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Introduction 

 

 

Loss of protein content from skeletal muscle is related to a reduced survival in 

aging and in several pathological condition, including cancer and cardiac disease. (1-3)  

Muscle depletion is common in advanced stages of chronic kidney disease (CKD). 

In this condition, sarcopenia is related to an increase in morbidity and mortality (4), 

especially in advanced stage of disease and in dialysis. 

For long time, malnutrition was identified as a predominant cause of CKD induced 

sarcopenia (5) along with hypoalbuminemia and reduced protein intake (6). Malnutrition 

is often multifactorial and the possible causes include metabolic acidosis, intestinal 

dysbiosis, systemic inflammation with activation of complements, endothelin-1 and 

renin-angiotensin-aldosterone (RAAS) axis, anabolic hormone resistance, energy 

expenditure elevation and uremic toxin accumulation (7). 

Several studies addressed the question if malnutrition is the exclusively cause of 

sarcopenia. Ikizler and al analysed the effect of dialysis on protein catabolism studying 

patients with stage 5 CKD before and after a dialysis session (8). In this study, authors 

demonstrated that the dialysis stimulates protein degradation and reduces protein 

synthesis with an effect that last for hours after dialysis end; moreover, increasing dietary 

protein intake did not completely resolved the catabolic effects of haemodialysis.  

Moreover, modifying caloric intake did not demonstrated an improvement in 

sarcopenia, strongly suggesting that other factors need to be involved in this process (9). 
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Similar results have been obtained introducing parenteral nutrition during haemodialysis 

session, along with oral nutritional supplement. Even in this condition, 2-year mortality, 

body mass index, laboratory markers of nutritional status and the rate of hospitalization 

were the same as the control group of patients who were given only the oral supplement 

(10). Collectively, these data indicate that malnutrition cannot be the only factor that 

cause cachexia and muscle wasting in advanced stage of CKD.  

 

In recent years, several studies allowed to better understand the pathophysiology 

of muscle dystrophy in CKD. Muscular proteins that compose the whole muscle are 

constantly renewed with a process of formation and degradation; to be efficient and to 

avoid muscle loss, as seen in cancer, cardiac cachexia and CKD, this process must be 

extremely tightly regulated. Three mechanisms are involved in loss of muscle protein 

stores: impaired growth of new muscle fibres, suppression of protein synthesis or 

stimulation of protein degradation.  

Muscle is composed of muscle fibres surrounded by basal lamina which covers 

myofibrils and satellite cells (also called muscle precursor cells) (11). These cells are able 

to react to muscular injury and metabolic stimuli like growing hormones as IGF-1; the 

result is the production of anabolic factor myogenic regulator factor 5 (Myf-5) and 

myoblast determination protein (MyoD) that cause satellite cell proliferation and 

differentiation in myoblasts and myocytes (12). 

In CKD, satellite cells have an impaired function, probably due to a reduced IGF-

1 activity, that could lead to muscle atrophy, at least in murine models (11,13). A 
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resistance in the action of insulin and GH/IGF-1 pathway could also be secondary to CKD 

proinflammatory cytokines (14,15) 

CKD also induces suppression of protein synthesis. Patients with CKD showed a 

reduced rate of synthesis of mixed muscle protein and synthesis of myosin (16) but a 

similar rate of mitochondrial proteins. Using the measurements of turnover of a labelled 

amino acid, leucine oxidation and nonoxidative leucine disposal (an in vivo index of 

protein synthesis) were significantly reduced in patients with CKD compared with control 

values (17). Reduced protein synthesis has been observed in haemodialysis patients, 

along with an increased protein degradation (18); both responses were favourited by 

acidosis and blocked by infusion of sodium bicarbonate.  

Another regulatory mechanism of muscle protein impaired in CKD is protein 

degradation. Protein degradation is executed by two principal mechanisms: ubiquitine 

proteasome system (UPS) and caspase 3 pathway. Both systems cooperate to provide an 

extremely efficient and tightly regulated degradation of proteins, including muscle 

proteins. This specificity is necessary due to the variety of proteins involved in muscle 

(and cell) formation, each with a different half-life. Errors in protein degradation could 

potentially lead to cell damage and death. 

UPS degrade a large variety of protein. To be specific, UPS acts marking proteins 

to degradate with ubiquitine, a member of heat shock protein family (19). The bind of 

ubiquitin is promoted by E1 ubiquitin derived enzyme along with one of the 20 ubiquitin 

carrier (E2) that can interact with an E3 ubiquitine ligase enzyme. Process of ligation and 

activation is ATP-dependent. There are more than 1000 E3 ubiquitin ligases that 
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recognize a specific protein (or a class of proteins) and mark them for destruction. After 

the creation of a chain of 5 ubiquitinated proteins, the complex is recognized by the 26s 

proteasome and subsequently degraded. The role of UPS in kidney disease is well known 

for various kidney disease like Liddle syndrome (20) or in Von Hippel Lindau Disease 

(21). 

 

Caspase 3 is also involved in muscle wasting process. Caspase 3 provides 

degradation substrate for UPS in catabolic conditions cleaving the complex structure of 

muscle proteins (22,23). For his intrinsical characteristics, UPS degrades slowly 

actomyosin and myofibrils while is more efficient in degrading monomeric actin and 

myosin. Caspase 3 increase the efficiency of muscle protens degradation process by UPS 

specifically stimulating proteolytic activity of the proteasome and increasing the size of 

unfolded protein able to enter 20S subunits of proteasome (the proteolytic site of 

proteasome). This effect is obtained by interacting with 19S subunits and modifying their 

morphology (24).  

 

Recent evidences suggested a role of innate immunity in causing muscle wasting 

in CKD patients (25-27). Transforming growth factor β (TGF β) and TGF β family 

members Activin A and myostatin are associated with muscle loss in catabolic condition 

(28). TGF β family members act activating SMAD2/SMAD3 pathway that ultimately 

increase proteolysis and muscle atrophy (29,30). Myostatin, in particular, suppress 

growth of skeletal muscle. Animals that lack of myostatin show a very large increase in 
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muscle mass and strength (31,32). Binding of Myostatin to his receptor activates 

Smad2/Smad3 pathway and the phosphorylation of Akt in muscle. An increase in the 

levels of phosphorylated (p)Akt reduce phosphorylation of the Forkhead box O (FoxO) 

family of transcription factors (33); dephosphorylated FoxO increase the expression of 

two E3 ubiquitin ligase: TRIM63 (also known as MuRF1) and F-box only protein 32 

(MAFbx, also known as atrogin-1) that promote UPS mediated degradation of muscle 

proteins. 

Apart from TGF β family, other proinflammatory cytokines are supposed to have 

a considerable effect on muscle loss. Blood levels of C-reactive protein (CRP), activin A 

and proinflammatory cytokine like Interleuchin-6 (IL-6) and tumoral necrosis factor a 

(TNFa) are elevated in patients with CKD and directly related to muscle atrophy (34-36). 

An up-regulation of several genes associated with inflammation in muscle has been 

demonstrated to occur both in rodent models (37) and in humans with CKD (38-40). 

 

A similar result has been observed in other studies. A reduced protein synthesis 

and an increased protein degradation has been observed along with high level of IL-6 and 

TNF-α in human and animal model (41-43). In mice, injection of IL-6 caused an increase 

in muscle wasting but the mechanism was not identified (44). Il-6 has been linked to 

muscle wasting with two different mechanisms. The first mechanisms, highlighted in a 

mice model of Angiotensin-II induced inflammation model (45), involves an increased 

expression of suppressor of cytokine signalling 3 (SOCS-3) in muscle. A high level of 

SOCS-3 reduces IRS-1 levels and suppresses intracellular insulin signalling, leading to 
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activation of caspase-3 and the UPS (46). A second mechanism links Il-6 to signal 

transducer and activator of transcription 3 (Stat3). Stat3 is upregulated in kidney disease 

(37) and related to muscle atrophy. Il-6 directly activates Stat3 to increase the expression 

of CCAAT/enhancer-binding protein δ (C/ EBPδ) that in turn enhances the expression of 

myostatin.i 

 

More recently, the importance of insulin and GH/IGF1 pathway has been 

highlighted. Activation of GH/IGF1 pathway causes downstream activation of insulin 

receptor substrate 1 (IRS-1) and PI3K that in turn activate the final effector Akt. 

Activation of Akt stimulates many metabolic responses, including promotion of protein 

synthesis and inhibition of protein degradation (13). In mouse model of CKD, suppression 

of Akt lead to muscle atrophy while upregulation of PI3K and Akt prevented muscle 

atrophy (11, 47-49). Phosphorylation of Akt is the cornerstone of its action. In muscle, 

pAkt downregulates FoxO function; FoxO1 and FoxO3 regulate the functions of TRIM63 

and MAFbx, which are critical for muscle-protein breakdown (50-52). As previously 

noted, activation of TRIM63 and MAFbx, as occurs in insulin resistance, lead to 

accelerated protein degradation and muscle atrophy (13). In a previous study, we 

observed that pAkt is markedly downregulate in muscle of patients with advanced CKD 

and is associated with apoptotic cell loss, suggesting that insulin resistance is a major 

player in the regulation of muscle cell survival and catabolism in renal patients (40).  
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Collectively, all the studies above don’t cover all the mechanisms involved in 

muscle atrophy in CKD patients. Currently, we lack studies that address the cause why 

uremia upregulates proinflammatory cytokines in skeletal muscle. Skeletal muscle 

possesses both the afferent and efferent limbs of the innate immune system, including 

Toll-like receptors (TLRs) and both early and late-phase cytokines (53,54). Toll like 

receptors are able to sense foreign peptides, like bacterial and viral protein, but also 

endogenous signals of tissue injury, including debris from apoptotic and necrotic cells, 

oligosaccharides, heat shock proteins, and nucleic acid fragments. As a result, TLRs 

activate the transcription factors that regulate the expression of proinflammatory 

cytokines in several cell types and tissues. In skeletal muscle, TLRs act as a sentinel to 

monitor for the presence of pathogens and, upon activation, induce a local inflammatory 

response culminating in the translocation of NF-kB to the nucleus and activation of 

inflammatory genes, including TNF-α, IL-1ß, and IL-6 (55,56). 

In this study we hypothesize that CKD patients have abnormal function of TLRs 

in muscle and that TLRs may be involved in initiating events associated with the 

stimulation of muscle pro-inflammatory cytokine transcription. We tested this postulate 

by different measures. First, we studied TLR gene and protein expression in muscle 

biopsies of patients with CKD and compared the results to those obtained in subjects with 

normal renal function. As a second step, to identify specific TLR-linked transcriptional 

pathways we studied the expression profiles of selected TLR4 downward genes and 

molecules in uremic muscle. As a third step, we studied the clinical correlations 

associated with muscle TLR4 expression and we observed that TLR4 protein expression 
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is inversely related to residual renal function, suggesting that more advanced uremic state 

activates muscle TLR4. Additionally, we studied the response to uremic serum of C2C12 

myotubes and we observed that uremic serum up-regulates TLR4 and TNF-α expression 

and down-regulates pAkt. Such effects are prevented by TLR4 inhibitors or TLR4 

knockdown. Overall, our data demonstrate the activation of TLR4 and its downward 

inflammatory cascade in muscle of subjects with CKD and suggest that enhanced TLR4 

signalling contributes to the up-regulation of native immunity in skeletal muscle in 

uremia. 
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Methods 

 

Study participants 

 

We recruited 29 nondiabetic CKD patients (18 M/11 F) scheduled for peritoneal 

dialysis catheter insertion at the Nephrology Division, Department of Internal Medicine, 

University of Genoa that meet inclusion criteria for enrolment in this protocol.  

Characteristics of patients are summarised in table 1. The study was part of a protocol on 

the effects of peritoneal dialysis on protein turnover approved by the Ethical Committee 

of the Department of Internal Medicine of the University of Genoa. All subjects were 

informed about the nature, purposes, procedures, and possible risks of the study, before 

their informed consents were obtained. The procedures were in accordance with the 

Helsinki declaration regarding ethics of human research.. The patients were enrolled in 

the study on a consecutive basis. Exclusion criteria were the following: patients age under 

18 an over 85 years old; congestive heart failure defined as New York Heart Association 

Class III–IV, a recent (<12 months) myocardial infarction, liver cirrhosis, infection, or 

diabetic nephropathy. Clinical and biochemical characteristics of the subjects are shown 

in Table 1. The two groups were matched for age and gender. All subjects had a sedentary 

life style. Their mean age was 67 years (range 43–82 years). Their estimated GFR was 8 

± 1 mL/min 1.73m2 (range 4–14 mL/min). Estimated GFR was calculated using CKD-

EPI equation. Causes of renal diseases were hypertensive nephrosclerosis (11 patients), 

chronic glomerulonephritis (8 patients), polycystic kidney disease (6 patients), 
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tubulointerstitial nephritis (3 patients),  and obstructive uropathy (1 patient). Their mean 

estimated protein and calorie intake were 0.9 g/kg and 27 kcal/kg, respectively. We used 

the 7-point Subjective Global Assessment (SGA) to assess malnutritional status (57,58). 

In this scale, an overall SGA classification of 1–7 is assigned; a score of 7 indicates a 

normal nutritional status and a score of 1 indicates severe protein-energy wasting. 

Albumin levels were low (<3.8 g/100 mL) in 14 subjects, while BMI was low (<23 

kg/m2) in six subjects. The evidence of an inflammatory response (CRP >5 mg/L) was 

shown in 11 subjects. Mean muscle fibre cross-sectional area (CSA) was lower in patients 

with CKD (median = 976 μm2, range 745–1615; controls median = 1422 μm2, range 

1100–1974) (P<0.05), suggesting muscle atrophy. We used HOMA index (homeostasis 

model assessment)  to determine insulin resistance. CKD subjects were more insulin 

resistant than control subjects, based on a higher HOMA index and plasma insulin 

concentration (P<0.05). As a control, we used a sample of rectum abdominis muscle from 

14 patients without chronic illness and acute inflammatory process, who underwent 

elective surgery for abdominal wall hernias. Obviously, these patients had normal 

baseline renal function (eGFR 99 ± 6, range 78–120 mL/min) as well as normal 

biochemical tests of renal, hepatic, haematological, and metabolic function (thyroid 

function and fasting plasma glucose). 

 

Muscle biopsies 

Muscle biopsies were obtained from rectus abdominis muscle, at the beginning of 

surgery. Tissue (90 mg) RNA was isolated using the Qiazol Lysis reagent (Qiagen 
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Sciences, Maryland, USA). Isolated RNA was stored at 80 °C until use. Other sample 

aliquots were used for immunohistochemical staining, and for protein (western blot) 

analysis. For the study of fat infiltration, tissue samples were stained with Oil-red-O, 

which detect lipids, mainly neutral fats and cholesteryl esters (Sigma-Aldrich, Milan, 

Italy) (31). Digital images of immunohistochemical and Oil-red-O stained sections were 

obtained using a Leica microscope (Leica Microsystems GmbH Wetzlar, Germany) 

equipped with a digital camera controlled by Q500MC Software-Qwin (Leica).12 

 

Tissue analyses 

 

mRNA analysis RNA concentration and integrity of each sample were evaluated 

on a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, 

DE). In all, 1 mg RNA was used for cDNA synthesis with Improm II reverse transcriptase 

(Promega, Madison, WI). PCR amplification was performed in a 20 ml volume, including 

specific PCR primers and a TaqMan FAM dye-labeled MGB probe (Hs00174131_m1 

(IL-6); Hs00193363_m1 (myostatin); Hs01547656_m1 (IGF-I); Hs99999903_m1 (b-

actin,). Primers and probes were synthesized by Applied Biosystems Applera Italia 

(Monza, Italia). Assays were run in triplicate with Universal PCR Master Mix on 

MasterCycler realplex (Eppendorf, Hamburg, Germany) PCR system. To quantify target 

mRNA abundance, differences in threshold cycles between the gene target and b-actin 

were calculated, and then relative mRNA abundance was calculated using the 2DDCt 

method.  
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Western blot: Tissues were homogenized and lysed in lysis buffer (20 mmol/l 

HEPES, 150 mmol/l NaCl, 10% (v/v) glycerol, 0.5% (v/v) NP40 (Nonidet-P40), 1 mmol/l 

EDTA (ethylenediaminetetraacetic acid), 2.5 mmol/l DTT (dithiothreitol), 10 mg/l 

aprotinin, leupeptin, pepstatin A, 1 mmol/l PMSF (phenylmethanesulfonyl fluoride), and 

Na3VO4 (Sigma-Aldrich S.r.L, Milan, Italy). Protein concentration was determined by 

Coomassie protein reagent (Pierce, Rockford, IL) and 50 mg was resolved on SDS-

polyacrylamide gels and electrotransferred into a nitrocellulose membrane (GE 

Healthcare, Buckinghamshire, England). Blots were blocked for 1 h at room temperature 

in phosphate-buffered saline (5% non-fat dry milk) and then probed using anti-human 

phospho-Akt 1/2/3 (Thr 308) polyclonal antibody (Santa Cruz Biotechnology, Santa 

Cruz, CA) overnight at 4 1C. Membranes were incubated for 1 h in horseradish 

peroxidase secondary antibodies (Santa Cruz Biotechnology). Immunoblots were 

developed with Immobilon western chemiluminescent horseradish peroxidase substrate 

(Millipore, Billerica, MA). The membranes were stripped and reprobed with polyclonal 

Akt 1/2/3 (Santa Cruz Biotechnology) for normalization of the loading. Band intensities 

were determined using IAS 2000 software from Delta Sistemi (Latina, Italy).  

Histological preparation and immunohistochemical staining: Paraffin sections (5 

mm) of 2% paraformaldehyde-fixed muscle were deparaffinized, hydrated, and treated 

with 3% H2O2 in methanol. Each sample was analyzed for the detection of apoptosis and 

expression of p-Akt,  (monoclonal antibodies, Santa Cruz Biotechnology), IL-6 

(polyclonal antibodies, Santa Cruz Biotechnology), myostatin (polyclonal antibody; 

Novus Biologicals, Littleton, CO), IGF-I (clone Sm 1.2, mouse monoclonal antibody; 
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Upstate, Lake Placid, NY) (Dako, Glostrup, Denmark). Sections were incubated 

overnight in primary antibody at room temperature, followed by incubation in 

biotinylated antibody for 30 min. The expressions of p-Akt, myostatin, and IL-6 were 

examined by image analysis and expressed as positive areas (Leica Q500 MC Image 

Analysis System, Leica, Cambridge, UK). 

 

 

Cell culture and treatments 

 

Mouse skeletal muscle cell line C2C12 was propagated as myoblasts in DMEM 

(Euroclone, Milan, Italy) containing 2mmol L-glutamine and 100 U/mL penicillin-

streptomycin (Euroclone), with 5% FBS and incubated at 37 °C. For differentiation into 

myotubes, the myoblasts at 90% confluence were incubated with DMEM plus 2% horse 

serum (Sigma Chemical Co, St. Louis, MO, U.S.A.). The myotubes began to form in 2–

4 days, and multinucleated muscle fibre cultures were used at 7 days. For evaluating TLR 

4 induction, myotubes were incubated with 10% pooled human normal serum or pooled 

human uremic serum.  

 

Experimental conditions 

 

C2C12 mouse myotubes were incubated in the presence of uremic serum or 

normal serum for 2, 4, and 6 h to assess TLR4 and PKC expression. TLRs expression was 
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studied by western blot. In selected experiments, TLR4 and PKC receptor antagonists 

were added to the cells 1 h before uremic serum stimulation. C2C12 were blocked for 2 

h before uremic serum treatment with 30 μM VIPER (viral inhibitory peptide of TLR4) 

or CP7 (inert control peptide, designed as negative control for inhibitory assay). Cells 

were exposed to uremic serum for 5 h and then total RNA was extracted using TRIzol, 

reverse transcribed, and TNF-α mRNA expression was analysed by real time PCR, as 

above described. 

 

 

Uremic serum 

 

Uremic serum was collected from patients with ESRD on hemodialysis recruited 

randomly from a pool of 150 patients at the Nephrology Division at the Genoa University. 

Patients were recruited over a 2-month period. Informed consent was obtained, and 3mL 

of blood was collected before the next subsequent hemodialysis. Healthy age-matched 

donors were used as controls. Blood urea nitrogen, creatinine, and glucose were assayed 

in all patients, and control sera were excluded if creatinine was >1.0 mg/dL. Exclusion 

criteria were presence of inflammatory disease, acute or chronic infection, autoimmune 

or liver diseases, diabetes, and malignancy. None of the patients or controls smoked. 

Blood was collected in Vacutainer tubes, and serum was separated by centrifuging clotted 

blood at 1100 g for 10 min at room temperature to obtain serum. In order to minimize 

minor differences between patients, all serum samples were pooled for the experiments. 
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Serum samples were frozen at 20 °C until analysis. In preliminary experiments, 10% was 

found to be the highest nontoxic concentration of uremic serum.  

 

Systemic inflammatory marker detection in uremic serum 

 

Cytokine levels in uremic serum are shown in Table 3. Serum CRP, 

osteoprotegerin (OPG), TNF-a, CCL2, adiponectin, leptin, resistin, IL-6, soluble IL-6 

receptor (s-IL-6R), and osteopontin (OPN) complex levels were measured by 

colorimetric enzyme-linked immunosorbent assay (ELISA) from R&D Systems 

(Minneapolis, Minnesota, USA), following manufacturer’s instructions. Mean intra- and 

inter-assay coefficients of variation (CV) were below 8% for all markers. Serum 

lipopolysaccharide quantification was performed using a Limulus Amebocyte assay 

(Cambrex, Verviers, Belgium).  

 

Block of Toll-like receptor 4 by viral inhibitory peptide of Toll-like receptor 4  

 

C2C12 were blocked, for 2 h before uremic serum treatment, with 30 μM VIPER 

(viral inhibitory peptide of TLR4) or CP7 (inert control peptide, designed as negative 

control for inhibitory assay) (Imgenex, San Diego, CA). Cells were exposed to uremic 

serum for 5 h and then total RNA was extracted using TRIzol, reverse transcribed, and 

TNF-α mRNA expression was analysed by real time PCR, as above described. 
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RNA interference 

 

C2C12 were transfected with 60 nM TLR4 specific siRNA or negative control 

siRNA (Ambion, Carlsbad, CA) using Lipofectamine (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol and then incubated at 37 °C in a CO2 incubator 

for 24 h until the cells were ready for assay. The efficacy of knockdown was determined 

by real-time PCR. 

 

Statistical analysis 

 

All data are presented as the mean ± standard error of the mean or median (range). 

Specific mRNAs were normalized for the internal control gene (β-actin) and are 

expressed as transcript/housekeeping gene ratios. The control treated group mean was 

given a value of 100, and individual values are expressed relative to this value. Statistical 

analysis was performed by using the SPSS statistical package (version 16; SPSS, 

Chicago, IL). For statistical analysis of expression variables that did not have a Gaussian 

distribution, values were logarithmically transformed or analysed by nonparametrical 

tests. Comparisons between groups were performed by one-way ANOVA with a post hoc 

Bonferroni correction or by a Kruskal–Wallis nonparametric test when appropriate. A 

multivariate regression model was created to study the predictors of TLR4 content in 

muscle. Statistical significance occurred if a computed two-tailed P<0.05. 
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Results 

 

Elevated Toll-like receptor 4 gene expression and protein content in muscle of patients 

with chronic kidney disease  

 

TLR2, TLR3, and TLR4 mRNA and protein levels in muscle of controls and CKD 

patients are displayed in Figures 1 and 2. We didn’t observed significant differences in  

TLR2 and TLR3 levels (Figure 1), while dwTLR4 mRNA was significantly 

overexpressed (by approximately two-fold; P<0.05) in muscle of CKD subjects compared 

with controls (Figure 2A). Consistent with the increases in TLR4 gene expression, CKD 

subjects had higher TLR4 muscle protein content than control subjects (P<0.05–0.001) 

as shown by immunohistochemistry and western blot (Figure 2B–D). 

 

Toll-like receptor 4-driven signalling in skeletalmuscle of patients with chronic kidney 

disease  

 

As a next step, we examined  the downstream signalling expression of TLR4 in 

CKD subjects to understand if there are some abnormalities in TLR4 signalling. We first 

measured the abundance of NF-kB p65 (phosphorylated p65 subunit) (p-p65) and IkB-α 

(p-IkB-α) in muscle biopsies. Normal muscle showed p-p65 positive nuclear staining in 

a very small percentage (1.7 ± 0.6%) of muscle fibres (Figure 3A) while this percentage 

significantly rose to 17.4 ± 2.5% in patients with CKD (Figure 3A). Also, p-IkB-α and 



20 
 

TNF-α expressions were increased in samples from CKD patients (Figure 3B and 3C, 

respectively). P38, a second messenger of TNF-α in uremia, was analysed for RNA 

expression and localisation. Phosphorylated p38 (p38p) expression was present in the 

normal muscle at minimal levels. Conversely, p38p was up-regulated in CKD patients 

(Figure 3D). To understand if different muscle fat infiltration could explain difference in 

cytokine expression in CKD, we studied Oil-red-O expression (see methods) in muscle 

biopsies of 10 CKD and 7 control subjects. Muscle fat infiltration was low and similar in 

CKD patients and control subjects (mean score 0.012 ± 0.01 and 0.014 ± 0.02, P =NS, 

respectively, in CKD patients and controls). Finally, we studied MuRF-1, a muscle-

restricted ubiquitin ligase involved in the accelerated protein degradation during various 

kinds of muscle atrophy; his role is crucial in the TNF-α/p38 pathway. MuRF-1 was 

highly upregulated in muscles from CKD subjects. In addition, also atrogin-1, another 

muscle-specific ubiquitin ligase triggering muscle atrophy, was up-regulated (Figure 3E). 

Collectively, these results indicate that CKD subjects have increased 

TLR4 expression/content and TLR4-driven signalling. 

 

Clinical determinants of Toll-like receptor 4 expression in muscle 

 

To understand the clinical involvement of this findings, we evaluated the 

correlation between TLR4 expression in muscle and some relevant clinical parameters. 

The associations between individual clinical data and logTLR4 content in skeletal muscle 

are showed in Table 4. LogTLR4 content in muscle was inversely related to eGFR, SGA, 
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and haemoglobin levels, while it was directly related to cholesterol levels. Muscle 

LogTLR4 content was related to serum CRP only as a trend but not reached statistical 

significance (P<0.06). There was no relationship between muscle logTLR4 and age, 

weight, fat and fat-free mass, cross-sectional muscle area, nPNA, estimated calorie intake, 

serum albumin, BUN, glucose, bicarbonate, triglycerides, phosphate, fibrinogen, and iron 

levels. Using the studied variables for inclusion into multivariate analysis models 

revealed SGA and eGFR only to contribute individually and significantly to the prediction 

of TLR4 expression in skeletal muscle (R2=0.53, P<0.001).  

 

Effects of uremic serum in promoting Toll-like receptor 4 expression, p38, and AKT 

activation in C2C12 myotubes 

 

To explore the ability of uremic serum to induce TLR4 expression and drive his 

signalling cascade, we incubated C2C12 myotubes with 10% uremic serum for 0–6 h. 

Uremic serum induced a four-fold increase in TLR4 mRNA after 2 h, an effect which 

persisted until 6 h. Also, TLR4 protein was up-regulated at 6 h respect to cells exposed 

to 10% normal serum (Figure 4A). In addition, uremic serum induced TNF-α mRNA 

expression (Figure 4B). Then, we investigated the effects of uremic serum on AKT and 

p38 phosphorylation. When C2C12 were exposed to uremic serum for 24 h, AKT 

phosphorylation was reduced by 40% with respect to cells treated with normal serum 

(Figure 4C). Moreover, uremic serum up-regulated p38 MAPK phosphorylation within 

10min (Figure 4D), an effect that persisted for 240 min.  
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P38 mitogen-activated protein kinase/protein kinase C is involved in uremic serum-

induced Toll-like receptor 4 expression 

 

To further investigate the role of p38 MAPK phosphorylation on uremic serum-

induced TLR4 expression, we used p38 MAPK and PKC inhibitors to examine the role 

of p38 and its related signal pathway including protein kinase C (PKC). Pre-treatment of 

C2C12 myotubes with the p38 inhibitor SB203580 (10μM) or the PKC inhibitors 

chelerythrine (5μM), or staurosporine (0.2–0.4μM), 1 h before serum exposure resulted 

in a marked decrease in the serum induced TLR4 mRNA overexpression (Figure 5). 

These findings show the implication of the p38MAPK/PKC pathway in TLR4 activation 

by uremia.  

 

Toll-like receptor 4 mediates the effect of uremic serum on Akt signalling 

 

To evaluate whether the effects of uremic serum on the activation of TLR4 can be 

prevented by inhibiting TLR4 signalling, we pre-incubated the myotubes with VIPER, a 

specific TLR4 inhibitor, which acts by directly targeting the TLR4 adaptors Mal and 

TRAM, thus inhibiting TLR4-mediated responses. As shown in Figure 6A, preincubation 

of myotubes with VIPER prevented the ability of uremic serum to up-regulate TNF-α.  

As a next step, we employed gene silencing as an independent, albeit complementary 

method to examine the role of uremic serum on TLR4 regulation in muscle. TLR4 siRNA 
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decreased TLR4 mRNA and protein in C2C12 myotubes (Figure 6B). TLR4 gene 

silencing reduced uremic serum-induced TNF-α (Figure 6C) and recovered AKT 

signalling (Figure 6D).  
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Discussion 

 

This study addressed several issues of muscle pathophysiology in CKD patients. 

We examined the role of inflammation in CKD related muscle wasting. In a first phase, 

we tested the hypothesis that TLRs drive the inflammatory process. We found that TLR4 

is overexpressed in muscle of patients with CKD compared to controls and that his 

downstream effector NF-kB is activated during this process. Of note, TLR4 was the only 

TLR tested that increased his expression in CKD patients. NF-kB is a well-recognized 

downward TLR4 transcription factor that directs the production of TNF-α and pro-

inflammatory cytokines which are major mediators of protein breakdown and atrophy in 

the skeletal muscle (59,60). In a previous study, TNF-α gene was found to be upregulated 

in muscle of patients with CKD (40). TNF-α acts binding two different receptors, TNFR1 

and TNFR2 but only the former seems to be implicated in muscle wasting (61). Three 

different mechanisms are involved: a first pathway stimulates apoptosis via interaction 

with the TNF-α-receptor complex and the Fas-associated protein with death domain; a 

second pathway activates Jun-N-terminal kinases (JNK) and the transcription factor AP-

1; a third pathway activates NF-κB. We already demonstrated the ability of TNF-α to 

activate JNK (40), while other studies addressed the implication of TNF-α induced 

translocation of NF-kB in the nucleus of skeletal muscle cells (62-64). NF-kB could in 

turn activates TNFα expression, leading to a positive feedback loop which potentiates 

muscle abnormalities (59). TNF-α activates mitogen-activated protein kinases (MAPKs), 

including p38 and JNK (60) to increase protein breakdown by atrogin1/MAFbx gene 
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expression in skeletal muscle (65). In this study we confirmed that p38, a second 

messenger of TNFα (66,67), is upregulated in muscle of CKD patients, coherently with 

other observation in several other catabolic conditions, such as ageing (68) type 2 diabetes 

(69) limb immobilization (70) and neurogenic atrophy (71) suggesting that the TNF-

α/p38 MAPK driven signalling takes place as a common mechanism in different catabolic 

conditions. 

A second observation in our study is the downregulation of pAkt in muscle of 

CKD patients. pAkt acts as an anabolic signal that promotes muscle trophism and growth. 

Downregulation of pAkt implies a shift toward catabolic process, with the activation of 

FoxO transcription factors that regulate expression of MurF-1 and Atrogin. During 

atrophy, MuRF-1 and MAFbx direct the polyubiquitination of proteins to target them for 

proteolysis by the 26S proteasome, mediating muscle breakdown. Analysing the levels of 

MurF-1 and MAFbx we found elevated level in muscle of CKD patients, confirming the 

activation of this pathway.  

A further step of this study was correlate muscular finding with clinical data. We 

found that higher TLR4 levels were independently related to lower SGA score and GFR. 

SGA is a nutritional assessment scale, ranging from 1 (severe malnutrition) to 7 (normal 

nutritional status), that has been validated as reliable tool to assess protein-energy wasting 

in several conditions, including dialysis dependent CKD patients (72) in which he has 

been associated with morbidity, hospitalization, and risk of short-term mortality. 

Accordingly to our data, patients with lower residual renal function and with a worse 

nutritional status expressed a higher level of TLR4 and thereby a higher degree of 
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inflammation. TLR4 content in muscle rose progressively along with progressive decline 

of residual renal function, with a two-fold increase in TLR4 as eGFR declined from 13 to 

4 mL/min. Of note, fat free mass was not associated with TLR4. This finding suggests 

that TLR4 up-regulation is a part of the stress response that takes place in overt uremia. 

While metabolic acidosis exerts its effects in already in stage 4 CKD (73), TLR4 pathway 

is stimulated in stage 5 CKD, suggesting that these two processes are part of the early and 

late muscle stress response, respectively. 

The further step of this study was to test if uremic serum is able to induce a 

proinflammatory response directly in muscular cells. We exposed C2C12 mice myotubes 

to uremic serum and we observed a rapid increase in TLR4 and TNF-α mRNA expression 

along with a decrease in pAkt levels. Blockade of TLR4, both with a specific inhibitor or 

silencing his gene, prevented the increase in TNF-α and TLR4 expression and the 

decrease of pAkt. This means that uremic serum has the ability to induce a 

proinflammatory response both in vitro and in vivo that potentially could lead to 

decreased insulin signal (via GH/IGF-1 pathway) and consequently to atrophy.  

At the moment, we don’t know exactly how uremic serum is able to induce 

activation of TLR4. TLR4 is activated by many different stimuli, both exogenous (like 

bacterial and viral peptides) and endogenous (collectively named DAMPs or damage 

associated molecular patterns). TLR4 is considered a cornerstone in innate immunity to 

discriminate between self and non-self and to activate self defence mechanisms in 

response to an injury, even in absence of an external stimuli. More than twenty putative 
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ligands were proposed, like various extracellular and membrane components (74), heat 

shock proteins (75), HMGB1 (76) or fibrinogen (77).  

In uremia, many potential activators were proposed. One possibility is that 

alterations in calcium and/or phosphate metabolism, which increase the risk for vascular 

calcification, may act as a yet another nidus for a local inflammatory response (78,79) but 

we found no relations between TLR4 expression and PTH, serum phosphate and calcium. 

Other potential ligands are angiotensin II (80), AGEs, free fatty acid, uric acid (81) that 

all show the ability to activate innate TLRs and innate immunity. In our study, no diabetic 

patients were enrolled and thereby we cannot confirm this finding.  

More recently, other potential mechanisms have been proposed. One interesting 

theory involve alteration in gut microbiota and intestinal permeability due to uremia that 

in turn could allow endotoxin (or LPS) to enter systemic circulation. LPS is part of the 

outer membrane of Gram-negative bacteria and his entrance in systemic circulation drives 

an inflammatory response mediated by innate immunity (83). In patients studied here the 

level of circulating endotoxins was borderline high, suggesting that circulating 

endotoxins might be responsible for the changes in TLR4 muscle expression and 

inflammatory changes. 

 In conclusion, this study provides some evidence that TLR4 is upregulated in 

skeletal muscle cells of patients with CKD and his activation mediates uremic cachexia 

toward a downregulation of anabolic signals like and an upregulation of catabolic 

pathways. We also found that uremic serum could promote innate immunity but we need 

to further understand the identity of all the ligands involved in this setting. Given his 
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involvement in promote inflammation and muscular atrophy, TLR4 have the potential to 

be a therapeutic target in CKD related cachexia.    
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Table 1 

Characteristics of patients 

 

 

Data are mean±SEM or median (range). Abbreviations: BMI, body mass index; CRP, C-

reactive protein; FFM, fat-free mass; GFR, glomerular filtration rate; na, not available; 

nPNA, normalized protein nitrogen appearance; SGA, subjective global assessment.  

Significance of difference vs. control subjects: a=P<0.05; b=P<0.01. 
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Table 2 

Primer 

 

Primer for RT-PCR analysis 
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Table 3 

Cytokines levels 

 

Cytokines levels in normal and uremic serum 

Abbreviations: CRP, C-reactive protein; IL6, interleukin-6; MCP1, monocyte 

chemotactic protein 1; OPG, osteoprotegerin; OPN, osteopontin; TNF-α, tumour necrosis 

factor α. 
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Table 4 

Clinical characteristics 

 

Univariate and multivariate analysis of the correlation between LogTLR4 protein 

expression and clinical characteristics in patients with CKD (n = 29) 

Abbreviations: BMI, body mass index; CRP, C-reactive protein; GFR, glomerular 

filtration rate; nPNA, normalized nitrogen protein appearance; SGA, subjective global 

assessment. 
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Figure 1 

Expression of TLR2 and TLR3 

 

Expression of TLR2 (a) and TLR3 (b) mRNAs and proteins in skeletal muscle of controls 

(n  14) and patients with chronic kidney disease (CKD) (n = 29). TLR2 and TLR3 mRNA 

expression was determined by real-time PCR and their protein expression by 

immunohistochemistry and image analysis. Values are expressed as fold increase ± SEM 
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to the control muscle. TLR2 and TLR3 mRNAs and proteins were unchanged with respect 

to control subjects (P = NS). CKD = chronic kidney disease. (Magnification: ×400–1000). 
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Figure 2 

Expression of TLR4 

 

 

Expression of TLR4 mRNA (a) and protein (b–d) in normal skeletal muscle (n = 14) and 

in patients chronic kidney disease (CKD) (n = 29). TLR4 mRNA was evaluated by real-
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time PCR, and its protein by immunohistochemistry followed by image analysis (b, c) 

and western blot (d) of muscle lysates. Values are expressed as fold increase ± SEM to 

the control muscle. TLR4 mRNA was approximately two-folds increased vs. controls. 

TLR4 protein was absent or very faintly expressed in the normal muscle, while was 

overexpressed (by 1.5–3-folds) in CKD muscle (panel C). Western blots show 

upregulated TLR4 in CKD with respect to controls (panel d). Blots were stripped and 

reprobed with anti β-actin antibody. The gel is representative of 12 CKD and 5 controls. 

CKD = chronic kidney disease. (Magnification: ×400–1000). The arrows indicate 

positive cells. *P<0.05, **P<0.001 vs. controls. 
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Figure 3 

Expression of p-p65 

 

 

(Panel a). Phospho-p65 (P-p65) expression in the skeletal muscle of CKD patients and 

controls. Control (n = 11) muscle showed p-p65 positive nuclei in a very small 

percentage. This percentage increased significantly in patients with CKD (n = 20). The 
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degree of positive nuclei was estimated by counting the number of p-p65 positive cells 

for 100 cells examined in average of five high-power fields. (Panel b) Phospho-IkB-α (p-

IkB-α) expression in the skeletal muscle of CKD patients and controls. P-IkB-α was 

highly up-regulated in muscle of patients with CKD.(Panel c) Expression of TNF-α 

mRNA and protein in CKD (n = 25) and control (n = 11) muscle. TNF-α m-RNA was 

two-folds overexpressed in CKD samples with respect to the control tissue. The protein 

expression of TNF-α was minimally detectable in control samples, while it was markedly 

increased (by approximately five-folds) in muscle 

of CKD patients. (Panel d) Immunohistochemistry analysis for p-p38 in normal and CKD 

subjects. Staining was weakly diffused in normal tissue, but intensely expressed in 

uremia. (Panel e) Expression of Murf 1 and atrogin mRNA. Murf 1 and atrogin mRNAs 

expression level was determined by real time PCR. Both genes were over expressed in 

CKD muscle (n = 12) with respect to controls (n = 10). C = controls; CKD = chronic 

kidney disease. (Magnification: ×400–1000). The arrows indicate positive areas. Data are 

expressed as fold increase ± SEM to normal muscle. *P<0.05 vs. C; **P<0.01 vs. C. 

 

 

 

 

 

 

 



39 
 

Figure 4 

Effects of uremic serum 

 

 

(Panel a). The effect of normal serum (NS) and uremic serum (US) on TLR4 mRNA and 

protein in C2C12 myotubes. Cells were incubated with 10% serum for 6 h. TLR4 mRNA 

expression was determined by real time PCR at different times and protein by western 

blot after six hours. (Panel b) The effect of uremic serum (US) on TNF-α gene expression 
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in C2C12 myotubes. TNF-α mRNA expression was determined by real time PCR after 5 

h treatment. (Panel c) Down-regulation of pAkt in uremic serum (US)-treated cells. pAkt 

was 

evaluated by western blot analysis after 24 h exposition to normal serum (NS) or US. 

Blots were stripped and reprobed with anti-pAkt antibody.(Panel d) Uremic serum (US) 

induces p-p38 during time course (0–240 min) in C2C12 myotubes. Blots were stripped 

and reprobed with anti β actin antibody. All results represent means ± SEM obtained from 

five independent experiments.*P<0.05 vs. T0; **P<0.01 vs. T0; §P<0.001 vs. T0 and NS; 

+P<0.01 vs. T0 and NS. NS = normal serum; US = uremic serum; pAkt = phospho-Akt; 

p-p38 = phospho-p38. 
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Figure 5 

Inhibition of p38 and PKC 

 

 

Effects of p38 inhibitor (10 μM SB203580), and PKC inhibitors (0.2–4 μM staurosporine 

or 10 μM chelerythrine) on uremic serum (US)-induced TLR4 mRNA. To further 

investigate the mechanism of uremic serum-induced TLR4 expression, we examined the 

role of p38 and its related signal pathway including protein kinase C (PKC). Pretreatment 

of C2C12 myotubes with the p38 inhibitor SB203580 (10 μM) and the PKC inhibitors 

chelerythrine (5 μM) and staurosporine (0.2–0.4 μM) 1 h before serum exposure, resulted 

in a marked decrease in the serum-induced TLR4 mRNA overexpression. All results 

represent means ± SEM obtained from three independent experiments.*P<0.05 vs. 

T0;.*P<0.05 vs. US; **P<0.01 vs. US. US = uremic serum; che = chelerythrine; stau = 

staurosporine. 
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Figure 6 
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Effect of uremic serum (US) on TNF-α gene expression and pAkt in C2C12 myotubes 

treated with TLR4 inhibitors or silenced for TLR4. (Panel a) Preincubation of myotubes 

with VIPER, a specific TLR4 inhibitor, prevented the ability of US to up-regulate TNF-

α. (Panel b) As a next step, we employed gene silencing as an independent method to 

examine the role of US on TLR4 regulation in muscle. C2C12 were transfected with 60 

nM siRNA NC and TLR4-specific siRNA and the respective mRNA and protein were 

evaluated after 24 h. TLR4 siRNA decreased TLR4 mRNA and protein in C2C12 

myotubes. (Panel c) Effect of US on TNF-α mRNA in C2C12 silenced for TLR4. TLR4 

gene silencing blunted US-regulated TNF-α. (Panel d) Effect of US on Akt 

phosphorylation. C2C12 with no knockdown and transfected with TLR4 siRNA were 

exposed for 24 hours to NS or US. pAkt was evaluated 

by western blot and membrane was stripped and reprobed with anti Akt antibody. TLR4 

knockdown restored pAkt signalling. All results represent means ± SEM obtained from 

three independent experiments. #P<0.01 vs. NC; §P<0.01 vs. NC + US; °P<0.05 vs. US; 

*P<0.001 vs. US and CP + US. NS = normal serum; US = uremic serum; pAkt = phospho-

Akt; NC = non-specific negative control siRNA; VIPER = viral inhibitory peptide of 

TLR4; CP7 = inert control peptide. 
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