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ABSTRACT 

 

The recognition that obstructive disease of the epicardial coronary arteries, causing 

ischemic heart disease, can be treated with a percutaneous coronary intervention (PCI) has 

been a major discovery in cardiology in the last 40 years contributing, in particular, to the 

reduction of mortality associated to acute myocardial infarction (AMI). However, even in the 

era of drug-eluting stent (DES) implantation, a sizable proportion of patients who undergo 

PCI may develop late or very late post-implantation complications, that occur in the form of 

restenosis, neoatherosclerosis and/or in-stent thrombosis. Such complications are clinically 

relevant since they can cause AMI and negatively impact on the outcome. The underlying 

pathophysiological mechanisms are complex but related to inhibition of neointimal 

proliferation by DES that, on the hand, reduces the rate of in-stent restenosis, but, on the 

other hand, causes dysfunctional vessel healing, persistent inflammation, platelet activation 

and adverse immunologic responses. Multiple approaches have been developed or are under 

evaluation to target DES-related complications including pharmacotherapy, procedure-related 

imaging methods, novel stent designs and drug-delivery methods. 

The aim of this review is to provide an update on the latest preclinical, translational 

and clinical pharmacotherapeutic developments in this setting that target novel cellular 

mechanisms and pathways that might contribute to neoatherosclerosis. Due to the importance 

of secondary prevention in the reduction of DES-associated complications, this review also 

provides a short overview of pharmacologic agents that are established or currently being 

investigated in this regard. 

Keywords: coronary restenosis; coronary thrombosis; drug-eluting stents; 

neoatherosclerosis; pharmacotherapy; percutaneous coronary intervention;  
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INTRODUCTION 

While the introduction of drug-eluting stent (DES) technology for the treatment of 

significant culprit lesions due to coronary artery disease (CAD) was able to markedly reduce 

neointimal proliferation, at the same time, a high price was paid in terms of delayed and 

aberrant arterial healing, due to the effects of anti-proliferative drugs eluted by the stent that 

impaired physiological reendothelialization and vascular remodeling.1, 2 Autopsy reports and 

experiments in animal models also showed that persistent fibrin deposition, chronic 

inflammation, and continuous platelet activation characterize delayed arterial healing.3 Most 

of the current DES implants inhibit the mammalian target of rapamycin (mTOR) that is a 

member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family of 

serine/threonine protein kinases.4, 5 Recently, an interaction between the FKBP12.6 cellular 

pathway and canonical mTOR inhibitors was discovered as a major cause of vascular 

permeability and neoatherosclerosis showing that more precise molecular targeting of mTOR 

complex might ameliorate late complications of interventional treatment such as 

neoatherosclerosis.6 Generally, an impaired coronary endothelial function and vasomotion 

associated to DES implantation is characterized by decreased nitric oxide (NO) production, 

loose intercellular junctions and decreased levels of antithrombotic mediators, processes that 

are paralleled by a rapid infiltration, retention, and increased expression of foamy 

macrophages within the neointima of stented segment thus promoting the formation of a new 

atheroma.7 Furthermore, wall shear stress and local hemodynamic forces also play a role in 

restenosis, thrombosis, and platelet activation after stent implantation.8 

In the present review, the role of neoatherosclerosis and other late or very late stent 

complications that occur post-DES implantation are discussed in the context of established 

risk factors and potential therapeutic targets, with emphasis on novel cellular pathways. 
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NEOATHEROSCLEROSIS AS A LATE OR VERY LATE COMPLICATION OF 

INTERVENTIONAL TREATMENT 

Definition of neoatherosclerosis, its incidence and incidence of late stent complications 

As the design in stent technology evolved over time, different profiles of clinical 

complications after stent implantation were observed, corroborated by robust follow-up data. 

Namely, 1st generation DES implants were able to substantially reduce in-stent restenosis 

(ISR) events associated with bare-metal stents (BMS) while increasing the incidence of in-

stent thrombosis (IST).9 Notably, ISR occurs earlier in patients implanted with BMS, 

neointimal hyperplasia (proliferation and migration of vascular smooth muscle cells - VSMC) 

being the prevalent mechanism. 

Furthermore, 2nd generation DES implants were associated with lower rates of IST 

compared to 1st generation DES, however, a different type of complication leading to late or 

very late stent failure came to prominence with newer implants, known as 

“neoatherosclerosis”.10-12 This distinct type of accelerated atherosclerosis of multifactorial 

etiology develops inside of the stented segment of a coronary vessel.13-15 Neoatherosclerosis 

seems to marked by three distinct phases that encompass early infiltration by foamy 

macrophages, in-stent atherosclerotic plaque development, and formation of necrotic core 

plaque with a thin fibrous cap.16 Moreover, among 2nd generation DES implants, differences 

were observed in terms of tissue characteristics in early (<1 year) and late (>1 year) ISR – 

former being mediated mainly by neointimal hyperplasia while neotherosclerosis was the 

dominant mechanism in the latter.17 Specifically, late ISR was characterized by higher 

prevalence of lipid-laden neointima, thin-cap fibroatheroma, neovascularization and 

macrophage infiltration compared to early ISR and it could be inferred that the delayed 

arterial healing associated with DES implants might predispose to neaotherosclerosis. Late 
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stent failure as a consequence of neoatherosclerosis occurs more frequently in DES than 

BMS largely due to stent underexpansion, and nowadays is recognized as a late or very late 

complication of a coronary interventional treatment.18-21 This was confirmed by the autopsy-

based study that revealed significantly higher incidence of neoatherosclerosis in DES (31%) 

compared to BMS (16%) with significantly shorter median stent duration in the former.18 

Moreover, development of neoatherosclerosis in DES implants has been described as a 

“late catch-up” phenomenon due to observation that neointimal growth is highly suppressed 

during the 1st year after DES implantation but then shows continuous progression 

accompanied with rapid deposition of lipid-laden macrophages thus acting as a final common 

pathway of late stent failure.22 Indeed, an optical coherence tomography (OCT) registry-

based study examining very late stent failure mechanisms among early- and new-generation 

DES revealed that three most common causes of very late DES failure were strut 

malapposition (34.5%), neoatherosclerosis (27.6%) and uncovered struts (12.1%).23 A graph 

showing the percentage of atherosclerotic change and neoatherosclerosis incidence in DES 

compared to BMS in relation to implant duration in months is provided in Figure 1. 

Risk factors associated with neoatheroslerosis 

While series of intracoronary imaging studies encompassing intravascular ultrasound 

(IVUS) and OCT along with direct histopathologic analyses from biopsy tissue specimens 

provided a morphological and compositional characterization of neoatherosclerosis, its 

etiology and pathophysiology remain largely unknown.11, 18, 24, 25 Some OCT observations 

suggest that neoatherosclerosis occurs regardless of stent type and is more dependent on focal 

triggers within the vessel that are involved in the formation of vulnerable lesions.26, 27 Some 

relevant differences in pathologic mechanisms between native coronary atherosclerosis and 

in-stent neoatherosclerosis, as well as representative OCT images, are provided in Figure 2. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvy036/5115374 by U

niversity of N
ew

 England Libraries user on 09 O
ctober 2018



6 

 

The dominant hypothesis about the neoatherosclerosis formation is based on the 

assumption that neointimal proliferation develops de novo within the stent, independently of 

underlying native plaque; however, this notion is based on a “snapshot” morphological 

lesion analysis and has recently been challenged.28, 29 The pathogenic mechanisms at the basis 

of neoatherosclerosis might indeed be similar to those involved in native atherosclerosis 

progression (e.g., endothelial dysfunction, lipid uptake, inflammation, etc.). An elegant study 

by Taniwaki et al. recently showed a significant association between in-stent 

neoatherosclerosis and the progression of native coronary atherosclerosis, assessed as change 

in minimal lumen diameter (MLD) serially measured within matched coronary segments at 

baseline and 5-year angiographic follow-up.24 This study showed a significantly greater 

reduction in MLD in both target and non-target vessel in patients with in-stent 

neoatherosclerosis than in those without, suggesting a pathogenic link between the two 

processes. These findings appear even more relevant considering the relatively low incidence 

of neoatherosclerosis (i.e., 16% of lesions in the study by Taniwaki) and the need for long-

term follow-up in these patients.24 Importantly, the increased presence of neoatherosclerosis 

is not only associated with individual atherosclerosis risk factors and underlying 

comorbidities, but largely with non-traditional risk factors of which most are inherent to stent 

design, anatomical complexity of the lesion (bifurcations, trifurcations, long lesions, small 

vessels, etc.), local vessel hemodynamics, and PCI-related procedural variables (stent 

underexpansion, malapposition, fracture, flow-limiting dissection, and similar). An 

association of neoatherosclerosis with neovascularization and adjacent lipid plaque has also 

been established.30 A comprehensive overview of risk factors associated with 

neoatherosclerosis is provided in Table 1. 

Hemodynamic alterations within the stented segment of the vessel might also contribute 

to neoatherosclerosis. Endothelial shear stress (ESS), which is the tangential force generated 
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by the friction of the flowing blood on the surface of the vessel wall, affects atherosclerotic 

disease progression in both native and stented coronary arteries.31 Several studies suggest that 

low ESS promotes plaque growth and vulnerable plaque formation in humans.32 As the 

pathogenic mechanisms at the basis of neoatherosclerosis appear to be similar to those 

involved in native atherosclerosis progression (e.g., endothelial dysfunction, lipid uptake, 

inflammation, etc.), it is conceivable that flow dynamics and ESS play an important role in 

the development of neoatherosclerosis after stent implantation. Papafaklis et al. reported an 

inverse correlation between ESS and neointimal hyperplasia in BMS and in first-generation 

DES.33 An OCT study showed that in-stent neoatherosclerosis occurs more often at the inner 

curvature and at the outer waist of a bifurcation, which are typically exposed to low and 

oscillatory shear stress.34 A virtual-histology intravascular ultrasound (VH-IVUS) study by 

Bourantas et al. showed a negative correlation between predominant ESS and the percentage 

of the neointimal necrotic core component, which is indicative of the presence of 

neaotherosclerosis, in BMS.35 

Finally, systemic inflammation and allergic inflammation as reactions to a foreign body 

are biologically important processes that occur after stent implantation and are associated 

with restenosis, stent thrombosis and degree of neointimal lesion burden.36-39  

Pathophysiology of neoatherosclerosis and its clinical implications 

Mechanisms of neoatherosclerosis and accelerated plaque formation after DES 

implantation are poorly elucidated and there is still a substantial lack of knowledge regarding 

the underlying mechanisms and causal factors. Recently, the role of lipid droplet-associated 

proteins such as those belonging to Perilipin family of proteins has been investigated in the 

context of atherogenesis. These proteins have a role in the excess accumulation of 

intracellular lipids and are linked to metabolic diseases, obesity, type 2 diabetes and 
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atherosclerosis.40 Recently, the role of adipophilin, also known as perilipin 2 or adipose 

differentiation-related protein (ADRP) has been implicated in the development of ISR due to 

neoatherosclerosis among patients implanted with 2nd generation DES. Of note, perilipin 

protein levels were significantly higher in peripheral blood mononuclear cells (PBMCs) of 

patients with in-stent neoatherosclerosis and implanted DES compared to patients with native 

CAD.41 

Since rapid formation of lipid-laden neointima and extensive infiltration of foamy 

macrophages at the stent lesion site are histopathologic hallmarks of neoatherosclerosis, as 

previously elaborated, it is plausible that increased lipid retention and accumulation within 

resident macrophages and circulating monocytes that are being increasingly recruited to the 

lesion site are potential mechanisms involved in neoatherosclerosis formation and/or 

progression. Such effect might indeed be mediated by proteins, such as perilipin 2, that are 

involved in the regulation of cytoplasmic lipid droplets within macrophage foam cells and 

storage of cholesteryl esters derived from modified lipoproteins.40, 42 Recently, experimental 

induction of perilipin 2 deficiency and a concomitant increase in extracellular plasma 

cholesterol acceptors such as apolipoprotein A-I (apoA-I) and HDL cholesterol cumulatively 

reduced lipid droplets and cholesterol ester content in cultured macrophages and significantly 

reduced atheroma formation.43  

MicroRNA-based strategies in addressing complications of interventional treatment 

Current drug delivery solutions available with modern stents fail to selectively 

suppress proliferation of VSMCs without a negative impact on the growth of endothelial cells 

(ECs) within the vasculature. To overcome this issue, small non-coding RNA molecules that 

are able to distinctively regulate VSMCs and ECs might provide a viable solution. These 

molecules exert such effects through post-transcriptional silencing, degradation or 
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overexpression of genes and their downstream end-products that are involved in vascular 

remodeling.44, 45 MicroRNAs could be utilized for the selective inhibition of VSMC 

proliferation, platelet activation and improvement of endothelial regeneration after stent 

deployment.46 In fact, a selective miRNA-based strategy was able to markedly reduce 

restenosis, hypercoagulability and improve reendothelialization and vasodilatory response to 

acetylcholine in the preclinical model of vessel injury thus confirming the potential of this 

therapeutic approach in restricting or abolishing restenosis.47, 48 

In the clinical practice, late stent failure due to neoatherosclerosis and stent 

thrombosis is a relevant problem because these events are associated with higher rates of fatal 

and non-fatal acute coronary syndromes (ACS) and of overall poor clinical outcomes.49-51 

Moreover, neoatherosclerosis is a frequent OCT finding in late or very late stent 

thrombosis.14, 23, 52 Due to an increasing number of PCI procedures performed worldwide and 

currently unmet need in ISR prevention, it is expected that significant numbers of late stent 

failure events will occur in the future thus portending poor clinical outcome. Risk factors 

associated with the occurrence of neoatherosclerosis along with available therapeutic 

pathways that could mitigate neoatherosclerosis formation and/or progression are 

summarized in Figure 3.  

 

STENT-BASED STRATEGIES AND PROCEDULAR FACTORS IN THE CONTEXT 

OF NEOATHEROSCLEROSIS 

During the last decade, DES implants have undergone substantial structural 

improvements, including thinner metallic struts and more biocompatible durable or 

biodegradable polymers thus often being labeled as “third-generation” DES. These 

modifications have led to an improved healing response and reduced failure potential 
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compared with first- and second-generation DES.53 Stent design has a significant impact on 

flow dynamics in stented coronary segments. Thick struts affect local ESS, favoring the 

development of flow disturbances with low and oscillatory ESS, which may in turn activate 

the regenerating endothelium toward a pro-inflammatory phenotype and favor lipid uptake.54 

This may induce unfavorable healing response and development of neoatherosclerosis, 

although further studies are needed to confirm this hypothesis. On the other hand, thinner 

struts may improve re-endothelialization and reduce peri-strut inflammation and fibrin 

deposition.55 In addition; the biodegradable polymer type and load may affect healing 

response and development of neoatherosclerosis, by modulating chronic intra-stent 

inflammation. However, there are no conclusive results on the relation between strut 

thickness and use of durable/biodegradable polymers with the formation of 

neoatherosclerosis. A recent OCT study by Guagliumi et al. showed a similar healing 

response after 3 months and incidence of NA after 18 months between a biodegradable 

polymer everolimus-eluting stent and a durable polymer zotarolimus-eluting stent.56 In 

another study, the rate of in-stent neoatherosclerosis within biodegradable polymer biolimus-

eluting stents was similar to bare metal stents, and tended to be lower than in durable polymer 

sirolimus-eluting stents.57 

Furthermore, bioresorbable vascular scaffolds (BVS) were developed to only 

temporarily cover the diseased coronary segment followed by full biodegradation, potentially 

overcoming the long-term issues of metallic stents. However, randomized trials consistently 

observed worse long-term clinical outcomes of the Absorb BVS compared with metallic 

new-generation DES, both in terms of device-oriented adverse events and device thrombosis, 

particularly after 1 year. The international INVEST registry identified neoatherosclerosis as 

one of the main mechanisms underlying very late scaffold thrombosis, being observed in 

about 18% of lesions at 2-year follow-up.58 More recently, Moriyama et al. conducted a study 
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with serial OCT imaging performed at baseline, 1 year, and 5 years after Absorb BVS 

implantation in 20 patients with 22 lesions. Neoatherosclerosis, defined as lipid-laden plaque 

including thin-cap fibroatheroma with or without intimal rupture and/or thrombi, and/or 

calcific plaque with or without neovascularization and/or macro- phage accumulation, was 

identified in 100% of lesions at 5 years after BVS implantation.59 Multiple pathogenic factors 

have been suggested, including endothelial dysfunction, inflammation, and local blood flow 

alterations related to the scaffold strut size (i.e., thick struts), geometry, and large polymer 

load of BVS. Further studies are needed to clarify these potential mechanisms, and to identify 

the incidence of neoatherosclerosis after implantation of BVS other than the Absorb BVS.60 

While the data corroborate that ABSORB BVS is a reasonably safe platform, it did 

not fulfill the promise of abolishing or reducing neoatherosclerosis and/or stent thrombosis. 

However, novel approaches in BVS polymer design that are under development might 

mitigate these late PCI complications. Of note, BVS with polymers based on poly-L-lactic 

acid (PLLA) might support beneficial vascular remodeling in humans without detected 

neoatherosclerosis at 2 years, even in the absence of antiproliferative drugs.61 Previous 

preclinical studies on novel ultrahigh molecular weight amorphous PLLA BVS implants 

demonstrated expansive vascular remodeling in PLLA BVS and this biological phenomenon 

appeared independently of antiproliferative drugs.62, 63 Furthermore, an addition of 

magnesium to BVS was associated with decreased thrombogenicity, less platelet adhesion 

and inflammatory cell deposition in porcine arteriovenous shunt model, compared to BMS.64 

In humans, a 12-month follow-up after implantation of the 2nd generation BVS with 

magnesium backbone showed a favorable safety profile and stable angiographic parameters 

between 6 and 12 months.65 However, caution has to be exercised since De la Torre 

Hernandez et al recently demonstrated that the arterial healing process after implant 

deployment could be more device-specific rather than patient-specific, suggesting that not all 
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BVS scaffolds might act in the same manner in the long-term.66 For this reason, future studies 

on newer generation magnesium- and PLLA-based scaffolds are, indeed, warranted to assess 

their effects on clinical endpoints during longer follow-up, particularly compared to 

established “workhorse” DES platforms.67, 68 

Regarding the procedural PCI factors that might contribute to the formation of 

neoatherosclerosis, an OCT imaging provides accurate stent sizing and guidance of the 

stenting strategy, by providing both information on the lumen dimension and lesion 

characteristics.69 Even more, latest ESC/EACTS guidelines on myocardial revascularization 

support the use of OCT imaging in cases dealing with an in-stent neoatherosclerosis and 

further procedure planning.70 Post-PCI OCT imaging allows strut-level evaluation of the stent 

deployment and provides guidance for stent optimization. OCT is able to identify correctable 

abnormalities related to the stent and the underlying vessel wall, such as stent 

underexpansion, strut malapposition, and geographic plaque miss.70 Stent underexpansion is a 

major predictor of early stent thrombosis or restenosis, however, no definite pathogenic link 

exists between acute strut malapposition and subsequent events.70 In contrast, OCT studies 

investigating the mechanisms of stent thrombosis have consistently identified strut 

malapposition as a frequent underlying finding.23 Whether stent optimization using an OCT 

imaging may impact on the development of neoatherosclerosis at follow-up remains 

unknown, and need to be demonstrated in future studies.  

 

PHARMACOTHERAPEUTIC STRATEGIES IN THE PREVENTION OF 

NEOATHEROSCLEROSIS 

Role of antiproliferative drugs and the mode of drug delivery 
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Sirolimus seems to reduce the amount of positive cell cycle regulators and increase 

the amount of cell cycle inhibitors, leading to inhibited cell migration, proliferation, and 

desensitization of the cells to the effects of low ESS.1 Because durable polymers result in 

long-term drug sequestration within the polymer with prolonged drug delivery over time, this 

may result in long-term endothelial dysfunction. It seems plausible that limiting the duration 

of exposure of the arterial wall to mTOR inhibitors may result in a limited long-term 

endothelial dysfunction and perhaps decreased neoatherosclerosis though this is unproven to 

date.71 

In the absence of definitive clinical data demonstrating differences between durable 

polymer DES (DP-DES) versus bioresorbable polymer DES (BP-DES) in terms of 

neoatherosclerosis, it is worth discussing what some of the advantages of the latter might be 

and why improvement in DES design is still necessary. As alluded to earlier, the genesis of 

late restenosis and neoatherosclerosis remains unknown but studies suggest it may be related 

to long-term effects on endothelium caused by -limus mTOR inhibitors used in the current 

generation DES. Long-term exposure of endothelial cells to sirolimus leads to endothelial 

barrier dysfunction allowing entrance of lipoproteins and immune cells into the arterial wall, 

similar to the pathogenesis of native vessel atherosclerosis.72 Moreover, because drug tissue 

levels tend to decrease dramatically as the polymer degrades, the risk of neoatherosclerosis 

may actually be lower although more work is required to substantiate this claim. However, it 

remains unclear whether metallic surfaces are as biocompatible as polymer-coated surfaces 

(especially those coated with fluorinated polymers). While recent meta-analysis of 

randomized controlled trials showed that BP-DES are non-inferior to DP-DES, their potential 

advantages are yet to be demonstrated.73 

Antiplatelet and lipid-lowering therapy in the context of DES implantation 
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Pharmacotherapeutic secondary prevention encompassing lipid reduction and inhibition 

of platelet activation, pathologic processes that are both implicated in neoatherosclerosis, is 

exceptionally important after DES implantation. The European Society of Cardiology (ESC) 

guidelines clearly emphasize the importance of these therapies after coronary 

revascularization.74-76 The optimal duration of dual antiplatelet therapy (DAPT) with aspirin 

and a thienopyridine (ADP receptor/P2Y12 inhibitor) and/or addition of anticoagulants 

probably need to be calibrated on a personalized assessment of patients’ coronary anatomy, 

comorbidities and ischemic/bleeding risk.75, 77, 78 

Similarly, patients with ACS that underwent PCI are recommended to reach lower targets 

of low-density lipoprotein (LDL) cholesterol compared to conventional patients with 

hyperlipidemia.79 However, these goals are often unmet in population of ACS patients due to 

statin intolerance or refractoriness to LDL cholesterol-lowering despite optimal high-potency 

statin therapy or statin combined with the intestinal cholesterol inhibitor ezetimibe. Due to 

residual cholesterol and inflammatory risk in these patients, therapies that would provide 

additional reduction in circulating levels of LDL cholesterol and proinflammatory mediators 

and would contribute to a greater plaque stabilization are required.80 Recently, proprotein 

convertase subtilisin/kexin type 9 (PCSK9) inhibitors were shown to increase recycling of 

LDL cholesterol receptors, therefore, efficiently lowering concentrations of LDL cholesterol 

in circulation beyond the effects of standard therapy.81 In the context of CAD, GLAGOV trial 

showed that PCSK9 inhibition on top of statin treatment was associated with a significant 

additional reduction of plaque burden in patients with CAD, compared to patients that were 

using statins only.82 This aggressive lipid-lowering treatment with PCSK9 inhibitors might 

have an impact on lipid-related neoatherosclerosis and plaque stabilization since higher levels 

of matured PCSK9 were associated with coronary spotty calcifications in ACS patients and 

this concept was also confirmed in a preclinical study by Goettsch and colleagues.83, 84 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjcvp/advance-article-abstract/doi/10.1093/ehjcvp/pvy036/5115374 by U

niversity of N
ew

 England Libraries user on 09 O
ctober 2018



15 

 

Finally, precision-tuning of the lipid-lowering therapies might be based on the plaque 

imaging (i.e., assessment of fibrous cap thickness in vulnerable plaque lesions, quantification 

of plaque burden) and geometric characterization of the vessel architecture at lesions of 

interest (i.e., minimal luminal area, etc.) in each individual patient as advanced imaging 

techniques become more routinely used in the clinical practice.85 

 

IL-1/IL-6/CRP pathway 

The inflammation is an important driver of healing responses after stent implantation.86 

Therefore, targeting proinflammatory pathways while exerting immunosuppressive effects 

seems as a reasonable therapeutic approach to prevent in-stent restenosis and late 

complications of interventional treatment.87 The pivotal CANTOS trial demonstrated that 

inflammatory pathogenesis of atherosclerosis is a validated concept showing that the 

inhibition of interleukin-1 beta (IL-1β) with a therapeutic monoclonal antibody canakinumab, 

without affecting lipid levels, in patients with previous acute myocardial infarction (AMI) 

and CRP levels >2 mg/L was able to significantly lower the composite outcome of MI, stroke 

or death by 15% and secondary endpoint that included urgent revascularization by 17%, 

compared to placebo.88 This notion was confirmed in a study by Chibana et al. showing that, 

in patients implanted with the mTOR-inhibitor-eluting stent, sirolimus increased IL-1β 

mRNA expression and increased IL-1β release within coronary artery smooth muscle cells 

(CASMCs) implicating that serum IL-1β levels could serve as a biomarker for DES-

associated coronary endothelial dysfunction.89 Perhaps such effects of inflammation-directed 

pharmacotherapy that inhibits IL-1β pathway could extend to the suppression of 

neoatherosclerosis due to the implicated role of this cellular pathway in foam cell formation 

and induction of interleukin-6 (IL-6) in human endothelial cells.90 Anti-inflammatory agents 

might indeed ameliorate residual risk among patients that survived AMI since standard 
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pharmacotherapy including high-dose statin regimen is often insufficient in preventing 

recurrent ischemic events or death.91 

The pharmacologic blockade of other mediators of inflammation such as interleukin-6 

receptors (IL-6R), CC2 chemokine receptors and CD20 might also prove as viable strategies 

in the future therapeutic targeting of vascular inflammation and atherothrombosis 

prevention.92 

So-called “C-reactive protein (CRP)/IL-6/IL-1 axis” recently became a research hotspot 

in the anti-inflammation secondary prevention pharmacotherapy with agents such as low-

dose methotrexate and low-dose colchicine being currently investigated in clinical trials for 

the purpose of reducing cardiovascular events.93-95 A role of NLRP3 inflammasome that is 

activated by cholesterol crystals and implicated in atherosclerosis has been increasingly 

studied with a potential of well-known “old” agents such as colchicine finding a new role in 

cardiovascular applications.96 A recent study by Vaidya et al. showed that the addition of low 

dose colchicine (0.5 mg/day), which inhibits cholesterol crystal-induced activation of 

inflammasome, to optimal medical therapy was associated to a significant reduction of plaque 

volume at coronary computerized-tomography (CCT) and of hs-CRP levels among patients 

with recent ACS (<1 month), compared to optimal medical treatment only.97 This study 

showed that colchicine might be a valuable addition to secondary prevention armamentarium 

in patients that suffered ACS and because of its anti-inflammatory properties, it is plausible 

that colchicine could mitigate some of the complications of DES implantation. However, to 

establish whether these beneficial effects of colchicine on surrogate end-points translate into 

a benefit on clinical outcomes remains to be investigated.98 

NF – kappa B pathway 
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Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway is an 

intracellular signal transduction system that is implicated in multiple inflammatory disorders, 

cancer proliferation, innate immunity, cellular apoptosis, and differentiation.99 It is a “rapid-

acting” and pleiotropic transcription factor meaning that it is ubiquitously present in cells in 

an inactive form and does not require a de novo protein synthesis for its activation. Activation 

mechanisms of the NF-κB pathway are multiple and include the canonical, non-canonical and 

the atypical activation cascades.100 Canonical pathway of NF-κB activation is mediated by 

Toll-like receptors (TLRs), interleukin-1 receptors (IL-1Rs), tumor necrosis factor receptors 

(TNFRs) and various antigen receptors such as lipopolysaccharides (LPS) from the bacterial 

cell wall and viral antigens.101 Activation of NF-κB dominantly occurs via IkappaB kinase 

(IKK) complex-mediated phosphorylation of inhibitory molecules such as IkappaBalpha that 

seems to play a central role in the initial convergence of most stimuli that can activate NF-κB 

signal transduction.102-104 In the context of inflammatory effects, NF-κB pathway regulates 

proinflammatory cytokine production, leukocyte recruitment, and cell survival thus 

contributing to cellular inflammatory response.105, 107 

Previously, a link between NF-κB pathway and atherosclerosis has been established, 

involving all stages of atheroma development, starting with plaque formation and subsequent 

destabilization and rupture.107, 108 Additionally, NF-κB pathway activation is involved in lipid 

metabolism, foam cell formation, vascular inflammation, proliferation of VSMCs, arterial 

calcification, cardiac fibrosis, and plaque progression making it as a worthwhile therapeutic 

target in cardiovascular disease.109-112 In the preclinical model, inhibition of NF-κB pathway 

abolished induction of adhesion molecules in endothelial cells, impaired macrophage 

recruitment to atherosclerotic lesions and significantly decreased expression of 

proinflammatory cytokines and chemokines in aorta thus clearly demonstrating that NF-κB 

signaling is an important cross-talk mediator of atherosclerosis and its therapeutic blockade 
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could portend myocardial protection.113 In this respect, the use methotrexate, an 

immunosuppressive and antimetabolic agent that inhibits T-cell activation, intracellular 

adhesion molecule expression, folate metabolism and methyltransferase activity and 

selectively downregulates B-cells expression has been recently examined in terms of 

potential cardiovascular pharmacologic applications.114, 115 Importantly, methotrexate blocks 

the binding of interleukin-1β (IL-1β) to interleukin-1 receptors (IL-1Rs) and inhibits 

production of cytokines such as interleukin-4 (IL-4), interleukin-13 (IL-13), interferon 

gamma (IFN-γ) and TNF-α.116, 117 Finally, methotrexate suppresses TNF-induced NF-κB 

pathway activation by inhibition of NF-κB-dependent reporter gene expression.118 Another 

mechanism by which methotrexate decreases basal levels of NF-κB activity is through 

increased expression of long intergenic (noncoding) RNA-p21 levels via DNA-dependent 

protein kinase catalytic subunit (DNA PKcs)-dependent mechanism.119 Furthermore, 

adenosine selectively suppressed TNF-induced NF-κB activation in different cell types.120 

Mechanisms of methotrexate interaction with NF-κB pathway are illustrated in Figure 4. 

Stent-based methotrexate delivery in a porcine coronary artery was able to effectively 

attenuate peristrut inflammation and neointimal hyperplasia.121 Favorable effects of 

methotrexate on the formation of neoatherosclerosis in a rabbit model of atherosclerosis with 

implanted DES were recently reported.122 In humans, a recent clinical study that involved 

patients with elective PCI showed that low dose (5 mg/week) of oral methotrexate 

administration before and after the procedure was safe and no cases of clinical restenosis 

were reported at 9-month follow-up, however, BMSs were used in this setting.123 

Finally, it seems that therapies such as colchicine and methotrexate have a potential of 

lowering cardiovascular risk through immunomodulation.124 If these effects might extend to 

complications of the coronary interventional treatment such as neoatherosclerosis remains to 

be determined. 
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Soluble TREM-1 as a marker of in-stent restenosis and potential pharmacologic target 

Triggering receptor expressed on myeloid cells (TREM)-1 is the transmembrane 

glycoprotein receptor of the immunoglobulin superfamily, involved in activation of 

monocytes/macrophages and neutrophils by signaling through adapter protein DAP12.125 

This protein is implicated in the critical regulation of acute inflammatory responses by 

amplifying Toll-like receptor (TLR)-initiated innate immune responses against microbes and 

by upregulating proinflammatory chemokines and cytokines in response to fungal and 

bacterial antigens.126 Several studies showed that cellular interference with TREM-1 pathway 

conferred a protective effect in the setting of inflammatory bowel disease, septic shock and 

ischemic myocardial injury.127-129 In a study by Boufenzer et al. the soluble form of TREM-1 

(sTREM-1) detected in plasma was a reliable marker of TREM-1 activation and was 

detectable in AMI patients with its concentration level being the independent predictor of 

death.129 In recent times TREM-1 has been marked as one of the orchestrators of the 

inflammatory response that ensues after AMI since TREM-1 deletion or experimental 

modulation by short inhibitory peptide reduced myocardial inflammation, attenuated 

leukocyte recruitment and finally, improved overall heart function and survival in animal 

models.130 During and after the AMI, necrotic cellular fragments and extracellular matrix 

components that are released in the bloodstream produce many damage-associated molecular 

patterns (DAMPS) that, in turn, activate pattern recognition receptors (PRR). In this cascade 

of events, TREM-1 plays an important role since it interacts with multiple PRRs, especially 

with TLR2 and TLR4, receptors with the highest expression levels in the myocardium.126, 131 

Due to these established implications of TREM-1 signaling in cardiovascular pathology, a 

study by Wang et al. enrolled 130 patients with angiography-determined ISR and age- and 

gender-matched control group of 150 patients without ISR that were finally selected among 

the pool of 1683 patients that underwent PCI.132 This study showed that sTREM-1 levels in 
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serum were significantly increased in patients with angiography-determined ISR when 

compared to controls. Furthermore, blockade of TREM-1 with a synthetic inhibitory peptide 

LP17 significantly inhibited while TREM-1-activating antibody promoted increased 

proliferation, migration of VSMCs and cellular inflammation. This study told us two 

important things – sTREM-1 levels in serum might reflect the presence and degree of ISR 

among patients that underwent stent implantation thus serving as a predictive biomarker in 

this setting and on the other hand, pharmacologic inhibition of TREM-1 might help in 

attenuating restenosis progression. Interestingly, TREM-1 expression in macrophages is 

regulated at transcriptional level by NF-kB pathway that was previously elaborated in this 

review and experimental data showed that cellular treatment with inhibitors of NF-kB was 

able to abolish the expression of message of TREM-1 induced by bacterial stimuli.133 

Mechanism of TREM-1 pathway and its interaction with NF-kB pathway are depicted in 

Figure 5. 

Taken together, preclinical, and clinical data on TREM-1 warrant further investigations of 

this peptide in the ACS setting and in the risk management/monitoring for complications 

after stent implantation. 

Future perspectives 

It becomes evident that research directed towards novel stent systems and adjunct 

pharmacologic solutions will mark the upcoming era of cardiovascular science, as we delve 

deeper in the pathophysiology and vascular biology of coronary artery disease and both local 

and systemic immuno-inflammatory responses that are associated with the nature and 

complications of interventional treatment. In this regard, the systemic administration of low-

dose immunosuppressive and anti-inflammatory pharmaceutical agents seems as an attractive 

concept that showed some promise in modifying the course and complications of 
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atherosclerotic disease. How these effects will translate to patient bed and real-life clinical 

outcomes remain to be seen in the upcoming trials, especially those conducted in the 

secondary prevention setting. 

 

CONCLUSIONS 

While tremendous improvements have been made in minimizing the late 

complications of coronary interventional treatment, risks of neoatheroslerosis and late stent 

failure are still present, requiring the skillful precision tailoring of antiplatelet and 

antiinflammation pharmacotherapy combined with the appropriate stent choice placed in the 

correct vessel with correct apposition, size, and expansion in the correctly-selected patient. 

Local delivery of the pharmaceutical agent to the site of the lesion that will secure long-term 

patency with preserved endothelial function remains to be the quest for the interventionalist’s 

Holy Grail. This quest will remain even more complicated with challenges in reducing 

hyperlipidemia, suppressing inflammation, slowing physiological drivers of thrombosis and, 

finally, recognizing the residual cardiovascular risk among patients with a significant 

coronary artery disease and high comorbidity burden that underwent PCI.  

 

Supplementary material: References 51 through 124 are available in the Appendix A. 
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FIGURE LEGENDS 

 

Figure 1. Graph depicting the percentage of atherosclerotic change in drug-eluting stents 

(DES) vs. bare-metal stents (BMS) in relation to implant duration in months (based on the 

autopsy studies). Reproduced based on the Nakazawa et al. JACC: Cardiovascular Imaging, 

2009;2:625-628. 

Figure 2. Basic pathogenic mechanisms of native atherosclerosis and in-stent 

neoatherosclerosis. A-B. Lipid diffusion and inflammatory cell migration through the 

endothelium is similar between native atherosclerosis and in-stent neoatherosclerosis but 

potentially accelerated in the latter due to the presence of an insufficiently regenerated 

endothelium and the effects of drug-induced inhibition of re-endothelialization processes. 

The underlying atherosclerotic plaque might contribute to the growth of neointima both with 

expansion through the stent struts and with the release of proinflammatory factors. 

Furthermore, chronic foreign body reaction to the stent may exacerbate these mechanisms 

thus accelerating neoatherosclerosis progression (red arrows), C-D. Representative 

intracoronary optical coherence tomography (OCT) images showing a native lipid plaque 

within the vessel (C) and a neoatherosclerotic lesion characterized by the lipid-laden 

neointima (D). 

Figure 3. A summary of risk factors associated with neoatherosclerosis and currently 

available pharmacotherapeutic agents that might address pathophysiologic pathways 

associated with the formation and progression of neoatherosclerosis after stent implantation 

due to an acute coronary syndrome. For the making of this figure, illustration elements that 

were kindly provided by the Servier were used. Servier Medical Art is licensed under a 

Creative Commons Attribution V.3.0 Unported License. 
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Figure 4. A scheme showing the effects of methotrexate on NF-kB pathway and pleiotropic 

roles of NF-kB pathway in the pathophysiology of the disease. 

Figure 5. A scheme showing the effects of TREM-1 pathway activation and its implicated 

role in in-stent restenosis and cellular inflammation. TREM-1 blockade by an experimental 

pharmacologic agent is also presented. 
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Table 1. Independent clinical risk factors that are associated with late or very late in-stent 

restenosis due to neoatherosclerosis 

Late or very late neoatherosclerosis (>12 months or >36 months) 

Risk factors PMID 

Presence of peristrut microhemorrhages 27865168 

Increased out-stent plaque volume (OSPVI) 29066157 

Increased mean neointimal thickness (NIT) 23891431 

Stent length  28943494 

Stent fracture 29151488 

„Off-label“ DES usage  23227328 

Localized hypersensitivity reaction 25423451 

DES as an used stent type 22798521, 29066157 

Duration of DES implant >48 months, increased stent age 25613674, 22798521 

DES duration > 20 months 21646494 

BVS duration of 5 years or more 29699614 

Current smoking 22798521 

Chronic kidney disease 25613674, 22798521 

Diabetes mellitus and HbA1c levels >7%, 

Insulin resistance 

24514877, 26413014 

>70 mg/dL of LDL cholesterol at OCT follow-up 25613674 

Absence of ACE-Is or ARBs in post-discharge pharmacotherapy 22798521 

Early neoatherosclerosis (<12 months) 

Arterial hypertension and high pre-stent LDL cholesterol levels 26385044 

Abbreviations: ACE Is-angiotensin-converting enzyme inhibitors; ARBs-angiotensin 2 receptor blockers; BVS-

bioresorbable vascular scaffold; DES-drug-eluting stent; LDL-low-density lipoprotein; PMID-PubMed ID number 
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