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Abstract: A thorough investigation of power system security requires the analysis of the
vulnerabilities to natural and man-related threats which potentially trigger multiple contingencies.
In particular, extreme weather events are becoming more and more frequent due to climate changes
and often cause large load disruptions on the system, thus the support for security enhancement
gets tricky. Exploiting data coming from forecasting systems in a security assessment environment
can help assess the risk of operating power systems subject to the disturbances provoked by the
weather event itself. In this context, the paper proposes a security assessment methodology, based on
an updated definition of risk suitable for power system risk evaluations. Big data analytics can be
useful to get an accurate model for weather-related threats. The relevant software (SW) platform
integrates the security assessment methodology with prediction systems which provide short term
forecasts of the threats affecting the system. The application results on a real wet snow threat scenario
in the Italian High Voltage grid demonstrate the effectiveness of the proposed approach with respect
to conventional security approaches, by complementing the conventional “N — 1” security criterion
and exploiting big data to link the security assessment phase to the analysis of incumbent threats.

Keywords: blackouts; contingency; extreme events; power systems; probability; risk; security;
threats; vulnerability

1. Introduction

The increasing frequency of extreme weather events highlights the vulnerability of power systems
to multiple outages [1]. The consequent interest in assessing the power system response to these high
impact low probability events and the growing amount of data coming e.g., from prediction systems
favor the maturation of probabilistic risk based approaches. Thus, Transmission System Operators
(TSOs) are shifting their focus from security analyses based on N — 1 credibility criterion to the
evaluation of power system vulnerability to extreme N — k events. In this context, TSOs have recently
discussed the opportunity to use risk concepts (a suitable combination of event probability and impact)
to assess and assure power system security against multiple contingencies [2-5]. Probabilistic models
of weather related threats can greatly benefit from spatial-temporal data concerning the evolution of the
weather over the power system. In this context, big data analytics applications can be of great help in
providing reasonable probabilistic models of a weather threat both in long term (through historical data
series) and in medium-short term (through forecasts and quasi-real time data acquisition) [2]. Big data
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analytics applications are raising more and more interest in the smart grid community, especially in
the context of weather event alarming and management [3,4]. Reference [5] proposes a big data driven
tool for disaster management to support operators’ decisions in emergency conditions, while in [6]
a risk warning system is implemented based on big data. In order to plan strategies to relieve weather
effects on distribution networks, in [7] a fuzzy logic technique is proposed to support utility operators’
decisions in optimizing real time operation and maintenance scheduling. An innovative method for
weather-driven risk framework is deployed to analyse data and generate risk maps to support decision
makers. Among the potential threats, wet snow events are common in different countries e.g., Italy [8],
and they have been studied for many years. References [8,9] describe the activities carried out by the
authors to propose and validate deterministic models aimed to forecast the amount of linear weight or
thickness of snow sleeve accreted along the conductors of overhead lines (OHLSs).

The goal of the paper is two-fold: (1) to propose a comprehensive methodology and platform
which integrate a risk based security assessment tool for operational planning and quasi-real time
operation [10] with advanced forecasting systems providing large amount of geo-spatial data on the
expected intensity and extension of the major weather threats (focusing on wet snow events), and (2) to
thoroughly present the results of the application of the platform to a real-life case study.

The added value of the proposed integrated platform is to exploit the available forecasts on the
weather threats in order to provide the list of most risky contingencies on an hourly basis over the
whole forecasting period, thus supporting operators in preparing the power system operation for
the near future hours (i.e., at an operational planning level). Linking the set of single and multiple
contingencies to be studied to the forecast of the threat affecting the system is an important step
forward with respect the approaches proposed in literature to screen the most dangerous multiple
N — k contingencies, from optimization frameworks, aimed to identify dangerous multiple branch
outages [11-13] to rough set theory [14], random chemistry [15], graph theory [16], and eigen-sensitivity
and cutsets [17], expert systems [18] or fuzzy logic [19] associated with neural networks. In fact, all these
approaches have some limits, which are overcome by the contingency selection algorithm of the
proposed methodology: (1) they usually screen the contingencies based on their impact, ignoring their
probability; (2) common causes or dependent failures (e.g., busbar faults with protection misoperation)
are neglected, while these events may initiate cascading outages and subsequent load disruptions;
(3) most of the methods do not account for the current weather/environmental conditions.

The paper is organized as follows: Section 2 describes the risk-based methodology which
integrates the threat/vulnerability analysis with power system security analyses. Section 3 discusses
the data sources concerning the forecasts of extreme weather events with a focus on wet snow events,
and the architecture of the risk based security assessment platform. Section 4 presents the detailed wet
snow threat model and the relevant vulnerability models for overhead lines. Section 5 describes and
discusses the results of the platform application to a realistic wet snow event scenario. Conclusions are
drawn in Section 6.

2. Probabilistic Risk Assessment Methodology and Tool

This section presents the rationale at the basis of the proposed risk based approach and
an overview of the threat and vulnerability modeling framework.

2.1. The Rationale of the Approach

The proposed probabilistic risk assessment method is derived from the bow tie conceptual scheme
visualizing the connections between the causes and consequences of undesired events: Figure 1
illustrates an example where the disturbances consist in contingencies potentially provoking cascading
outages and blackouts, i.e., with dangerous effects.
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Figure 1. The bow-tie conceptual scheme [10].

Threats are classified into natural threats and man-related threats (see the left side of bow
tie), and further divided into internal or external to the power system. The man-related ones are
also subdivided into intentional (e.g., sabotage) or unintentional (e.g., human errors). Threats may
bring to a contingency via a set of causes which affect vulnerabilities; the contingency might
provoke different impacts under several circumstances. These impacts may in turn act on other
vulnerabilities, triggering cascading outages that finally lead to a blackout. To describe the deep
connection between threats and contingencies, the conventional risk concept as a triple {contingency,
probability, impact} [20] is reconsidered and extended.

In the proposed modeling framework [10] a threat can act on several vulnerabilities of power
system components by triggering stress variables, consisting in the physical quantities exploited by
the threat to influence the component vulnerabilities (e.g., a tornado may result in heavy mechanical
forces on transmission line towers). This stress may provoke the component failure. The generic
“contingency” at system level means the failure of one or more components. The methodology
interprets the “vulnerability” as the conditional probability of a component failure given the occurrence
of a specific threat. Also, any threat is modelled in probabilistic terms: e.g., the probability of a natural
threat, like a wet snow event, depends on the weather situation at the time of the event itself. The sequel
of the section will provide a description of the approach and of the relevant tool.

2.2. Modeling Component Failures

Given a single component with a vulnerability defined via a conditional probability function
Py (t|t,s,x) [21], the failure probability Pr of this component in the time interval [y, t] subjected
to an individual threat described by a {stress, time} multivariate probability density function (pdf)
prir(T, s, x) can be computed as in (1):

t

Pe(x,tyt) = [ [ Pu(ties,x) x pry(,s, x)dsdr 0
fp S

where Pp(x, t, 1)) is the probability that the component in location x fails between time instants ¢y and
t; Py (t|t,s, x) is the conditional probability distribution of the component failure at t due to value s
of stress variable S related to threat Thr and applied at T. Also vulnerabilities are functions of time,
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e.g., because of ageing or maintenance; pry, (T, s, x) is the pdf of threat Thr applying value s of stress
variable S in location x, at time 7. Term pry, (T, s, x)ds dt is the probability to have stress s at time 7.

Random variables are represented via upper case letters (e.g., S), while their realizations or non-
random variables via lower-case letters (e.g., s). Multivariate distributions in (1) must be adequately
adjusted to model the specific component and threat under investigation. The tuning process may
encounter some issues due to the reduced availability of statistical data from the historical series
analyses or from prediction tools. If one considers an average model of stress variable S in interval
At =t — ty, the previous formulation can be written as in (2):

Pe(x, At to) = [ Py (to,5,) x plyy (to, 5, )ds @)
5

where apex (*! is related to the average (threat/vulnerability) model in time interval At. It's worth
noticing that Equation (2) can be used for different time frames, provided that an adequate average

model is available on a At horizon. Next subsections and Section 3 present respectively the models

chosen for p(ﬁf) and Py, and the data sources to characterize the models.

Under the assumption of constant failure rates in At relevant for operation (e.g., from 15 min to
1 h), the probability of failure of more than one components, due to the same threat, is derived by
combining the “time to failure” exponential distributions of all the affected components following the
probability laws. The approach can model also the more general case of more than one components
subjected to multiple threats, accounting for potential dependencies among threats.

Applying this formulation assures a general framework for the probabilistic modeling of power
system contingencies. Short term models will be the focus of the present investigation, because the
tool is mainly oriented to system operation. In the sequel, only single threat scenarios are investigated,
without diminishing the generality of the proposed methodology.

2.3. Threat and Vulnerability Modeling

The threats modeled in the platform may range from natural disasters (ice and snow storms,
pollution, lightning, earthquakes, sabotage, earthquake-induced landslides, floods, fires, tree contact,
component aging) to deliberate acts of sabotage. Long term and short term probabilistic models for
threats can be derived respectively from the elaboration of historical data series and from weather
forecasting systems. The last term of (2) can be computed if the dependence of the stress variable pdf
on location x (spatial dependence) is known. To this regard, the proposed methodology is general and it
may incorporate an accurate representation of the geospatial distribution of the stress variable if data
from prediction systems are available. Other references about long term threat models can be found
in [10]. Any component is described in terms of a vulnerability function with respect to each threat.
The vulnerability models in (2) are derived from:

(a) Laboratory tests, like mechanical fragility curves, blast withstanding capacity curves,
voltage withstanding capacity curves [22] for insulating materials;

(b) Mathematical models which connect component properties to the exposure to specific threats,
e.g., rolling sphere method for exposure to lightning [23];

(c) Qualitative information from experts or specific drills, e.g., to define the vulnerability of a SCADA
system, or of a substation to physical attacks.

Also ageing processes, e.g., Arrhenius’ law or combined electric-thermal stress [24], can be
included in vulnerability models. Table 1 indicates the link between threats and stress variable(s).
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Table 1. Stress variables adopted for the threats under study.

Threat Stress Variable (Measurement Unit)

Wind + Ice load (N/mm?)
Conductivity on insulators (1S/cm?)

Ice and snow

Pollution Pollution concentration on insulators (mg/ cm?)
Lightnings Flash to ground density (# flashes/(km?-h))
Earthquake Peak ground acceleration (m/ s?)

Physical malicious attacks Attack scenario probability (# attacks/week)
Landslides Newmark displacement (m)
Floods Water level (m)
Fires Insulation temperature (°C)
Vegetation Tree height (m)
Thermal Ageing Air temperature (°C)

2.4. Contingency Set Definition

The set of the contingencies to be analyzed in depth is detected via a two stage process:

e Identification of critical components (i.e., the ones explaining a fraction ¢ of total failure
probability) using a cumulative sum screening technique [25,26];

e  Screening of the most risky contingencies exploiting fast impact assessment techniques based on
topological metrics.

An exhaustive set of single and multiple contingencies is generated by an enumeration
technique, starting from critical components. Under the assumption of constant failure rates within
At (valid hypothesis for time intervals up to 1 h), using probability theory and copula concept are
used to combine the “time to failure” exponential distributions for all components involved in the
contingency definition, in order to get the final distribution of the probability of contingency occurrence
Pcrg(t): in the contingency screening process, the adopted value for probability is the maximum value
of Pcrg(t) in the time interval At of study, henceforth named prob ;. Computing the probability for
high order (N — k, k > 1) contingencies takes into account common mode and dependent events.
Common mode events (e.g., outage of k branches subject to the same storm) are studied considering
the available geo-spatial model (see Section 3) of the threat affecting the grid area under investigation.
Dependent events are: (a) busbar contingencies (also accounting for protection malfunctioning),
(b) power plant contingencies and (c) double circuit line outages.

Contingencies are screened on the basis of ex-ante risk indicators, obtained by combining event
probability with impact metrics i.e., the number of outaged components or topological metrics
such as average inverse geodesic length [27] and net-ability [28]: their computation is very fast.
The proposed screening algorithm offers several options to adjust the contingency set selection, e.g.,
maximum ex-ante risk threshold and the fraction of explained total failure probability.

For time domain simulations, each contingency is characterized not only by outaged components
but also by the time sequence of the trippings themselves, which depend on the response of primary
and backup protections.

2.5. Modeling Power System Response to Contingencies and Computing Impact and Risk Indicators

The impact of each retained contingency is computed using a quasi-static cascading outage
simulator [29] and/or a time domain simulator integrated in the platform.

The proposed approach introduces an extended risk concept: risk is defined as a quadruple
{threat, vulnerability, contingency, impact} where the “probability” term of conventional triple
{probability, contingency, impact} [20] is replaced by the probability distributions associated to
threats and vulnerabilities. This risk definition links Probabilistic Hazard Assessment (PHA) studies
to Security Assessment (SA) analyses, focusing on the disturbance root causes. In particular,
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component vulnerability connects the probabilistic model of generic threat Thr, with the probability
of contingency ctg, while the vulnerability in power system response connects contingency ctg with
the final consequences (impact) on the power system itself. The way how threats act on power
system clearly depends also on the (current or forecast) power system operating conditions OC;.
The risk indicator adopted in the present paper is the expected value of the impact for the analysed
contingencies, accounting for threats and component vulnerabilities. Term “operating condition”
incorporates both strictly operational conditions, i.e., load pattern, generation dispatch and grid
topology, and more general environmental conditions, e.g., ambient temperature, wind speed.
Anyway, risk can be associated to:

(1) A specific contingency, evaluated as dangerous in the specific OC subject to the given threat:
contingency risk indicators help operators identify events with the highest risk (to plan suitable
countermeasures);

(2) The operating condition and the set of dangerous contingencies: global indicators assess how
system risk varies under changing threats.

The risk indicator related to a specific contingency ctg—henceforth named Contingency Risk
CRtg—is given in (3):

. OC; OC;
CRetg = zmpThr]p (ctg) x probThr’p (ctg) (3)

where imp(Tthrjp (ctg) and prob?gp (ctg) are respectively the contingency impact and probability
depending on operating conditions OC; and threat Thry. The probabilistic threat and vulnerability

. . o¢; . . . .
analysis provides term prob., "y (ctg), while the simulation of power system response to contingency
ctg by means of the cascading outage simulator and time domain simulation allows to compute

. 0C; . . . . rs e . 0OC; Sl s
term imp, r}p (ctg). In the sequel notation will be simplified substituting imp, r}p (ctg) with impetg and

oC; .
probThr]p (ctg) with probegg.
The methodology can provide both static and dynamic impact and risk indicators [10].
System risk indicators R are computed as in (4):
OC;

]
NThrp

R=Y probeg X impeg 4)
ctg=1

where N?hcr; is the number of dangerous contingencies selected by the screening algorithm and it
depends on specific threat Thr, and operating conditions OC;.

Impact indicator imp.g used in the present paper is the Loss of Load (LOL) at the end of the
cascading path potentially activated by the contingency.

3. Data Sources and Platform Architecture

This section discusses the important topic of data sources for the tuning of short term probabilistic
models of weather related threats and it describes the overall architecture of the integrated platform.

3.1. Data Issues for Model Tuning

Characterizing the probabilistic models is one of the main barriers for the application of
probabilistic techniques in real world power system operation [30]. Reliable data sources are required
for a proper model tuning. In case of short term analyses (operational planning), the geospatial
distribution of the stress variables (e.g., the mechanical tension on a conductor due to combined
ice+wind load) which characterize each weather threat can be obtained starting from the geospatial
distribution of the weather variables (temperature, wind speed, precipitation rate, etc.) by means
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of causal physical models (e.g., the Makkonen model for snow sleeve accretion, briefly described in
Section 4). The abovementioned weather variables are subject to forecast uncertainties, thus they must
be treated as stochastic variables.

On the basis of the way these weather variable geospatial distributions are generated, the platform
allows to characterize the threat probabilistic models via two modes:

e  An engineering mode, where a standard geo-spatial model of the weather variables is expressed via
an analytical function characterized with few parameters which define the intensity and the extension
of the stress itself (e.g., wind peaks, maximum precipitation rates, etc.) and which are subject to
uncertainties. The final geospatial distribution of the stochastic stress variables is determined by
applying the uncertain parameters to the abovementioned standard model. More details on the
standard threat geospatial models adopted in engineering mode can be found in [10];

e An operational planning mode, where the weather variable geospatial distributions aimed to
characterize the threat come from a weather forecasting system available at TSO’s control center.

In the operational planning mode, the platform integrates the k hour-ahead forecasts provided
by numerical weather prediction systems to get an affordable probabilistic model for weather based
threats (in particular, wet snow events which represent a major source of outages in specific zones
of the Italian grid). In this mode the input data for the combined threat and contingency analysis
platform define the so called threat/power system scenario and consist in:

e  The data characterizing the threat:

O Forecasts of weather, influencing factors on a geo-localized basis; in particular for the
analysis of wet snow events, the following quantities are forecasted: Ambient temperature
in °C, Precipitation rate in mm/h, wind speed and direction respectively in m/s and
meteorological degrees.

e The data characterizing the power system:

O The forecasts of renewable generation production and of load consumptions;

O Grid configuration concerning the transmission assets and grid topology. Components are
characterized by electrical and, where relevant, mechanical properties;

O Operating condition of the system (including conventional generators dispatch, etc.).

For the sake of conciseness and clarity, the present paper will focus on the wet snow threat.
The weather variables coming from two different high resolution NWP models, the WRF-ARW and
RAMS dynamic cores [8], constitute the input for wet snow hazard model. The simulations are
done on two nested grids (d01, d02, see Figure 2a) at a horizontal resolution of 0.125° (about 15 km)
for the coarse domain (d01) and of 0.04° (about 5 km) for the finest grid (d02). The global model
ECMWEF provides the initial and boundary conditions for the simulation. Presently, the output of
both weather models are used separately, but in the future the output will build up an outperforming
Multi-Model Ensemble.

Wet snow condition has been identified when air temperature is in the range between —2 °C
and +2 °C and, at the same time, the Snow Ratio of frozen precipitation is between 0.7 and 0.8, i.e.,
the Liquid Water Content of snowflakes is 20-30%.

The predictive system is based on several years of research activity and it is the core part of
an alert system for wet snow formation on Overhead Lines (OHLSs) in Italy. The system, named Wet
snow Overload aLert and Forecasting (WOLF) [8], is aimed to provide the wet snow loads forecast and
the estimated anti-icing current for OHLSs in the forecast horizon of +72 h. Figure 2b shows an example
of WRF-ARW simulation related to the accumulated daily precipitation (mm/24 h) for the wet snow
event occurred in February 2015 in the North of Italy.
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In the modules of scenario generator (top part of the diagram) the threat and power
system component vulnerability are probabilistically modelled, evaluating the component failure
probability [10]. The data for short term probabilistic models for weather related threats may come
from the user (engineering mode) or from a numerical prediction system (operational planning mode),
as explained in Section 3.1.

The cumulative sum screening method is run in module C: this allows to select the critical
components (i.e., the ones which represent the largest fraction of explained total failure probability).

Then the enumeration technique is run still in module C in order to generate an exhaustive set
of single and multiple also dependent contingencies, screened using fast algorithms. The response
of power system to the retained contingencies is simulated by means of the time domain simulator
and/or the cascading outage simulator in module R. Also influencing factors like forecast uncertainties
on loads and renewables and uncertain response of defence/control systems are accounted for.

The impact of each contingency is assessed in module I, and risk indicators are computed by
combining probability and impact in module RI. The final outcome consists in risk indicators to rank
contingencies and track overall system security.

4. Wet Snow Threat Modeling

This section presents the probabilistic model of the wet snow threat, considering the physics of
wet snow accretion. The wet snow affects OHLs via two stress variables:

e  The mechanical tension on the conductor section, due to the overall load including the wind load
and the ice load produced by wet snow processes;

e  The surface conductivity of the insulator chains, which depends on the accumulation of wet snow
and on the conductivity of the water content of the snow.

Thus, two separate threat probabilistic models are elaborated to account for the two phenomena.
The relationship between the wet snow events and the surface conductivity on the insulators is being
investigated in literature [31]. However, in the study case of the present paper, the conductivity of the
wet snow accretion on insulators in the area under investigation is negligible, thus the flashover model
due to wet snow accretion is not considered henceforth.

4.1. The Physics of Wet Snow Accretion

The most well-known temperature interval for wet snow conditions is —2 °C/+2 °C, also from the
verification of many observations in different countries. In this range of temperature layer, the snowflakes
can partially melt and their typical Liquid Water Content (LWC) varies from 20% to 30% of the total
mass. In this situation the snowflakes deposit on the conductor and join together not only due to
collision mechanism, but also due to the strong coalescence caused by the presence of LWC in the
snowflakes which favors the growth of typically cylindrical sleeves around the wire (see in Figure 4).

Figure 4. Cylindrical ice sleeve accretion on conductors during a wet snowfall.

Wet snow events typically last for 18-24 h, generating snow sleeves up to 15 cm in diameter and
causing an extra load on conductors up to 8-10 kg/m. The overload can produce severe damages to
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OHLs. Sometimes the conductor undergoes an extra load due to the intense wind blowing after the
accretion process.

4.2. Threat Forecast Modeling

The model implemented in the platform [10] to forecast the stress variables (i.e., the mechanical
loads due to ice and wind) accounts for four main measurements concerning the wind speed intensity
and direction, the ambient temperature and the precipitation rate.

All the models for wet snow accretion rest on Equation (5), which models the accretion of snow
mass M described in the ISO standard [32] for icing of structures:

7]\1{_4:0610620(3XWXAXV 5)
where 1 is the collision efficiency; «; is the sticking efficiency, and a3 is the accretion efficiency; w is
water content (kg/m?); A is the cross-sectional area (m?) perpendicular to object; V is the particle
impact speed perpendicular to object (m/s).

For the wet snow precipitation, term w X A may be approximated by the precipitation flux.
The terminal vertical velocity of snowflakes V; is assumed to be 1.5 m/s, obtained by three-year
measurements of a disdrometer during wet snowfall events at the icing station on the Italian Alps
(WILD) 8. Sticking efficiency ay may be inferred from some field observations. In particular, a; depends
on the liquid water content of snowflakes and the impact speed. The density of the snow sleeve p;
depends on wind intensity W because higher snowflake impact speeds tend to produce a more compact
snow deposit.

Moreover the model assumes a cylindrical wet snow accretion on conductor without sleeve
shedding phenomena (conservative accretion).

The empirical parameters have been deduced from measurements of icing station collected over
the past three winters. The assumptions and the value ranges for the most important parameters used
in the model are reported below:

e  Wet snow condition if air temperature is in the range of —2.0 to +2 °C;

e SR (Snow Ratio) of frozen precipitation in the range 0.7-0.8;

e  Sticking coefficient ay = 1/W'/3if 1m/s < W <10m/s; 0.1if W>=10m/s; 1if W < 1m/s;

e  Admirat approach [31] suggests the following model for density of snow sleeve: ps = 300 + 20 W;
ps =500 kg/m3 if W>10m/s;

e  Vertical velocity of snowflakes Vs =1.5 m/s.

For dry-snow condition, when the temperature is lower than —2.0 °C or the SR > 0.8, the snow
accretion is limited by empirical coefficient a, = 0.1 and ps = 100 kg/m?3. The angle 6 is equal to 90° to
consider the worst conditions of accretion. More details can be found in [9].

4.3. Modeling the Line Vulnerability

The vulnerability probabilistic model implemented for the OHLs in case of wet snow includes the
vulnerability of:

(1) the phase conductors and the shielding wires which are affected by the mechanical tension due
to the combined ice-wind load;

(2) the tower equipment (insulator chains, and bracings) subject to the combined force due to wind
and ice loads.

As for item (1), a mechanical fragility curve is evaluated for each phase conductor Pyec; conductor
and shielding wire P, shicldwire cONsisting in a lognormal distribution of mechanical tension with
a mean value equal to the expected tensile strength in kN for the conductor (e.g., 170 kN for phases in
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case of a 31.5 mm Aluminium Conductor Steel Reinforced (ACSR) conductors and a standard deviation
equal to 2% of the expected value.

The mechanical failure probability of a single span of the line consists in (6):
N phases

shield_wires

(1 - Pmech_shieldwire)N (6)

conductors_per_phase

Pmech_span =1- (1 - Pmech_phase)
Pmech_phase =1- (1 - Pmech_conductor)

where Npjgses and Ngpied_wires are respectively the number of phases (3 or 6 for a double circuit with
common towers) and of shielding wires per span, and Neonductors_per_phase 1S the number of conductors
for each phase (typically from 1 to 3).

As for item (2), the vulnerability model of the equipment is composed by the mechanical fragility
curve Pec_equip consisting again in the lognormal distribution of the mechanical load, centered on
the standard expected breaking strength of the weakest equipment, i.e., the bracings of the tower
considering the typical design criteria followed by the TSO.

The mechanical failure probability of the tower due to equipment breakdown is given by (7):

Nequip_pertow
Pmech_tow_equip =1- (1 - Pmech_equip) @)
where Negyip_pertow Tepresents the number of equipment per tower.
In the end, the failure probability of a line span Pr,, is given by (8):
PFspan =1- (1 - Pmechfspan) (1 - Pmech?towﬁequip) 8)

The mechanical failure of the towers is neglected because lattice towers are much less vulnerable
to ice and wind loads with respect to tower equipment like the bracings.

4.4. Modeling the Countermeasures at Component Level

Different countermeasures are being studied to reduce the wet snow sleeve. In particular, mechanical
stabilizers of the conductors aim to avoid or at least to limit the conductor rotation which provokes sleeve
accretion; moreover, ice-phobic coatings can delay the formation of the sleeve by reducing the sticking
capability of the wet snow on the conductor or favor the sleeve shedding process. Further studies are
required to model these countermeasures under a probabilistic point of view.

Presently a rough model of the ice-phobic coatings is provided to demonstrate the potentialities
of the combined threat and contingency analysis tool. In particular, one property of the ice-phobic
coatings is that they reduce the capability of the wet snow to stick to the conductor. This is modeled by
limiting the sticking coefficient to 0.5 also for low wind speeds in the Makkonen model, thus using (9)
to compute the sticking coefficient:

ap = min(0.5, \3/1W) )

5. Study Case and Simulations

The study case refers to an emergency scenario due to a severe wet snow event really occurred in the
North of Italy in 5-7 February 2015. In fact, the Italian High Voltage (HV) and Extra High Voltage (EHV)
grid has been affected by a significant number of wet snow events in the last few years (2015-2017).

The wet snow storm affected both Medium/Low Voltage (MV /LV) distribution and HV/EHV
transmission networks, but the focus of the present paper is on the transmission system. The adopted
realistic model of the Italian HV (132/150 kV) and EHV (220/400 kV) grid includes 5500 electric nodes,
8000 lines, 800 generators.

The mechanical rated tensile strengths for the conductors are assumed equal to 170 and 100 kN
respectively for ACSR conductors with cross-sectional areas of 585 and 308 mm? (typical values for
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phase conductors respectively for 220/400 kV and 132 kV overhead lines). The shielding wires are
steel conductors with a diameter equal to 11.5 mm.

Parameter ¢, fraction of total failure probability, adopted for the selection of critical components
(see Section 2.4) is set to 0.9, which means that the critical components contribute to the 90% of the
total sum of failure probabilities over the whole system. The exploited big data consist in the forecasts
of weather variables (ambient temperature, wind speed intensity and direction, precipitation rate)
elaborated on 4 February 2015 for the subsequent 72 h (3-day ahead forecast). A total amount of
11,381 geospatial mesh points are considered for each forecast hour (from 1 to 72). The performed
simulations and their goals are reported in Table 2.

Table 2. Summary of simulation scenarios and their goals.

Simulation Scenario Description Goal

To compare the set of critical branches
found by the tool with public information
concerning the collapsed HV lines recorded
during the events in February 2015

Applying the weather forecast
SC1 data generated on 4 February 2015
to the 400/220/132 kv grid model

Same as scenario 1, except for To quantify the effectiveness of the
SC2 introducing ice-phobic coatings on  hydrophobic coatings on the overall
critical lines operational risk

On the basis of public information [33] the wet snow events affected a total equivalent length
of 500 km of HV lines in the provinces of Bologna, Parma and Modena, with ice thicknesses up to
150-200 mm [33].

5.1. Validation of the Platform: Scenario SC 1

In scenario SC 1 the geospatial data of weather forecasts are applied to the grid model thus
obtaining the resulting geospatial distributions of the stress variables of interest, i.e., the mechanical
tension on the phase conductors and the mechanical load on tower equipment, for each hour belonging
to the 72 h forecasting period. By combining these stress variable distributions with the vulnerability
curves of the components, the set of critical components can be identified for each forecast hour.
Figure 5 shows the expected values of the mechanical tension, the sleeve thickness and the load on
tower equipment for the first 10 h of forecast, with focus on the OHL spans with the highest values of
stress variables over the first 10 h in the area subject to the wet snow event.

mechanical tension - forecast on days Feb 5-7, 2015

150
e BASF111-CALF111
100 e COLF211-CSLF211
£ _— - — POTF411-PTAF411
50 — — 1 POTF411-VEGF411
I —— S SVNF411-VA1F411
0 .
1 2 3 4 5 6 7 8 9 10
hour
Ice sleeve thickness - forecast on days Feb 5-7, 2015
150 T T T T T T T
BASF111-CALF111
100 - 4 POTF411-PTAF411
E - POTF411-VEGF411
50 - ¢ SVNF411-VATF411
COLF211-CSLF211
=

hour
mec‘l(\)gnical force applied to tower equipment - forecast on days Feb 5-7, 2015

- BASF111-MRTF111
~ MRTF111-SDMF111
sor —— l RUBF111-SDMF111

kN

PRMF111-RUBF111
BASF111-CALF111

0

Figure 5. Ice thickness (in mm), mechanical tension and mechanical load on tower equipment (in kN)
for the first 10 h of the forecasting period—scenario SC 1.
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It can be noticed that after just 10 h the ice sleeve reaches around 100 mm thicknesses,
causing a mechanical tension on some OHLs approaching 100 kN which is the rated tensile strength
of 132 kV OHLs. The comparison of simulations against the available information on recorded line
outages during the event confirms the good performance of the tool, as the first line outages affected
the 132 kV network at hour 12, thus close to hour 10. By comparing the results over the whole 72 h
with the available data it’s worth noticing that:

- There is a good match between the maximum ice sleeve thickness recorded in the event
(150-200 mm) and the ice thickness forecasted by the tool;

- There is also a good match between the portion of the grid with the largest number of collapsed
lines (areas of Parma, Modena, Bologna) and the localization of the lines in Table 3 which reports
the list of the critical lines (i.e., the ones which most contribute to the total failure probability) with
their failure probabilities at hours 8, 10, 15 and 28. The choice of a 28-h interval is justified by the
fact that the majority of the line outages took place between hour 32 and hour 35 (on 6 February):
using an interval of 28 h (just before hour 32) allows to test the prediction capability of the tool
with respect to the actual outages recorded during the event.

Table 3. List of critical branches with their failure probabilities for hours 8, 10 15 and 28 in the
forecast period.

Hour Ahead Branch ID Failure Probability

8 POTF411-VEGF411 1.221 x 10~
POTF411-VEGF411 0.868
10 POTF411-PTAF411 0.308
POTF411-VEGF411 >0.9
BRBF41a-FZAF411 >0.9
POTF411-PTAF411 >0.9
15 SASF411-SVKF411 >0.9
MZBF411-SASF411 0.865
MZAF411-SASF411 0.815
BORF411-RTTF411 >0.9
BORF411-SFAF411 >0.9
CAEF411-SDMF412 >0.9
CASF411-LPPF411 >0.9
CIRF411-TREF411 >0.9
FIOF411-LGNF411 >0.9
MONF411-GRZF411 >0.9
MOVF411-MRTF412 >0.9
MOVF411-VIGF411 >0.9
MRTF412-SDMF412 >0.9
MZAF411-SASF411 >0.9
MZBF411-SASF411 >0.9
’8 PCWF411-RTTF411 >0.9
PVLF411-SSLF411 >0.9
SASF411-SVKF411 >0.9
SDMF412-SLAF411 >0.9
SLAF411-SOGF411 >0.9
FIOF411-MONF411 >0.9
LPPF411-ROAF411 >0.9
MOCF411-SDMF412 >0.9
MOCF411-SDMF412 >0.9
MONF411-PCEF411 >0.9
MANF411-MUKF411 >0.9
CASF411-CSGF411 >0.9
FARF411-ROAF411 0.886

FIDF411-FIOF411 0.815
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In the first hours (8 and 10) the lines with the highest failure probabilities are in the rural area south
of Bologna city. In hour 15 the affected lines still south of Bologna get closer to the city. The persistence
of adverse weather conditions determine a large sleeve thickness on the conductor and values of
tension close to the rated tensile strength around hours 30—40, which is confirmed by the records
during Emilia Romagna events. In fact, during the event under study, after hour 35 (6 February) several
132 kV lines connected to substations in the provinces of Bologna, Parma and Modena suffered from
mechanical damage with a repair time higher than 3 h. The list of critical lines for hour 28 confirms
that the lines with very high failure probabilities are located in the area of Parma (substations FARF
and FIOF) and between Modena and Bologna (substations MOVE, SDMF, MRTF and VIGEF in Table 3).
Figure 6 shows the geographical visualization of the set of critical lines respectively at hour 15 (in
Figure 6a) and 28 (in Figure 6b).

Geographic Coordinates

POTF411 - VEGF411

(b)

Figure 6. Geographical localization of the critical lines for (a) hour 15 and (b) hour 28.

Other causes of line damages, such as the fall of trees on conductors, reported in public sources [33],
and possible contacts among phases or small clearance between the phases and the ground due to
sleeve loads, are not currently modeled inside the tool and will be considered in future activities.

On the basis of the lists of critical components at hour 15 in Table 3 the power system tool described
in [10] and [26] elaborates a set of 71 single and multiple contingencies which most contribute to the
total risk of operating the system under such an extreme event. This set includes 6 “N—1" branch
outages, 15 “N—2", 20 “N—-3", 15 “N—4", 6 “N—5" and 1 “N—6" common mode multiple branch
contingencies, and 8 (multiple dependent) busbar contingencies.
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Tables 4 and 5 report respectively the list of the ten most probable and the most risky contingencies
with their probability of occurrence. It’s worth noticing that all the most risky contingencies and seven
out of the ten most probable outages are N-k common mode contingencies (indicated with label “N—k”
with k > 1): in fact, under extreme weather conditions multiple outages are more probable than single
outages and contribute to the majority of the loss of load risk, which clearly highlights the limits of
a conventional contingency analysis based on N—1 criterion.

Table 4. Top 10 positions in the risk ranked list of contingencies—hour 15.

CTGID LOL RISK LOL, MW Probability
N-6_Ln_FF48031_Ln_FF47575_Ln_FF4782_Ln_FF47833_Ln_FF4132_Ln_FF47653 6.4946 34.8 0.18663
N-5_Ln_FF48031_Ln_FF4782_Ln_FF47833_Ln_FF4132_Ln_FF47653 1.2652 12.7 0.099623
N-4_Ln_FF48031_Ln_FF47833_Ln_FF4132_L.n_FF47653 1.1637 12.7 0.091634
N-3_Ln_FF48031_Ln_FF47833_Ln_FF4132 1.1311 12.7 0.089062
N-5_Ln_FF48031_Ln_FF47575_Ln_FF47833_Ln_FF4132_Ln_FF47653 0.98048 12.7 0.077203
N-4_Ln_FF48031_Ln_FF4782_Ln_FF47833_Ln_FF4132 0.61209 12.7 0.048196
N-2_Ln_FF47833_Ln_FF4132 0.59212 12.7 0.046624
N-4_Ln_FF48031_Ln_FF47575_Ln_FF47833_Ln_FF4132 0.49269 12.7 0.038795
N-5_Ln_FF48031_Ln_FF47575_Ln_FF4782_Ln_FF47833_Ln_FF4132 0.45917 12.7 0.036155
N-5_Ln_FF48031_Ln_FF47575_Ln_FF4782_Ln_FF4132_Ln_FF47653 0.41043 22.1 0.018571

Table 5. Top 10 positions in the probability ranked list of contingencies—hour 15.

CTGID LOL RISK LOL, MW Probability
N-6_Ln_FF48031_Ln_FF47575_Ln_FF4782_Ln_FF47833_Ln_FF4132_Ln_FF47653 6.4946 34.8 0.18663
N-1_POTF411_VEGF411 0 0 0.15626
N-1_BRBF41la_FZAF411 0 0 0.11443
N-2_Ln_FF48031_Ln_FF4132 0 0 0.11352
N-5_Ln_FF48031_Ln_FF4782_Ln_FF47833_Ln_FF4132_Ln_FF47653 1.2652 12.7 0.099623
N-4_Ln_FF48031_Ln_FF47833_Ln_FF4132_Ln_FF47653 1.1637 12.7 0.091634
N-3_Ln_FF48031_Ln_FF47833_Ln_FF4132 1.1311 12.7 0.089062
N-5_Ln_FF48031_Ln_FF47575_Ln_FF47833_Ln_FF4132_Ln_FF47653 0.98048 12.7 0.077203
N-3_Ln_FF48031_Ln_FF4132_Ln_FF47653 0 0 0.055553
N-1_POTF411_PTAF411 0 0 0.053815

Figure 7 reports the loss of load risk indicators for the set of contingencies with an indication of
the total risk of loss of load at hour 15 (equal to 14.6 expected lost MW).

Individual contributions to overall LOL risk (time interval = hour 15)
overall LOL risk index = 14.6 | I ‘ ‘
| average overall LOL risk = 0.206

200

180 -

160 -

dB (Level O = 1e-20)
S N B
S o IS
T T T

o]
o
T

40

20

0 1 I I 1
0 10 20 30 40 50 60 70
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Figure 7. Histogram of loss of load risk indicators—scenario SC 1, hour 15.
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5.2. A “What If” Scenario: Effect of Ice-Phobic Coatings

In scenario SC 2 the same forecast variables are applied to a grid model where the asset data
related to OHLs have been modified by considering the ice-phobic coatings on all the critical lines.

The analysis detects only one critical line (POTF-VEGF 132 kV line) which is already in the set of
critical lines in scenario SC 1. Its failure probability is drastically reduced from >0.9 to 4.66 x 10~2.
The relevant set of risky contingencies is limited to three contingencies, consisting in 1 “N—1" line
contingency, two “N—k” busbar dependent contingencies affecting 132 kV substations POTF and
VEGE. After running the quasi static cascading outage simulator on the contingency set, it can be
noticed that the use of ice-phobic coatings determines a substantial reduction of the total loss of load
risk which passes from 14.6 expected lost MW’s in SC 1 to 5.3 x 10~ expected lost MW’s in SC 2.

6. Conclusions

The paper has introduced an extended risk concept, a general approach for probabilistic risk
based security assessment and a tool adequate for operation and operational planning contexts.
The proposed holistic approach can adjust the set of single and multiple (also common mode and
dependent) contingencies to be studied in security assessment sessions, on the basis of short term
evolution of the actual threats, and it can rank the contingencies by means of risk indexes. In particular,
the paper has focused on the integration of the risk-based security assessment tool with a weather
forecasting system which provides 3-day ahead forecasts of weather variables characterizing the threats.
The wet snow threat model is used to demonstrate the capability of the proposed tool: the integrated
risk-based tool is thus applied to a real wet snow threat scenario occurred in February 2015 in the
North of Italy. The simulations performed on a realistic model of the HV Italian grid confirm the
effectiveness of the tool in forecasting critical conditions which occurred according to the historical
records of line collapses during specific wet snow events. The mismatches between the real event
recordings and the critical lines identified of the platform can be due to the fact that some of the
outages were not provoked by snow sleeves but by other causes (e.g., fall of trees, contacts among
phases or to the ground) currently not modelled in the platform.

The tool can bring different potential benefits to the TSOs. In fact, the selection of contingencies
as a function of the environmental/weather threats, forecasted via available numerical prediction
systems, permits operators to select the most risky disruption scenarios in the forecast period (up to few
hours), and to prepare suitable preventive/corrective actions to cope with them, in case these scenarios
really occur. Furthermore, the methodology represents a step forward with respect to conventional
N—1 security assessment: first, the proposed contingency selection criterion, based on a risk concept,
complements the N—1 credibility criterion including also multiple common mode and dependent
events, potentially leading to large load disruptions. Secondly, the two-stage contingency screening
process is able to select the subset of most significant multiple contingencies, which permits to reduce
the computational burden in an operation context.

Besides predicting risky situations, the platform can also evaluate the benefits brought by potential
countermeasures. Next steps will consist in a finer tuning of the vulnerability models of the grid
components and the simulation of further indirect effects of weather threats (e.g., fall of trees).
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