
Vol.:(0123456789)1 3

Brain Topography (2019) 32:127–141 
https://doi.org/10.1007/s10548-018-0674-3

ORIGINAL PAPER

Cortical Network Topology in Prodromal and Mild Dementia Due 
to Alzheimer’s Disease: Graph Theory Applied to Resting State EEG

Raffaella Franciotti1 · Nicola Walter Falasca1,2 · Dario Arnaldi3,4 · Francesco Famà3,5 · Claudio Babiloni6,7,8 · 
Marco Onofrj1 · Flavio Mariano Nobili3,4 · Laura Bonanni1

Received: 1 December 2017 / Accepted: 17 August 2018 / Published online: 25 August 2018 
© The Author(s) 2018

Abstract
Graph theory analysis on resting state electroencephalographic rhythms disclosed topological properties of cerebral network. 
In Alzheimer’s disease (AD) patients, this approach showed mixed results. Granger causality matrices were used as input 
to the graph theory allowing to estimate the strength and the direction of information transfer between electrode pairs. The 
number of edges (degree), the number of inward edges (in-degree), of outgoing edges (out-degree) were statistically compared 
among healthy controls, patients with mild cognitive impairment due to AD (AD-MCI) and AD patients with mild dementia 
(ADD) to evaluate if degree abnormality could involve low and/or high degree vertices, the so called hubs, in both prodromal 
and over dementia stage. Clustering coefficient and local efficiency were evaluated as measures of network segregation, path 
length and global efficiency as measures of integration, the assortativity coefficient as a measure of resilience. Degree, in-
degree and out-degree values were lower in AD-MCI and ADD than the control group for non-hubs and hubs vertices. The 
number of edges was preserved for frontal electrodes, where patients’ groups showed an additional hub in F3. Clustering 
coefficient was lower in ADD compared with AD-MCI in the right occipital electrode, and it was positively correlated with 
mini mental state examination. Local and global efficiency values were lower in patients’ than control groups. Our results 
show that the topology of the network is altered in AD patients also in its prodromal stage, begins with the reduction of the 
number of edges and the loss of the local and global efficiency.

Keywords Granger causality · Graph theory · Integration · Mild cognitive impairment · Resilience · Segregation

Introduction

Alzheimer’s disease (AD) is the most common form of 
dementia (Reitz et al. 2011). AD dementia is preceded by 
a preclinical period characterized by the absence of overt 

symptoms (Price et al. 2009). It is supposed that in that 
period, the process progresses until it crosses a threshold to 
clinically recognizable dysfunction (Thal et al. 2002; Braak 
et al. 2011). According to the most recent guidelines (McK-
hann et al. 2011; Dubois et al. 2014), AD can be diagnosed 
before the appearance of any cognitive or behavioral symp-
toms, i.e., in a preclinical (before any objective cognitive 
deficit) or prodromal (mild cognitive impairment, AD-MCI) 
stage (Petersen et al. 2009), based on pathophysiological 
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diagnostic markers revealed by CSF and positron emission 
tomography (PET) biomarkers of Aβ-1-42 and tau in the 
brain. However, these guidelines encourage the research to 
develop other techniques that can enrich the non-invasive 
and inexpensive instrumental assessment, including topo-
graphic biomarkers of preclinical and prodromal stages of 
AD. The topographic biomarkers include brain hypometab-
olism, as revealed by 18F-fluorodeoxyglucose PET (FDG-
PET) and maps of brain atrophy and abnormalities of struc-
tural brain connectivity, as revealed by magnetic resonance 
imaging (MRI; Dubois et al. 2014).

Electroencephalography (EEG) has been proficiently 
applied to the study of dementia for long time, specifically in 
AD (van Straaten et al. 2014), showing a shift of the power 
spectrum to lower frequencies (Jeong 2004; Babiloni et al. 
2006) and a decrease in coherence of fast rhythms (Locatelli 
et al. 1998; Jelles et al. 2008) in AD patients with dementia 
(ADD). In parallel to the computation of EEG power density, 
the analysis of functional connectivity on EEG data seems 
a promising method to provide additional topographic bio-
markers of AD. The “functional brain connectivity” reflects 
a statistical dependence of a given variable linking the activ-
ity in different cerebral regions (Friston 2011). Furthermore, 
“effective connectivity” probes another dimension of func-
tional connectivity referring to a causal influence from one 
to another neural region; it can be measured by Granger 
causality (GC; Blinowska and Zygierewicz 2011; Kaminski 
and Blinowska 2014; Seth et al. 2015). Together with con-
ventional methods of EEG frequency and functional connec-
tivity analysis, graph theory analysis provides a method to 
integrate the topology of the pair-wise functional connectiv-
ity values into one characterized network. A given network 
is defined by a collection of vertices and edges between pairs 
of vertices. Networks can be organized according to different 
models from regular lattices and trees to random networks. 
Regular graphs are organized in vertices which have the 
same number of edges. Highly connected vertices represent 
hubs which form tightly interconnected communities, the 
so-called rich clubs. Topological features include cluster-
ing coefficient, probing the tendency of network elements 
to form local clusters, cliques, or small groups of closely 
interconnected vertices, and the individual interconnection 
path length, defined as the length of the shortest paths con-
necting pairs of vertices, which quantifies the efficiency of 
information transmission within the network. Regular graphs 
tend to have long average path length and high clustering 
coefficient, whereas in random networks most vertices have 
the same number of edges, the average paths are short and 
the clustering coefficient is low. Other possible organization 
models are scale-free, small-world, modular, and hierarchi-
cal archetypes. Among these models, the small-world net-
works have an optimal balance between local specialization 
and global integration with similar path length but higher 

clustering than a random network (Watts and Strogatz 1998), 
making the network resilient to damage.

In the case of EEG, the vertices of a brain network are 
usually represented by the cerebral regions located under 
the electrodes, and the functional connectivity value of 
each electrode pair (represented in a connectivity matrix) is 
used as a functional connection among vertices. That value 
is typically computed with EEG quantitative measures of 
functional connectivity, such as coherence, phase lag index 
or synchronization likelihood, less frequently with effective 
connectivity. Functional connectivity measures evaluate the 
connectivity strength between pairs of vertices giving no 
information about the direction of the edge. In addition to 
the most commonly used unidirectional measures, effective 
connectivity measures not only the connectivity strength but 
also its direction.

Graph theory analysis of cerebral networks has been 
implemented in brain disease including AD (Stam 2014), 
challenging the classical concept of neurological disorders 
being either ‘local’ or ‘global’. Results of this analysis have 
pointed to the overload and failure of hubs as a possible 
final common pathway in neurodegenerative disorders. How-
ever, previous EEG studies on the comparison between AD 
patients and control subjects reported divergent results (de 
Haan et al. 2009; Tijms et al. 2013; Miraglia et al. 2016). 
Nevertheless, the results were inconsistent in some respect. It 
has been described either a longer characteristic path length 
together with a preserved clustering coefficient (Stam et al. 
2007) or a shorter characteristic path length with a decreased 
clustering coefficient in AD patients compared to control 
subjects (de Haan et al. 2009). More research is therefore 
needed to determine the most consistent topographic pattern 
and mathematical measure to model abnormal topology of 
the functional coupling in AD in the prodromal (AD-MCI) 
compared to the dementia (ADD) stage (Dauwels et al. 
2010a). Specifically, in the context of AD research, a meth-
odological aspect not yet explored in the above EEG studies 
is the use of a mathematical approach which employs both 
the raw EEG signal in the time domain and the direction 
of the information transfer between vertices as an input to 
the graph theory analysis. The measure of effective con-
nectivity in the time domain allows to evaluate all possible 
information transfers and to have a complete picture of the 
network organization with distinction between driver (i.e., a 
source vertex with zero incoming edges) and recipient (i.e., 
a sink vertex with zero outgoing edges), between hubs with 
main outgoing edges (broadcasters) and hubs with prevailing 
incoming edges (integrators).

In this exploratory study, we used GC analysis (Seth 
2010; Franciotti et al. 2013; Falasca et al. 2015) to produce 
connectivity matrices as inputs to the graph theory analy-
sis. These connectivity matrices include information on 
both the strength and the direction of the edges, so they 
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are called weighted directed matrices. By means of graph 
theory analysis on weighted directed matrices we aim to test 
the hypothesis that the topology of the cerebral networks 
could unveil abnormal features in both prodromal and over 
dementia stage of AD. It is expected that abnormalities of 
the features would regard the presence of hubs, the measures 
of segregation, of integration and of resilience in groups of 
AD-MCI, and ADD patients. In addition, the inclusion of the 
direction of the edges between electrode pairs could provide 
a better understanding of the organizational properties of 
brain network in AD-MCI and in ADD patients compared 
to healthy subjects.

Methods

Study Population

The control subjects and the patients gave their written con-
sent to the use of the unidentified results of their clinical, 
instrumental and laboratory investigations for research pur-
poses. All study procedures were carried out in concord-
ance with the Declaration of Helsinki and were approved by 
the Local Ethics Committee. Control group, ADD patients, 
and AD-MCI were recruited at the Clinical Neurology Unit, 
Department of Neuroscience (DINOGMI), University of 
Genoa, Italy. They underwent clinical and neuropsycho-
logical evaluations to assess language, executive functions, 
visuospatial abilities, verbal memory, attention and working 
memory, according to the neuropsychological test battery 
reported elsewhere (Picco et al. 2014).

The AD-MCI patients were retrospectively selected 
with the only criterion to be followed-up until the develop-
ment of dementia of the AD type (ADD). To the purpose 
of this study, MCI patients who were stable at follow-up 
or developed dementia other than AD were not considered. 
Moreover, the selected MCI patients showed at least one 
positive neurodegeneration biomarkers according to the 
2011 NIA-AA criteria (Albert et al. 2011). Biomarkers of 
amyloidosis were not available yet both at baseline evalua-
tion and at follow-up diagnosis. Specifically, MCI patients 
had a characteristic pattern of altered metabolism seen at 
FDG-PET (64% of patients) or seen at perfusion single-
photon emission computed tomography (SPECT; 26% of 
patients); hippocampal atrophy revealed by MRI (57% of 
patients) or computed tomography scans (24% of patients). 
Presence of an imaging biomarker of AD-neurodegeneration 
but lack of amyloidosis biomarkers qualifies these patients as 
affected by AD-MCI with intermediate likelihood according 
to Albert et al. (2011). However, ADD was confirmed in all 
patients at follow-up as per inclusion criteria. MCI patients 
showed impairment in a memory test (i.e., Rey auditory 

verbal learning test or Babcock story recall), either with 
(multi-domain amnestic MCI) or without (single-domain 
amnestic MCI) involvement of other cognitive domains, 
but did not meet criteria for dementia (Petersen and Negash 
2008). A mini mental state examination (MMSE) score ≥ 24 
and a 15-item geriatric depression scale score ≤ 10 were con-
sidered necessary to MCI diagnosis.

The presence of dementia in AD patients was established 
by clinical interviews with the patient and caregivers, by 
activities of daily living (ADL) and instrumental ADL ques-
tionnaires, and by the clinical dementia rating (CDR) scale 
and the MMSE. Only patients with MMSE score ≥ 20 (mild 
dementia) attributed to AD according to the international 
criteria were included in the study (McKhann et al. 2011). 
As in the case of AD-MCI patients, at least one neurodegen-
eration biomarker disclosed a typical AD pattern, among 
perfusion SPECT, FDG-PET, or MRI.

The healthy condition of the control subjects was care-
fully checked by means of general medical history and clini-
cal examination. Only subjects with a normal MMSE score 
(i.e., > 26) and with a CDR of 0 were included. Brain MRI 
or CT were available in all control subjects and did not dis-
close major abnormalities, including medial temporal lobe 
atrophy. Given these prerequisites, the control subjects were 
chosen with the selection criteria of being in the same age 
range, having similar gender distribution and educational 
level as patients.

Exclusion criteria for patients and controls were: previous 
or present major psychiatric/neurological disease, severe and 
uncontrolled arterial hypertension, diabetes mellitus, renal, 
hepatic or respiratory failure, anaemia and malignancy.

The study population consisted of 83 patients (42 were 
classified as AD-MCI and 41 as ADD) and 42 control 
subjects.

EEG Recordings

EEG was recorded with Ag/AgCl disk scalp electrodes from 
19 scalp derivations placed according to the international 
10–20 system and two additional electrodes placed on right 
and left earlobe. Linked earlobes were used as reference and 
sampling rate was 256 Hz.

Any drug, caffeine, nicotine and alcohol prohibition were 
withdrawn for at least 48 h prior to neuropsychological and 
neurophysiological assessment.

Recordings were obtained with subjects resting com-
fortably, with their eyes closed. Patients’ wakefulness was 
ascertained every 3 min inviting them to open their eyes. A 
simultaneous electrooculogram was recorded and muscu-
lar or tremor artefacts were controlled with supplementary 
derivations. Two pairs of bipolar recording channels for 
respiration and electrocardiogram were also applied. EEG 
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was acquired as a continuous signal for 30 min and visually 
inspected for current clinical interpretation or detection of 
artefacts. Nineteen electrodes from Fp1, Fp2, Fz, F3, F4, F7, 
F8, Cz, C3, C4, Pz, P3, P4, T3, T4, T5, T6, O1, and O2 were 
considered for the analysis.

GC Analysis

For each subject EEG recording was visually inspected to 
select artefact free 10 epochs of 4096 time points (16 s) long. 
The epochs could be also non-consecutive. Temporal filters 
were not applied to EEG recordings to minimize difficulties 
in model fitting (Barnett and Seth 2014). Time domain GC 
connectivity analysis was applied on each epoch to identify 
patterns of causal interaction between electrodes.

According to linear vector autoregressive (VAR) mod-
els, two wide-sense stationary time series X(t) and Y(t) can 
be explained by their own past by means of a linear model 
with coefficients  aj and  bj and prediction errors ε1(t) and η1(t), 
respectively:

Lagged vector autoregression models are used to determine 
the ability of one time-varying signal to predict the future 
behaviour of another, comparing the accuracy of the predic-
tion obtained by considering only information of the signal 
own past with the prediction obtained by including the past of 
another signal of the system (Granger 1969). If the prediction 
error of the VAR model results to be higher than the predic-
tion error obtained including another signal, then it is more 
accurate to describe the temporal dynamics of the time series 
X(t) and Y(t) (both of length T) including in the model infor-
mation the past of the other time series, since the prediction 
errors ε2(t) and η2(t) are lower than the previous ε1(t) and η1(t).

where m is the maximum number of lagged observations 
included in the model (the model order, m ≪ T), whereas  bj 
and  dj are the gain factors, respectively, of the signal Y(t) 

(1)X(t) =

m
∑

j=1

ajX(t − j) + �1(t),

(2)Y(t) =

m
∑

j=1

bjY(t − j) + �1(t).

(3)X(t) =

m
∑

j=1

ajX(t − j) +

m
∑

j=1

bjY(t − j) + �2(t),

(4)Y(t) =

m
∑

j=1

cjY(t − j) +

m
∑

j=1

djX(t − j) + �2(t),

(driver) influencing the signal X(t) (recipient), and of the 
signal X(t) (driver) influencing the signal Y(t) (recipient).

The linear influence from X(t) to Y(t)  (FX → Y) and from 
Y(t) to X(t)  (FY → X) can be calculated as the log ratio between 
the variances of the residual errors.

GC magnitude is given by the log ratio of the variance 
of the prediction-error terms for the reduced (omitting the 
signal of the potential cause) and full regressions (including 
the signal of the potential cause).

GC analysis is generalized to the multivariate (condi-
tional) case in which the GC of Y(t) on X(t) is tested in 
the context of multiple additional variables (Geweke 1982) 
when all other variables are also included in the regression 
model.

In this study GC analysis was performed using the in 
house software BSMART, a MATLAB/C toolbox imple-
mented to analyse brain circuits (Cui et al. 2008). A con-
ditional multivariate vector autoregression (MVAR) model 
was applied to the 19 time series from the 19 electrodes 
to estimate GC connectivity (Seth 2010). The method of 
ordinary-least-squares was used to compute the regression 
coefficients. The F-statistic, Bonferroni-corrected (nominal 
p value of 0.05, then divided for multiple comparisons by n, 
where n = 19), was applied to the coefficients of the MVAR 
model. When they did not reach the significant threshold the 
corresponding GC magnitude was set to zero. The Akaike 
information criterion (1974) was used to estimate the order 
of the model (Bressler and Seth 2011) for each subject and 
epoch, separately. When the Akaike information criterion 
did not find a global minimum, the epoch was discarded. 
Covariance stationarity of each epoch was checked by using 
the Durbin–Watson test, based on MATLAB code provided 
by Seth (2010) and the Dickey–Fuller test (p < 0.01) to iden-
tify unit roots. The consistency of the MVAR model, which 
ensures that the MVAR model properly represents the data, 
was verified by the tests proposed by Ding et al. (2000) and 
by the Durbin–Watson statistics, which assess whether the 
residuals are uncorrelated. Epochs with model consistency 
lower than 80% were discarded.

GC analysis was computed for each subject and epoch, 
separately, by a MATLAB toolbox for multi-trial data (Seth 
2010), obtaining a GC matrix of 19 rows and 19 columns 
of GC magnitude, representing the causal strength of the 
connection between each couple of vertices. Finally, for 
each subject the 10 GC matrices were averaged, and the 
mean values of GC magnitude (causal strength) for each 

(5)FX→Y = log

(

var(�1)

var(�2)

)

,

(6)FY→X = log

(

var(�1)

var(�2)

)

.
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connection between 19 vertices were used as weighted 
directed connectivity matrix for the graph theory analysis. 
For each subject the weighted directed connectivity matrix 
was not thresholded.

Graph Theory Parameters

The Brain Connectivity Toolbox codebase (http://www.brain 
-conne ctivi ty-toolb ox.net) was used to estimate graph theory 
parameters (Rubinov and Sporns 2010) on GC connectivity 
matrix.

From a wide set of parameters, we selected the most use-
ful to characterize the brain network of control group, AD-
MCI and ADD patients (Pavlopoulos et al. 2011).

Networks can be characterized at different levels ranging 
from the global scale to the local scale. Starting from the 
local scale, the components of a network are its vertices and 
edges. The degree of a vertex i  (Ki) is the sum of its incom-
ing (afferent) and outgoing (efferent) edges  (aij):

where  aij = 1 when the link between i and j exists,  aij = 0 
otherwise.

To avoid ambiguity with directed links each undirected 
link was counted twice.

The number of afferent and efferent connections is also 
called the in-degree and out-degree, respectively. By means 
of GC approach is possible to distinguish incoming and 
outgoing edges, so that in-degree and out-degree were also 
calculated. Vertices with a high number of edges, i.e., a 
large degree, are called network hubs. Vertices with pre-
dominantly incoming edges can be seen as sinks (integra-
tors, convergence) whereas vertices with mainly outgoing 
edges can be seen as sources (distributors, divergence) or 
broadcasters of information. These distinctions can be use-
ful when vertices are otherwise similar, e.g., distinguishing 
different types of network hubs (Sporns et al. 2007).

The clustering coefficient and the local efficiency were 
used as measures of segregation.

The clustering coefficient of the vertex i is defined as

where

is the number of triangles around a vertex i.

(7)Ki =

n
∑

j=1

aij,

(8)Ci =
2ti

Ki(Ki − 1)
,

(9)ti =
1

2

∑

j,k

aijaikajk

Simple measures of segregation are based on the num-
ber of triangles in the network, with a high number of 
triangles implying segregation. All vertices that are con-
nected to a vertex by a direct edge are defined as neigh-
bours of that vertex. Locally, the fraction of triangles 
around an individual vertex is known as the clustering 
coefficient and is equivalent to the fraction of the vertex 
neighbours that are also neighbours with each other (Watts 
and Strogatz 1998). The clustering coefficient is a measure 
of the tendency of network elements to form local clusters 
(de Haan et al. 2009) and can help defining if the vertices 
tend to form cliques, or small groups of closely intercon-
nected vertices. High clustering is associated with robust-
ness of a network, i.e., resilience against damage.

The local efficiency plays a role similar to the cluster-
ing coefficient. It is defined as the average efficiency of 
the local subgraphs. The local efficiency of the vertex i 
 (Eloc,i) is defined as

where  djh is the length of the shortest path between j and h, 
that contains only neighbours of i.

This quantity reveals how much the system is tolerant 
to faults (Latora and Marchiori 2010), thus it shows how 
efficient the communication is between the first neighbours 
of the vertex when this vertex is removed.

Average shortest path length (also called the charac-
teristic path length) and global efficiency were evaluated 
as measures of integration. The characteristic path length 
(L) is defined as

where n is the number of vertices.
A measure of travelling through a network is the num-

ber of edges one has to cross, on average, to go from one 
vertex to another. The average shortest path of a network 
is the average number of edges that has to be crossed on 
the shortest path from any one vertex to another. The aver-
age shortest path length to any other vertex is calculated 
and the median value over all vertices is returned as the 
characteristic path length. The average shortest path only 
takes the existing shortest paths between pairs of vertices 
so that it is primarily influenced by existing paths.

Global efficiency (E) is a sum of the inverse of the char-
acteristic path length. Thus, it is defined as

(10)Eloc,i =

∑

j,h aijaih(djh)
−1

Ki(Ki − 1)
,

(11)L =
1

n

�

i

∑

j≠i dij

n − 1
,

(12)E =
1

n

�

i

∑

j≠i d
−1
ij

n − 1
.

http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net
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It may be meaningfully computed on disconnected 
networks, as paths between disconnected vertices are 
defined to have infinite length, and correspondingly zero 
efficiency, so it is primarily influenced by short paths. 
Some authors have argued that this may make the global 
efficiency a superior measure of integration (Achard and 
Bullmore 2007).

The assortativity coefficient was performed as a meas-
ure of resilience. The assortativity coefficient is a correla-
tion coefficient between the degrees of all vertices on two 
opposite ends of a edge. It is defined as

where l is the number of links.
Networks with a positive assortativity coefficient are 

therefore likely to have a comparatively resilient core of 
mutually interconnected high-degree hubs. On the other 
hand, networks with a negative assortativity coefficient are 
likely to have widely distributed and consequently vulner-
able high-degree hubs.

Statistical Analysis

Demographic and clinical differences among groups were 
assessed with analysis of variance (ANOVA) for continuous 
data and χ2 test for categorical data.

Since not all graph theory variables showed a Gaussian 
distribution (Kolmogorov–Smirnov test), network param-
eters comparisons among the three groups were performed 
using nonparametric statistics (Kruskal–Wallis test followed 
by Dunn’s post hoc tests when appropriate, adjusted p value 
for multiple comparison tests was performed using the Bon-
ferroni error correction). Kruskal–Wallis test was performed 
on each of the 19 vertices to compare degree, in-degree, 

(13)r =

l−1
∑

i,j KiKj −

�

l−1
∑

i,j
1

2
(Ki + Kj)

�2

l−1
∑

i,j
1

2
(Ki

2 + Kj
2) −

�

l−1
∑

i,j
1

2
(Ki + Kj)

�2
,

out-degree, clustering coefficient and local efficiency among 
groups.

Wilcoxon signed ranks test was used to compare in-
degree and out-degree values within each group separately. 
To estimate the association between AD disease severity and 
network organization, we calculated the Spearman correla-
tion between MMSE scores of patients and network meas-
ures. The bias-corrected and accelerated bootstrap method 
(Ruscio 2008) with 1000 iterations was used to construct 
95% confidence interval (CI) for significant correlations. In 
addition, Spearman correlation was also performed between 
age and graph theory parameters in control and patient 
groups.

Results

Study Population

Control group, AD-MCI, and ADD patient groups did 
not differ for age, gender and educational level (p > 0.05). 
Table 1 reports all mean values, standard deviations, and 
statistical results.

Graph Theory

Each GC connectivity matrix on a single subject level was 
used to estimate graph theory parameters: degree, in-degree, 
out-degree, measures of segregation, integration and resil-
ience computed from EEG data at electrode pairs (Pavlo-
poulos et al. 2011).

Figure 1 shows mean GC connectivity matrices from 
EEG across subjects for control, AD-MCI, and ADD groups. 
The figure highlights that the number of drivers with high 
values of effective connectivity (in red) is larger in the con-
trol group than the AD-MCI and ADD groups.

Table 1  Demographic and 
clinical characteristics of the 
three groups

Data are presented as mean ± standard deviation
ADD Alzheimer’s disease with dementia, AD-MCI mild cognitive impairment due to Alzheimer’s disease, 
MMSE mini-mental state examination
a ANOVA analysis. Duncan post-hoc comparisons for MMSE. MMSE higher in control than in AD-MCI 
(p = 10− 4) and ADD (p = 10− 4). MMSE was higher in AD-MCI than ADD (p = 10− 4)
b Kruskal–Wallis test

Control
n = 42

AD-MCI
n = 42

ADD
n = 41

Statistical results

Agea 73.7 ± 7.4 74.8 ± 7.8 77.3 ± 6.1 F(2,122) = 2.6, p = 0.08
Gender (% male)b 50 38 39 χ2 = 1.5, p = 0.47
Educational  levela 9.9 ± 3.3 9.2 ± 4.5 8.2 ± 4.4 F(2,122) = 2.5, p = 0.08
MMSEa 28.9 ± 0.9 25.0 ± 1.0 21.5 ± 1.1 F(2,122) = 631.6, p < 10− 4
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Degree, In‑degree, Out‑degree

Degree was different among groups for frontal (F4, F7, F8), 
temporal (T3, T4–6), central (Cz, C4), parietal (P3, Pz, P4) 

and occipital (O1, O2) electrodes. Median values, ranges 
and statistical results on the comparison among groups were 
reported in Table 2. We considered as hubs electrodes, only 
high-degree vertices (i.e., vertices with a degree at least one 

Fig. 1  Mean GC magnitudes across subjects for all links in control, 
AD-MCI and ADD groups. In the matrix representation “from vertex 
to vertex” indicates the direction of the information transfer between 
electrode pairs. Electrodes are shown from left to right side, anterior-
posteriorly. The color bar indicates the magnitude of GC connections. 

Of note the number of drivers which have high values of effective 
connectivity (in red) is higher in control group than in AD-MCI and 
ADD. The effective connectivity was higher in control than AD-MCI 
and ADD for several edges: from P3 to O1, Pz, from P4 to O2, T6, 
Pz, from O1 to Pz, T3, T5, from O2 to T6, P4, Pz, etc.

Table 2  Degree and statistical 
comparisons among groups

For each vertex, values are medians, with range printed between parentheses. Hub vertices for all groups 
are in bold. F3 is a hub for patients’ groups. For each vertex, main effect results and adjusted p values for 
multiple comparisons are shown for post-hoc analysis
ADD Alzheimer’s disease with dementia, AD-MCI mild cognitive impairment due to Alzheimer’s disease, 
n.a. not applicable following not significant main effect, n.s. not significant

Vertex Degree Main effect p value from post-hoc

Control AD-MCI ADD H(2,125) Controls ver-
sus AD-MCI

Controls 
versus 
ADD

Fp1 8 (0–26) 5 (0–26) 3 (0–26) H = 4.93, p = 0.09 n.a. n.a.
Fp2 7 (0–25) 4 (0–25) 3 (0–26) H = 6.92, p = 0.03 n.s. n.s.
F7 8 (1–34) 5 (0–25) 6 (0–27) H = 7.42, p = 0.03 0.04 n.s.
F3 15 (1–35) 9 (0–29) 10 (1–27) H = 4.47, p = 0.11 n.a. n.a.
Fz 18 (7–33) 15 (3–30) 15 (2–29) H = 7.40, p = 0.03 n.s. n.s.
F4 14 (0–33) 9 (0–28) 9 (0–29) H = 8.32, p = 0.02 n.s. 0.03
F8 10 (0–31) 4 (0–35) 6 (0–23) H = 12.37, p = 0.002 0.003 0.02
T3 9 (0–30) 4 (0–25) 7 (0–26) H = 11.46, p = 0.003 0.003 n.s.
C3 17 (2–31) 12 (2–29) 14 (2–28) H = 4.45, p = 0.11 n.a. n.a.
Cz 18 (8–31) 13 (5–31) 15 (4–33) H = 10.66, p = 0.005 0.01 0.02
C4 18 (3–30) 13 (2–27) 14 (1–28) H = 8.84, p = 0.01 0.02 n.s.
T4 10 (0–30) 6 (0–24) 5 (0–29) H = 9.44, p = 0.009 0.01 n.s.
T5 9 (0–31) 4 (0–21) 4 (0–22) H = 8.86, p = 0.01 0.03 0.04
P3 21 (4–32) 16 (0–31) 14 (3–27) H = 13.04, p = 0.001 0.004 0.007
Pz 20 (8–34) 18 (6–30) 16 (6–33) H = 8.90, p = 0.01 n.s. 0.01
P4 22 (11–33) 16 (4–32) 17 (1–28) H = 13.39, p = 0.001 0.004 0.006
T6 9 (1–29) 4 (0–26) 4 (0–19) H = 13.94, p = 0.001 0.002 0.01
O1 9 (1–29) 6 (2–22) 6 (0–22) H = 9.14, p = 0.01 0.03 0.03
O2 9 (2–31) 7 (2–31) 7 (0–27) H = 7.81, p = 0.02 0.04 n.s.
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standard deviation above the network mean) (Sporns et al. 
2007). Thus for all groups, degree values showed that Fz, 
C3, C4, Cz, P3, P4 and Pz electrodes could be defined as 
hubs. F3 electrode could be considered as hub for patients’ 
groups only.

In-degree was different among groups for frontal (F4, F8), 
central (C3, C4, Cz), parietal (P3, P4, Pz), temporal (T3–6) 
electrodes and O1. Out-degree was different among groups 
for frontal (F7, F8), parietal (P3, P4), temporal (T3, T6) 
electrodes and O1. All statistical results on in-degree and 
out-degree were reported in Table 3.

Degree, in-degree and out-degree values were higher in 
control than in patient’s groups. No difference was found 
between the AD-MCI and the ADD group. No correlation 
was found between degree and either MMSE or age.

Wilcoxon signed ranks test between in-degree and out-
degree values showed significant differences in frontal 
(Fp1, Fp2, F7, F8), central (C3, C4, Cz), Pz electrodes for 
control group, in frontal (F3, F4, F7), central (C3, Cz), 
parietal (P4, Pz) and O2 electrodes for AD-MCI group, in 
central (C3, C4, Cz), F3, P3, T4, O1 electrodes for ADD 
group (Fig. 2). Specifically, for control group (Fig. 2a), 

Table 3  In-degree, out-degree 
statistical comparisons among 
groups

For each vertex, main effect results and adjusted p values for multiple comparisons are shown for post-hoc 
analysis
ADD Alzheimer’s disease with dementia, AD-MCI mild cognitive impairment due to Alzheimer’s disease, 
n.a. not applicable following not significant main effect, n.s. not significant

Vertex In-degree Out-degree

Main effect p value from post-hoc Main effect p value from post-hoc

H(2,125) Controls 
versus AD-
MCI

Controls 
versus 
ADD

H(2,125) Controls 
versus AD-
MCI

Controls 
versus 
ADD

Fp1 H = 2.87, p = 0.2 n.a. n.a. H = 6.23, p = 0.04 n.s. n.s.
Fp2 H = 5.70, p = 0.06 n.a. n.a. H = 6.52, p = 0.04 n.s. n.s.
F7 H = 4.70, p = 0.1 n.a. n.a. H = 10.02, p = 0.007 0.02 0.02
F3 H = 3.06, p = 0.2 n.a. n.a. H = 5.38, p = 0.07 n.a. n.a.
Fz H = 6.36, p = 0.04 n.s. n.s. H = 5.67, p = 0.06 n.a. n.a.
F4 H = 6.96, p = 0.03 n.s. 0.03 H = 6.61, p = 0.04 n.s. n.s.
F8 H = 9.87, p = 0.007 0.01 0.03 H = 9.99, p = 0.007 0.007 n.s.
T3 H = 6.85, p = 0.03 0.03 n.s. H = 12.53, p = 0.002 0.001 n.s.
C3 H = 7.38, p = 0.03 0.047 n.s. H = 1.42, p = 0.5 n.a. n.a.
Cz H = 9.19, p = 0.01 0.01 n.s. H = 10.66, p = 0.005 0.01 0.02
C4 H = 13.11, p = 0.001 0.002 0.022 H = 2.26, p = 0.3 n.a. n.a.
T4 H = 10.74, p = 0.005 0.003 n.s. H = 7.25, p = 0.03 n.s. n.s.
T5 H = 11.88, p = 0.003 0.005 0.02 H = 6.22, p = 0.045 n.s. n.s.
P3 H = 14.41, p = 0.001 0.003 0.003 H = 7.30, p = 0.03 0.04 n.s.
Pz H = 11.65, p = 0.003 0.04 0.003 H = 3.95, p = 0. 1 n.a. n.a.
P4 H = 12.40, p = 0.002 0.007 0.007 H = 7.63, p = 0.02 0.04 n.s.
T6 H = 11.28, p = 0.004 0.006 0.02 H = 11.78, p = 0.003 0.006 0.02
O1 H = 8.02, p = 0.02 0.04 0.046 H = 8.85, p = 0.01 0.02 0.05
O2 H = 7.44, p = 0.02 n.s. n.s. H = 4.09, p = 0.1 n.a. n.a.

Fig. 2  In-degree and out-degree values for vertices which showed significant differences inside control (a), AD-MCI (b) and ADD (c) groups. P 
values are shown by the letters “w” indicating p < 0.05, “x” p < 0.01, “y” p < 0.005 and “z” p < 0.001
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frontal electrodes had predominantly outgoing edges (out-
degree values higher than in-degree values), whereas cen-
tral electrodes and Pz, had predominantly incoming edges 
(in-degree values higher than out-degree values). For AD-
MCI (Fig. 2b), F7, P4 and O2 had predominantly outgoing 
edges, whereas F3, F4, C3, Cz and Pz had predominantly 
incoming edges. For ADD (Fig. 2c), P3 and O1 had pre-
dominantly outgoing edges, whereas F3, C3, C4, Cz and 
T4 had predominantly incoming edges. All significant p 
values are shown in Fig. 2.

Measure of Segregation

The statistical comparisons among groups on clustering 
coefficient of the 19 vertices showed significant main effect 
for O2 [H(2,125) = 6.76, p = 0.03]. Clustering coefficient 
was higher in AD-MCI than ADD for O2 (p = 0.028). Posi-
tive correlation was found between the clustering coeffi-
cient in O2 and MMSE in the patients’ groups (Spearman 
ρ = 0.286, p = 0.009, CI = [0.09, 0.46], Fig. 3a). As control 
analysis we also performed the clustering coefficient using 
binary directed GC connectivity matrix (GC magnitude 
were binarized, all connections have equal strength 0 or 1). 
Then, we re-performed the correlation between clustering 
coefficient in O2 and MMSE for the patients groups. Spear-
man correlation revealed a significant positive correlation 
between clustering coefficient in O2 and MMSE (ρ = 0.275, 
p = 0.01, CI = [0.06, 0.47]).

Local efficiency was different among groups in Fp2, cen-
tral (C3, C4, Cz), parietal (P3, P4, Pz), temporal (T3–6) and 
occipital (O1, O2) electrodes. Local efficiency was higher in 
control than in AD-MCI and ADD group. All significant sta-
tistical results on local efficiency were reported in Table 4.

Mean local efficiency values across subjects and the sig-
nificant differences across groups were shown in Fig. 3b for 

each vertex. No correlation was found between the local 
efficiency and both MMSE and age.

Measure of Integration

Characteristic path length was similar among groups. It 
tended to be higher in the patients’ groups than control 
group, but the increase was not significant. No correlation 
was found between characteristic path length and either 
MMSE or age.

Fig. 3  Measures of segregation. 
a Correlation between cluster-
ing coefficient and MMSE in 
patients’ groups (Spearman 
ρ = 0.286, p = 0.009). b Mean 
local efficiency for control (blue 
bars), AD-MCI (green) and 
ADD (red) group. Significant 
differences between control and 
AD-MCI, control and ADD, 
AD-MCI and ADD are shown 
with a, b and c, respectively

Table 4  Local efficiency statistical comparisons among groups

For each vertex, main effect results and adjusted p values for multiple 
comparisons are shown for post-hoc analysis
ADD Alzheimer’s disease with dementia, AD-MCI mild cognitive 
impairment due to Alzheimer’s disease, n.s. not significant

Vertex Local efficiency

Main effect p value from post-hoc

H(2,125) Controls versus 
AD-MCI

Controls 
versus 
ADD

Fp2 H = 11.72, p = 0.003 0.008 0.01
T3 H = 15.62, p = 0.001 0.001 0.01
C3 H = 8.24, p = 0.02 0.03 n.s.
Cz H = 8.09, p = 0.02 n.s. 0.01
C4 H = 9.96, p = 0.007 0.01 0.04
T4 H = 13.35, p = 0.001 0.001 0.02
T5 H = 9.36, p = 0.009 0.008 n.s.
P3 H = 9.77, p = 0.008 0.03 0.02
P4 H = 13.34, p = 0.001 0.02 0.002
T6 H = 16.63, p = 0.001 0.001 0.003
O1 H = 12.83, p = 0.002 0.02 0.002
O2 H = 22.64, p = 0.001 0.02 0.001
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The global efficiency was different among groups 
[H(2,125) = 13.7, p = 0.001]. It was higher in the con-
trol than the AD-MCI (p = 0.01) and the ADD group 
(p = 0.002). No difference was found in the comparison 
between the AD-MCI and ADD groups. No correlation 
was found between the global efficiency and both MMSE 
and age.

Measure of Resilience

Assortativity coefficients for strength were not different 
among groups. Assortativity coefficient for out–out degree 
was different among groups [H(2,125) = 6.27, p = 0.04]. 
It was lower (more negative) in ADD than control group 
(p = 0.045).

Assortative coefficients for degree were negative for all 
the groups. A negative assortativity coefficient indicates 
that inside the network the vertices characterized by a high 
number of edges tend to be connected to vertices with low 
number of edges (dissortative network). No correlation was 
found between assortativity and either MMSE or age.

Discussion

Previous resting state EEG studies on functional organiza-
tion of the cerebral network in AD as revealed by graph the-
ory reported conflicting results. These discrepancies among 
studies could be related to methodological differences. The 
estimation of the direction of the edges allows to disentangle 
some issues, distinguishing the contribution of the incoming 
and outgoing information transfer from or to a vertex of the 
network. For this purpose, in the present study, the MVAR 
model applied to GC analysis was used as an effective con-
nectivity measure of the EEG signal applied to graph theory. 
The MVAR model avoids the pitfalls connected with the 
application of bivariate EEG measures between electrode 
pairs (Blinowska 2011). GC analysis was used instead of 
effective connectivity based on phase differences of the EEG 
rhythms. Indeed it was shown that such measures can give 
erroneous estimates of direction of information flow in the 
resting state EEG rhythms (Hillebrand et al. 2016).

GC analysis was applied in the time domain because it 
has the advantage not to have a-priori hypothesis on the 
frequency bands of the information transfer. Effective con-
nectivity measures at a given frequency band of the resting 
state EEG rhythms can potentially represent frequency-spe-
cific brain oscillatory processes only. They did not take into 
account the inter-subjects’ variability of that frequency-spe-
cific brain oscillatory processes, including that induced by 
AD. In addition effective connectivity in frequency domain 
unveils only information transfers in the same frequency 

bands and the possible information transfers which changed 
frequency bands are not evaluated.

In the present study, graph theory parameters were 
weighted by the strength of the edges revealed by GC 
results. GC results showed the reduction of the strength of 
the information transfer from resting state EEG signal in 
the AD-MCI and ADD than the control group for bilateral 
edges among parieto-temporal and occipital areas (Fig. 1). 
Compared with control subjects, previous studies showed 
that ADD patients were typically characterized by a decrease 
in the resting state alpha coherence between electrode pairs 
(Knott et al. 2000; Pogarell et al. 2005), with main effects 
in temporo–parieto-occipital regions (Locatelli et al. 1998; 
Adler et al. 2003). Directed transfer function study displayed 
a reduction in alpha and beta strength from parietal to frontal 
electrodes in ADD and MCI patients compared with control 
subjects (Koenig et al. 2005; Babiloni et al. 2008, 2009; 
Dauwels et al. 2010b).

Degree, In‑degree, Out‑degree

Degree values showed an overall decrease of edges in 
patients’ groups than control group. This result is in agree-
ment with previous EEG and magnetoencephalographic 
studies reporting a decrease of resting state functional con-
nectivity in AD patients (Knott et al. 2000; Koenig et al. 
2005; Franciotti et al. 2006; Stam et al. 2009). AD-MCI and 
ADD showed a lower number of edges among the vertices 
than the control group for temporal electrodes, supporting 
the hypothesis that the number of edges among brain areas 
is reduced since the MCI stage of AD. GC magnitude was 
also reduced in temporal electrodes of patients (Fig. 1). 
This functional alteration could be related to medial tempo-
ral lobe atrophy which is a characteristic neuropathological 
change in the early stages of AD (Rusinek et al. 2004; Mis-
tur et al. 2009). Previous EEG studies showed that power 
alterations in theta and beta bands were related to temporal 
atrophy (Lee et al. 2015) and slowing of the background 
activity was found to be more prominent in temporal deri-
vations (Valladares-Neto et al. 1995). A FDG-PET study 
reported that amnestic MCI patients, who eventually devel-
oped AD, showed significant hypo-metabolism in the left 
middle and superior temporal gyri (Morbelli et al. 2010). 
Another study reported oxidative damage to the superior 
temporal gyrus (STG) during the prodromal stage of AD, 
suggesting that oxidative damage to the temporal lobe is an 
early event in the onset of AD (Keller et al. 2005). Abnormal 
functional connectivity of the STG was also found in MCI 
patients studied by functional MRI (Risacher et al. 2009; 
Davatzikos et al. 2011) and by means of FDG-PET (Morbelli 
et al. 2012). By means of phase synchronization estimation, 
a decrease in alpha 2 lagged phase synchronization between 
temporal and parietal electrodes was shown in ADD patients 
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compared with control subjects (Canuet et al. 2012) and an 
increase of delta band phase synchronization was found in 
ADD revealing that the temporal lobe connections were par-
ticularly compromised (Canuet et al. 2012).

Although the number of edges was lower in patients’ 
groups than control group, the vertices with highest degree 
(so called hubs) were Fz, C3, C4, Cz, P3, P4 and Pz for all 
groups, suggesting that the hub function was not abnormal 
in the prodromal and mild dementia stages of AD. Degree 
showed that the number of edges was preserved for fron-
tal electrodes and F3 represented a hub in patient’s groups. 
These results extend the findings of a previous study on cor-
relation coefficients between pairs of gray matter regions 
obtained by MRI, where the MCI and AD groups retained 
their hub regions in the frontal lobe, as compared to healthy 
controls (Yao et al. 2010).

By means of graph theoretical analysis applied to GC 
matrices, in-degree and out-degree variables were com-
pared among groups. The reduction of the in-degree and 
out-degree variables was found in both AD-MCI and ADD 
as compared to control group. In addition, the topology of 
the network was different among groups. Specifically, in the 
control group frontal electrodes could be seen as broadcaster 
of information flows whereas central electrodes as integra-
tor showing higher values of out-degree than in-degree and 
in-degree than out-degree, respectively (Fig. 2a). For the 
patients’ groups the pattern was reversed: the frontal elec-
trodes could be seen as integrators, whereas parieto-occipital 
electrodes as broadcasters (Fig. 2b, c). For the control group 
the higher number of incoming edges found in hubs like C3, 
C4, Cz and Pz extend a previous EEG study (Moon et al. 
2015) which reported that hubs have a more receiving role 
in the network compared to non-hubs. Instead in AD-MCI 
and ADD this receiving role of the hubs was altered for P4 
and P3 which had more outgoing than incoming connec-
tions. These results suggest a different functional organiza-
tion of the parietal derivations in AD-MCI and ADD group 
compared with control group, confirming the hypothesis of 
an affected pattern of information flow in the large-scale 
brain networks.

Measure of Segregation

No difference was found between control and patients’ 
groups for the weighted directed clustering coefficient. Pre-
vious studies reported increased (He et al. 2008; Yao et al. 
2010; Zhao et al. 2012), decreased (Stam et al. 2009; Tijms 
et al. 2013) or unmodified (Stam et al. 2007; Lo et al. 2010; 
Sanz-Arigita et al. 2010) clustering coefficient in AD com-
pared to control group. The clustering coefficient was instead 
reduced in ADD compared with AD-MCI in O2. This reduc-
tion was found to be correlated to the cognitive impairment 

assessed by MMSE and to be independent from the GC 
magnitude of the connectivity matrix because significant 
correlation between clustering coefficient and MMSE was 
also found using binary coefficients of the GC correlation 
matrix. The amplitude of occipital sources of resting state 
alpha rhythms was found to be correlated to both MMSE 
scores and occipital gray matter density measured by MRI in 
MCI and AD patients (Babiloni et al. 2015). Thus our results 
could be related to the relationship between the occipital 
alpha rhythms, AD neurodegeneration in the occipital lobe 
and cognitive status.

The occipital electrodes showed higher values of local 
efficiency in control group than patients’ groups (Fig. 3b). 
GC magnitudes in O1 and O2 (Fig. 1) suggest the involve-
ment of these vertices in the formation of cliques in the 
control and AD-MCI groups. Our results on measures of 
segregation suggest that brain network functional alterations 
mainly involve the parieto-temporal derivations in the MCI 
stage of AD, whereas brain dynamic changes in the occipital 
electrodes are evident in AD with overt dementia.

Measure of Integration

No differences among groups were found for the character-
istic path length, whereas the global efficiency was higher 
in control than patients’ groups. Previous studies evidenced 
increased (Stam et al. 2007, 2009; He et al. 2008; Lo et al. 
2010; Yao et al. 2010; Zhao et al. 2012) or decreased (Sanz-
Arigita et al. 2010; Tijms et al. 2013) characteristic path 
length in AD. Our results suggest a reduction of the global 
efficiency of the network in AD-MCI and in AD with mild 
dementia and the possible preservation of the average path 
length of the information flow.

Measure of Resilience

The negative values of the assortativity coefficient for the 
three groups suggest that the networks are dissortative (the 
vertices predominantly connect with other vertices of dif-
ferent degree) in the three groups. Biological networks tend 
to be dissortative (Newman 2002). An assortative network 
is generally associated with a more efficient information 
processing and a lower vulnerability to random network 
damage. Targeted attacks in assortative networks are highly 
effective if compared to random breakdowns, due to the 
critical high degree of just a few vertices (hubs) whose 
removal can disrupt the whole network (Boccaletti et al. 
2006). In ADD, the reduction of the number of edges and 
of the out–out degree assortativity coefficient suggests an 
increased vulnerability of the network to both targeted and 
random attacks.
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Limitations

A major point of criticism on EEG and magnetoencephalog-
raphy (MEG) is that the estimates of statistical interdepend-
encies may be biased by the effects of volume conduction 
and, in the case of EEG, by the influence of the reference 
electrode (Nunez et al. 1997; Guevara et al. 2005).

While it is largely acknowledged that volume conduction 
and reference electrode deteriorate spatial resolution of scalp 
EEG, other distortions are less widely recognized in the 
community (Burle et al. 2015). Specifically, controversial 
findings were reported on the effect of volume conduction 
in the estimation of information flows derived from MVAR 
models. No influence of volume conduction was recognized 
when the estimators of connectivity are based on the phase 
difference between channels (Stam et al. 2009; Kaminski 
and Blinowska 2014). On the other hand spurious channel to 
channel connections or driver vertices influenced by higher 
signal–noise ratio were reported to be due to volume con-
duction (Haufe et al. 2011; Brunner et al. 2016).

A simulation study reported that the error rate on the 
EEG/MEG connectivity estimates due to the effects of vol-
ume conduction is less than 5.2% (Khadem and Hossein-
Zadeh 2014). Thus, in our study the significant differences 
among groups on graph theory parameters could not be 
ascribed to volume conduction effects. However, further 
investigation should be performed using spatial filters such 
as Laplacian filters or image inverse methods to EEG data in 
order to reduce correlations among scalp-recorded channels 
(Baillet et al. 2001; Fisch 2012). In this study the use of low 
density EEG recordings did not allow a correct procedure of 
source estimation. Indeed the analysis on the source space 
needs an adequate coverage of both the superior and infe-
rior surfaces and an adequate number of sensors because 
as sampling density increases, localization error decreases, 
regardless of the inverse method and head model (Song et al. 
2015). In addition we did not apply the Laplace transform 
because this method mixing the information from differ-
ent channels could destroy the original correlation structure 
between signals, and the causal information between chan-
nels is lost (Kaminski and Blinowska 2014).

The choice of the EEG reference is an important issue. 
Reference-free approaches or source localization should be 
applied to overcome this issue. For example, reference elec-
trode standardization technique (Dong et al. 2017) seems 
to be a promising method (Chella et al. 2016; Huang et al. 
2017), based on the assumption that an approximate neu-
tral reference can be achieved at an infinity point which is 
far from brain sources. In this way the activated neuronal 
sources in the brain are always the same regardless of the 
reference schemes. Systematic studies should be performed 
with different methods to evaluate the influence of the EEG 
reference on graph theory estimations.

In addition GC results could be affected by the meas-
urement noise, leading to spurious connection. Specifically, 
uncorrelated noise affects only weakly the detection of GC 
directionality, whereas linearly mixed noise causes a large 
fraction of false positives (Vinck et al. 2015). In general, the 
multivariate causality measures are very sensitive to data 
preprocessing (Florin et al. 2010). Extensive simulations 
were performed on the effect of applying different filtering 
techniques (high-pass, low-pass, notch filter) and four differ-
ent filter types (Butterworth, Chebyshev I and II, elliptic fil-
ter), on the performance of multivariate causality measures. 
Results suggested that preprocessing without a strong prior 
about the artifact to be removed disturbs the information 
content and time ordering of the data and leads to spurious 
and missed causalities (Florin et al. 2010). However, future 
studies should be performed to improve GC performance in 
the presence of measurement noise.

Another limitation of the present study could be ascribed 
to the lack of a reference network for comparison. Our find-
ings highlighted different network topologies among groups, 
but we can not conclude if the reduction of the edges or the 
decrease of the clustering coefficient linked to the MMSE 
actually reflect a loss of connections or a more random 
topology.

Conclusions

GC results (direction and strength of the edges) in the whole 
frequency range applied to graph theory and a certified stage 
of prodromal AD (AD-MCI) are the main contributions of 
the present study. In both MCI and ADD conditions, the 
observed functional disconnections (Delbeuck et al. 2003) 
involve vertices with low and high degree.

A greater understanding of these early brain changes 
would inform the pathophysiology as well as be relevant 
to treatment trials targeting the early stages of AD (Brier 
et al. 2014).

Our results add new pieces of evidence in the comprehen-
sion of the progression of AD from the prodromal stage to 
dementia, suggesting that the functional network alteration, 
evident in AD patients also in their prodromal stage, begins 
with the reduction of the number of edges and the loss of 
local and global efficiency. These results confirm that by 
the time clinical symptoms are detected, at least some AD-
related neurological damage has developed (Mosconi 2013).
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