Title: Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus

Article Type: Full Length Article

Keywords: bivalves; pathogenic vibrios; Vibrio coralliilyticus; Mediterranean mussels; hemocytes; immune response; embryos

Abstract: Vibrio coralliilyticus (V.c.) has emerged as a coral pathogen of concern throughout the Indo-Pacific reef. The interest towards understanding its ecology and pathogenic potential has increased since V.c. was shown to be strongly virulent also for other species; in particular, it represents a serious threat for bivalve aquaculture, being one of the most important emerging pathogen responsible for oyster larval mortalities worldwide. V.c. has a tightly regulated temperature-dependent virulence and it has been related to mass mortalities events of benthic invertebrates also in the temperate north-western Mediterranean Sea. However, no data are available on the effects of V.c. in the mussel Mytilus galloprovincialis, the most abundant aquacultured species in this area.

In this work, responses of M. galloprovincialis to challenge with V.c. (ATCC BAA-450) were investigated. In vitro, short term responses of mussel hemocytes were evaluated in terms of lysosomal membrane stability, bactericidal activity, lysozyme release, ROS and NO production, and ultrastructural changes, evaluated by TEM. In vivo, hemolymph parameters were measured in mussels challenged with V.c. at 24h p.i. Moreover, the effects of V.c. on mussel early embryo development (at 48 hpf) were evaluated. The results show that both in vitro and in vivo, mussels were unable to activate immune response towards V.c., and that challenge mainly induced lysosomal stress in the hemocytes. Moreover, V.c. showed a strong and concentration-dependent embryotoxicity. Overall, the results indicate that, although M. galloprovincialis is considered a resistant species to vibrio infections, the emerging pathogen V.c. can represent a potential threat to mussel aquaculture.

Suggested Reviewers: Miren Cajaraville
miren.p.cajaraville@ehu.es
expert on mussel responses to environmental stress

Daniela Ceccarelli
daniela.ceccarelli@wur.nl
expert on Vibrio
Maria Jose Figueras
mariajose.figueras@urv.cat
expert on Vibrio

Christine Paillard
christine.paillard@univ-brest.fr
expert on pathogen bivalve interactions

Elizabeth Dyrynda
E.A.Dyrynda@hw.ac.uk
expert on invertebrate immunology
Dear Prof. Hirono,

I send you the manuscript “Responses of *Mytilus galloprovincialis* to challenge with the emerging marine pathogen *Vibrio coralliilyticus*” to be considered for publication in Fish & Shellfish Immunology.

I thank you for your kind attention and look forward to hearing from you.

Best regards,
Teresa Balbi

Dept. of Earth, Environment and Life Sciences (DISTAV)
University of Genoa
Corso Europa 26
16132 – Genoa
Italy

Teresa.Balbi@unige.it
Highlights

- Evaluation of *Mytilus* responses to the emerging pathogen *V. coralliilyticus*
- In vitro, in vivo and early developmental effects were evaluated
- *V. coralliilyticus* induced lysosomal stress in the hemocytes
- No induction of the immune response
- Strong and concentration-dependent effects on embryo development
Graphical Abstract

V. coralliiypticus

M. galloprovincialis hemocytes

M. galloprovincialis embryo

30 min - 2 h

24 h

48 h

lysosomal stress
no immune response
embryo malformations
Responses of *Mytilus galloprovincialis* to challenge with the emerging marine pathogen *Vibrio coralliilyticus*

Teresa Balbi\(^a\)*, Manon Auguste\(^a\), Katia Cortese\(^b\), Michele Montagna\(^a\), Alessio Borello\(^a\), Carla Pruzzo\(^a\), Luigi Vezzulli\(^a\), Laura Canesi\(^a\)

\(^a\)Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy;
\(^b\)Dept. of Experimental Medicine (DIMES), University of Genoa, Italy

Keywords: bivalves; pathogenic vibrios; *Vibrio coralliilyticus*; Mediterranean mussels; hemocytes; immune response, embryos

Running title: Effects of *V. coralliilyticus* in *Mytilus galloprovincialis*

* Corresponding Author

Teresa Balbi
Dept. of Earth, Environment and Life Sciences (DISTAV)
University of Genoa
Corso Europa 26
16132 – Genoa
Italy

Teresa.Balbi@unige.it
1. Introduction

Marine bivalves, due to their filter-feeding habit, accumulate large numbers of bacteria from the harvesting waters. Bivalves possess both cellular and humoral defence mechanisms that cooperate to kill and eliminate infecting bacteria [1,2]. However, some bacteria can be pathogenic to the bivalve host, in particular those belonging to the genus *Vibrio*. Pathogenic vibrios can mainly affect larval stages of cultured bivalves, and are also involved in diseases of juveniles and adults [3-5]. The *Vibrio* species with importance for bivalve hatcheries due to the known pathogenicity for larvae and spat have been recently summarized [6]. These include species from the *Anguillarum, Coralliilyticus, Harveyi, Orientalis, Pectenicida* and *Splendidus* clades.

Vibrio coralliilyticus has emerged as a coral pathogen of concern throughout the Indo-Pacific reef [7,8]. The interest towards understanding its ecology and pathogenic potential has increased since *V. coralliilyticus* was shown to be strongly virulent also for other species, such as unicellular algae [9,10], flies [10,11], rainbow trout (*Oncorhynchus mykiss*) and larval brine shrimp (*Artemia* spp.) [12]. Moreover, *V. coralliilyticus* represents a serious threat for bivalve aquaculture, being one of the most important emerging pathogen responsible for oyster larval mortalities worldwide [13-15]. *V. coralliilyticus* has been also associated with outbreaks of vibriosis in several other bivalve species, such as hard clam (*Mercenaria mercenaria*), New Zealand green-lipped mussel (*Perna canaliculus*), Atlantic bay scallop (*Argopecten irradians*) and naval shipworm (*Teredo navalis*). *V. coralliilyticus* has a tightly regulated temperature-dependent virulence and it has been related to mass mortality events of the purple gorgonian *Paramuricea clavata* in the temperate north-western Mediterranean Sea [16]. However, no information is available of the effects of *V. coralliilyticus* in the Mediterranean mussel *Mytilus galloprovincialis*, which represents the most abundant aquacultured species in this area.

Although *Mytilus* spp., including *M. galloprovincialis*, is particularly resistant to bacterial infections, it shows a remarkable specificity of the immune response towards different *Vibrio* spp. and strains, as demonstrated both in *vitro* and in *vivo* studies in adults [2,17,18]. In contrast, little
information is available on the possible vibrio pathogens affecting *Mytilus* embryo development [19].

In this work, data are presented on responses of *M. galloprovincialis* to challenge with the emerging marine pathogen *V. coralliilyticus*. *In vitro*, short term responses of mussel hemocytes to *V. coralliilyticus* were evaluated in terms of lysosomal membrane stability (LMS), bactericidal activity, extracellular lysozyme release, ROS and NO production. The effects on hemocyte morphology were also investigated by TEM. *In vivo*, hemocyte LMS, ROS production and serum lysozyme activity were measured in mussels challenged with *V. coralliilyticus* at 24 h post-injection. Moreover, the effects of *V. coralliilyticus* on mussel early embryo development (at 48 h post fertilization) were evaluated.

2. Methods

2.1 Mussels and bacteria

Mussels (*Mytilus galloprovincialis* Lam), 4-5 cm long, were purchased from an aquaculture farm (Arborea-OR, Italy) in October 2017 and kept for 1 day in static tanks containing aerated artificial sea water (ASW), salinity 36 ppt (1 L/mussel) at 18°C. Hemolymph was extracted from the posterior adductor muscle using a sterile 1 mL syringe with an 18 G1/2″ needle. With the needle removed, hemolymph was filtered through a sterile gauze and pooled in 50 mL Falcon tubes at 18°C. Hemolymph serum was obtained by centrifugation of whole hemolymph at 100 x g for 10 min, and the supernatant was sterilized through a 0.22 μm-pore filter.

V. coralliilyticus ATCC BAA-450 and *V. coralliilyticus* TAV24 (isolated from diseased *Paramuricea clavata* colonies [16]) were cultured in Zobell Marine Broth 2216 (Difco Laboratories) at 20°C under static conditions; after overnight growth, cells were harvested by centrifugation (4500 x g, 10 min), washed three times with artificial seawater (ASW), and resuspended to an Abs_{600} = 1 (about 10^8 CFU/mL). Thiosulfate Citrate Bile Salts Sucrose (TCBS) Agar (Conda Lab, Spain) was used throughout the experiments.
2.2 In vitro challenge of Mytilus hemocytes with V. coralliilyticus

Hemocyte monolayers were prepared as previously described [18,20] and incubated at 18°C with suspensions of V. coralliilyticus suitably diluted in hemolymph serum at different concentrations (5 x 10^5, 5 x 10^6, 5 x 10^7 CFU/mL), for different periods of times, depending on the endpoint measured. Untreated hemocyte samples in serum were run in parallel. All experiments were performed in triplicate.

2.2.1 Determination of lysosomal membrane stability-LMS

Lysosomal membrane stability-LMS in hemocyte monolayers was evaluated by the NRRT assay as previously described [17,18,20]. Hemocyte monolayers on glass slides were pre-incubated for 30 min with different concentrations of V. coralliilyticus. Hemocyte monolayers were washed out and incubated with 20 µL of a neutral red (NR) solution (final concentration 40 µg/mL from a stock solution of NR 20 mg/mL DMSO-dimethylsulfoxide). After 15 min, excess dye was washed out, 20 µL of ASW was added, and slides were sealed with a coverslip. Every 15 min, slides were examined under optical microscope and the percentage of cells showing loss of dye from lysosomes in each field was evaluated. For each time point, 10 fields were randomly observed, each containing 8-10 cells. The endpoint of the assay was defined as the time at which 50% of the cells showed sign of lysosomal leaking, i.e. the cytosol becoming red and the cells rounded. All incubations were carried out at 18°C.

For comparison, LMS was evaluated using the Mediterranean strain V. coralliilyticus TAV24 [16] in the same experimental conditions as described above.

2.2.2 Bactericidal activity

Bactericidal activity was evaluated as previously described [20,21]. Hemocyte monolayers were incubated with different concentrations of V. coralliilyticus at 18°C, for different periods of
time (60–90 min). Immediately after the inoculum (T = 0) and after 60 and 90 min of incubation, supernatants were collected and hemocytes were lysed by adding filter sterilized ASW supplemented with 0.05% Triton x-100 and by 10 s agitation. Supernatants and lysates were pooled and tenfold serial diluted in ASW. Aliquots (100 μL) of the diluted samples were plated onto TCBS Agar. After overnight incubation at 20°C, the number of colony-forming units (CFU) per hemocyte monolayer (representing live, culturable bacteria) was determined. Percentages of killing were determined in comparison to values obtained at zero time. The number of CFU in control hemocytes never exceeded 0.1% of those enumerated in experimental samples.

2.2.3 Lysozyme release, ROS and NO production

For these endpoints, hemocytes were incubated with suspensions of *V. coralliilyticus* in serum at 5 x 10⁶ CFU/mL. Lysosomal enzyme release by mussel hemocytes was evaluated by measuring lysozyme activity in the extracellular medium as previously described [20]. Lysozyme activity in aliquots of serum of control hemocytes and hemocytes incubated *V. coralliilyticus* for different periods of time (from 5 to 30 min), was determined spectrophotometrically at 450 nm using a suspension of *Micrococcus lysodeikticus* (15 mg/100 mL in 66 mM phosphate buffer, pH 6.4). Data are expressed as percentage of control values.

Extracellular generation of reactive oxygen species (ROS) was measured by the reduction of cytochrome c as previously described [18]. Aliquots of hemocyte suspension were incubated for 30 min with cytochrome c solution (75 mM ferricytochrome c in TBS), with or without *V. coralliilyticus*. Cytochrome c in TBS was used as a blank. Samples were read at 550 nm and the results expressed as changes in OD per mg protein.

Nitric oxide (NO) production was evaluated as described previously [18] by the Griess reaction, which quantifies the nitrite (NO₂⁻) content of supernatants. Aliquots of hemocyte suspensions were incubated at 18°C with or without bacterial suspension of *V. coralliilyticus* for 2 h. After the incubation, samples were frozen and stored at -80°C until analysis. Before analysis,
samples were thawed and centrifuged (12000 x g for 30 min at 4°C). Aliquots of supernatants were incubated for 10 min in the dark with 1% (w/v) sulphanilamide in 5% H₃PO₄ and 0.1% (w/v) N-(1-naphthyl)-ethylenediamine dihydrochloride. Samples were read at 540 nm, and the molar concentration of NO₂⁻ in the sample was calculated from standard curves generated using known concentrations of sodium nitrite. Data are expressed as nitrite accumulation per protein content, determined according to the bicinchoninic acid (BCA) method using bovine serum albumin (BSA) as a standard.

2.2.4 Transmission electron microscopy (TEM)

TEM of mussel hemocytes was carried out as previously described [20]. Hemocyte monolayers were seeded on glass chamber slides for 20 min at 18°C (Lab-Tek, Nunc, 177380), and incubated with V. coralliilyticus (5 x 10⁶ CFU/mL in hemolymph serum) for 5, 15 and 30 min. Samples were washed out with 0.1 M cacodylate buffer in ASW and fixed in 0.1 M cacodylate buffer in ASW containing 2.5% glutaraldehyde in ASW, for 1 h at room temperature. The cells were postfixed in 1% osmium tetroxide in ASW for 10 min and 1% uranyl acetate in ASW for 1 h. Subsequently, samples were dehydrated through a graded ethanol series and embedded in epoxy resin (Poly-Bed; Polysciences, Inc., Warrington, PA) overnight at 60°C. About 50 cells per sample were observed by F20 Tecnai electron microscope (Philips, Eindhoven, The Netherlands), and representative images were taken with an Eagle CCD camera and iTEM software and processed with Adobe Photoshop CS2.3.2.

2.3 In vivo challenge of adult mussels with V. coralliilyticus

Mussels were kept for 24 h in static tanks containing aerated artificial sea water (1 L/mussel) at 18°C. Mussels were in vivo challenged by injection of live V. coralliilyticus into the posterior adductor muscle, as previously described [20], with 50 µL of a bacterial suspension containing 1 x 10⁸ CFU/mL in PBS-NaCl (in order to obtain a nominal concentration of 5 x 10⁶ CFU/mussel).
Control mussels were injected with PBS-NaCl. After challenge, mussels were returned to sea water. At 24 h post injection (p.i.), hemolymph was collected from the posterior adductor muscle of 4 pools of 4 mussels each. No mortality was observed during the experiments.

At 24 h p.i. in hemolymph samples from control and vibrio-injected mussels, hemocyte LMS and ROS production, soluble lysozyme activity, as well as bacterial counts, evaluated as number of CFU/mL of whole hemolymph were determined as described above.

2.4 Effects of *V. coralliilyticus* on embryo development

Sexually mature mussels (*M. galloprovincialis* Lam.), purchased from an aquaculture farm in the Ligurian Sea (La Spezia, Italy) between November and March, were transferred to the laboratory and acclimatized in static tanks containing aerated artificial sea water [22], pH 7.9-8.1, 36 ppt salinity (1 L/animal), at 18 ± 1°C. Mussels were utilized within 2 days for gamete collection. When mussels beginning to spontaneously spawn were observed, each individual was immediately placed in a 250 mL beaker containing 200 mL of aerated ASW until complete gamete emission. After spawning, mussels were removed from beakers and sperms and eggs were sieved through 50 mm and 100 mm meshes, respectively, to remove impurities. Egg quality (shape, size) and sperm motility were checked using an inverted microscope. For each experiment, eggs and sperm from two individuals were selected and counted to give a single pairing. Eggs were fertilized with an egg:sperm ratio 1:10 in polystyrene 96-microwell plates (Costar, Corning Incorporate, NY, USA). After 30 min fertilization success (n. fertilized eggs/n. total eggs x 100) was verified by microscopical observation (>85%).

The 48-h embryotoxicity assay [22] was carried out in 96-microwell plates as described by [23]. Aliquots of 20 µL of suspensions of *V. coralliilyticus* (obtained from a 10^7 CFU/mL stock suspension), suitably diluted in ASW, were added to fertilized eggs in each microwell to reach the nominal final concentrations (10^1, 10^2, 10^3, 10^4, 10^5, 10^6 CFU/mL) in a 200 µL volume. At each dilution step, all suspensions were immediately vortexed prior to use. Microplates were gently
stirred for 1 min, and then incubated at 18 ± 1°C for 48 h, with a 16 h:8 h light:dark photoperiod. All the following procedures were carried out following [22]. At the end of the incubation time, samples were fixed with buffered formalin (4%). All larvae in each well were examined by optical and/or phase contrast microscopy using an inverted Olympus IX53 microscope (Olympus, Milano, Italy) at 40X, equipped with a CCD UC30 camera and a digital image acquisition software (cellSens Entry). Observations were carried out by an operator blind to the experimental conditions. A larva was considered normal when the shell was D-shaped (straight hinge) and the mantle did not protrude out of the shell, and malformed if had not reached the stage typical for 48 hpf (trocophore or earlier stages) or when some developmental defects were observed (concave, malformed or damaged shell, protruding mantle). The acceptability of test results was based on controls for a percentage of normal D-shell stage larvae >75% [22]. Moreover, in each sample the percentage of malformed D-veligers, immature veligers, and trocophorae was evaluated.

2.5 Data analysis

The results are the mean ± SD of at least 4 experiments and analyses, unless otherwise indicated, performed in triplicate. Statistical analysis was performed by ANOVA followed by Tukey’s post hoc test or by Mann-Whitney U test using the GraphPad Instat software.

Embriotoxicity test data, representing the mean ± SD of 4 independent experiments, carried out in 6 replicate samples in 96-microwell plates, were analyzed by ANOVA plus Tukey's post test. The EC$_{50}$ was defined as the concentration causing 50% reduction in the embryogenesis success, and their 95% confidence intervals (CI) were calculated by PRISM 5 software (GraphPad Prism 5 software package, GraphPad Inc.).

3. Results

3.1 Effects of *in vitro* challenge with *V. coralliilyticus* on hemocyte functional parameters
Lysosomal membrane stability: as shown in Fig. 1A, incubation with *V. coralliilyticus* ATCC BAA-450 for 30 min induced a dose-dependent decrease in hemocyte LMS, evaluated by the NRRT assay, with respect to controls. The lowest concentration tested (5 x 10^5 CFU/mL) was ineffective, while a moderate decrease was observed at 5 x 10^6 CFU/mL (-25%; p<0.05). At the highest concentration (5 x 10^7 CFU/mL) lysosomal membranes were completely destabilized (-98%; p<0.01). Interestingly, similar results were obtained with the Mediterranean strain *V. coralliilyticus* TAV24 (Fig. S1).

Bactericidal activity: the capacity of mussel hemocytes to kill *V. coralliilyticus* ATCC BAA-450 was investigated using a bactericidal assay that evaluates the number of live, culturable bacteria at different times of incubation (Fig. 1B). Hemocytes were incubated with *V. coralliilyticus*, at the same concentrations utilized in the LMS assay, and the results are reported as % of killed bacteria with respect to the inoculum. The results clearly show a dose-dependent bactericidal activity towards *V. coralliilyticus*. At 5 x 10^5 CFU/mL, *V. coralliilyticus* was efficiently killed by mussel hemocytes (from 40% at 60 min to 65% at 90 min). A lower percentage of killing was observed at the concentration of 5 x 10^6 CFU/mL (20% at both 60 and 90 min). At the highest concentration tested (5 x 10^7 CFU/mL) no significant bactericidal activity was recorded (less than 10% at 90 min).

On the basis of these results, subsequent experiments to evaluate other immune parameters were carried out using a concentration of bacteria of 5 x 10^6 CFU/mL, and the results are reported in Fig. 2. Immediately after addition of ATCC BAA-450 bacteria, a significant increase in extracellular lysozyme activity was observed with respect to controls (+37%, p<0.05). No differences were measured at subsequent times of incubation. *V. coralliilyticus* ATCC BAA-450 did not affect extracellular ROS production (B) or nitrite accumulation (C) after 30 min and 2 h, respectively.

3.2 Effects of *in vitro* challenge with *V. coralliilyticus* on hemocyte ultrastructure
The effects of challenge with *V. coralliilyticus* ATCC BAA-450 (5 x 10^6 CFU/mL) on the morphology of mussel hemocytes were observed by TEM at different times of incubation (5, 15 and 30 min) and representative images are reported in Fig. 3. Fig. 3A shows *V. coralliilyticus* ATCC BAA-450 before the addition to the hemocytes. A control hemocyte is shown in Fig. 3B; as previously reported [18,20], in hemocyte monolayers control cells are mainly represented by granulocytes, whose cytoplasm is filled by small intracellular granules of different electron densities.

V. coralliilyticus induced morphological changes in the hemocytes at the plasma membrane and cytoplasmic level as soon as 5 min from addition. Some cells formed irregular pseudopodial extensions (Fig. 3C), while others showed a more flattened shape, with the cell membrane lining portions of empty cytoplasm (Fig. 3D). Different ultrastructural changes were more evident at 15 min post-infection. In addition to the formation of long pseudopodia, *V. coralliilyticus* mainly affected the intracellular vacuolar system, as shown by the appearance of enlarged vacuoles of heterogeneous content, empty vacuoles, or vacuoles containing granular material (Fig. 3E and 3F). At 30 min, large electron dense vacuoles of heterogeneous content were observed, suggesting lysosomal fusion events, together with empty vacuoles and irregular plasma membrane surfaces (Fig. 3G and 3H). No bacterial internalization was observed at any time of incubation (not shown).

3.3 Effects of *in vivo* challenge with *V. coralliilyticus* on hemolymph parameters

Mussels were injected with *V. coralliilyticus* ATCC BAA-450 in order to reach a nominal concentration of 5 x 10^6 CFU/mL hemolymph and samples were collected after 24 h p.i. Hemocyte LMS, serum lysozyme activity and ROS production were evaluated, as well as bacterial cell counts in whole hemolymph samples. The results show that *in vivo* challenge with *V. coralliilyticus* lead to a moderate but significant decrease in LMS at 24 h p.i. (-23%; p<0.05) (Fig. 4A), comparable to that observed in *in vitro* experiments. No increases in serum lysozyme activity (Fig. 4B) and hemocyte ROS production (Fig. 4C) were observed; interestingly, the basal levels of ROS were even
reduced with respect to controls (-24%, p<0.05). Finally, in V. coralliilyticus-injected mussels, Vibrio counts were significantly higher (about 7-folds; p<0.01) in hemolymph collected at 24 h p.i., compared to those in hemolymph collected immediately after infection (T=0) (Fig. 4D), indicating bacterial growth.

3.4 Effects of V. coralliilyticus on embryo development

Fertilized eggs were exposed to different concentrations (from 10^1 to 10^6 CFU/mL) of V. coralliilyticus ATCC BAA-450 in 96-microwell plates, and the percentage of normal D-larvae was evaluated after 48 hpf. The results, reported in Fig. 5, show that V. coralliilyticus significantly affected normal larval development, with an EC$_{50}$ value of 5.045 x 10^3 CFU/mL (4.599 - 5.492, 95% CI) (Fig. 5A). The percentage of normal D-larvae was significantly reduced from the lowest concentration tested (from -30% vs controls at 10 CFU/mL) and a dose-dependent effect was observed at increasing concentrations, up to a complete impairment of normal D-larvae development at 10^6 CFU/mL (-92.8%).

When the type of effect caused by bacterial challenge was evaluated (Fig. 5B) V. coralliilyticus induced a progressive increase in the percentage of malformed embryos. At the highest concentration tested (10^6 CFU/mL), the presence of trocophorae/immature D-veligers was also observed, indicating developmental arrest. In Fig. 5C representative images of control embryos and embryos exposed to different concentrations of V. coralliilyticus are reported.

4. Discussion

The present work represents the first investigation on the responses of M. galloprovincialis to challenge with the emerging marine pathogen V. coralliilyticus. To this aim, the reference ATCC BAA-450 strain isolated from bleached corals near Zanzibar [7], was utilized. In vitro experiments were carried out in the presence of hemolymph serum, in order to simulate the in vivo conditions, taking into account also the possible role of soluble hemolymph components, and functional
responses of *M. galloprovincialis* hemocytes were evaluated. The results show that challenge with *V. coralliilyticus* induced a dose-dependent lysosomal membrane destabilization that was inversely correlated with bactericidal activity. In particular, whereas at the lowest vibrio concentration tested, hemocytes, in the absence of lysosomal stress, were able to efficiently kill bacteria, at the highest concentration tested (10⁷ CFU/mL) *V. coralliilyticus* was cytotoxic, and no bactericidal activity was observed. Interestingly, from these data *V. coralliilyticus* appears to be more virulent to *M. galloprovincialis* hemocytes with respect to other *Vibrio* species and strains tested in the same experimental conditions (*V. splendidus, V. aestuarianus, V. anguillarum, V. tapetis, V. cholerae*)[2 and references quoted therein].

Other functional responses were evaluated at intermediate *Vibrio* concentrations (10⁶ CFU/mL), when moderate lysosomal destabilization in hemocytes and some bactericidal activity were observed. The results indicate no activation of immune parameters, except for an extremely rapid extracellular lysozyme release, observed immediately after addition of *V. coralliilyticus*. In these conditions, TEM analysis of hemocytes showed that as soon as after 5 min incubation, cell membranes lining empty portions of cytoplasm were present, thus indicating possible degranulation. Moreover, after 30 min incubation *V. coralliilyticus* induced lysosomal fusion events, in line with LMS data. However, no vibrio internalization was observed. Overall, TEM observations confirm the results of functional parameters and indicate that *in vitro* challenge with *V. coralliilyticus* does not result in intracellular degradation of bacteria. The limited bactericidal activity observed in these conditions (about 20%) may be probably related to the rapid extracellular degranulation of hydrolytic enzymes.

The effects of *V. coralliilyticus* were also investigated *in vivo*, in hemolymph from injected mussels sampled after 24 h p.i. In these conditions, challenge with *V. coralliilyticus* induced a significant decrease in hemocyte LMS, but did not result in activation of immune parameters, thus confirming the *in vitro* data. In addition, vibrio challenge even reduced basal ROS production.
Accordingly, the results indicate that *V. coralliilyticus* can grow within mussel hemolymph, as shown by the large increase in *Vibrio* counts registered in whole hemolymph samples at 24 h p.i.

V. coralliilyticus also affected mussel embryo development, inducing a dose-dependent decrease in the percentage of normal D-veligers at 48 hpf, with an EC$_{50}$ of 5.045 x 103 CFU/mL. Interestingly, the effect was significant from the lowest concentration tested (10 CFU/mL), approximately corresponding to a ratio of 2 CFU/40 embryos in each well.

Challenge with *V. coralliilyticus* resulted in embryo malformations at all the concentrations tested. Moreover, at higher concentrations, the presence of trocophorae/immature D-veligers was observed, indicating that *V. coralliilyticus* could also induce a delay in development. In all experimental conditions, erratic closing of the valves, velum detachment, and bacterial swarming around the embryos were observed, which are clear signs of disease in the larvae [4,24,25]. In both Eastern and Pacific oyster larvae, challenge with *V. coralliilyticus* ATCC BAA-450 for 6 days resulted in mortalities with LD$_{50}$ of 2.1 and 4 x 104 CFU/mL, respectively [15]. In *C. gigas*, *V. coralliilyticus* also induced a wide range of physiological, enzymatic, biochemical and molecular changes [14]. However, oyster data were obtained in 1-2 weeks old larvae. The results here reported represent the first data on the effects of *V. coralliilyticus* on early developmental stages of bivalves.

In *M. galloprovincialis*, immune capacities arise during mussel development as early as the trochophorae stage (24 hpf). At this developmental stage, gene expression has contributions of maternal origin, but stimulation induces the expression of immune-related genes [26]. However, the present results show that mussel early embryos are particularly sensitive to *V. coralliilyticus*, and indicate that they are unable to mount a defence response towards this pathogen.

V. coralliilyticus possess several virulence mechanisms, including powerful extracellular enzymes that have been linked to direct lysis of coral tissue [8]. Several authors demonstrated that the virulence of some strains is associated with the production of toxins, mainly extracellular metalloprotease (VtpA) and hemolysin (VthA) [27-30]. Furthermore, coral diseases not only depend on the presence of *Vibrio* pathogens and their virulence level, but are also the result of
complex interactions between the expression of different bacterial virulence factors and an increase of seawater temperature or other environmental stresses, as well as the physiological and immune status of the coral host [31].

Vibrio species are strongly thermodependent. In particular, for the reference strain of *V. coralliilyticus* ATCC BAA-450 a direct temperature regulation of multiple virulence mechanisms has been demonstrated at 27°C [32]. *V. coralliilyticus* is able to invade and to lyse the tissue of the coral *Pocillopora damicornis*, one of the most affected organisms, at temperatures higher than 27°C, while in a temperature range between 24°C and 26°C it kills the symbiotic algae of the coral [9]. At temperature below 24°C is totally avirulent [9,33]. In the present work, all experiments were carried out at the constant temperature of 18°C, in order to ensure the health and immune status of the mussels. However, even in these conditions, both adult and embryos of *M. galloprovincialis* are apparently unable to mount an efficient immune response towards *V. coralliilyticus*. This results in lysosomal stress in the hemocytes both *in vitro* and *in vivo*, in bacterial growth in the hemolymph of adult mussels challenged *in vivo*, and in malformations in early embryos. Recent data indicate that *in vivo* challenge of the New Zealand Greenshell Mussel *Perna canaliculus* with a *V. coralliilyticus/neptunius*-like isolate induced perturbations of the immune system, oxidative stress, inflammation and metabolic changes at 6 days p.i. [34]. Overall, these findings provide a further insight into the pathogenic effects of *V. coralliilyticus* in mussels.

In a global warming scenario, an increase in the seawater temperature could promote the proliferation and the potential disease outbreaks associated with *Vibrio* pathogens also in mussels. This is of particular concern in temperate regions such as the Mediterranean sea, where the relative increase in seawater temperature seems to be higher than in tropical areas [31]. Mediterranean strains of *V. coralliilyticus* have been isolated from diseased *P. clavata* colonies collected at Tavolara island (Sardinia, Italy) [16]. Among these, the most virulent strain is TAV24, recently identified as a new genotype of *V. coralliilyticus* by MLST and vcpA gene sequencing analyses [35]. The results here reported indicate that the *in vitro* effects of the TAV24 strain on hemocyte
lysosomal membrane stability were comparable with those of the reference strain. The responses of *M. galloprovincialis* to challenge with the highly virulent Mediterranean strain require further investigation. Despite the fact that *V. coralliilyticus* appears to be a global bivalve pathogen, there is limited information about its pathogenicity, infection mechanism and/or disease mitigation. These studies will contribute to understand the potential threat of this vibrio to bivalve aquaculture in the Mediterranean.

Acknowledgments

This work was funded by the EU project H2020 VIVALDI (Preventing and Mitigating Farmed Bivalve Diseases), contract n° 678589.

The authors wish to thank Dr. Rita Fabbri for her invaluable technical assistance and Dr. Giovanni Tassistro for bacterial cultures.

References

B. Austin, D. Austin, R. Sutherland, F. Thompson, J. Swings, Pathogenicity of vibrios to rainbow trout (*Oncorhynchus mykiss*, Walbaum) and *Artemia* nauplii, Environ. Microbiol. 7 (2005) 1488-1495.

Figure legends.

Fig. 1 - In vitro effects of *V. coralliilyticus* on lysosomal membrane stability-LMS and bactericidal activity.

A) Hemocyte monolayers were treated with different concentrations (5 x 10^5, 5 x 10^6, 5 x 10^7 CFU/mL) of *V. coralliilyticus* for 30 min and LMS was evaluated as described in Methods. Data, expressed as percent values with respect to controls and representing the mean ± SD of 4
experiments in triplicate, were analysed by ANOVA followed by Tukey’s post hoc test (* = p<0.05; ** = p<0.01).

B) Hemocytes were incubated for different periods of time (60-90 min) with *V. coralliilyticus*, at the same concentrations utilized in the LMS assay, and the number of viable, cultivable bacteria (CFU) per monolayer was evaluated. Percentages of killing were determined in comparison to values obtained at zero time.

Fig. 2 - In vitro effects of *V. coralliilyticus* on functional parameters of *Mytilus* hemocytes.

Lysosomal enzyme release (A), extracellular ROS production (B) and NO accumulation (C) were evaluated after incubation with *V. coralliilyticus* (*V.c.*) at 5×10^6 CFU/mL in hemolymph serum. Data are the mean ± SD of at least 4 experiments performed in triplicate. Statistical analysis was performed by ANOVA followed by Tukey’s post hoc test (* = p<0.05).

Fig. 3 - Early in vitro effects of *V. coralliilyticus* on the ultrastructure of mussel hemocytes evaluated by TEM.

Representative images of A) *V. coralliilyticus* before addition to the hemocytes; B) Control hemocyte; C-H), hemocytes incubated with *V. coralliilyticus* (5×10^6 CFU/mL) for 5 min (C-D), 15 min (E-F) and 30 min (G-H). As soon as after 5 min incubation, the formation of irregular pseudopodial extensions and membrane vesicles was observed (C); moreover, many cells showed a more adherent, flattened shape, with the cell membrane lining empty portions of cytoplasm (arrowhead in D) and vesicles. At 15 min, single long filopodia were formed, as well as many vacuoles with heterogeneous content (E), empty vesicles and vesicles with granular material (F). At 30 min, large electron dense vacuoles of heterogeneous content were observed, suggesting lysosomal fusion events (G and enlargement in H), together with empty vacuoles, cytoplasmic disorganization and irregular plasma membrane surfaces (arrowhead in H). No intracellular bacteria were observed.
Fig. 4 - *In vivo* effects of *V. coralliilyticus* on hemolymph parameters of *Mytilus* hemocytes.

Hemocyte lysosomal membrane stability-LMS (A), serum lysozyme activity (B), ROS production (C) and bacterial cell counts (D) were evaluated in hemolymph sampled from mussels challenged with *V. coralliilyticus* (*V.c.*) at 24 h p.i.. Data are the mean ± SD of at least 4 experiments performed in triplicate. Statistical analysis was performed by ANOVA followed by Tukey’s post hoc test (* = p<0.05; ** = p<0.01).

Fig. 5 - Effects of different concentrations of *V. coralliilyticus* on *M. galloprovincialis* normal larval development in the 48 h embriotoxicity assay.

A) Percentage of normal D-shaped larvae with respect to controls. B) Percentage of normal D-veliger (dark grey), malformed D-veliger (light grey), pre-veligers (white) and trocophorae (black) in each experimental condition. Data represent the mean ± SD of 4 experiments carried out in 96-multiwell plates (6 replicate wells for each sample). C) Representative images of control embryos and embryos exposed to different concentrations of *V. coralliilyticus*, showing progressive shell malformations, including asymmetric valvae, irregular hinges, externalized velum and, at the highest concentration of bacteria, immature embryos. Bacteria swarming around larvae can be observed at increasing concentrations.
Figure 1

(A) LMS (% of Control) against V. corallilyticus (CFU/mL) with bars for different concentrations.

(B) Percentage Killing over time (min) for different concentrations of V. corallilyticus.

- **: Statistically significant
- ***: Highly significant

Click here to download high resolution image
Figure 2

(A) Lysozyme release (% of Control) over time (min): 0, 15, 30.

(B) Extracellular ROS production (Abs 550 nm/mg protein) for C and V.c. treatments.

(C) Nitrite accumulation (nmol/mg protein/ml) for C and V.c. treatments.

* denotes statistical significance.
Figure 5

(A) Graph showing the percentage of normal D-larvae (% Normal D-Larvae) in relation to V. coralliilyticus (CFU/mL) concentration.

(B) Bar graph showing the percentage of different larval stages (Pre-veliger, Trocophorae, Malformed D-larvae, Normal D-larvae) at various concentrations of V. coralliilyticus (CFU/mL).

(C) Images of D-larvae at different concentrations of V. coralliilyticus (CFU/mL): 0, 10^1, 10^2, 10^3, 10^4, 10^5, 10^6.
Figure S1
Click here to download high resolution image

![Graph showing NRR Time (min) against V. coralliilyticus (CFU/mL)](image_url)
Supplementary material for online publication only
Click here to download Supplementary material for online publication only: Supplementary Information.doc