synapses” that transport the spike
from its producer neuron to a receiver neuron. Synapses are
characterized by a “strength” or “weight” that modulates
the effect of the spike on the destination neuron. The time
constants involved are on the order of milliseconds or
fractions of seconds. Synapses store the system knowledge
in their weights and in the system’s own connecting
structure. They, therefore, perform communication and
memory functions simultaneously. Processing is performed
together by neurons and synapses. Neurons are typically
grouped into populations, such as those in a sensor (like an
eye or ear), or as hierarchies of populations within the
brain. In biological neural structures, there is therefore no
clear distinction between elements performing processing,
communication, and memory tasks.

Neuromorphic engineering is the building and operating
of man-made hardware that mimics the principles of neural
processing in biological systems. In the next section, we
give an overview of the discipline and provide some sources
for further reading.

1.1. Introduction to Spiking Neurons

The original artificial neural networks proposed in the
1940s (10) and the perceptron concept (11), together with
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Figure 1. Illustration of the physical realization of the concepts of “processing,

(a) and biological neural systems (b).

its powerful back-propagation training rule (12), were the
keys that opened the door to the whole modern field of
artificial neural networks and machine learning. They
were based on the neuron idea expressed in Figure 2a,
which here we call the “static neuron.” In a “static neuron”-
based neural computing system, each neuron receives a
static input pattern (x, xo, ., X,) where each input
component x; is a numerical value. A neuron’s output is
computed as

yi= h <Z wijxi>

where w;; is the “synaptic weight” connecting input x; to
neuron IN;, and () is a nonlinear activation function. Inputs
x; can be provided by external inputs or by outputs from
other neurons. This type of static neuron is typically used in
neural-based image processing systems (13), where the
system input is made up of all the numerical values of
the input image pixels. The neuron outputs to which these
input pixels connect are computed using the equation
above. These outputs connect to other neurons, whose
outputs are computed in the same way, and this continues
until all neuron outputs have been computed. Normally,
systems of this type are structured as hierarchical feed-
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Figure 2. Fundamental types of neuron processing principles. (a)
Static type, all inputs and outputs are one single numerical value.
(b) All inputs and outputs are dynamic continuous-time functions.
(¢c) All inputs and outputs are represented by asynchronous
sequences of instantaneous events, called “spikes,” which resemble
signals in biological nervous systems.

Processing
neurons

Outputs
(recognitions,
decisions,
actuations)

(b)

” «

communication,” and “storage” in conventional computers

forward layers, where neuron layers alternate with max
and/or pooling layers (14, 15).

Figure 2b represents a “dynamic neuron,” in which both
inputs and outputs are represented by dynamically evolv-
ing continuous time functions. The internal operation of
this type of neuron is typically described by a differential
nonlinear equation dependent on the weighted inputs
w;x;(¢). This produces an internal dynamic neuron state,
which is typically mapped nonlinearly to the output varia-
ble y(t). Dynamic neural systems resulting from dynamic
neurons naturally allow for feedback (16). However, stabil-
ity conditions need to be imposed (17) and this produces
systems with a high number of differential equations that
need to be solved numerically at each time step.

Figure 2c represents a “spiking neuron” in which both
inputs and outputs are represented by sequences of asyn-
chronous spikes, as in their biological counterparts. The
internal operation (and also the synapses) of a spiking
neuron can be described by a differential nonlinear equa-
tion (18). However, computation efficiency can be optimized
if these differential equations only need to be updated
whenever a new input event is received. In this case, the
whole system is purely event-driven (and does not have to
rely on any clock, in the case of a hardware implementa-
tion, or on a global time step in the case of a software
implementation). Computations are only necessary when-
ever events are communicated. Representing signals with
spikes is an additional difficulty. One obvious choice is to
map the “static neuron” representation by transposing the
numerical values x;, y; into neuron spike rate frequencies
and then let the system settle to a stable stationary state.
However, this approach results in a highly inefficient com-
putational spiking system, since many spikes would be
required to represent a numerical neural input/output
value. Smarter techniques have been proposed that require
just one spike per numerical value (19), or just a few
through low-rate encoding (20). Biology itself seems to
adopt both approaches: a fast single-spike per neuron
response capability combined with a slower but more accu-
rate multiple-spike per neuron signal encoding capability.

In the next section, we will focus on hardware tech-
niques and the implementation of spiking neural systems.



1.2. Silicon Neurons Summary

Hardware implementations of spiking neurons are impor-
tant for designing neuromorphic computing architectures
and can be extremely useful for a wide variety of applica-
tions, ranging from the high-speed modeling of spiking
neural networks to the real-time processing of sensory
signals in autonomous cognitive agents. Hardware emu-
lation of real neurons is still an active topic of research,
because of the need for very high levels of efficiency and
very large-scale integration in advanced CMOS VLSI pro-
cesses. Several different types of hardware implementa-
tions have been proposed for silicon neuron models, using a
wide range of different circuit solutions. One of the first
circuits designed to model the function of real neurons was
the conductance-based silicon neuron proposed in 1991
(21). A simplified schematic diagram of this circuit is shown
in Figure 3.

In this circuit, the relevant neuron conductances were
modeled using transconductance amplifiers operated in the
weak-inversion regime. This allowed the amplifiers to
exhibit a sigmoid transfer function, and this was exploited
to model the active and passive neuronal ion channels.

This circuit can produce action potentials very similar to
those measured in real cells. Due to its relatively large size
and high number of potential device mismatch issues,
however, other solutions based on simpler integrate-and-
fire (IF) models have been proposed more recently, adopt-
ing a variety of circuit design approaches (22).

In the field of computational neuroscience, Brette and
Gerstner (23) proposed the “adaptive exponential inte-
grate-and-fire” (AdEx-IF) neuron, a generalized version
of IF neuron models that acts as a bridge between
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biologically realistic but complex conductance-based mod-
els and very simplistic integrate and fire models. Like
other, alternative, two-variable generalized IF models
(24, 25), AdEx-IF can reproduce a wide range of different
firing patterns as a function of its parameters (26), thus
generating a compact description of many different types of
biological neurons.

In general, two-variable generalized IF neuron models
lend themselves well to compact VLSI implementation
using analog electronic circuits (27-31). Figure 4 shows
an example of a silicon neuron circuit with AdEx-IF model
properties: it produces rising exponentials with negative
exponent at the onset of the stimulation, and rising expo-
nentials with positive exponent just before reaching the
spiking threshold (28). The differential-pair integrator cir-
cuit (32) in the “leak” block emulates the leak conductance
of more complex neuron models. At the same time, the
transistors in the “positive feedback” block in Figure 4
model both the sodium activation and sodium inactivation
channels in an extremely compact manner. Similarly, the
effect of potassium channels in real neurons is emulated
using the transistors in the “reset” block. The circuit also
emulates the effect of calcium ion channels via the “adap-
tation” block, which produces the second slow variable of
the two-variable system. This is useful for reproducing the
wide repertoire of neural dynamics previously demon-
strated with theoretical models.

1.3. Address Event Representation (AER) and Communication
Mesh Networks

AER has become a popular “virtual wiring” technique for
interconnecting spiking neuromorphic systems. The high

Sodium Vaa Yaa
> EH—E
o—‘-{»
Naon Vag Via
——— v
Nay, N; + mem
Current me_c_:tion . = Boft
V. Vv,
+
Eleak
E Fl—cl Gieak :I:
T 1 - Leak
Kiau 1 Kon i
Potassium :

Figure 3. A conductance-based silicon neuron. The “leak” block models the passive leak behavior of the neuron: In the absence of
stimulation, the membrane potential Vi1, leaks to Eje,) following first-order low-pass filter dynamics. The “sodium” block comprises sodium
activation and inactivation circuits that model the sodium conductance dynamics observed in real neurons. The “potassium” block has
circuits that reproduce potassium conductance dynamics. The Gieax, Nata,, and Kr,, parameters determine the time constants of the
passive, sodium, and potassium channel dynamics, respectively, while the Nap,, and Nagg parameters set the sodium activation and
inactivation thresholds, respectively, and the K,,, parameter sets the potassium activation threshold.
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Figure 4. A generalized IF (integrate and fire) neuron equivalent to the AdEx-IF (adaptive exponential integrate and fire) neuron
computational model. The log-domain leaky integrator My ;_3 implements the neuron’s input leak conductance. The positive feedback block
M a1_g comprises a noninverting amplifier with current-mode positive feedback, which produces the action potential. The reset block Mg1_g
resets the neuron to the reset voltage and keeps it low for a user-configurable refractory period. The adaptation block Mg;_g produces a
negative feedback current I, that triggers the spike frequency adaptation mechanism. The circuit voltage biases can be used as parameters to

change the spiking properties of the silicon neuron.

speeds available in digital interchip communications are
exploited in AER to time-multiplex numerous synaptic
connections between neurons. These connections only
need to be active during spike (also called “event”) trans-
mission. In AER, whenever a neuron in a module generates
a spike (event), its address or ID (typically its (x, ) coor-
dinates) is written on an intermodule high-speed digital
bus. An ID for the module, a sign bit, or additional inform-
ative parameters can also be appended to this “address.”
Figure 5 illustrates several scalable AER approaches
reported in literature. Figure 5a shows the concept of
Flat-AER (33). Each module contains an array of neurons.
Each neuron is identified by an address inside the module
together with a module ID, and therefore has its own
unique global address. All modules share a single external
AER bus connected to a programmable mapper. Each
event generated is sent to the mapper, which identifies
to which destinations it should go and generates events
accordingly. Since all events flow through the mapper, the
total communication bandwidth is limited by this block
andits input and output AER buses. The mapper must also
fan-out to a large number of other modules, causing even
more delays. Broadcast-AER (34, 35), which is shown in
Figure 5b, was designed to limit physical fan-out per bus
(and thus improve speed) and implement intermodule
communication by means of intermodule hops. However,
it still suffers from the same mapper bottleneck. Figure 5¢
illustrates prestructured AER (36). Here all links are
point-to-point, using splitter and merging modules to
fan-out and fan-in. Address spaces are local to each link.
In terms of communication efficiency, this is the most
effective scheme. However, the network is not easily recon-
figurable. Hierarchical-AER (37), as illustrated in

Figure 5d, extends the concept of Flat-AER, with its one
single mapper, to a hierarchy of mappers. It exploits the
fact that most connectivity is typically local by using many
fast, local mappers in parallel, thereby improving band-
width. Like HIAER (37), Tree-AER (38) is a highly efficient
tree-based hierarchical AER communication scheme that
is guaranteed deadlock-free. Here, neurons also have
unique global IDs and each module has its own local router
to define system connectivity. The modules are connected
in a tree arrangement. Figure 5e illustrates Router—
Mesh—AER (39, 40). Neurons have a unique global ID
(an ID within their module plus the module ID), but there
is no global mapper. Each module has its own router and
directs each incoming event through a traveling branch to
its destination. Events can be encoded by either their
source or their destination addresses, creating different
trade-offs (40).

1.4. Learning and Adaptive Intelligence

The capacity of neuromorphic systems to adapt to and learn
from the environments in which they operate is critical to
attaining and maintaining optimum performance. Online
learning embedded in neuromorphic silicon implementa-
tions therefore offers distinct advantages over approaches
that relay external off-line training (41, 42). Depending on
the performance metric, learning systems can be catego-
rized as supervised, unsupervised, reinforcement learning,
or different combinations of the three. All these types can
be efficiently implemented in neuromorphic hardware.
Such implementations typically embed local forms of incre-
mental outer product learning onto crossbar arrays of
synapses, where each weight is updated according to the
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Figure 5. Scalable address-event representation approaches. (a) Flat-AER. (b) Broadcast-AER. (c) Prestructured AER. (d) Hierarchical-

AER and Tree-AER. (e) Router-Mesh AER.

input- and output-related activities of the two connected
neurons (41).

Efficient online learning is also feasible using event-
driven spiking neuromorphic architectures that use
address-event representation (AER) (Section 1.3) to achieve
dynamically reconfigurable synaptic connectivity and plas-
ticity. AER-based synaptic connectivity may be readily
extended with local spike-timing dependent plasticity
(STDP) mechanisms implemented directly in the address
domain (43) to learn synaptic strength online from real-time
data (44). STDP-based models of unsupervised temporally
asymmetric Hebbian learning are also applicable to other
forms of spike-based learning, such as reinforcement learn-
ing of distal reward, using STDP-modulated dopamine sig-
naling (24), and deep learning of multilayered cortical
representations, using STDP event-driven contrastive
divergence in spiking Boltzmann machines (45). The advan-
tage of AER-based synaptic connectivity for the efficient
event-driven implementation of STDP-based online learn-
ing is that all information on synaptic strengths resides in
local SRTs, in direct proximity to both presynaptic and
postsynaptic event streams. The local implementation of
event-driven STDP SRTs may therefore be sufficient to
support more general implementations of complex nonlocal

learning rules capable of benefitting from nested network
structures, including global structures — thanks to the long-
range, hierarchical connectivity provided by HiAER (37).

1.5. Mapping Generic Algorithms into
Integrate-and-Fire Neurons

There has been significant research over the past two
decades in developing new platforms for spiking neural
computation. Current neural computers are primarily
developed to mimic biology. They use neural networks,
which can be trained to perform specific tasks to mainly
solve pattern recognition problems. These machines can do
more than simulate biology; they allow us to rethink our
current paradigm of computation. The ultimate goal is to
develop brain-inspired general-purpose computation archi-
tectures that can breach the current bottleneck introduced
by the von Neumann architecture. Recently, a new frame-
work for such a machine was proposed, called STICK (46).
In this proposal, the use of neuron-like units with precise
timing representation, synaptic diversity, and temporal
delays allows setting a complete, scalable compact compu-
tation framework. The framework provides both linear and
nonlinear operations, allowing representing and solving
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any function. Preliminary usability examples in solving
real use cases from simple differential equations to sets of
nonlinear differential equations leading to chaotic attrac-
tors have been shown.

2. NEUROMORPHIC SENSORS WITH
EVENT-DRIVEN OUTPUT

2.1. Neuromorphic Vision Retinas

Artificial neuromorphic silicon retinas were first proposed
by Mead and Mahowald (47). Each pixel would compute an
output proportional to the difference between its sensed
light intensity and the average light intensity in its neigh-
borhood. To read out such a preprocessed sensed image of
this type, however, a conventional scanning mechanism
was required capable of reading out all preprocessed pixel
values. This section gives an overview of artificial retinas
incorporating an asynchronous pixel-driven address-event-
representation readout mechanism.

Luminance/Color Retinas. The simplest light-to-event
transformation is achieved by mapping linearly from
light intensity (photosensor current) to pixel event fre-
quency. This was the approach followed in Culurciello’s
Octopus retina (48), but using an integrator with posi-
tive feedback to integrate the pixel photosensor current
up to a given threshold and triggering a digital event
communication circuit with microsecond response time
to minimize power consumption. Depending on incident
light intensity, each pixel generates an event frequency
ranging from 8 mHz to 8 MHz and covering a 9-decade
dynamic range (180 dB).

Based on a similar principle, Olsson and Hafliger (49)
proposed a spiking pixel containing a vertical stack of
photodiodes, each sensitive to a different range within
the visible spectrum. Two independent photocurrents
were integrated separately, generating two streams of
spikes. By analyzing the two different frequencies pro-
duced, it was possible to estimate the dichromatic spectral
content of the incident light per pixel.

Similarly, Fasnacht and Delbruck (50) also used a
stacked two-diode structure to measure relative long- and
short-wavelength spectral content. In this case, however, the
circuit output was a digital PWM signal. Absolute intensity
was encoded by the signal’s frequency and the relative
photodiode current was encoded by the signal’s duty cycle.
The signal itself was generated by a self-timed circuit alter-
nately discharging the top and bottom photodiodes.

This light intensity to frequency readout approach has
generally been abandoned because of unfair distribution of
readout bandwidth to brightly lit pixels; one single high-
light in a scene, for example, may contribute most of the
output data. The sensing of color by vertical color separa-
tion has not been commercially successful compared to
using color filter arrays due to the poor color separation
capabilities of stacked junctions and the difficulty of achiev-
ing complete charge transfer from deeply buried junctions.

Spatial Contrast. Neuromorphic spatial contrast retinas
are vision sensors that implement the computational

behavior of the ON-center—OFF-surround sustained
response from the horizontal and bipolar cells in the bio-
logical retina (51). Spatial contrast retinas output trains of
address events that are proportional to the computed local
spatial contrast in the observed scene.

Computing contrast at the focal plane level alleviates
the dynamic range problem and significantly reduces the
output data flow while preserving the relevant information
on shape for object recognition.

The first spatial-contrast-sensitive silicon retina was
implemented in Carver Mead’s laboratory (21, 47).
Figure 6a illustrates the architecture of Mahowald’s retina.
The photodetectors in this silicon retina are implemented
using parasitic bipolar transistors. The photocurrents are
converted to a photovoltage through MOS-diode connected
transistors. This voltage is averaged using a hexagonal grid
of diffusive resistors (implemented using a network of
MOS transistors (1, 52)). Local contrast is computed as
the difference between the local photovoltage and the local
average voltage computed by the diffusive network. The
smoothing factor depends on the value of the resistors (or
the diffusion constant in semiconductors). Boahen subse-
quently published a more sophisticated biharmonic spatial
contrast retina (53). Figure 6b shows the schematics of
Boahen’s pixel. In this retina, two cross-coupled diffusive
networks with two different smoothing constants are
implemented. The difference in the diffusion lengths of
the two resistive grids generates the antagonistic ON-
center—OFF-surround response. However, none of these
retinas was equipped with a pixel-driven AER readout
until Mortara et al. reported an unarbitrated readout
scheme (9) and Boahen described a collision-free arbitrated
scheme (4).

Based on Boahen’s 1992 topology, Zaghloul and Boahen
published a spatiotemporal contrast retina (54, 55) by
adding temporal filtering and adaptation to the temporal
average. The main problem that limited the performance of
these prototypes was their fixed-pattern noise (FPN),
caused by the mismatching of the electrical parameters
for the CMOS transistors. Spatial contrast retinas with
in-pixel calibration to reduce FPN were later developed
(56, 57). Figure 6¢ illustrates the schematics of the spatial
contrast retina implemented by Lenero-Bardallo et al. (57).
It is based on Boahen’s biharmonic retina, but incorporates
in-pixel calibration circuitry and the voltage biases of the
diffusive networks are self-adapting. Figure 6d—g shows
some experimental results of natural images captured with
this retina, after calibration. The images were obtained
by histogramming the events produced by 32 x 32 pixels
while observing a scene for 30ms. An average of 4552
events were obtained per image. However, the need for
calibration and the large pixel area (81x76mm? in a
0.35 mm technology (57)) has reduced commercial interest
in this type of retinas.

Other interesting contrast-sensitive retinas that have
been developed (58-60) compute spatial contrast using only
the information from the nearest-neighbor pixels. How-
ever, these devices do not perform fully asynchronous
computation as biological vision systems do, but rely on
a global reset to begin the contrast computation, thereby
introducing an artificial frame time.
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Figure 6. (a) Mahowald’s contrast pixel. (b) Boahen’s original pixel. (¢) Lefiero’s pixel. (d—g) Natural images captured with Lefiero’s spatial

contrast retina after calibration.

Motion/DVS Retinas. In motion or dynamic vision sen-
sors (DVS), each pixel calculates the time derivative of the
light it senses, optionally performs some processing (e.g.,
detecting a given change of light between consecutive
events) and, when a certain level (threshold) is reached,
emits an “event.” The event usually consists of the (x, y)
coordinates of the pixel within the two-dimensional photo-
sensor matrix. The output of a DVS thus comprises a flow of
(x, y) coordinates corresponding to the different pixels that
have detected changes in the brightness of the light they
are sensing. This concept was first proposed by Landolt
et al. (61) and Kramer (62). Prototype sensors of this kind
suffered from high interpixel mismatch and responded to a
threshold on the derivative, resulting in low temporal
contrast sensitivity. Later, an improved sensitivity sensor
was reported by Lichtsteiner et al. (63). Figure 7a shows
how, in these DVS sensors, the photocurrent I,,;, sensed by a
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Figure 7. Dynamic vision sensor basics. (a) Conceptual block
diagram. (b) Example circuit for time derivative. (¢) Example
circuit for time derivative and postprocessing.

photosensor is first transformed into voltage through loga-
rithmic conversion with optional voltage amplification A,
resulting in V,,=A, V,logn/I,). In DVS pixels, V; is
memorized on a capacitor after each event, and the pixel
outputs an event when the change of Vy;, from the memo-
rized value exceeds a threshold. Parameter I, suffers from
interpixel mismatch. Depending on the circuit implemen-
tation of amplifier A,, this parameter may also introduce
mismatch. A low-mismatch low-power amplification based
on subthreshold stacked diodes was proposed by Serrano-
Gotarredona and Linares-Barranco (64). The time deriva-
tive is then calculated, and some additional processing may
be performed. The resulting time derivative is

Wy _ 1 dI,

dt Ion Ipn

where high-mismatch parameter I, has been canceled. The
time derivative of Vi, is obtained by sensing the current
through a capacitor with its terminal voltage difference set
to Vi, as illustrated in Figure 7b. This yields Iy = C1dVy,1/
d¢. This time derivative can be used directly to determine
the relative change of light in a pixel, since it is normalized
with respect to light and will thus provide a measure of
temporal contrast. This can be done by replacing the square
box in Figure 7b by a resistor R, resulting in Vp = —RIp. Itis
also possible to postprocess the time derivative to obtain,
for example, an accumulated computation of it. This is the
case of reported DVS sensors (63, 64) where, as shown in
Figure 7c, the postprocessing consists of an integrate-and-
fire operator: The derivative current Iy is integrated on
capacitor C2 until the accumulated integral V, reaches a
given threshold (sensed by a comparator circuit, not
shown), after which it is reset by the switch shown in
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the figure. At this instant, an output event is generated for
the pixel and sent out as an “address event.”

Combined DVS/Luminance. The temporal contrast
motion-detection retina pixels discussed in the previous
section respond to relative changes in light intensity but do
not collect information about absolute light levels. As a
result, image data in the form of gray levels, and, conse-
quently, information about static (parts of) scenes, are
absent from the outputs generated by such sensors.
Attempts have been made to combine the strengths of
temporal contrast pixels — namely, high temporal resolu-
tion, wide dynamic range, and, most importantly, suppres-
sion of redundancy in the data acquired (in comparison
with conventional image sensors) — with an ability to
acquire absolute light intensity information.

The asynchronous time-based image sensor (ATIS)
described in Reference 65 combines relative change detec-
tion with absolute exposure measurement at the single-
pixel level. The DVS change detector asynchronously initi-
ates the measurement of a new exposure value immedi-
ately after a brightness change of a certain magnitude has
been detected by the pixel. The exposure measurement
circuit converts the integrated photocharge into the timing
of asynchronous pulse edges using a single-slope photo-
current-to-time converter, as illustrated in Figure 8. Pulses
are transmitted off-chip using AER communication. As a
result, gray-level image information is acquired and trans-
mitted continuously, albeit only from parts of the scene
where there is new visual information.

Another recent approach to combining dynamic and
static information in a single pixel is a solution known
as the dynamic and active pixel vision sensor (DAVIS) (66).
This pixel combines conventional active pixel sensor (APS)
frame-based sampling of intensity with asynchronous
detection of log intensity changes. DAVIS has the advan-
tages of using the same photodiode as the DVS circuit and a
small readout circuit that only adds a few transistors to the
pixel. It increases the DVS pixel area by about 5%, result-
ing in a pixel area that is about half of the original ATIS
pixel at the same process feature size. APS output has the
limited dynamic range and redundant data capture dis-
advantages of conventional frames, but it allows conven-
tional images to be captured concurrently with DVS events

Pixel illuminance

and potentially has the capacity to bring together conven-
tional machine vision and bioinspired event-based
approaches. The combination of color APS with DVS was
also recently reported in Reference 67; the device proposed
was based on macropixels comprising one DAVIS pixel
with three APS pixels covered with RGB color filters.

Alternative schemes of combined DVS/luminance sensing
schemes have also been reported by Kim et al. (68-70) and
Pardo et al. (71).

An overview of recent developments in the field can be
found in References 3 and 72.

2.2. Review of Neuromorphic Audio Cochleae

In human hearing, incoming sounds cause the eardrum to
vibrate, leading in turn to vibration of the bones in the
middle ear and the generation of hydrodynamic waves in
the inner ear, or cochlea. These waves are coupled with the
vibrations of the basilar membrane (BM), which sits in the
middle of a fluid chamber in the cochlea.

The BM was the first cochlea structure to be modeled
electronically in silicon, by Lyon and Mead (73). Its tapered
shape (narrow and stiff at the start, becoming wide and
flexible at the end) means that different frequencies are
detected at different places along the membrane. The
biophysics of this membrane is modeled as a large number
of coupled filter stages with best characteristic frequencies
ranging from tens of hertz to tens of kilohertz with log
frequency spacing. Filter architectures range from the
cascaded form (73-76) used to model the phenomenological
output of the cochlea to a resistively coupled bank of
bandpass filters (76-79) for modeling the role of the BM
and the cochlear fluid more explicitly.

The organ of Corti that sits atop the BM contains both the
inner and outer hair cells ({/HCs and OHCs, respectively).
The THCs transduce the vibrations of the membrane into a
neural signal that is transmitted by the auditory nerve
fibers. The biological function of the IHCs is typically mod-
eled as a half-wave rectifier in an electronic circuit based on
known recorded physiological responses (80). The OHCs
implement local automatic gain control (AGC) by altering
the length and width of their cell bodies. Various electronic
implementations of the local biological AGC function have
been described in References 78, 79 and 81.
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Figure 8. Illustration of pixel operation combining change detector and exposure measurement. Left: Simplified pixel conceptual block
diagram. Center: Time evolution of light (fop), change detector events (center), and exposure measurement events (bottom). Right:

Corresponding updates within the full visual scene.
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Figure 9. Schematic illustration of artificial cochlea structure.

IHC outputs are transformed into asynchronous
spikes through circuits that quantify them into encoded
data using address-event representation (79, 82, 83). The
core of the latest 64-channel binaural AER cochlea from
Reference 83 consumes only 55uW. An example block
diagram of a cascaded architecture with AER outputs is
shown in Figure 9. A review of cochlea designs can be
found in Reference 84 and the historical development of a
more extensive list of silicon cochlea designs over the last
two decades is described in Reference 3. These earlier
analog cochlea implementations have been used in appli-
cations such as pitch detection (85) and localization (86).
Applications involving spiking cochleae are described in
Section 4.2.

1 um
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2.3. Neuromorphic Tactile Sensing

The application domains of touch sensing technology are
currently widening. Touch sensors are crucial in robotics.
In prosthetics (87), exoskeletons, robot-assisted surgery (88),
and teleoperation, they convey sensory feedback to the user,
greatly improving the system’s usability and effectiveness;
in service robotics (89), they are essential for safe interaction
and for improving manipulation (90) and planning (91).

A tactile sensing element, or taxel, is either a structural
unit that produces a signal as a response to a mechanical
stimulus or a material (or aggregation of materials) with,
for example, piezoelectric, piezoresistive, or optical proper-
ties that intrinsically converts mechanical stress/strain
into an optical or electrical signal. In the latter case, e-
skin offers multimodal sensing capabilities (69), bendabil-
ity, flexibility, stretchability, and, hopefully, an ability to
shrink and wrinkle comparable to that of human skin (92).

The POSFET (piezoelectric oxide silicon field-effect tran-
sistor) (93) device is a sensotronic unit (see Figure 10) in
which signals are transduced using a film of piezoelectric
material that biases the gate of a MOS transistor. In com-
parison with other touch devices, the POSFET offers faster
response time and better pressure sensitivity.

Taxels can cover large areas, such as the outer body
surface of a robot or a screen. In most cases, taxel activation
is highly localized in time and space, and the resulting
event-driven sensing strategy is greatly beneficial for the
efficient encoding, transmission, and processing of tactile
information, halving the amount of signal transmission
needed by a heavily actuated robot and reducing it to
less than 20% in other applications.

QT

Figure 10. (a) Two images of POSFET (piezoelectric oxide silicon field-effect transistor) device arrays. (b) Example of the integration of a
POSFET tactile sensing array into the fingertip of iCub. (Courtesy of Istituto Italiano di Tecnologia and EU Roboskin, grant FP7-231500.)
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Figure 11. (a) Illustration of the encoding performed by the event-driven taxel. A positive and a negative neuron are used for encoding
pressure and release, respectively. The transient taxel responds to changes of the input and the sustained taxel responds to the absolute level
of the input force. (Courtesy of NSI group, iCub Facility, Istituto Italiano di Tecnologia). (b) Example of the integration of a tactile sensing
array into a human-like artificial prosthetic limb. (Courtesy of COSMIC Lab., DITEN, University of Genova.)

Little new research work is currently being carried out
in event-driven touch sensing. Existing tactile systems can
be transformed into event-driven devices by postprocessing
clock-generated signals. This method decreases data trans-
mission, but is limited by the clock frequency and does not
exploit the low-level data redundancy and adaptive signal
sampling offered by event-driven signal acquisition. This
approach has been addressed on FPGAs and CPUs (94, 95)
and also on dedicated ASICs (96).

The event-driven paradigm should be applied at the
level of sensory acquisition: As in dynamic vision sensors
(63—65), the taxel triggers an event when it detects relevant
information. As in human mechanoreceptors and the dual
mode of operation proposed in vision sensors (65, 67), two
main types of taxels should be implemented (97): a “tran-
sient” taxel that detects changes in the pressure applied to
the skin and a “sustained” taxel that encodes its response to
for an absolute value. Figure 11 shows how the two types of
taxel work, encoding the change in the applied pressure
value and the pressure value in their instantaneous firing
rate, respectively.

2.4. Neuromorphic Olfaction

Taking the structure and dynamics of their biological
counterpart as their model, neuromorphic olfactory sys-
tems detect and categorize chemical signatures using cross-
selective gas sensor arrays and signal processing engines
customized to accommodate the high dimensionality and
great variability intrinsic to natural odor scenes. These
scenes are highly complex, with signals of interest often
mixed in with variable backgrounds, degraded by many
sources of occlusion and interference, and with concentra-
tion ranges spanning several orders of magnitude. The
olfactory systems of diverse species have evolved common
(98) (and perhaps optimal) computational principles to
tackle such complexity, and these principles offer clues
as to how some of the major problems in machine olfaction
can be overcome (99).

The gas sensors currently used for neuromorphic olfac-
tion take a variety of material forms, such as conductive
polymers (100), optical microbeads (101), metal-oxide chem-
iresistors (102), and G protein-coupled receptors (103). Like
olfactory sensory neurons in biology, these sensors are rela-
tively nonspecific and bind to a range of primary analytes in
the environment. Specificity is achieved by incorporating
diversity in the sensor array, either by instantiating a large
number of sensors with different tuning profiles or through
indirect techniques such as temperature modulation,
whereby the varying selectivity of each sensor at different
temperatures is leveraged. This diversity allows the sensor
array to span a coding space large enough to represent the
myriad combinations of analyte features that constitute
natural odor signals.

Posttransduction processing, usually triggered by tur-
bulent events in olfactory environments, is carried out by
neuromorphic circuits modeling downstream computations
of biological olfaction. The progressive decorrelation of odor
representations observed in vivo, for example, is modeled
by a hierarchical process in which chemiresistive signals
are progressively categorized, resulting in representations
that are initially coarse but that become increasingly
refined over time. This process offers robust recognition
and generalization capacities (42). In another study,
increased separability between data samples of different
categories and robust associations between analytes in the
same class were illustrated in standardized data sets using
soft winner-take-all computations inspired by the antennal
lobe and mushroom body of the insect olfactory system
(104). In yet another study, a neuromorphic implementa-
tion of glomerular-layer microcircuits in mammalian
olfaction exhibited noise robustness, nontopographical
decorrelation computations, and concentration normaliza-
tion effects (105). Crucially, structural features observed in
the biological system helped the researchers in this study to
make effective use of hardware resources, significantly
lowering the energy consumption of costly network-wide
computations, as can be seen in Figure 12.
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Figure 12. (a) Connectivity structure between olfactory bulb columns shows high local clustering with a few long-range connections. (b) A
neuromorphic model of 48 glomerular columns in a digital ASIC measuring 3 mm x 2 mm. (c) Coefficient of variation (CV% — the standard
deviation as a percentage of the mean) of activity across the columns (primary Y-axis) and energy consumption of the interconnection
network (secondary Y-axis) as a function of the density of connections (X-axis). A high clustering coefficient and a small average path length
in the network causes rapid information spread, enabling global computations such as odor intensity normalization to be carried out at a

fraction of energy costs compared to a fully connected network (105).

3. EXAMPLES OF LARGE-SCALE NEUROMORPHIC
PROCESSING SYSTEMS

Large-scale neural simulations are severely hampered by
the current digital computing paradigm. Simulating a
human-scale cortex model (10'° neurons and 10 syn-
apses) — the goal of the Human Brain Project (HBP) (106) —
would require an exascale supercomputer (10'® flops) with
millions of computing cores consuming a quarter-million
households’ worth of power (0.5 GW) (107). Simulations of
this type are challenging because each neuron distributes its
output to thousands of other neurons and, in turn, aggre-
gates inputs from thousands more. The next section briefly
describes some recent ongoing attempts to implement
scalable approaches to large-scale neural brain emulation
in HW.

3.1. SpiNNaker

SpiNNaker (a contraction of Spiking Neural Network
Architecture) is a digital neuromorphic platform developed
at the University of Manchester, UK. The key concept in
SpiNNaker is the use of conventional mobile phone proces-
sors in a massively parallel configuration using AER com-
munication via a packet-switched fabric. Neurons and
synapses are modeled in software, resulting in a very
flexible system capable of accommodating a very wide
range of neuron models and learning rules.

The central component in SpiNNaker is a custom
microchip incorporating 18 ARM968 processing units
and a packet router (108). Each ARM968 core has
32kbytes of tightly coupled memory to hold code and
a further 64 kbytes of tightly coupled memory to hold
local data. This chip is packaged with a standard
128 Mbyte low-power SDRAM memory so that large

systems can be assembled by connecting multiple
packages directly to their immediate neighbors in a
2D mesh (39).

For practical reasons, large SpiNNaker systems are
built from a circuit board incorporating 48 packages —
864 ARM cores — and using FPGAs for high-speed serial
communications to extend the mesh from board to board, as
shown in Figure 13. The largest system currently planned
will have over a million ARM cores on 1200 boards,
assembled into 10'19” rack cabinets.

The hardware platform is supported by software tools
(109, 110) running on a conventional host machine that will
accept a neural network description in a standard language
such as PyNN (111) or Nengo (112) and will map the
network onto the machine, typically allowing the network
to run at biological speeds.

3.2. The BrainScaleS-System: A Mixed-Signal Approach
to Neuromorphic Computing

Information processing in the brain is based on local
analog computing and asynchronous spike-based network
communications in continuous time. Although it is not
fully understood why Nature has evolved this particular
solution, it represents an ideal model for electronic imple-
mentation. The mixed-signal approach to neuromorphic
systems was pioneered by the FACETS (113) and Brain-
ScaleS (114) projects and is now being further developed
in the neuromorphic computing subproject of the Human
Brain Project (115). The name BrainScaleS System has
been maintained for all systems in this project lineup. As
a physical (electron-based) model of biological (ion-based)
microcircuits, the mixed-signal approach combines an
energy-efficient analog implementation of local nonlinear
processing in neurons and synapses with a perfectly
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Figure 13. Right: SpiNNaker 48-chip board including three Spartan6 FPGAs for SATA interfacing purposes. Top left: Photograph of
SpiNNaker chip packaged together with a 128 MB SDRAM chip. (Courtesy of Unisem Europe Ltd.). Bottom left: Layout diagram of
SpiNNaker chip showing 18 ARM cores, each with tightly coupled SRAM, and the asynchronous router in the center.

scalable network fabric based on stereotypical action
potentials (spikes).

From 2005 to 2015, the BrainScaleS system develop-
ment went through two chip generations. The first genera-
tion, represented by the Spikey chip (116), featured 384
leaky-integrate-and-fire (LIF) neurons and 98304 conduct-
ance-based synapses on a single 5 mm x 5 mm chip, manu-
factured in the 180 nm process node by UMC (Taiwan). All
time constants were scaled by a factor of 100000 with
respect to biological real time, offering accelerated access
to network activities bridging many timescales. The chip
featured three on-chip plasticity mechanisms: spike-tim-
ing-dependent plasticity (STDP), short-term synaptic

depression (STD), and short-term synaptic potentiation
(STP). Synapse weights were stored with a precision of
4 bits on individual SRAM cells in each synapse circuit. A
block diagram of the network architecture is shown in
Figure 14.

The second-generation chip is called Hicann (High Input
Count Analog Neural Network). Manufactured in the same
technology node as the first-generation chip, a single chip
measures 10 mm x 5 mm. The synapse implementation and
the plasticity models are identical to the first-generation
chip. The major changes lie in the neuron circuits, which
implement the adaptive exponential LIF model (AdEx),
and in a very high synaptic input count per neuron of up

—_—

exc/inh fan
T —

Figure 14. Mixed-signal network implementation in the Spikey-Chip, a predecessor of the BrainScaleS system. (From Reference 116.)



Figure 15. Front side and backside of the BrainScaleS wafer module.

to 16 000. Neuron parameters are stored on analog floating
gate circuits. The acceleration factor with respect to biolog-
ical real time has been set to 10 000. A single Hicann chip
features 512 neurons and 114688 plastic synapses.
Another major development from the first- to the second
generation is the realization of very large systems through
wafer scale integration (117). A single 8in. wafer carries a
total of 384 interconnectable Hicann chips corresponding to
a total of 44 million synapses and up to 196 608 neurons per
wafer. In addition to the network wafer, a complete wafer
module implements 48 FPGA communication modules
providing off-wafer connectivity to other wafers and to
host computers, as well as power supply and monitoring
capabilities (Figure 15). A total of 20 such wafer modules
have been assembled as part of the Human Brain Project
(115) Neuromorphic Computing Platform, offering remote
access to the system.

As a sideline of the second-generation chip development,
the Hicann chip concept has been modified to implement
multicompartment neurons (118). Multicompartment neu-
rons feature passive dendritic branching, active dendrites
(dendritic spikes), and back-propagating action potentials.

In 2015, work began on the development of third-gener-
ation chips. The most significant of several new features is
the implementation of an on-chip plasticity processor (119).
The processor has access to on-chip network activity and
can control synaptic weights, network connectivity, and
neuron parameters through local algorithms. The most
relevant computational feature of the processor is its capa-
bility to implement structural plasticity, reward-based
learning, and neuronal homeostasis.

3.3. TrueNorth

The IBM SyNAPSE TrueNorth neurosynaptic processor
(120) integrates a 2D mesh of 64 x 64 cores, each having 256
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crossbar-connected digital spiking neurons on a single 1M-
neuron, 256M-synapse chip (Figure 16). The 2D mesh
topology of TrueNorth extends to networks larger in size,
with 4 x4 tiles of TrueNorth chips integrated on printed
circuit boards being combined in a single-rack system
comprising 4096 chips with 4 billion neurons and 1 trillion
synapses consuming an estimated 4 kW of power (121).
Implemented in 28 nm CMOS, the TrueNorth chip inte-
grates 5.4 billion CMOS transistors. Internally asynchro-
nous and globally synchronous, TrueNorth routes neural
spike events across cores via address-event representation
communication on a 2D mesh. Each core implements 256

1.2 million transistors
Memory 4, Neuron

4096 cores
Scheduler 1 million neurons

Controller Router

10 mm

256 million synapses

5.4 billion transistors

Figure 16. The IBM SyNAPSE TrueNorth neurosynaptic proces-
sor (120). Right: TrueNorth chip layout, silicon wafer, and chip
photograph. Left: Layout of one of the 4096 cores. Limited connec-
tivity across cores is provided through address-event representa-
tion (AER) asynchronous communication between cores using a
mesh topology. TrueNorth offers a throughput of 1G synaptic
events per second (SynEPS) at 26 pJ of energy consumption per
synaptic event (120).



14 Neuromorphic Systems

spiking neurons with linear accumulate-and-fire neural
dynamics using a 256-neuron finite-state machine on a
self-timed clock and a 256 x 256 binary synapse crossbar
array. Binary synapses in common for a neuron output are
scaled by an individually programmable 8bit factor to
provide greater dynamic range in synaptic connectivity.
TrueNorth also provides for additional functions at neuro-
nal level, such as different noise sources and different
neural activation functions that can be instantiated
when programming the neurosynaptic core (122).

TrueNorth supports full connectivity across cores.
Although each neuron is limited to making external syn-
aptic connections to just one other core at a limited distance
on the 2D mesh, the mesh can be expanded to accommodate
larger numbers of neurons replicating the source neuron
and thus allowing larger fan-out over greater distances
(120). The trade-off between efficiency and flexibility in
TrueNorth can be exploited to realize large-scale neural
networks that can be discriminatively trained using either
supervised learning (120) or samples from generative mod-
els implementing Boltzmann machines (123).

3.4. Neurogrid

Neurogrid uses multilevel digital distribution and multi-
level analog aggregation, two key strategies for minimizing
cortical wiring, to build a neuromorphic system with bil-
lions of synaptic connections. The difficult problem of map-
ping the brain’s three-dimensional wiring onto a silicon
chip’s two-dimensional surface is alleviated by sharing
wires among a population of silicon neurons — instead of
dedicating a wire to each neuron (1, 124). The traffic on
these shared wires, collectively called the flat address-
event bus (Section 1.3), is given by the total number of
synaptic connections times the silicon—neuron population’s
average spike-rate; each address-event signals the arrival
of a spike at a particular synapse (125). The address-event
bus has been successfully used to build networks with a
thousand neurons and a few hundred connections per
neuron (33), but it has not been scaled beyond millions
of synaptic connections, the point at which the bus’ signal-
ing rate becomes saturated. To relieve this bottleneck,
Neurogrid emulates multilevel distribution in axonal
arbors and multilevel aggregation in dendritic arbors.
Multilevel distribution and aggregation minimize the
number of axonal fibers in a nerve tract by shortening
axonal branches in two different ways, both translating
directly into traffic savings in the address-event bus that
emulates the nerve tract. Multilevel distribution moves
branch points as close as possible to the axonal terminals
(Figure 17a, top), replacing multiple branch segments with
a single fiber at a higher level in a hierarchical branching
pattern (126). Neurogrid emulates this strategy by using
routers to interconnect silicon—neuron arrays in a tree-like
(rather than a mesh-like) fashion, allowing address-events
to be replicated close to their target arrays (38), hereby
cutting traffic at the tree’s root by a factor equal to the
number of copies that arrive at its leaves (Figure 17a,
bottom). Multilevel aggregation moves the axon’s terminals
as close as possible to its branch points by extending
dendritic branches (Figure 17b, top). The number of

dendritic branches required is minimized by having each
one summate signals from many axons (126). Neurogrid
emulates this strategy by modeling multiple overlapping
dendritic trees using a single two-dimensional resistive
grid, thereby cutting traffic at the tree’s root by a (com-
pound) factor equal to the number of neighboring neurons
that receive input (Figure 17b, bottom). The resistive grid
replicates the linear transformation of postsynaptic poten-
tials triggered by the axons’ bouton clusters (127) into
currents delivered to the dendrites’ trunks.

Emulating the brain’s hierarchical branching patterns
enables Neurogrid to accommodate columnarly organized
cortical networks with thousands of synaptic connections
per neuron efficiently (128-133). Each cortical area is
modeled by a group of Neurocores, with each of its cell
layers (or cell types) mapped onto a different Neurocore’s
two-dimensional silicon neuron array (Figure 17¢). Circu-
lar pools of neurons centered at the same (x, y) location on
these Neurocores model a cortical column (134). Intercol-
umn axonal projections are routed by using the presynaptic
neuron’s address to retrieve the target columns’ centers
from an off-chip random-access memory (first distribution
level). This RAM is programmed to replicate the neocor-
tex’s function-specific intercolumn connectivity (135, 136).
Intracolumn axonal branches are routed by copying the
address-event to all of a cortical area’s Neurocores using
the interchip tree network. Unneeded copies are filtered
using an on-chip RAM (second distribution level). This
RAM is programmed to replicate the neocortex’s stereo-
typed intracolumn connectivity (137). Finally, pool-span-
ning dendritic branches — arborizing over a circular disk
centered on the cell body — are realized using the resistive
grid mentioned earlier (multilevel aggregation). An elegant
transistor-level implementation (52) makes it possible to
adjust the grid’s space constant electronically to match the
pool’s radius. For instance, a spike may be routed to 10
columns, copied to each of those columns’ six layers, and
evoke postsynaptic potentials in a 100 neighboring neurons
(i.e.,a 5.6 neuron radius) in all but one layer, making a total
of 5000 synaptic connections.

With 16 Neurocores, Neurogrid is able to simulate
cortical networks with up to a million neurons organized
in up to 16 different cell layers and connected by billions of
synaptic connections in real time (Figure 17d). It achieves a
record-breaking 20T flop/J on this task — five orders of
magnitude better energy efficiency than a PC (129). The
average energy each synaptic activation consumes is mini-
mized by following the principle: Amortize the cost of longer
distance communications, which are more energetically
expensive, over a greater number of synapses.

3.5. HIiAER-IFAT

Hierarchical address-event routing (HiAER) (37) provides
a multiscale tree-based extension of AER synaptic routing
(Section 1.3) for dynamically reconfigurable long-range
synaptic connectivity in neuromorphic computing systems.
By distributing random-access addressing of synaptic
events at multiple scale levels in a tree-based connection
hierarchy, HIAER offers both flexibility and expandability
in synaptic connectivity at both local and global levels.
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Figure 17. Modeling the cortex on Neurogrid. (a) Multilevel distribution (a) and multilevel aggregation (b) in neural (fop) and neuromorphic
(bottom) networks: The traffic on a digital bus that emulates spike distribution by an axonal arbor is reduced by mimicking axonal and
dendritic branching patterns. (¢) Mapping cortical columns: Cell layers (red, green, and blue), intercolumn connections (purple), and
intracolumn connections (yellow) are mapped onto a different Neurocores, off-chip RAM (on a daughterboard), and on-chip RAM (in each
Neurocore), respectively. (d) (from left to right) Silicon neuron: Models four ligand-gated and four voltage-gated ion channel populations, a
dendrite compartment, and a soma compartment (color-coded in the schematic cell). Neurocore: Holds a 256 x 256 silicon neuron array as well
as routing circuitry for inter-Neurocore communication. Neurgrid: Holds 16 Neurocores, connected in a binary tree network, and can
simulate up to a million of neurons connected by billions of synapses in real time. (Created by Ben Varkey Benjamin.)

Queueing theory results show that HIAER offers scalable
synaptic event throughput, independent of neural network
size, for given synaptic fan-out and nominal axonal delay,
with no spatial restrictions on synaptic connectivity (37).
Another distinguishing feature of HIAER is that its synap-
tic connections encode not only programmable synaptic
strength (probability of presynaptic release and post-
synaptic conductance) but also programmable axonal

delay, implemented in the timing of events routed from
source to destination.

The HiAER synaptic event routing infrastructure serves
as a communication backbone to integrate-and-fire array
transceivers (IFAT) (33, 138, 139) and other event-driven
spiking neural network hardware systems (36, 140-142).
The HIAER-IFAT hardware system illustrated in
Figure 18 integrates HiAER reconfigurable synaptic
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Figure 18. Integrate-and-fire array transceiver (IFAT) with hierarchical address-event routing (HiAER) synaptic connectivity for scalable
and reconfigurable neuromorphic neocortical processing (139). (a) Dynamic reconfigurable synaptic connectivity across IFAT arrays of
addressable neurons is implemented by routing neural spike events through DRAM synaptic routing tables (SRT). Only the level 1 (I.1) leaf
node in HIAER synaptic connectivity is shown for simplicity. (b) The IFAT neural array multiplexes and integrates incoming spike synaptic
events (Inyex, Inyeq) generating continuous-time analog dynamics of synaptic (V,,) and neural (V,,) variables to produce outgoing spike neural
events (Out,ck, Outyey). (¢) Full-size HIAER-IFAT network with four boards, each with four IFAT modules, serving 1M neurons and 1G
synapses, and spanning four levels in connection hierarchy. Each IFAT chip module comprises a 65k-neuron Tezzaron 130 nm CMOS IFAT
microchip. (d) Xilinx Spartan-6 FPGA (level 1 HIAER), and two 2 Gb DDR3 SDRAM SRTs serving 65M synapses. (e) Each neural cell models
conductance-based membrane dynamics in proximal and distal compartments for synaptic input with programmable axonal delay,
conductance, and reversal potential. IFAT chip-measured energy consumption is 48 pJ per spike event (139), several orders of magnitude

more efficient than emulation on CPU/GPU platforms.

routing, implemented using FPGAs and DRAM, with IFAT
event-driven conductance-based continuous-time neural
dynamics implemented in custom, very-large scale, low-
power, mixed-signal integrated circuits (139, 143).

Each quadruple set of HIAER level 1 nodes (leaves in the
hierarchy) shares one Xilinx Spartan 6 FPGA (XC6SLX45T)
with two 2 Gb DDR3 DRAMs (Micron MT41J128M16) for
synaptic routing table (SRT) storage. Four such units are
provided on the board, along with an extra unit serving four
HiAER level 2 nodes, as shown in Figure 18. The nodes
across the FPGAs are interconnected through L1 bus paral-
lel communication links as shown. Each FPGA is also
equipped with a local 200 MHz clock generator, an external
clock input, and USB and JTAG ports for diagnostics and
programming. An additional 200 MHz master clock genera-
tor can provide all 4 +1 HiAER nodes with a global clock.
The system interfaces to the outside, at HIAER level 3,
through the L2 bus. Several boards can be combined to
form a spike-based neuromorphic computer with 262 144
analog integrate-and-fire neurons and high-speed periph-
erals using different variants of address-event routing pro-
tocols (94, 95, 144). At the single-board level, approximately
linear throughput scaling has been demonstrated for global
synaptic event routing at 36 million synaptic events per
second (synEPS) per 16k-neuron node in the hierarchy (145).

Each IFAT chip has four independent ports, each with
16k two-compartment integrate-and-fire neurons (139,
143) and assigned to a single HiAER level 1 node. The
IFAT neural array transceives incoming synaptic spike
events to outgoing neural spike events generated through
the internal, analog, continuous-time dynamics of synaptic
and neural state variables (Figure 18) (139). Internally
continuous-time analog, but externally asynchronous digi-
tal, the IFAT interfaces directly with HIAER to emulate
large-scale biophysical models of cortical neural dynamics
with reconfigurable synaptic connectivity (145). Each neu-
ron in the IFAT array models two (proximal and distal)
membrane compartments, of which one is excitable for
spike generation and event registration. Coupled to each
of the two compartments are two independent types of
conductance-based synapses that are dynamically instan-
tiated through the time-multiplexing of HIAER synaptic
input events. Programmable control over synaptic reversal
potentials and conductance time constants provides for
nonlinear pooling functions in shunting inhibition and
temporal coding in synchrony detection (143) — elements
that are crucial to spike-based neural computation but
are missing from the simplified linear integrate-and-fire
models that are most commonly implemented in analog or
digital neuromorphic VLSI.



4. EXAMPLE APPLICATIONS

4.1. Event-Driven Vision

The foundations of current (conventional) machine vision date
back more than 150 years to Muybridge’s early use of the
camera obscura to produce a single image and capture the first
“movie.” The perception that visual motion is smooth and
continuous when viewed above a certain frame rate is, how-
ever, more related to characteristics of the human eye and
brain than to the quality of the acquisition and encoding of the
visual information as a series of images. Whatever frame rate
is set, frames are inadequate for visual computation pertain-
ing to change or motion because they are unrelated to the
scene’s dynamic: There is no relation whatsoever between the
dynamics present in a scene and the frame rate chosen to
control the pixel’s data acquisition process. Oversampling or
undersampling will inevitably occur, and, moreover, both will
usually happen at the same time. The scene will be under- and
oversampled at the same time because all the pixels in an
image sensor share a common timing source that controls
exposure for all of them.

Neuromorphic event-driven artificial vision takes us
beyond the widespread, ingrained belief that acquiring
series of images at a given rate is a good way to capture
visual motion (146, 147). As explained in Section 2.1, each
pixel adapts its own sampling rate to the visual scene.
Despite the disadvantages of increased pixel size and
reduced fill factor, the advantages of acquiring dynamic
vision data in this way, that is, ultrahigh-speed operation
combined with reduced power consumption, transmission
bandwidth, and memory requirements, actually extend
beyond the acquisition stage. All subsequent processing
benefits from the fact that the sensors encode visual dynam-
ics into spatiotemporal patterns of “events,” representing
the relevant features of motion such as moving object con-
tours and trajectories virtually in continuous time.

The mathematics used to describe features in space and
time are simple and elegant (148-152), yielding highly
efficient algorithms and computational rules that allow
the real-time operation of sensory processing systems while
minimizing demand for computing — and, consequently, for
electrical power. No event-based theory yet exists with
deductive power analogous to the z-transform familiar to
conventional Nyquist-based signal processing. But thanks
to the increased temporal resolution of their acquisition
and encoding process, event-based spatiotemporal patterns
show a high degree of orthogonality between seemingly
similar features that can be exploited through the simul-
taneous processing of event clouds in the frequency and
time domains. As a result, demanding machine vision tasks
such as real-time 3D reconstruction (148, 153, 154), com-
plex multiobject tracking (150, 155), or fast visual feedback
loops for sensory—motor action (156, 157) can run at kilo-
hertz rates on cheap, battery-powered processing hardware
and allow “always-on” visual input for user interaction.
Environmental context awareness on smart mobile
devices, which is currently prohibited due to high power
consumption requirements, also becomes possible.

To appreciate the impact a new “event-driven neuro-
morphic” paradigm of vision acquisition and processing
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could have on machine vision, it is interesting to consider
the historical background on which the present-day
machine vision devices are based. Like every scientific field,
conventional computer vision relies on assumptions.

The first assumption, as already briefly discussed, is
that dynamic scenes are observed using a stroboscopic
acquisition that produces a collection of static images or
frames, where the frame rate is selected high enough to
encompass the frequencies of interest. Consequently,
images are now the core element in the whole field of
machine vision and, basically, everything is designed to
acquire, operate on, and display frames. Temporal resolu-
tion is usually fixed and scene independent, there is an
abundance of redundant information, and dynamic range
(the difference between the darkest and the brightest pixel)
is limited due to the same fixed exposure time to which
every pixel in the sensing array is subjected.

The second assumption of conventional computer vision
is that luminance, in the form of gray levels or colors
acquired as absolute values of light intensity, is the
main source of information. Luminance is so omnipresent
in the field that it is used for every visual task and in every
application, including stereo vision, motion estimation,
recognition, and navigation.

The unnatural acquisition of both relevant and non-
relevant data, following the criteria that the fixed sample
rate must be sufficient to capture the highest frequency
content in the scene, means that today’s conventional
machine vision unavoidably leads to a trade-off between
latency and power: Low latency can only be achieved by
increased power consumption.

The higher temporal resolution and sparseness of out-
put offered by event-driven neuromorphic vision (63—65,
72) open a window on new aspects of visual computation
by drawing attention to space-time domains (151, 158).
Event-driven computation makes it possible to build a
bridge between the computational and biological worlds,
both of which process data using the temporal properties
and arrival times of spikes or events. The role played by
time in vision has been known to biologists and computa-
tional scientists for decades, but event-based computation
makes it possible to derive new mathematical approaches
without needing to use precise neuron modeling (46).
Recent developments in event-based visual computation
show that several computationally ill-posed problems can
be rewritten within the time framework and lead to new
methodologies and real-time implementations at frequen-
cies of hundreds of kilohertz (148, 149, 153, 154, 159),
whereas many frame-based techniques can reach only
25 Hz even on full desktop PC processors. The real advan-
tage — and the main difficulty — of event-based computation
is that it addresses vision problems in an incremental
framework where each incoming event leads to a small
computation.

Another advantage of using time is that any computa-
tion based on precisely timed events can be expressed as
time coincidence of events, as in neural computation. Even
in the case of luminance, as used in the DVS or ATIS
camera (see Section “Combined DVS Luminance”), corre-
lations can be expressed as a set of three coincidences
between pixels (65). This is because luminance is encoded
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in time and thus any correlation rewritten in time spaces
can essentially be reduced to the detection of three coinci-
dences between two pixels. The same applies to stereo
vision: When high temporal resolution is available, match-
ing merely means detecting coincidences of activations
between pixels (148, 153, 154). If two pixels from two
cameras emit events at the same time, they are most
probably observing the same 3D point. A series of recent
papers has shown that the use of precisely timed informa-
tion on change detection casts new light on problems such
as tracking (155, 160-163), SLAM (Simultaneous Localiza-
tion and Mapping) (164, 165), object recognition (152, 166),
time-to-contact (167), and optical flow (146, 149, 159, 168).
JAER is an open-source software project that shows how
many of these methods can be applied to DVS and DAVIS
output (169). Machine vision has never really pursued this
field of research because it has focused on a technology in
which frames were the main source of information. More
importantly, event-driven computation gives machine
vision the status of a true science like physics, which
observes a natural phenomenon, models it, and provides
mathematical solutions that can lead to an implementa-
tion. Events from a neuromorphic event-driven camera and
those from a biological retina are very similar. The fact that
this approach differs so greatly from a pure engineering
approach based on ad hoc solutions may explain why
advances in machine vision over the last few years have
resulted almost exclusively from the application of deep
learning data regression technology.

4.2. Event-Driven Audio

The spiking outputs of event-based silicon cochleae have
been used in a number of conventional audio tasks such as
source localization, speaker identification, and audio digit
recognition. In source localization, spike timing is used by
an event-driven source localization algorithm that esti-
mates the interaural timing difference (ITD) from the
arrival time differences of the spikes generated by the
two ears of a binaural cochlea. Since the resolution of
the spike times is less than 1 ps, a spike-timing localization
algorithm using the spike times produces a minimum
spatial angular resolution similar to the minimum resolu-
tion obtained by cross-correlating signals from the two
microphones (170). However, the computational load of
the spike-timing localization algorithm can be up to 40x
lower than that of the cross-correlation algorithm on the
two analog microphone signals (82).

In speaker identification and digit recognition research,
a machine learning classifier such as a support vector
machine is used on the input features extracted from the
spike trains (e.g., the spike interspike intervals and the
individual cochlea channel firing rates) (171). Although the
performance figures for these simple features are currently
inferior to those of state-of-the-art signal processing meth-
ods in the audio tasks listed above, the advantage of using
event-based sensors and networks lies in the shorter
latency of the classified output. In a classification process
using a fully connected feed-forward network, for example,
answers have been reported after an average of four input
spikes (172).

Outputs from spiking cochlea have also been combined
with spiking outputs from DVS or other retina sensors for
tasks such as guiding arobot (173). Currently, the use of deep
networks for classification with these spikes is actively
ongoing. Results have already shown that these networks
are more forgiving of the nonidealities of silicon spikes
and can be trained to extract useful information from the
outputs of event-based sensors. The results in Reference 174,
obtained using the MNIST database of handwritten digits
and the TIDIGITs audio database, show that a high degree of
accuracy can be obtained in digit recognition performance
(>98%) using a deep network. This compares to accuracy
values of around 64% using only 1000 spikes from a spiking
retina and 83% from cochlea spikes. This suggests that high
accuracy from event-based sensors will also be possible in
the near future (174).

4.3. Industrial Successes

The field of neuromorphic systems engineering is still in a
development stage, with researchers trying to better under-
stand neuroscientific principles by mimicking them in artifi-
cial man-made artifacts. Nonetheless, a number of specific
developments have found applications in practical scenarios.

One of them is the neuromorphic low-power image
positioning sensor (175), which is presently used in space
applications for studying solar flares (176).

Another successful commercial application of a neuro-
morphic vision sensor is the Logitech pointing device/
mouse, which uses a neuromorphic image sensor without
any moving mechanical parts (177).

Event-driven dynamic vision sensors such as those
described in Sections “Motion DVS Retinas” and “Com-
bined DVS Luminance” have been marketed to the public
for research and development since 2009 (178), and more
recently since 2015 targeting wider markets (179). A com-
mercial application of this technology is in prosthetic
devices for the blind (180).
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