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Abstract— Modal decomposition is pretty popular in fluid
mechanics, especially for data-driven analysis. Dynamic mode
decomposition (DMD) allows to identify the modes that describe
complex phenomenona such as those physically modelled by the
Navier-Stokes equation. The identified modes are associated
with residuals, which can be used to detect a meaningful
change of regime, e.g., the formation of a vortex. Toward this
end, moving horizon estimation (MHE) is applied to identify
the trend of the norm of the residuals that result from the
application of DMD for the purpose to automatically classify
the time evolution of fluid flows. The trend dynamics is modelled
as a switching nonlinear system and hence an MHE problem is
solved in such a way to monitor the time behavior of the fluid
and quickly identify changes of regime. The stability of the
estimation error given by MHE is proved. The combination
of DMD and MHE provide successful results as shown by
processing experimental datasets of the velocity field of fluid
flows obtained by a particle image velocimetry.

I. INTRODUCTION

The motion of a fluid flow is described by the Navier-
Stokes equation. This equation can be directly solved by
means of advanced computational model such as the so-
called direct numerical simulation (DNS), which are nowa-
days adopted even for complex geometries. This solution
leads to the generation of large amount of data from which
it is often difficult to directly extract useful information. The
same issues arise with the experimental measurements of
the velocity field of fluid flows such as those obtained by a
particle image velocimetry (PIV).

The large amount of information available by DNS and
PIV need to be properly reduced to simple models in order
to be adopted by designers for the purpose of analysis as
well as for devising some control setup of the fluid flow.
Among the recent post-processing tools, the Dynamic Mode
Decomposition (DMD) is one of the most promising to
reduce the computational difficulties to deal with such com-
plex systems [1]. This technique isolates the main dynamics
of the system under investigation by providing a simpler
representation of the dominant structures (the modes of the
decompositions) and their temporal evolution. Namely, the
DMD extracts the dominant dynamics through the linear
transformation best mapping (in a least square sense) of
successive ensembles of snapshots. Based on linear system
theory, this technique identifies the instability waves [2] and
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provides the best linear approximation to their dynamics [1].
Thus, the peculiar information raised by the DMD concerns
with the identification of modes, their frequencies, and their
growth (or decay) rates [1]–[3]. However, the quality of
the results provided by such techniques depends on the
complexity of the dynamics of the fluid flow system. In
particular, unsteady flows that are characterized by a full
spectrum in the frequency domain require a careful analysis.

The evolution of fluid flows is described by the Navier-
Stokes equation, which is still today a challenge to be
analyzed and poses also additional issues because of the
necessity to deal with large amount of data. However, the
use of such equation may be really successful in improving
the quality of the results (see, e.g., [4]). DMD and proper
orthogonal decomposition (POD) [5], [6] tools allow for
reducing the degrees-of-freedom of a complex system (the
boundary layer in our case), thus the order of the problem
to be inspected. Moreover, they isolate the prevailing dy-
namics of the fluid flow under investigation by providing a
representation of the dominant structures (the modes of the
decompositions) and their temporal and spatial evolution.

In this paper, we investigate the use of moving horizon
estimation (MHE) in order to identify the trend of the norm
of the residuals that result from the linear mapping obtained
by using DMD. The identification of such a trend allows to
automatically detect the switching between different regimes
in a boundary layer flow, and consequently to extract modes,
frequencies, and growth rates in an accurate way. The pro-
posed method is used to treat experimental data obtained by
time resolved particle image velocimetry (TR-PIV) with the
aim to understand the transition processes of the boundary
layers growing along turbomachinery blades.

The identification of a trend may be cast as a constrained
estimation problem and MHE is particularly well-suited to
performing estimation under constraints in real time. The
literature on MHE is vast and concerns linear systems [7]–
[10], nonlinear systems [11]–[13], switching systems [14],
[15], and uncertain systems [16]–[19]. Here we focus on
identification of different fluid flow conditions, where, to get
a reliable estimate, we need to account for constraints on the
state estimates as well as on the occurrence of switching.
This may be important, for instance, if the estimate of the
specific flow conditions is used to set some control setup.

We will adopt the following notation. The symbol (x, y),
where x and y are column vectors, stands for [x>, y>]>.
Given a generic matrix M , |M | :=

(
λmax(M>M)

)1/2
=(

λmax(MM>)
)1/2

. Accordingly, in the special case of a



vector v, |v| := (v>v)1/2 denotes its Euclidean norm. The
Frobenius norm of a matrix M is |M |F :=

√
tr(M>M).

Given a complex matrix C, C∗ denotes its Hermitian.

II. ESTIMATION OF A TREND DYNAMICS

Consider the problem of estimating the trend of a nonnega-
tive sequence of measurements of a random process that may
be either decreasing or increasing (see Fig. 1).
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Fig. 1. Sketch of a sequence with a turning point from decreasing to
increasing trend.

A simple dynamics with a either decreasing or increasing
trend after a turning point can be modelled by the 2-mode
switching system

mode 1

 x1(t+ 1) = x2(t)x1(t)
x2(t+ 1) = α1 ∈ (0, 1)
y(t) = x1(t)

(1a)

mode 2

 x1(t+ 1) = x2(t)x1(t)
x2(t+ 1) = α2 ∈ (1,+∞)
y(t) = x1(t)

(1b)

at time instants t = 0, 1, . . . and with α1 and α2 unknown.
The problem of identifying the trend reduces to find con-
strained estimates of α1 and α2 together with a decision
on the turning point, which is of course unknown. Such
estimates may be affected by disturbances on the measures,
thus a MHE estimation approach may be well-suited to
performing this task for its robustness and the possibility to
account for the intrinsic nonlinear and switching dynamics.

Consider the switching discrete-time system

xt+1 = fλt
(xt, ut) (2a)

yt = hλt
(xt, ut) (2b)

where t = 0, 1, . . ., xt ∈ X ⊂ Rn is the continuous state
vector, λt ∈ {1, . . . , q} is the discrete state or system mode,
ut ∈ U ⊂ Rp is the control vector, and yt ∈ Rm is the
output vector. The functions fi : Rn × Rp → Rn and hi :

Rn×Rp → Rm are smooth. The set X and U are assumed to
be compact. System (2) is subject to the equality constraint

gλt
(xt, ut) ≤ 0 , t = 0, 1, . . . (3)

where each gi : Rn × Rp → Rq is smooth. Since the goal
consists in devising a moving-horizon estimator that relies

on the most recent batch of input and output data, let us de-
fine ytt−N := (yt, yt−1, . . . , yt−N ) and utt−N := (ut, ut−1, . . . ,
ut−N ). Concerning the discrete state, not all the possible
combinations of discrete states may in general occur; there-
fore, after defining λtt−N := (λt, λt−1, . . . , λt−N ) a generic
switching pattern from time t−N to t, let us denote by ΛN0
the set of the admissible switching patterns. Moreover, let

H
(
xt−N , u

t
t−N , λ

t
t−N

)

:=


hu,λt ◦ fu,λt−1 ◦ fu,λt−2 ◦ · · · ◦ fu,λt−N (xt−N )

hu,λt−1 ◦ fu,λt−2 ◦ · · · ◦ fu,λt−N (xt−N )
...

hu,λt−N+1 ◦ fu,λt−N (xt−N )

hu,λt−N (xt−N )

 ∈ R(N+1)m

where fu,λt (xt) := fλt
(xt, ut) and hu,λt (xt) :=hλt

(xt, ut) for
the sake of brevity. Thus, ytt−N = H

(
xt−N , utt−N , λ

t
t−N

)
.

Assumption 1 (Uniform continous-discrete observability):
There exists δ > 0

δ|x′ − x′′| ≤
∣∣H (x′, utt−N , λtt−N)−H (x′′, utt−N , λtt−N)∣∣

(4)
for all utt−N ∈ UN+1 and λtt−N ∈ ΛN0 .

An MHE strategy for (2) relies on the information ob-
tained in the recent past by computing a state estimate that
minimizes a least-squares cost

Jt(x̂
t
t−N , λ̂

t
t−N ) = µ |x̂t−N − x̄t−N |2 +

t∑
i=t−N

∣∣∣yi
− hλ̂i

(x̂i, ui)
∣∣∣2 = µ |x̂t−N − x̄t−N |2

+
∣∣∣ytt−N−H (x̂t−N , utt−N , λ̂tt−N)∣∣∣2 (5)

with µ > 0 and where x̂tt−N and λ̂tt−N are the estimates
of xtt−N and λtt−N , respectively.

Problem 1: At each t solve the problem

min Jt(x̂
t
t−N , λ̂

t
t−N ) w.r.t. x̂tt−N ∈ XN+1, λ̂tt−N ∈ ΛN0 s.t.

(6a)
x̂i+1 = fλ̂i

(x̂i, ui) , i = t−N, . . . , t− 1 (6b)

gλ̂i
(x̂i, ui) ≤ 0 , i = t−N, . . . , t . (6c)

At each time t we solve Problem 1 by obtaining x̂ot−N
and λ̂ot−N to compute x̄t−N+1 = fλ̂o

t−N
(x̂ot−N , ut−N ) as a

prediction of xt−N+1. Based on such a prediction, we solve
again Problem 1 at time t+ 1 and so on, as sketched in Fig.
2.

Example 1: Consider again (1), which can equivalently
expressed as follows:

xt+1 = fλt
(xt)

yt = Cxt

where C = (1 0) and

fλt
(xt) :=

[
x1,t x2,t
x2,t

]
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Fig. 2. MHE strategy from time t to t+ 1.

with xt = (x1,t, x2,t) and x2,t = αi if λt = i, i = 1, 2. Thus,
in case of N = 1 (i.e., a moving with the last two measures),
we deal with ytt−1 and hence, to simplify the notation, let us
refer to

y10 = H(x0, λ
1
0) =

[
x1,0 x2,0
x2,0

]
.

The simultaneous distinguishability of continuous and dis-
crete states corresponds to the satisfaction of the following
condition

H(x̄0, λ̄
1
0) = H(x̃0, λ̃

1
0)⇒ x̄0 = x̃0 and λ̄1 = λ̃1 . (7)

Such a condition is trivially satisfied for x̃1,0, x̄1,0 6= 0,
which is necessary for the switching patterns (1, ?) and (2, ?)
to be distinguishable (the symbol ? means the condition is
independent from the initial mode). Moreover, we get

∂H(x0, λ
1
0)

∂x0
=

[
x2,0 x1,0

1 0

]
. (8)

Since for x1,0 6= 0 we have that the rank of (8) is maximum
and (7) is satisfied, we can apply [20][Proposition 10, p.
1036] and conclude that (4) and hence Assumption 1 hold
over compact sets that do not intersect the set {x ∈ R2 :
Cx = 0}.

To proceed with the stability results, we need to assume
the following.

Assumption 2: The functions f and h are of class C2 and

|fλ(x̄, u)− fλ(x̃, u)| ≤ kf |x̄− x̃| , ∀x̄, x̃ ∈ X

for some kf > 0 and independently of u ∈ U and λ ∈
{1, . . . , q}.

The solution of Problem 1 provides a stable estimation
error.

Theorem 1: If µ is chosen such that

4µk2f
µ+ 2δ2

< 1 (9)

the estimation error et :=xt − x̂t is exponentially stable to
zero.
Proof. The proof is based on the use of lower and upper
bounds on the cost (5) in line with previous results reported
in the literature [12], [15]. The lower bound is derived by
using Assumption 1. The cost is upper bounded by exploiting
the definition of prediction backward, i.e., using the relation
x̄t−N+1 = fλ̂o

t−N
(x̂ot−N , ut−N ).

If the dynamic and measurement equations are affected
by bounded, additive noises, the estimation error is expo-
nentially bounded1.

Theorem 2: Suppose that

xt+1 = fλt
(xt, ut) + wt

yt = hλt
(xt, ut) + vt

where t = 0, 1, . . . and bounded disturbances wt and vt. Let
µ chosen such that

8µk2f
µ+ δ2

< 1 . (11)

Then the estimation error is exponentially bounded.
Proof. It is along the line of the proof of [11, Theorem 1, p.
1758]. As compared with the stability conditions of Theorem
1, (11) turns out to be more restrictive since the bounds
derived in the noise-free setting are tighter for avoiding the
passages required to account for the system and measurement
disturbances.

Theorems 1 and 2 enable to perform trend estimation with
stability guarantees by using (1) according to the proposed
approach and thanks to the satisfaction of the observability
condition as detailed in Example 1.

III. DYNAMIC MODE DECOMPOSITION

The Navier-Stokes equation is pretty popular in fluid
mechanics since it is able to describe the full evolution of a
fluid flow system. Such system can be highly complex and
it is described by a big amount of data that requires a proper
reduction. DMD is an analysis technique recently proposed
in [1] that is applicable for numerical as well as experimental
flow field data. Given a series of data with the temporal
or spatial evolution of a fluid flow, the DMD provides the
best linear transformation (in the least square sense) mapping
a flow field snapshot sequence into a successive one. This
sequence may be over space or time. For example, let us
suppose to have at disposal a dataset of a two-dimensional
velocity field made up by M repeated snapshots. If we define
V1 as the collection of snapshots 1 to M and V2 a similar

1A sequence vt ∈ Rn is said to be exponentially bounded if there exists
a ∈ (0, 1) and b > 0 such that |vt| ≤ |v0|at + b, t = 0, 1, . . . [11].



collection but with the snapshots from 2 to M+1, the DMD
results from the solution of the minimization problem

min
S∈S
|V2 − V1S|2F (12)

where the unknown S is a transformation matrix of appro-
priate dimension and in canonical form given by

S =


0 0 · · · · · · a1
1 0 · · · · · · a2

. . . . . .
...

1 0 aM−1
0 1 aM

 , a ∈ RM

and S denotes the set of all real matrices having the structure
above.

Thus, the DMD allows to find a linear dynamics that
approximate the underlying process and can provide addi-
tional information through the analysis of the eigenvalues
and the eigenvectors of S. An efficient algorithm for the
decomposition of the matrix S has been proposed in [1]
by projecting the matrix into the sub-space spanned by the
POD modes of V1. The DMD modes and eigenvalue are then
obtained from a full rank matrix S̃ related via a similarity
transformation to the matrix S. The DMD algorithm is
composed of the following steps:

1) compute the singular value decomposition of V1, i.e.,
two unitary U and W and a diagonal matrix Σ s.t.
V1 = UΣW ∗;

2) compute the projection of the matrix S on the POD
modes, i.e., S̃ = U∗V2WΣ−1;

3) construct the matrices of the eigenvectors and eigen-
values of the matrix S̃, i.e., Y and D (diagonal);

4) construct the matrix of the DMD modes Θ = UY ;
5) construct the diagonal matrix P of the logarithms of

the DMD eigenvalues of S̃, i.e., P := log(D)/(2π∆t),
where ∆t is the time between two consecutive snap-
shots.

Using DMD, coherent structures in the flow can be easily
localized by a check on modes and eigenvalues [21]. The
frequency information is given by the imaginary part of
the DMD eigenvalue, while the real part of the eigenvalue
provides the growth rate of the dynamic structure identified
by the corresponding DMD mode. Positive values of the real
part of the DMD eigenvalues indicate growing structures.
Thus, the dominant dynamics leading to the generation
of unstable waves within the flow can be captured and
highlighted. Particularly, the transition of the boundary layer
is identified as the region where positive growth rate are
measured and its characteristic frequency can be computed
in this way. Otherwise, stable regime such as the laminar
state (prior to the transition) and the turbulent one (after
transition) have just negative or null growth rate. Therefore,
in order to correctly compute the frequencies and the growth
rate, it is necessary to detect the spatial positions, where
the switching between different regimes takes place. This
corresponds to identify the snapshot of the dataset at which
the switching occurs. In order to minimize the amount of

xx

y

y

tt

Fig. 3. Arrangements of the dataset for temporal (left) or spatial (right)
analysis.

analyzed data, the temporal interval has been chosen in order
to represent about 10 cycles of the vortical structures that
drives transition. However, it has been shown [21] that the
wall-normal velocity component is more representative of
the switching of the two regimes since before transition
starts it is almost null, hence it is used to compute the
residual of DMD algorithm. Both components are instead
used to compute frequencies and growth rate, since the whole
information is needed to obtain a great accuracy.

To detect the switching, we have developed the following
procedure based on DMD algorithm for a dataset composed
of M snapshots. Let k be a candidate for the spatial position
of the switching, corresponding to a snapshot (or column)
of the dataset. We scroll the columns of the dataset from
k = k0, · · · ,M and we apply the DMD algorithm to
a subset of the dataset formed by the first k columns.
The DMD algorithm is applied to such a subset, having
defined V1,k constituted by the snapshots 1 to k − 1, and
V2,k by the snapshots 2 to k, computes the solution of
the minimization problem (12). The corresponding residual
matrix with k columns is Rk := V2,k − V1,kS

o
k , where

So
k = argminS∈S |V2,k − V1,kS|2F . To identify the change

of regime, we will employ the cumulative average rk of the
Euclidean norm of the columns of Rk, i.e.,

rk :=
|(R1, R2, . . . , Rk)|

k
(13)

at each k. Therefore, we will compute rk for k = k0, · · · ,M
and apply the approach of Section II to estimate the trend
and detect the change of regime in the fluid flow. Note that,
the index k may refer also to space rather than to time since
in practice one may apply DMD can be applied in either
time or space. Moreover, from the next section and in spite
of the notation adopted so far, we will refer to x and y as the
spatial coordinates to denote the axes of the velocity field.
Each column of the dataset corresponds to a snapshot made
of a collection of measurements of the velocities of the flow
over y and time. Thus, in the following the index k will
denote space in the x coordinate.



IV. EXPERIMENTAL INVESTIGATION

The experiments have been performed in the open-circuit
low-speed wind tunnel of the Aerodynamics and Turboma-
chinery Laboratory of the University of Genova. Fig. 4 shows
the experimental setup that consists of a thick flat plate.
The flat part of the plate including the leading edge is 200
mm long and 300 mm wide. The plate has been installed
between two contoured walls producing an adverse pressure
gradient. The boundary layer developing along the rear part
of the plate was surveyed by means of a DANTEC TR-PIV
system. The measuring domain extends from x/c = 0.315
to x/c = 0.9 (the test section throat is located at x/c =
0.285). A dataset of 3100 instantaneous velocity fields has
been acquired at a sampling rate of 3100 Hz. The elevated
frequency resolution and the long sampling period (1 s) of
the present dataset allow us to follow the dynamics leading
to the generation of the large scale coherent structures and
hence to transition.

Fig. 4. Test section and experimental apparatus.
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Fig. 5. Velocity field of instantaneous flow fields at different time instants.

The PIV instrumentation is constituted by a dual-cavity
Nd:YLF pulsed laser Litron LDY 300 (energy 2 × 30 mJ
per pulse at 1000 Hz repetition rate, 527 nm wavelength).
The optical system forms a light sheet of 1 mm thickness.
The light scattered by the seeding particles is recorded on
a high sensitive SpeedSense M340 digital camera with a
cooled 2560 × 1600 pixels CMOS matrix. The camera frame
rate has been set to 3100 Hz reducing the field of view of the
camera to 2560× 200 and operating it in double frame mode.

The spatial resolution of the measurement grid corresponds
to 0.43 × 0.43 mm2. This spatial resolution allows to solve
the large scale structures that trigger the switch between the
different flow regimes whose analysis is the main target of
the present work. More details concerning the measurement
uncertainty and flow conditions are available in [21].

Fig. 5 shows a series of the acquired instantaneous flow
field, showing one out of three of the acquired images.
For visualization purposes, the spatial resolution has been
also reduced plotting one every 2 measurement points in
both directions. The velocity field shown in the pictures has
been obtained subtracting the mean value in order to better
visualize the coherent structures. It can be noticed that the
DMD is instead computed without subtracting the time mean
velocity otherwise it would be equal to a classical Fourier
analysis [3].

The four snapshots of Fig. 5 highlight the temporal and
spatial evolution of a vortical structure that can be observed
in the mid of the first frame. This structure is propagating in
space and time since from the first frame to the fourth it can
be seen moving in the downstream direction. While moving,
the vortical structure intensity (that can be quantified by the
vector length) is also increasing. Hence, from a qualitative
point of view, the visual inspection of the instantaneous flow
field could be used to identify a change in regime of the
boundary layer flow. Otherwise, the analysis of the residuals
of the DMD is here adopted to provide a quantitative analysis
of the switching of these regimes.

V. NUMERICAL RESULTS

To identify the change of regime, consider (1) with output
rk, i.e.,

mode 1

 ξ1(k + 1) = ξ2(k) ξ1(k)
ξ2(k + 1) = α1 ∈ (0, 1)
rk = ξ1(k)

mode 2

 ξ1(k + 1) = ξ2(k) ξ1(k)
ξ2(k + 1) = α2 ∈ (1,+∞)
rk = ξ1(k)

where rk is computed according to DMD procedure pre-
sented in Section III is applied from k = k0 with k0 = 20.

We have solved the MHE problem (6) for the above system
model by using the cost (5) with µ = 0.001 and different
horizon lengths N , i.e., N = 1, N = 3, N = 5, and N = 7.
We have performed the minimization of (5) in Matlab on a
PC equipped with a 2.5 GHz Intel Xeon CPU and 16 GB
of RAM by using the fmincon routine with constraints given
by the positivity of the variables and the kind of trend.

Fig. 6 depicts the positions of the poles at different regime,
i.e., in correspondence of stable and unstable behavior of
the fluid flow. Fig. 7 reports the results we have obtained
by using the proposed MHE approach. The subplot (a)
shows the various type of residuals, i.e., “original,” filtrated
with a mobile average with sliding window of length 10,
and ‘estimated” by the MHE with different horizons. The
subplot (b) sketches the values of the state variable ξ2. The
subplot (c) reports the estimated modes of (1). The modes
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Fig. 6. Positions of the poles resulting from the DMD at stable and unstable regimes.
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Fig. 7. Experimental results obtained for different horizons N .

are pictorially shown as step signals, where the modes 1 and
2 are represented by the low and high values of the step,
respectively. Lastly, the subplot (d) illutrates the boxplots

of the processing times required to solve an instance of the
MHE problem (6).

The MHE approach is able to correctly identify the



decreasing/increasing trend of the residuals for large values
of N . More specifically, the larger is N , the better are the
performances. On the contrary, the use of short horizons N
makes the proposed approach more sensitive to noises. This
is particularly evident in the plot of the state variable ξ2,
which is very noisy for N = 1 and much better for larger
values of N . The estimation accuracy of the state variable ξ1
is quite insensitive to the horizon length since this variable is
directly measured. Concerning the computational effort, as
expected, the greater the horizon N , the larger the simulation
times, as the solution of (6) is more difficult with the growth
of N . The reduction of the computational time may be the
topic of future investigation in such a way to make it possible
to apply the proposed approach in real time.

VI. CONCLUSIONS

In this paper, we have presented a novel approach to
the automatic identification of the regime of turbulent flows
by using (i) dynamic mode decomposition, (ii) a switching,
nonlinear trend model, and (iii) moving horizon estimation.
The combination of them allows for a reliable estimation of
the complex phenomena occurring in a fluid flow, as shown
by applying the proposed approach on an experimental
dataset obtained by a PIV.

The successful results we have illustrated indicate various
directions of improvement. For example, a future goal may
be that of developing a more complex model of trend able
to identify three regimes instead of two, which correspond
to 1) a stable laminar regime with low velocity fluctuations,
2) a new regime with the amplification of the disturbances,
and 3) a turbulent regime that is stable but characterized by
large velocity fluctuations.

Another topic of future investigation will be the reduction
of the computational effort of the estimation in such a way
to detect the state of the flow more quickly for the purpose
of control. Toward this, the use of fast MHE techniques [13]
will be addressed in such a way to perform the optimization
within a time constraint that allows to apply a stabilizing
feedback to the fluid flow.
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