
Information Systems Frontiers

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics
--Manuscript Draft--

Manuscript Number: ISFI-D-17-00377

Full Title: Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics

Article Type: SI: Recent Trends in Reuse and Integration

Keywords: optimization modulo theories; robotics; high-level controllers; logistics

Corresponding Author: Francesco Leofante
Universita degli Studi di Genova and RWTH Aachen University
ITALY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universita degli Studi di Genova and RWTH Aachen University

Corresponding Author's Secondary
Institution:

First Author: Francesco Leofante

First Author Secondary Information:

Order of Authors: Francesco Leofante

Erika Ábrahám

Tim Niemueller

Gerhard Lakemeyer

Armando Tacchella

Order of Authors Secondary Information:

Funding Information:

Abstract: Model-based synthesis allows to generate controllers that achieve high-level tasks
while satisfying certain properties of interest. However, when controllers are executed
on concrete systems, several modeling assumptions may be challenged, jeopardizing
their real applicability. This paper presents an integrated system for
generating, executing and monitoring optimal-by-construction
controllers for multi-robot systems. This system unites the
power of Optimization Modulo Theories with the flexibility
of an on-line executive, providing
optimal controllers for high-level task planning, and runtime
feedback on their feasibility. After presenting how our system
orchestrates static and runtime components, we demonstrate
its capabilities using the RoboCup Logistics League as testbed.
We do not only present our final solution but also its chronological development, and
draw some general observations for the development of OMT-based approaches.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Noname manuscript No.
(will be inserted by the editor)

Synthesis and Execution of Optimal Controllers for
Multi-Robot Systems in Logistics

Francesco Leofante1,3† · Erika Ábrahám1 · Tim Niemueller2 ·
Gerhard Lakemeyer2 · Armando Tacchella3

the date of receipt and acceptance should be inserted later

Abstract Model-based synthesis allows to generate con-
trollers that achieve high-level tasks while satisfying
certain properties of interest. However, when controllers
are executed on concrete systems, several modeling as-
sumptions may be challenged, jeopardizing their real
applicability. This paper presents an integrated system
for generating, executing and monitoring optimal-by-
construction controllers for multi-robot systems. This
system unites the power of Optimization Modulo The-
ories with the flexibility of an on-line executive, pro-
viding optimal controllers for high-level task planning,
and runtime feedback on their feasibility. After pre-
senting how our system orchestrates static and runtime
components, we demonstrate its capabilities using the
RoboCup Logistics League as testbed. We do not only
present our final solution but also its chronological de-
velopment, and draw some general observations for the
development of OMT-based approaches.

1 Introduction

With the advent of Industry 4.0, factories are mov-
ing from static process chains towards the introduc-
tion of autonomous robots in their production lines. As
the abilities and the complexity of such systems in-
crease, the problem of managing and optimizing the

† Corresponding author.
1 Theory of Hybrid Systems
RWTH Aachen University, Germany
{leofante,abraham}@cs.rwth-aachen.de
2 Knowledge-Based Systems
RWTH Aachen University, Germany
{niemueller,gerhard}@cs.rwth-aachen.de
3 Università degli Studi di Genova, Italy
armando.tacchella@unige.it

in-factory supply chain carried out by (fleets of) au-
tonomous robots becomes crucial. This paradigm shift
also opens up a number of new research challenges for
the AI community. A significant challenge is to create
methods to generate controllers 1 that can achieve high-
level tasks while satisfying properties of interest.

The RoboCup Logistics League (RCLL) (Niemueller
et al, 2015) has been proposed as a realistic testbed to
study the above mentioned problems at a manageable
scale. There, groups of robots need to maintain and
optimize the material flow according to dynamic orders
in a simplified factory environment.

Though there exist successful heuristic methods to
solve the underlying planning and scheduling problem,
e.g., (Hofmann et al, 2016; Niemueller et al, 2013), a
major disadvantage of these methods is that they pro-
vide no guarantees about the quality of the solution, as
observed in (Bensalem et al, 2014). A promising solu-
tion to this issue is offered by the recently emerging field
of Optimization Modulo Theories (OMT), where Sat-
isfiability Modulo Theories (SMT) solving is extended
with optimization capabilities – see, e.g., (Nieuwenhuis
and Oliveras, 2006; Sebastiani and Tomasi, 2015; Se-
bastiani and Trentin, 2015b).

In this paper we present an integrated system for ge-
nerating, executing and monitoring optimal-by-const-
ruction controllers. We employ OMT to synthesize high-
level controllers with optimality guarantees for multi-
robot systems within the RCLL scope. Furthermore,
we integrate our approach into an on-line execution
and monitoring system based on CLIPS (Wygant, 1989),
a rule-based production system using forward chain-
ing inference. The system presented here extends the

1 We will use the words (high-level) controller and plan inter-
changeably throughout this paper.

Click here to download Manuscript main.tex

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/isfi/download.aspx?id=44883&guid=23b24a61-15ad-4d91-98a4-1a15a5a7b874&scheme=1
http://www.editorialmanager.com/isfi/download.aspx?id=44883&guid=23b24a61-15ad-4d91-98a4-1a15a5a7b874&scheme=1

2 Leofante et al.

results obtained in (Leofante et al, 2017), where we
showed how controllers could be synthesized for the ex-
ploration phase, during which robots roam the game
arena and determine where the team’s own machines
are positioned. By rigorous experimental analysis we
showed that naive encodings fail to cope with the com-
plexity of the domain and we then detailed our findings
and solutions adopted to overcome previous limitations.

This work extends our previous research in several
directions:
– We shift our attention towards the production phase,

where robots receive orders dynamically and coop-
erate to deliver finished products within fixed dead-
lines. With similar methods as used in (Leofante
et al, 2017), we encode the underlying planning and
scheduling problem as a Boolean combination of lin-
ear constraints over the reals, and compute opti-
mal controllers by using OMT solvers such as Z3
(Bjørner et al, 2015), SMT-RAT (Corzilius et al, 2015)
and OptiMathsat (Sebastiani and Trentin, 2015a).

– We present an integrated system that unites OMT
synthesis with online execution and monitoring based
on CLIPS. We describe how our architecture man-
ages the integration between controller synthesis and
online execution, the data structures involved and
solutions achieved to obtain seamless integration.

– We detail the recent achievements obtained regard-
ing the execution of intrinsically concurrent con-
trollers. We extend previous work by adding to our
system synchronization mechanisms to manage mul-
tiple robots.

– We extend our comparison with heuristic approaches
by considering both anytime and oneshot planning.
This allows us to check whether any improvement
can be expected if a planner can use additional time
to further optimize the first-found feasible solution.

– We show how our architecture can be extended to
provide explanations about the decision-making pro-
cess underlying our synthesis procedure in a human-
readable fashion. We elucidate specific features of
OMT that have the potential to facilitate such ex-
planations, and provide illustrative results along this
direction.
After presenting some theoretical preliminaries in

Section 2, we describe the salient features of a game
in the RoboCup Logistics League in Section 3. In Sec-
tion 4 we provide a general formalization of our ap-
proach together with insights on the integration of our
approach into an on-line execution and monitoring sys-
tem based on CLIPS. Our solution and simulation-based
experimental evaluations for the exploration and pro-
duction phases are presented in Sections 5 and 6 respec-
tively. Section 7 introduces the problem of generating

Boolean abstraction

SAT solver

Input CNF
formula

Theory solver

SATor
UNSAT

constraints

SAT + model
UNSAT + explanation

Fig. 1: The SMT solving framework.

human-readable explanations for controllers generated
with OMT, together with some preliminary results. Fi-
nally, we draw some general conclusions and discuss
future directions of research in Sections 8 and 9.

2 Preliminaries

2.1 Mixed-integer arithmetic

Problems considered in this work are encoded as mixed-
integer arithmetic formulas. Syntactically, arithmetic
terms are constant symbols, variables, and sums, dif-
ferences or products of terms. Arithmetic constraints
compare two arithmetic terms using <, ≤, =, ≥ or >.
Quantifier-free arithmetic formulas use conjunction ∧
and negation ¬ (and further syntactic sugar like dis-
junction ∨ or implication =⇒) to combine theory con-
straints. A formula in conjunctive normal form (CNF)
is a conjunction of disjunctions of theory constraints
or negated theory constraints (see Eq. (1) for a sim-
ple example formula in CNF). An arithmetic formula is
called linear if it does not contain any multiplication,
and non-linear otherwise. Semantically, each variable
is interpreted over its domain – either the reals R or
the integers Z – by an assignment, assigning to each
variable a value from its domain; we use the standard
semantics to evaluate formulas.

2.2 Satisfiability modulo theories

Satisfiability Modulo Theories (SMT) solving aims at
deciding the satisfiability of (usually quantifier-free) first-
order logic formulas over some theories like,e.g., the the-
ories of lists, arrays, bit vectors, real or (mixed-)integer
arithmetic. To decide the satisfiability of an input for-
mula ϕ in CNF, SMT solvers proceed as depicted in
Fig. 1. Typically, a Boolean abstraction abs(ϕ) of ϕ

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 3

is built first by replacing each constraint by a fresh
Boolean variable (proposition), e.g.,

ϕ = x ≥ y ∧ (y > 0 ∨ x > 0) ∧ y ≤ 0

↓
abs(ϕ) = A ∧ (B ∨ C) ∧ ¬B

(1)

where x, y ∈ R, and A,B,C ∈ B = {0, 1}.
A Boolean satisfiability (SAT) solver searches for

a satisfying assignment S for abs(ϕ), e.g., S(A) = 1,
S(B) = 0, S(C) = 1 for the above example. If no
such assignment exists then the input formula ϕ is un-
satisfiable. Otherwise, the consistency of the assign-
ment in the underlying theory is checked by a the-
ory solver. In our example, we check whether the set
{x ≥ y, y ≤ 0, x > 0} of linear inequalities is fea-
sible, which is the case. If the constraints are theory-
consistent then a satisfying solution (model) is found
for ϕ. Otherwise, the theory solver returns a theory
lemma ϕE giving an explanation for the conflict, e.g.,
the negated conjunction of some inconsistent input con-
straints. The explanation is used to refine the Boolean
abstraction abs(ϕ) to abs(ϕ) ∧ abs(ϕE). These steps
are iteratively executed until either a theory-consistent
Boolean assignment is found, or no more Boolean sat-
isfying assignments exist.

2.3 Optimization modulo theories

Optimization Modulo Theories (OMT) – see for ex-
ample (Nieuwenhuis and Oliveras, 2006; Cimatti et al,
2010) and (Bjørner et al, 2015; Corzilius et al, 2015;
Sebastiani and Trentin, 2015a,b) for related solvers –
extends SMT solving with optimization procedures to
find a variable assignment that defines an optimal value
for an objective function f (or a combination of multi-
ple objective functions) under all models of a formula ϕ.
As noted in (Sebastiani and Tomasi, 2015), most OMT
solvers implement a linear-search scheme, which can
be summarized as follows. Let ϕS be the conjunction of
all theory constraints that are true under a satisfying
assignment S and the negation of those that are false
under S. A local optimum µ for f can be computed
under the side condition ϕS , and ϕ is updated as

ϕ := ϕ ∧ (f ./ µ) ∧ ¬ϕS , ./∈ {<,>}

This forces the solver to find a new assignment un-
der which the value of the objective function improves,
while discarding all previously found assignments. Re-
peating this procedure until the formula becomes unsat-
isfiable will lead to an assignment optimizing f under
all models of ϕ.

2.4 Controller synthesis and SMT

SMT solvers are nowadays embedded as core engines in
a wide range of technologies – see e.g. (Ábrahám and
Kremer, 2016) for some examples. In the area of ro-
botics several interesting applications of SMT can be
found. For instance, (Nedunuri et al, 2014) and (Wang
et al, 2016) use SMT solving to generate task and mo-
tion plans starting from a static roadmap, employing
plan outlines to guide the synthesis process. The au-
thors of (Dantam et al, 2016) perform task and motion
planning leveraging incremental solving in Z3 to up-
date constraints about motion feasibility. The work pre-
sented in (Saha et al, 2014) defines a motion planning
framework where SMT solving is used to combine mo-
tion primitives so that they satisfy some linear tempo-
ral logic (LTL) requirements. In (Cashmore et al, 2016)
the authors present a framework to translate planning
languages into SMT encodings.

In contrast to the above works, (i) we do not use
prior knowledge (e.g., motion primitives, plan outlines)
to seed the search performed by the solver and (ii) we
exploit OMT solving to synthesize controllers that are
not only feasible but also optimal.

2.5 Online execution

The online execution of plans is a very intricate prob-
lem. When controllers are executed on concrete sys-
tems, several modeling assumptions may be challenged,
jeopardizing their real applicability. Examples of such
challenges may be slack during execution, or uncer-
tainty, e.g., in travel times due to other agents in the
environment. In the multi-robot case, issues of synchro-
nization and mutual exclusion may be relevant.

Several execution systems have been proposed in
the past. Most executives mentioned in (Verma et al,
2005b) are associated with a specific modeling language.
For example, the Universal Executive (Verma et al,
2006) is a general processor for the PLEXIL (Verma
et al, 2005a) language. It allows to describe the execu-
tion flow as a number of hierarchically structured nodes
consisting of a set of conditions when to execute and
a body that describes what to execute. The Universal
Executive then ties these descriptions with interfaces to
actual actors. While PLEXIL is more of a control lan-
guage, Procedural Reasoning Systems (Ingrand et al,
1996) lean more towards a knowledge-based represen-
tation with an explicit fact base, a notion of goals to
achieve or maintain, and activation conditions for pro-
cedures. An advantage here is a less constrained exe-
cution flow, however, this gain in expressiveness may

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Leofante et al.

Fig. 2: RCLL factory environment as seen in the simu-
lator (Zwilling et al, 2014).

easily come with unintended execution orders without
the required caution.

A more recent system integrating planning and ex-
ecution is ROSPlan (Cashmore et al, 2015). It provides
a general framework for execution where the individual
components can be exchanged (with a varying degree
of effort). One of the available dispatchers uses a repre-
sentation of the plan as an Esterel (Berry and Gonthier,
1992) program. There, a plan is described as a set of
modules interconnected with signals and receiver slots.
However, at this point the translation and execution is
opaque and no influence can be exerted on the formu-
lation of the program. There is currently only a limited
form of concurrency available. A slightly different ap-
proach that has been compared to Esterel is RMPL (In-
gham et al, 2001). Instead of a signal flow, it models
the flow more as an evolution of states. Both provide
primitives for sequential or parallel execution of code
blocks, and conditionals.

An earlier system to provide an extensible planning
system based on the Planning Domain Definition Lan-
guage (PDDL) (McDermott et al, 1998) was TFD/M with
semantic attachments (Dornhege et al, 2009). However,
the executive was a C++ program which had to be aug-
mented each time for the respective available actions
and did not provide a flexible specification language. A
more unified approach was recently taken through in-
tegrating continual planning in Golog (Hofmann et al,
2016). The overall domain model and execution specifics
are encoded in Golog. For planning (sub-)problems the
model is translated into PDDL and a planner is called.
The specification contains assertions to deal with in-
complete knowledge and improve planning efficiency.
However, the modeling in Golog can be somewhat te-
dious and it is often deeply intertwined with its Prolog
implementation.

In this work, we propose a new formulation of the
execution as a rule-based system. With the experience
of modeling the decision making, multi-robot coordi-

BS RS 1 RS 2 RS 2 CS 2

Fig. 3: Example of order configuration for the competi-
tion (Niemueller et al, 2015; RCLL Technical Commit-
tee, 2017).

nation, and task execution for the RoboCup Logistics
League (Niemueller et al, 2016b), we intend to general-
ize the framework to be applicable with various plan-
ning, reasoning, and decision making components. This
decoupling between synthesis and execution comes at
the cost of having to link two separate models in a con-
sistent way. However, it provides a great flexibility for
the executive to choose the appropriate planning sys-
tem and to add domain-specific interpretations of the
plan easily.

3 The RoboCup Logistics League

The example domain chosen for evaluating our approach
is based on the Planning and Execution Competition
for Logistics Robots in Simulation 2 (Niemueller et al,
2016a), which provides a simulated Smart Factory en-
vironment shown in Fig. 2. There, two teams of three
autonomous robot agents each compete to handle the
logistics of materials through several dynamic stages
to produce final goods according to a dynamic order
schedule known only at run-time. Each game sees two
teams competing against each other during two phases,
the exploration and the production phase.

In the exploration phase, robots must roam the en-
vironment and determine where the team’s own ma-
chines are positioned. For this, the playing field is di-
vided into 24 virtual zones, of which 12 belong to each
of the two teams (operating at the same time in the
environment increasing execution duration uncertainty
considerably). However, only 6 of these zones will con-
tain machines. Therefore, the task is to efficiently assign
the three robots to the 12 zones and identify the zones
which contain a machine.

In the production phase instead, robots have to han-
dle the logistics of materials through several (dynamic)
stages to produce final goods to fulfill orders. Products
to be assembled have different complexities and usually
require a base, 0 to 4 rings to me mounted on top of
it, and a cap as a finishing touch. To increase complex-
ity, orders not only fix the components to be used, but
also specify colors to be used, and in what order. Bases

2 http://www.robocup-logistics.org/sim-comp

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 5

are available in three different colors, four colors are
admissible for rings and two for caps.

Several machines that perform different processing
steps are scattered around the factory shop floor. Each
of them completes a particular production step such as
providing bases, mounting colored rings or caps. Based
on such differences, it is possible to distinguish four
types of machines:

– Base Station (BS): acts as dispenser of base ele-
ments. There is one single BS per team.

– Cap Station (CS): mounts a cap as the final step in
production on an intermediate product. CS have a
slide to store at most one cap piece at a time. At the
beginning of the game this slide is empty and has
to be filled as follows. A base element with a cap
must be taken from a shelf in the game arena and
fed to the machine; the cap is then unmounted and
buffered in the slide. The cap can then be mounted
on the next intermediate product taken to the ma-
chine. There are two CS per team.

– Ring Station (RS): mounts one colored ring (of a
specific color) onto an intermediate product. Some
ring colors require additional tokens to be “unlocked”:
robots will have to feed a RS with a specified number
of bases before the required color can be mounted.
There are two RS per team.

– Delivery Station (DS): accepts finished products. A
DS contains three conveyor belts, robots have to
prepare the proper one as per specific order. There
is one DS per team.

The challenge for autonomous robots is then to trans-
port intermediate products between processing machines
and optimize a multistage production cycle of different
product variants until delivery of final products. A sam-
ple production trace is shown in Fig. 3.

Orders that denote the products which must be as-
sembled with these operations are posted at run-time by
an automated referee box (RefBox) broadcasting infor-
mation via Wi-Fi and therefore require quick planning
and scheduling. Orders come with a delivery time win-
dow introducing a temporal component into the prob-
lem.

4 System Overview

The system we describe in this work unites the power
of Optimization Modulo Theories with the flexibility
of an on-line executive, providing optimal controllers
for high-level task planning, and runtime feedback on
their feasibility. The proposed architecture is depicted
in Figure 4. The CLIPS executive controls the overall

CLIPSOMT

RefBox Simulator

TranslationRepresentation
BE

Fawkes

Fig. 4: The overall architecture.

execution and, when needed, triggers the OMT mod-
ule to synthesize a controller. To start synthesizing, the
world model, with all relevant information, must be en-
coded in a way accessible to the OMT solver. We have
opted for Google Protocol Buffers (protobuf) to han-
dle communications to and from the OMT solving mod-
ule. Once a controller is computed, CLIPS retrieves it
and distributes it to the robots for execution. Robots
then execute their respective partial plans by invok-
ing the appropriate basic behaviors through the behav-
ioral and functional components of the Fawkes3 soft-
ware framework (for instance, BE in Fig. 4 represents
the Lua-based Behavior Engine (Niemueller et al, 2009)
that provides the basic skills to execute the controllers).
Only through this framework does the reasoning system
interact with the simulation.

Several challenges can arise during execution, as orig-
inal modeling assumptions might not hold in the real
system due to, e.g., action failure, plan failure due to
ignorance or change in a dynamic environment. If this
happens, controllers might become inconsistent and lead
to undesired behaviors. In our framework, we rely on
the interplay between the controller synthesis module
and the on-line executive to tackle this problem. Once
controllers have been synthesized, CLIPS automatically
starts the appropriate tasks. Updates on execution (e.g.,
if a certain task is currently in progress, task failures)
are always distributed in the world model, therefore
the executive is constantly informed about execution
progress. When inconsistencies with the model are de-
tected, the executive can ask for a new controller, and
our encoding allows to compute this starting from any
arbitrary initial world state.

In the following, we describe the main components
of our system and show how they operate together in
our pipeline.

4.1 Optimal controllers with OMT

The approach used is based on symbolic reachability
techniques used to solve the SMT-based bounded model-

3 Fawkes is a component-based software framework for robotic
real-time applications. URL: www.fawkesrobotics.org

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Leofante et al.

checking problem, which we extended to OMT – see
(Biere et al, 1999) for the original formulation.

States are described using an ordered set of real-
valued variables x = {x1, . . . , xn}; we also use the vec-
tor notation x = (x1, . . . , xn) and write x′ and xi for
(x′1, . . . , x

′
n) and (x1,i, . . . , xn,i) respectively. There is a

special variable A ∈ x which encodes the action to be
executed next, and a variable rew ∈ x which encodes
the reward achieved when executing action A in the
current state. A state s=(v1, . . . , vn) ∈ Rn specifies a
real value vi ∈ R for each variable xi ∈ x.

The RCLL system is represented symbolically by
mixed-integer arithmetic formulas defining the initial
states I(x), the transition relation T (x, x′) (where x
describes the state before the transition and x′ the
state after it) and a set of final states F (x). Execu-
tions (paths) of length p are sequences s0, . . . , sp of
states such that I(s0) and T (si, si+1) hold for all i =
1, . . . , p− 1. Thus, paths are solutions for the formula:

I(s0) ∧
∧

0≤i<p

T (si, si+1) (2)

The total reward rewtot associated to such a path is
specified by:

rewtot =
∑

0≤i<p

rewi (3)

The optimal bounded synthesis problem, defined by a
tuple OBSR=(I, T, F, rewtot, p), poses the problem to
find a path of length p that reaches a target state and
achieves thereby the highest possible reward, i.e., to
maximize rewtot under the side condition:

I(x0) ∧

 ∧
0≤i<p

T (xi, xi+1)

 ∧
 ∨

0≤i≤p

F (xi)

 ∧
rewtot =

∑
0≤i<p

rewi (4)

4.2 CLIPS rules engine

CLIPS (Wygant, 1989) is a rule-based production sys-
tem using forward chaining inference based on the Rete
algorithm (Forgy, 1982). CLIPS consists of three build-
ing blocks (Giarratano, 2007): a fact base, a knowledge
base and an inference engine.

The fact base can be seen as a global memory where
data is stored in the form of facts, high-level statements
that encode pieces of information about the world state.
The knowledge base instead, is used to represent knowl-
edge. More specifically, CLIPS provides heuristic and

1 (defrule production-call-clips-omt
2 (phase EXPLORATION)
3 (team-color ?team-color&CYAN|MAGENTA)
4 (state IDLE)
5 (not (plan-requested))
6 (test (eq ?*ROBOT-NAME* "R-1"))
7 =>
8 (bind ?p
9 (omt-create-data

10 (omt-create-robots ?team-color)
11 (omt-create-machines ?team-color)
12 (omt-create-orders ?team-color)
13)
14)
15 (omt-request "explore-zones" ?p)
16 (assert (plan-requested))
17)

Listing 1: CLIPS rule to trigger synthesis.

procedural paradigms for representing knowledge in the
form of rules and functions respectively.

Rules specify heuristics to decide which actions to
perform in what situations. An example of a CLIPS rule
is shown in Listing 1. Formally, rules are composed of
an antecedent and a consequent. The antecedent is de-
fined as a set of conditions expressed over facts (ll. 2–6),
while the consequent consists of a set of actions to be
performed (ll. 8–16) when the rule is applicable. Ac-
tions in CLIPS are represented by functions (ll. 8–14,
omt-create-* calls are functions), pieces of executable
code which can return values or perform side-effects
(e.g., interact with the low-level control layer for robots).

The inference engine is the mechanism that CLIPS
provides to control the overall execution of rules. At
system initialization, the inference engine is instructed
to begin execution of applicable rules. To determine
whether a rule is applicable, the inference engine checks
for each rule in the knowledge base whether their an-
tecedent is met by the facts initially asserted in the fact
base.

If all conditions specified in the antecedent of a rule
are satisfied then the rule is activated and added to the
execution agenda. If more than one rule is applicable,
the inference engine uses a conflict resolution strategy
to select which rule should have its actions executed.
The actions of the selected rule are executed (which
may affect the list of applicable rules) and then the
inference engine selects another rule and executes its
actions. This process continues until no applicable rules
remain.

4.3 Communication infrastructure

For controller synthesis, the world model, with all rele-
vant information, must be encoded in a way accessible

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 7

to the solver. In this work, we have used Google Proto-
col Buffers4 (protobuf) to encode the world state when
synthesis is triggered, as well as the resulting controller.
Protocol buffers define a language-independent mecha-
nism for serializing structured data. To use them, one
needs to specify the structure of the data to be serial-
ized (i.e., specify the data type). Once this is done, the
protocol buffer compiler needs to be run to automat-
ically generate data access classes in the language of
interests – C++ in our case. Protobuf buffers provide a
convenient transport, exchange, and storage represen-
tation that is easy to create and read. They also have
powerful introspection capabilities which are particu-
larly useful for generic access from reasoning systems.
For example, the CLIPS-based access requires only the
message definition files and not any pre-generated code.
We use the exploration problem as a working example
to show the interaction between the solving module and
the CLIPS agent. The rule to trigger the synthesis pro-
cess is shown in Listing 1. Once the game is started
(ll. 2–4), the first robot (l. 6) will create the data struc-
ture with the relevant information and request a plan
from the OMT solver (l. 15).

The OMT side notifies the executive once a solution
is ready for retrieval. An excerpt of the message speci-
fications for plan representation is shown in Listing 2.
First, a list of actor (robot) specific plans is defined
in ll. 1–3, where the keyword repeated specifies that
the field may be repeated multiple times. Each plan
(ll. 4–11) requires the actor for the plan to be defined
(required keyword) and either a sequential or a tempo-
ral plan (oneof keyword). In this example, we show how
a message for sequential plans is defined (ll. 12–14).
A sequential plan simply consists of a series of actions
(ll. 15–18), each of which is defined by a name and pa-
rameterized by a number of key-value pairs (ll. 19–22).
Listing 3 shows a concrete example of a plan for two
robots – "R-1" and "R-2" – with two "move" action com-
mands.

4.4 Execution and monitoring

Once a plan has been retrieved, it must be translated
into a native CLIPS representation. Each action spec-
ified by the OMT module (see Listing 3) is added to
the fact base by means of facts which identify tasks
and steps to be executed on the CLIPS side. Rules are
defined to process such tasks and steps, defining the
actions to be executed. Listing 4 shows an example of
such translation for Listing 3, ll. 1–19. First, a task fact
is added (ll. 1–2) to specify robot actor and steps to

4 https://developers.google.com/protocol-buffers/

1 message ActorGroupPlan {
2 repeated ActorSpecificPlan plans = 1;
3 }
4 message ActorSpecificPlan {
5 required string actor_name = 1;
6
7 oneof plan {
8 SequentialPlan sequential_plan = 2;
9 TemporalPlan temporal_plan = 3;

10 }
11 }
12 message SequentialPlan {
13 repeated PlanAction actions = 1;
14 }
15 message PlanAction {
16 required string name = 1;
17 repeated PlanActionParameter params = 2;
18 }
19 message PlanActionParameter {
20 required string key = 1;
21 required string value = 2;
22 }

Listing 2: Plan data type specfication in protobuf.
Each field requires a numerical tag, that identifies
the field in the binary encoding.

be executed. Step facts are specified in ll. 2–8, where
more details about the low-level robot actions needed
are added.

In our system, we rely on the communication infras-
tructure used to share world model updates among the
robots to. This encapsulates fact base updates in proto-
buf messages and broadcasts them to the other robots.
A (dynamically elected) master generates a consistent
view and distributes it to the robots. On each robot,
the CLIPS executive has rules that automatically start
tasks when applicable. Basic behaviors in our frame-
work are provided by a Lua-based Behavior Engine,
but could in principle be provided by other sources. A
step in a task is executed by triggering the execution of
an asynchronous durative procedure. Then, information
about the execution of the state is read and asserted in
the fact base. Updates on task execution (e.g., whether
a task is currently in progress) are distributed in the
world model, making sure that the on-line executive is
informed about the status of execution.

During execution, the modeling assumptions may be
challenged and, in general, actions may fail or produce
an unexpected result. For instance, an object might be
misplaced, or slack during execution could make a plan
invalid, for example if a specified deadline cannot be
met. As explained above, steps of a task are triggered
non-blocking, i.e., rule evaluation continues normally.
This can be used to implement execution monitoring,
where rules can be defined to identify situations where
a step should be skipped or a task be aborted.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Leofante et al.

1 plans [0] :ActorSpecificPlan {
2 actor_name: "R-1"
3 sequential_plan :SequentialPlan {
4 actions [0] :PlanAction {
5 name: "move"
6 params [0] :PlanActionParameter {
7 key: "to"
8 value: "C-BS-I"
9 }

10 }
11 actions [1] :PlanAction {
12 name: "move"
13 params [0] :PlanActionParameter {
14 key: "to"
15 value: "C-DS-I"
16 }
17 }
18 }
19 }
20 plans [1] :ActorSpecificPlan {
21 actor_name: "R-2"
22 sequential_plan :SequentialPlan {
23 actions [0] :PlanAction {
24 name: "move"
25 params [0] :PlanActionParameter {
26 key: "to"
27 value: "C-CS1-I"
28 }
29 }
30 actions [1] :PlanAction {
31 name: "move"
32 params [0] :PlanActionParameter {
33 key: "to"
34 value: "C-RS2-I"
35 }
36 }
37 }
38 }

Listing 3: Plan represented through the messages
from Listing 2 (shown in augmented JavaScript
Object Notation).

1 (task (task-id 1910) (robot "R-1") (name
explore)

2 (state proposed) (steps 1911 1912))
3 (step (id 1911) (name drive-to) (state

inactive)
4 (machine C-BS) (side INPUT)
5 (sync-id (next-sync-id)))
6 (step (id 1912) (name drive-to) (state

inactive)
7 (machine C-DS) (side INPUT)
8 (sync-id (next-sync-id)))

Listing 4: Task representation in CLIPS.

5 Exploration Phase

In this section we show how to construct controllers for
the exploration phase of a game in RCLL. Although ex-
ploration does not play a major role in determining the
outcome of a competition, we decided to start with this

phase because of the easy formulation of the underlying
problem. As explained in Section 3, in the exploration
phase the robots must roam the environment and de-
termine where the team’s own machines are positioned.
Each team is assigned 12 virtual zones to explore, out of
which only 6 contain machines. However, even though
the problem formulation looks simple, computing an
optimal solution (in terms of fastest execution) proved
to be challenging: optimal exploration is a variant of the
multiple traveling salesman problem, which is known to
be NP-hard. As we learned, the combinatorial nature of
this problem poses a great challenge to the OMT solver:
naive encodings fail to cope with the complexity of the
domain.

This section, based on the work presented in (Leo-
fante et al, 2017), shows the chronological development
of our synthesis approach. We examine how different
design choices can affect the solving process and draw
general observations which we then applied when en-
coding the production problem of Section 6.

The experimental analysis presented here has been
carried out using the Z3 solver5 (Bjørner et al, 2015).
Though most of the encodings we present in the fol-
lowing generate linear arithmetic problems, due to the
Boolean stucture of these formulas we could not use any
linear programming tools. We considered also the OMT
solvers SMT-RAT (Corzilius et al, 2015) and OptiMathsat
(Sebastiani and Trentin, 2015a). The latter specializes
in optimization for real arithmetic problems, whereas
SMT-RAT is tuned for the satisfiability check of non-
linear real arithmetic formulas. However, the nature of
our problems rather requires combinatorial optimiza-
tion at the Boolean level and therefore the strengths of
these two solvers could not be exploited to their fullest.
Z3 was the tool which could solve all the instances pro-
posed, therefore it was chosen as best candidate for our
empirical analysis.

First encoding (A). We encode the high-level task to
explore Z zones by 3 robots as shown in Fig. 5.

Robots start from a depot, modeled by some ficti-
tious zones −3,−2,−1. Each robot i ∈ {1, 2, 3} starts
at zone −i, moves over to the zones −i+1, . . . , 0, and
explores, from the start zone 0, at most Z of the zones
1, . . . , Z. The distance between two zones i and j is de-
noted by D(i, j). Here we assume the distance that a
robot needs to travel to reach the start zone to be 0,
but it could be also set to any positive value (see Fig.
6).

The movements of robot i are encoded by a sequence
posi,−i, . . . , posi,Z of zones it should visit, with posi,j ∈

5 Running on a machine running Ubuntu Mate 16.4, Intel Core
i7 CPU at 2.10GHz and 8GB of RAM

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 9

Z
A B C D E F

OptimumTime Conf Time Conf Time Conf Time Conf Time Conf Time Conf
6 0.40 4841 0.25 3206 0.18 2525 0.17 2069 0.29 3416 0.16 1103 10.9
8 2.07 14400 1.91 15248 1.16 9237 1.62 14355 5.32 30302 1.23 3876 11.4
10 80.06 225518 59.71 184685 26.71 91648 21.72 89785 TO 8.97 27811 12.1
12 286.70 486988 255.55 449485 81.64 198249 54.17 161134 TO 36.21 101308 12.6

Table 1: Running times (sec) and #conflicts for encodings A-F (Z: number of zones to be visited, TO: 5min).

ϕdepot :=

{
pos1,−1 = −1 ∧ pos1,0 = 0 ∧ pos2,−2 = −2 ∧ pos2,−1 = −1 ∧ pos2,0 = 0 ∧
pos3,−3 = −3 ∧ pos3,−2 = −2 ∧ pos3,−1 = −1 ∧ pos3,0 = 0

(5)

ϕmove :=

3∧
i=1

di,0 = 0 ∧

Z∧
j=1

(Z∨
k=0

Z∨
l=1
l 6=k

(
posi,j−1=k ∧ posi,j=l ∧ di,j=di,j−1+D(k, l)

))
∨
(
posi,j=− 4 ∧ di,Z=di,j−1

)
(6)

ϕeach :=

Z∧

k=1

 3∨
i=1

Z∨
j=1

(
posi,j = k ∧

3∧
u=1

Z∧
v=1

(u,v) 6=(i,j)

posu,v 6= k

) (7)

ϕmax :=

3∧

i=1

mi ⇔
(3∧

l=1
l<i

dl,Z < di,Z ∧
3∧

l=1
i<l

dl,Z = di,Z

) (8)

Fig. 5: SMT encoding A for the exploration phase.

0

−1 −2 −3

1 M. . .

D
(−
3,
−2
) =

0

D
(−
2,
−1
) =

0

D(−1, 0) = 0

D(0,M) 6= 0D(0, 1) 6= 0

Fig. 6: Initial robot configuration.

Z. The variables posi,−i, . . . , posi,0 in ϕdepot in Eq. (5)
represent the movements from the depot to the start
zone.

For j > 0, if the value of posi,j is between 1 and Z
then it encodes the jth zone visited by robot i. Other-

wise, posi,j = −4 encodes that the robot stopped mov-
ing and stays at posi,j−1 for the rest of the exploration
(i.e., the plan does not require robot i to explore any
more zones). The total distance traveled by robot i to
visit zones until step j is stored in di,j ∈ R. These
facts are encoded by ϕmove in Eq. (6) for each robot
i ∈ {1, 2, 3} by di,0 = 0 and for each j ∈ {1, . . . , Z},
which ensures that, at each step j, either the robot
moves and its travel distance is incremented accord-
ingly, or the robot stops moving. Notice that in this
second case, we can immediately determine the total
travel distance for the robot at the last step in the
plan and, furthermore, the above constraints imply that
once robot i stops moving (posi,j=−4) it will not move
in the future (posi,j′= − 4 and di,j′ = di,j′−1 for all
j ≤ j′ ≤ Z).

For each zone k ∈ {1, . . . , Z} we enforce that it is
visited exactly once by requiring ϕeach in Eq. (7).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Leofante et al.

Finally ϕmax in Eq. (8) uses for each robot i ∈
{1, 2, 3} a Boolean variable mi to encode whether the
robot has the smallest index under all robots with maxi-
mal total travel distances at the end of their plans (note
that there is exactly one robot with this property).

Our optimization objective is to minimize the largest
total travel distance:

minimize
∑3

i=1mi · di,Z (9)
subject to ϕdepot ∧ ϕmove ∧ ϕeach ∧ ϕmax

Results. We consider four benchmarks with 6, 8, 10
and 12 zones to be visited. Encoding A allowed us to
compute optimal plans, but it does not scale with the
number of zones to be visited. The solving time 286.7

seconds listed in Table 1 for the optimal objective 12.6

for a benchmark with Z = 12 zones claims a large part
of the overall duration of the exploration phase.

Tackling loosely connected constraints (B). By ana-
lyzing solver statistics we noticed that the number of
theory conflicts was quite large, and theory conflicts
typically appeared at relatively high decision levels, i.e.,
at late stages of the Boolean search in the SAT solver.
One reason for this is that during optimization, vio-
lations of upper bounds on the total travel distances
can be recognized by the theory solver only if all the
zones that a robot should visit are already decided. In
other words, the constraints defining the total travel
distance of a robot build a loosely connected chain in
their variable-dependency graph. Furthermore, expla-
nations of the theory conflicts blamed the whole plan
of a robot, instead of restricting it to prefixes that al-
ready lead to violation. As a result, the propositional
search tree could not be efficiently pruned. To alleviate
this problem, we added to the encoding A the following
formula, which is implied by the monotone increment
of the partial travel distances by further zone visits:

3∧
i=1

Z∧
j=1

di,j ≤ di,Z (10)

Results. As Table 1 shows, adding the above con-
straints led to a slight improvement, but the solving
time of 255.55 seconds for 12 zones is still too long for
our application.

Symmetry breaking (C). Although the robots start
from different zones, all move to the start location 0

at cost 0 before exploration. Thus, given a schedule for
the three robots, a renaming of the robots gives another
schedule with the same maximal travel distance. These
symmetries result in the solver covering unnecessarily
redundant search space, significantly increasing solving
time. However, breaking these symmetries by modifying
the encoding and without modifying the solver-internal
algorithms is hard. A tiny part of these symmetries,
however, can be broken by imposing on top of encoding
B that a single, heuristically determined zone k (e.g.,
the closest or furthest to zone 0) should be visited by a
fixed robot i:

Z∨
j=1

posi,j = k (11)

Results. This at first sight rather weak symmetry-
breaking formula proved to be beneficial, resulting in
a greatly reduced number of conflicts as well as solv-
ing time (81.64 seconds for Z = 12 zones, see Table 1).
However, this encoding just fixes the robot that should
visit a given single zone, thus the computational effort
for Z zones reduces only to a value comparable to the
previous effort (using encoding B) for Z − 1.

Explicit scheduler choice (D). In order to make the
domain over which the variables posi,j range more ex-
plicit, we added to encoding C the following require-
ment:

3∧
i=1

Z∧
j=1

(posi,j = −4 ∨
Z∨

k=1

posi,j = k) (12)

Results. This addition led to some performance gain.
With a solving time of 54.17 seconds for 12 zones, our
approach could be successfully integrated in the RCLL
planning framework.

Partial bit-blasting (E). To reduce the number and
size of theory checks, we also experimented with partial
bit-blasting: the theory constraints posi,j=k in encod-
ing C were replaced by Boolean propositions posi,j,k∈B,
which are true iff robot i visits zone k at step j. For
each i∈{1, 2, 3} and j∈{−3, . . ., Z} we ensure that there
is exactly one k∈{−4, . . ., Z} for which posi,j,k is true

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 11

by bit-blasting for the Z+5 possible values (using fresh
propositions pi,j,k ∈ B):

posi,j,0 ⇐⇒ (¬pi,j,dlog (Z+5)e ∧ . . . ∧ ¬pi,j,0)
posi,j,1 ⇐⇒ (¬pi,j,dlog (Z+5)e ∧ . . . ∧ pi,j,1) . . . (13)

Results. As shown in Table 1, partial bit-blasting did
not introduce any improvement. On the contrary, an
optimal solution for 12 zones could not be computed
within 5 minutes. We made several other attempts to
improve the running times by modifying encoding D,
but they did not bring any major improvement.

Explicit decisions (F). Even though encoding D could
be integrated in the RCLL framework, we investigated
ways to further reduce the solving times.

To this purpose, we developed a new encoding shown
in Fig. 7, in which we made some decisions explicit by
means of additional variables.

In particular, for each k ∈ {1, . . . , Z} we introduced
an integer variablemk to encode which robot visits zone
k, and an integer variable ni,k for each i ∈ {1, 2, 3} to
count how many of the zones 1, . . . , k robot i has to
visit. The meaning of these variables are encoded in
ϕvisits in Eq. (14).

We keep the position variables posi,j to store which
zone is visited in step j of robot i, but their domain
is slightly modified: knowing the number ni,Z of visits
for each robot, the fictitious location posi,j = −4 is not
needed anymore. Instead, we will simply disregard all
posi,j assigned for j > ni,Z .

We also keep the variables di,j , but with a differ-
ent meaning: di,j stores the distance traveled by robot
i from its (j−1)th position posi,j−1 to its jth position
posi,j . We add the constraints Eq. (15) for defining the
positions up to the start zone and additionally the con-
straints in Eq. (16). Note that we replaced di,j = D(k, l)

with a weak inequality constraint. As we discuss later
in this section, this was possible as the minimization of
travel distances will anyways enforce the equality, but
solving inequalities seems to be easier for Z3.

A new variable di for i ∈ {1, 2, 3} is used to store the
total travel distance for each robot in ϕtot in Eq. (17),
which ensures that, if robot i has to visit k zones (ni,Z =

k) then its total travel distance di is (at least equal to)
the sum of the distances traveled from posi,0 to posi,k.
If robot i does not move at all (i.e., ni,Z = 0) then di
will be (at least) zero.

The formula ϕall in Eq. (18) makes sure that each
robot visits all zones it has been assigned to by means
of variablesmk: if robot i is assigned to zone k then this

Z
F F1 F2

Time #solved Time #solved Time #solved
12 54.78 66/100 57.02 66/100 66.84 46/100

Table 2: Average solving time (sec) and #instances
solved for encodings F, F1 and F2 on 100 benchmarks
(TO: 2min).

zone will be visited at some step j (within the upper
bound on the number of zones to be visited ni,Z).

Furthermore, in ϕbounds in Eq. (19) we introduce
bounds on integer variables so that the solver can rep-
resent integers as bit-vectors and internally perform bit-
blasting.

Finally, we replace the nonlinear objective function
specified in Eq. (9) by a linear one: since all robots start
from the start zone, we exploit symmetry and require
an order on the total travel distances in Eq. (20).

We can now minimize the total distance for the first
robot d1 under the side condition that the conjunction
of all formulas in Fig. 7 holds.

Results. Table 1 shows a considerable improvement
by encoding F over previous solutions for the selected
benchmarks. In order to obtain statistically significant
results, we also tested encoding F on 100 most recur-
ring instances of the RCLL problem with 12 zones (see
Table 2). Especially the replacement of a non-linear ob-
jective function with a linear one allowed us to reduce
the complexity of the optimization problem at hand.

To analyze the potential sources of improvement,
we made additional experiments with two variants of
encoding F : in encoding F1 we removed the bounds for
integer variables as specified in Eq. (19), and in encod-
ing F2 we replaced the inequalities in Eq. (16) and (17)
with equalities (while the constraints from Eq. (19) are
kept in F2). Table 2 and Figure 8 show results for the
previously used 100 benchmarks. While working with
unbounded integers in encoding F1 does not seem to
significantly affect the solving times, the solving time
for the encoding F2 with equalities is almost always
higher, and a fewer number of instances could be solved
within the timeout.

6 Production Phase

Building on the results obtained for the exploration
phase, we moved on to consider the second phase of
the RCLL competition, i.e., production. This part of
the game poses challenges to the OMT solver that are
different in nature with respect to the ones met be-
fore. One the one hand, production tasks are more con-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Leofante et al.

ϕvisits :=

{
3∧

i=1

[
ni,0 = 0 ∧

Z∧
k=1

((mk = i ∧ ni,k = ni,k−1 + 1) ∨ (mk 6= i ∧ ni,k = ni,k−1))

]
(14)

ϕdepot :=

{
pos1,−1 = −1 ∧ pos1,0 = 0 ∧ pos2,−2 = −2 ∧ pos2,−1 = −1 ∧ pos2,0 = 0 ∧
pos3,−3 = −3 ∧ pos3,−2 = −2 ∧ pos3,−1 = −1 ∧ pos3,0 = 0

(15)

ϕdist :=

3∧

i=1

Z∧
j=1

 Z∨
k=0

Z∨
l=1
l 6=k

(
posi,j−1=k ∧ posi,j=l ∧ di,j ≥ D(k, l)

) (16)

ϕtot :=

{
3∧

i=1

(ni,Z = 0 ∧ di ≥ 0) ∨
Z∨

k=1

(ni,Z = k ∧ di ≥
k∑

j=1

di,l) (17)

ϕall :=

{
3∧

i=1

Z∧
k=1

mk = i =⇒
Z∨

j=1

ni,Z ≥ j ∧ posi,j = k (18)

ϕbounds :=

{
3∧

i=1

Z∧
k=1

Z∧
j=1

1 ≤ mk ≤ 3 0 ≤ ni,k ≤ Z 1 ≤ posi,j ≤ Z (19)

ϕsymm :=
{

d1 ≥ d2 ∧ d2 ≥ d3 (20)

Fig. 7: SMT encoding F for the exploration phase.

strained and therefore present less symmetries than ex-
ploration. On the other hand, they require more sophis-
ticate robot-robot and robot-environment interactions,
which affect both plan synthesis and execution.

The methodology presented here has been fully in-
tegrated in the system presented in Section 4 and tested
in the context of the Planning and Execution Compe-
tition for Logistics Robots in Simulation.

6.1 Building a formal model for production processes

Given an RCLL configuration, our goal is to find a
bounded sequence of robot actions that maximizes the
total reward achieved for delivering ordered products.
Due to the complexity of the RCLL domain, several
challenges arise during the logical encoding of this op-
timization problem. The formal model needs to account
for concurrent robot motions, production processes and
machine states, order schedules, deadlines and rewards.

We assume that decisions on actions are made se-
quentially for one robot at a time; the transitions in
T will model those decisions and their effects by up-
dating the states of all components of the model ac-
cordingly. Continuous variables are used to keep track
of time – e.g., when a robot starts an action or a ma-
chine completes a production step – and are used to
ensure that decisions made locally during each step are
time-consistent at a global level.

LetM represent the total number of machines in the
arena, R the number of robots used and p the planning
horizon (number of robot actions) considered. The first
step towards defining a formal model for robot motions
and machine processes is to identify a set of variables
that encode all the relevant properties of the system’s
state. To be able to refer to the jth action and its ef-
fects, we attach an index from the domain {1, . . . , p} to
the variables. Furthermore, since actions have precondi-
tions and effects, for each step we encode explicitly the
state of the system before and after an action is per-
formed; we do so by appending A and B respectively to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 13

0 20000 40000 60000 80000 100000 120000 140000
0

20000

40000

60000

80000

100000

120000

140000

Solving time F

So
lv

in
g

ti
me

F 1

(a)

0 20000 40000 60000 80000 100000 120000 140000
0

20000

40000

60000

80000

100000

120000

140000

Solving time F

So
lv

in
g

ti
me

F 2

(b)

Fig. 8: Comparison of solving times (msec) for encod-
ings F, F1 and F2 (Z = 12, TO: 2min).

the variable names. Thus, if x is a variable describing
the state of a component then xAj and xBj encode the
component state before and after the jth action.

Actions. Each action has a unique integer identifier. For
j ∈ {1, . . . , p} we use
– Aj to store the identifier of the action performed

in step j,
– tj is the time when the execution of the action

of step j starts and
– rdj is the time needed to complete the action of

step j.

Robots. The identity and state of the robot executing
the action of step j ∈ {1, . . . , p} will be described
using the following variables:
– Rj stores the integer identifier of the robot exe-

cuting step j,
– holdAj and holdBj tell whether the robot is hold-

ing something before respectively after the ac-
tion at step j and

– posj specifies the position where the robot needs
to be to execute the action assigned at step j.

Machines. The identity and state of the machine used
in step j ∈ {1, . . . , p} is encoded by the following
integer-valued variables:
– Mj tells what machine is involved in the action

performed at step j,
– mdj specifies the action duration,
– state1Aj and state1Bj encode whether the ma-

chine used in step j is prepared before resp. after
the step,

– state2Aj and state2Bj encode whether a CS used
at step j is loaded with a cap or not and

– state3Aj and state3Bj encode whether the slide
of a CS used in step j is full or not.

Initial state. We introduce dedicated variables to de-
scribe the initial state before the first step. Though
the game always starts in a fixed initial state, such
variables give us the flexibility to synthesize plans
on-the-fly during the game. We define for all i ∈
{1, ..., R} and k ∈ {1, . . . ,M}:
– initPosi and initHoldi to encode initial condi-

tions for robot i and
– initState1k, initState2k and initState3k to store

the initial state for machine k.
Rewards. To define the objective function to be opti-

mized as specified in Eq. (3), we use for each j ∈
{1, . . . , p}
– a real-valued variable rewj to store the reward

achieved for executing step j.

Using the above variables, we define the encoding
of plans as shown in Fig. 9. In the following, products
are encoded by integer values – e.g., “no product” is
represented by 0, black base by 1, etc. We start with
defining sub-formulas to encode the initial system state,
the preconditions and effects of the possible actions and
the rewards that can be achieved.

Initialization. For the initial state of the game we define
the formula ϕinit in Eq. (21), meaning that robots start
from the depot and do not hold objects, while machines
are not prepared nor loaded for production.

Making initial states consistent. Formula ϕstart in Eq. (22)
ensures that the above initial values are propagated to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Leofante et al.

ϕinit :=

{
R∧
i=1

initHoldi = 0 ∧ initPosi = 0 ∧
M∧
k=1

initState1k = 0 ∧ initState2k = 0 ∧ initState3k = 0 (21)

ϕstart :=

R∧
i=1

p∧
j=1

(Rj = i ∧
j−1∧
j′=1

¬(Rj′ = i) =⇒ (holdAj = initHoldi)∧

M∨
u=0

M∨
v=1

initPosi = u ∧ posj = v ∧ tj ≥ Dist(u, v))∧

M∧
k=1

p∧
j=1

(Mj = k ∧
j−1∧
j′=1

¬(Mj′ = k) =⇒ (state1Aj = initState1k

∧ state2Aj = initState2k ∧ state3Aj = initState3k))

(22)

ϕid :=

p∧
j=1

p∧
j′=j+1

(Rj′ = Rj ∧
j′−1∧

j′′=j+1

¬(Rj′′ = Rj) =⇒ (holdAj′ = holdBj)∧

M∨
u=0

M∨
v=1

posj = u ∧ posj′ = v ∧ tj′ ≥ tj + rdj +Dist(u, v))∧

p∧
j=1

p∧
j′=j+1

(Mj′ =Mj ∧
j′−1∧

j′′=j+1

¬(Mj′′ =Mj) =⇒ (state1Aj′ = state1Bj

∧ state2Aj′ = state2Bj ∧ state3Aj′ = state3Bj ∧ tj′ ≥ tj +mdj))

(23)

ϕa :=
{

Aj = id =⇒ (preconditions ∧ effects) (24)

ϕrew :=
{

rewj = dl− tj −mdj (25)

Fig. 9: SMT encoding for the transition system underlying the RCLL domain.

the initial states for robots and machines. If robot i is
active at step j and it has never been active before, then
j is its first step and it must start in the robot’s initial
state. Moreover, for each step, the robot timer is incre-
mented by at least the travel time, which is encoded
using constants Dist(u, v) for the travel time between
the machines u and v. Similar requirements are imposed
on the machines.

Making successor states inductively consistent. The for-
mula ϕid in Eq. (23) ensures that when a robot or ma-
chine is not involved in an action then the action does
not change the robot’s resp. machine’s state. The for-
mula states that if robot i is active at step j′ and it has
not been active since step j < j′, then we ensure that
its hold state is propagated to j′ (we say that effects

of previous step j are equal to the preconditions at j′).
The robot moves to the location required by the action
assigned at j′. The robot timer will be incremented by
at least travel time plus action duration. A similar in-
terpretation holds for the machines.

Action rules. Eq. (24) defines ϕa that specifies the pre-
conditions and effects of action a. The formula means
that when an action a – encoded by its integer identifier
– is selected, the appropriate preconditions are checked
and effects are propagated. For instance, the rule for
the delivery action will have the following definition:

Aj = 11 =⇒ (Mj = 2 ∧ state1Aj = 8 ∧ state1Bj = 0∧
state2Bj = state2Aj ∧ state3Bj = state3Aj ∧mdj=15∧
posj = 2 ∧ holdAj = 3 ∧ holdBj = 0 ∧ rdj = 10)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 15

Production steps:

ID Action
1 Retrieve base with cap from shelf at CS
2 Prepare CS to retrieve cap
3 Feed base into CS
8 Discard cap-less base
7 Prepare BS to provide black base
6 Retrieve base from BS
4 Prepare CS to mount cap
5 Feed black base to CS
9 Retrieve black base with cap from CS

10 Prepare DS for slide specified in order
11 Deliver to DS

BS CS 2

CS

BS

D
S

Fig. 10: Production steps necessary to produce a C0 product (left) as decomposed (top right). The first step for the
robot is to move to feed a cap in to the Cap station (right). (Niemueller et al, 2015; RCLL Technical Committee,
2017).

Reward scheme. Finally, we need to specify a reward
scheme for actions. As already mentioned, by means
of rewards we can drive the synthesis towards optimal
controllers. We chose to assign positive rewards to the
delivery action only, while all other actions bring no
rewards. The reward is defined in Eq. (25) by the for-
mula ϕrew where dl is the deadline for delivering a spe-
cific product and tj + mdj indicates the instant when
the appropriate station completes the delivery process.
Such reward strategy yields to controllers that minimize
the makespan of the plan executed by robots.

Controllers. Controller synthesis can now be encoded
by the problem to maximize rewp under the side condi-
tion ϕinit ∧ ϕstart ∧ ϕid ∧ (

∧
a∈A ϕa) ∧ ϕrew, where A is

the set of all actions needed to produce the requested
product.

6.2 Experimental evaluation

To evaluate controllers synthesized by our system, we
consider the production process shown in Fig. 10. We
generated 100 problems, determined by a unique ma-
chine placement and order set each. This allows for
qualitatively validating plan generation and determin-
ing costs of plans generated. We vary the complexity
through the number of robots participating in the task.
We limited our experiments to a single product of the
lowest complexity C0 (cf. Fig. 10).

We compare our solutions with domains encoded us-
ing the well-known Planning Domain Description Lan-
guage (PDDL2.1) (Fox and Long, 2003). We consider

1 2 3
0

10

20

30

40

50

60

Number of robots

So
lv

in
g

ti
me

(s
)

Fig. 11: Boxplots for solving times using Z3 for 1, 2, 3-
robot teams. Red lines represent median values of 0.78s,
6.76s and 18.67s respectively.

both, temporal domains with durative actions (T) and
the same domains without (NT). We run planners and
solvers6 on the benchmark files we generated, and we
validate results generated by our approach using the
simulator developed for the Planning Competition for
Logistics Robots in Simulation7 shown in Fig 2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Leofante et al.

One robot Two robots Three robots
OMT POPF/NT POPF/T OMT POPF/NT POPF/T OMT POPF/NT POPF/T

oneshot anytime oneshot anytime oneshot oneshot anytime oneshot anytime oneshot oneshot anytime oneshot anytime oneshot
of instances

solved 100 100 100 100 100 100 0 0 19 19 100 0 0 9 9

solving time
average (s) 0.79 5.09 0.87 20.73 11.02 7.06 – – 25.66 17.68 19.45 – – 34.25 31.30

plan makespan
average (s) 64.1 186.99 99.22 67.49 76.06 51.98 – – 60.09 62.10 51.85 – – 54.65 57.56

Table 3: Comparison of OMT and POPF for temporal (T) and non-temporal (NT) domains using anytime and oneshot
planning.

6.2.1 Evaluation of OMT solvers

Again we compared performances of Z3, SMT-RAT and
OptiMathsat on this benchmark. A timeout for solving
is set to 60 seconds, which is the time teams can af-
ford spending in planning during an RCLL game with-
out compromising their chances to win. Solving for the
domain considered proved to be challenging, however
controllers could be successfully synthesized with our
approach. Z3 was the only tool which could solve all
the instances proposed, therefore it was chosen for our
analysis.

We investigated how the solving time varies with the
number of robots used. As Fig. 11 shows, the solving
time increases with the size of the team of robots used,
moving from an average solving time of 0.79s with only
one robot, to 19.45s for three robots. A natural explana-
tion for this could be that having more robots increases
the size of the search space and introduces symmetries
which make the solving process harder. In any case, the
times obtained are well within the suggested desirable
limits for the RCLL competition.

6.2.2 Off-line comparison with other approaches

In the off-line comparison, we consider the POPF (Coles
et al, 2011) planner and SMTPlan (Cashmore et al, 2016),
a tool that compiles PDDL domains into SMT encod-
ings and solves them by calling Z3 internally. We choose
the former as it comes readily integrated with ROSPlan,
a framework for task planning and execution used in
the validation (cf. Section 6.2.3). SMTPlan, instead, was
selected because it represents an interesting solution
building a bridge between AI planning and SMT solv-
ing. Both tools are evaluated on non-temporal (NT) and
temporal (T) domains.

Table 3 shows the results of this comparison, car-
ried out using a timeout of 60 seconds, a typical time

6 We use a machine running Debian 9, Intel Core 2 Quad CPU
Q9450 at 2.66GHz.

7 Available at https://www.fawkesrobotics.org/projects/
rcll-sim/

still acceptable in the RCLL. A total of 100 different do-
main instances were run for each approach for 1, 2 and 3

robots respectively, resulting in a total of 900 runs. For
POPF anytime we report the time needed for the planner
to compute an improved solution, although the tool still
ran for the whole 60 seconds allocated. SMTPlan is not
listed, as it timed out for all the instances considered.
We conjecture that this may be due to the way PDDL
domains are compiled to SMT, resulting in unneces-
sarily redundant encodings that are difficult to solve.
We can observe in Table 3 that only OMT could solve
all benchmarks within the given timeout. While POPF
could always compute solutions for domains where only
one robot was used, it failed to do so when the number
of robots increased. Furthermore, our approach is able
to solve the synthesis problem in less time, when the
comparison is possible, and produces solutions with av-
erage makespans that are always smaller than other ap-
proaches.8 Furthermore, giving POPF additional time to
optimize on the first feasible solution (anytime) did not
seem to lead to major improvements compared to the
oneshot evaluation. We should mention that all mod-
els (OMT and PDDL-based) use approximate values to
represent action durations. In particular we assume for
the navigation actions that the robot moves at 1m/sec,
i.e., using distance as time. While this is unrealistic for
actual execution, the values remain comparable among
the approaches.

6.2.3 Validation of results

Controllers generated with our approach were validated
in the Planning Competition for Logistics Robots in
Simulation using the framework described in Section 4.

We tested the robustness of our solutions under real-
istic competition settings by having two teams of robots
competing against each other, one being controlled with

8 Makespan for non-temporal POPF with single robot is com-
puted as follows. We read the sequence of actions contained in
the plan and assign to each the same duration specified in the
temporal models used by other approaches.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 17

20 40 60 80
0

200

400

600

800

1000
ROSPlan + POPF/NT

OMT

Game

De
li

ve
ry

ti
me

(s
)

(a) OMT vs POPF/NT

20 40 60 80
0

200

400

600

800

1000
ROSPlan + POPF/T

OMT

Game

De
li

ve
ry

ti
me

(s
)

(b) OMT vs POPF/T

Fig. 12: Game statistics for a single robot, OMT playing against ROSPlan combined with POPF using non-temporal
(left) and temporal (right) reasoning (20 seconds timeout).

our approach. If we had tested using one team of robots
only (that is, our team), we would have reduced the
uncertainty present in the game due to the strategies
adopted by the opponent. To control the other team, we
considered two approaches: (i) a PDDL-based approach
that embeds POPF into ROSPlan, a framework for task
planning and execution and, (ii) a purely rule-based
approach based on CLIPS (Niemueller et al, 2013), cur-
rently used by the RCLL world champions. It must be
noted that the execution engine currently used in our
framework supports concurrent execution of actions on
multiple robots, ROSPlan does not.

We therefore decided start our experimental cam-
paign with controllers synthesized for single robots, and
have them compete with ROSPlan using a single robot.
Fig 12 shows statistics for 100 simulations, where our
approach competed with ROSPlan combined with non-
temporal (left) and temporal (right) reasoning. We plot
delivery times for both approaches and for each game.

Confirming our off-line results, our controllers were
able to control the robot to deliver the order requested.
However, for some simulations, controllers computed by
OMT or ROSPlan failed to be executed – we set the cor-
responding delivery time to 900 seconds. For what con-
cerns our approach, we suggest this may be due to the
fact that we assume all machines in the shop-floor are
correctly working, however sometimes machines are out
of order for a limited time to simulate real world fail-
ures. Since we do not capture this uncertainty in our
logical encoding, it may happen that the assumptions
about the world state made during synthesis become
inconsistent during execution. During the first batch of

games (Fig. 12, left) we can observe that our controllers
failed 5 times, while the opponent failed 12 times. In
all other cases we could deliver products successfully
within the deadline of the game (15 minutes). Compar-
ing delivery times between the two approaches would
not be fair in this case, as ROSPlan did not perform
any temporal reasoning during these games. We there-
fore proceeded with a comparison with ROSPlan com-
bined with temporal reasoning (Fig. 12, right). There,
our approach failed 11 times, while ROSPlan failed 7.
However, we can observe that when successful, our team
had a median delivery time of∼ 332 s, against∼ 490 s of
the other team. Such simulations reflect the results we
obtained during our off-line evaluation, where our ap-
proach could compute plans with the smallest makespans.

We then proceeded with the evaluation of controllers
synthesized for multiple robots. Synthesizing global con-
trollers for multi-robot teams could, in principle, in-
crease the chances of failure due to,e.g., synchroniza-
tion issues. To test the robustness of our controllers,
we ran 100 games where ROSPlan (again, single robot)
competed against our approach, where multiple robots
were used.

Figure 13 shows results obtained after 100 games.
Interestingly our controllers proved to be as robust as
sequential controllers computed for a single robot. In-
deed, our approach failed 9 times while ROSPlan failed
12. Given that our approach employed multiple robots,
median delivery times for our team are always lower
than the opponent’s.

Finally, we compared the performances of our con-
trollers with the rule-based approach used by the RCLL

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Leofante et al.

20 40 60 80
0

200

400

600

800

1000
ROSPlan + POPF/NT

OMT

Game

De
li

ve
ry

ti
me

(s
)

Fig. 13: Game statistics for OMT controllers (multi-
robot) playing against ROSPlan combined with POPF
using non-temporal reasoning (single robot) (timeout
20 seconds).

20 40 60 80 100
0

200

400

600

800

1000
CLIPS agent

OMT

Game

De
li

ve
ry

ti
me

(s
)

Fig. 14: Game statistics for OMT (multi-robot, timeout
20 seconds) playing against the rule-based approach
presented in (Niemueller et al, 2013) (multi-robot).

world champions. This approach employs the full team
of robot, allowing a fair comparison between solutions
for multi-robot systems. Figure 14 shows the results
obtained after 100 games. Results obtained show that,
when successful in delivering, our approach guarantees
a shorter delivery time, with a median delivery time
of ∼ 235 s against ∼ 302 s of the rule-based approach.
On the other hand, the rule-based agent proved to be
more robust, failing only 4 times against 9 times of our
approach.

7 Explaining Controllers

The problem of generating explanations for decisions
taken by autonomous robotic systems is a very press-
ing one. The effectiveness of these systems is limited by
their current inability to explain their decisions and ac-
tions in a human-readable way. Several initiatives have
been launched recently to tackle this problem. For in-
stance, DARPA started the Explainable AI program 9

with the aim to develop new machine-learning tech-
niques that will produce more explainable models that
could be translated into understandable and useful ex-
planation dialogues for the end user. In the same spirit,
Explainable Planning is proposed in (Fox et al, 2017),
where the authors consider the opportunities that arise
in AI planning to form a familiar and common basis for
communication with the users.

In this section we discuss how OMT-based synthesis
implemented in our system could be leveraged to gen-
erate explanations for the controller synthesis process.
While we acknowledge the existence of a gap between
the way OMT solving proceeds and human problem-
solving, here we wish to show that OMT solvers exploit
techniques that have the potential to ease explaining
and facilitate understanding of the underlying decision
process.

In particular, we discuss explanations that can be
used to understand (i.) why a certain controller should
be preferred, or (ii.) why no controllers could be pro-
duced for a given scenario. The discussion that follows
is intended to provide initial ideas for achieving the
objective of providing effective explanations in OMT
synthesis. Examples discussed are specific to the RCLL
domain, however we expect that our results can provide
a basis for general synthesis of explanations supporting
OMT-based decision making.

Explaining why a controller should be chosen. The first
question we wish to consider is explaining why a so-
lution computed by the solver should be preferred over
different ones. To the best of our knowledge, there exist
no planner able to optimize for a metric different than
minimizing plan makespan. Therefore, while answering
such a question could prove challenging, if not impos-
sible, in other AI-based solutions, OMT could provide
useful answers.

As introduced in Section 2, OMT differs from SMT
solving in that it produces solutions that are not only
feasible, but also optimal. The key point here is that
OMT allows to specify different metrics to measure the
quality of a controller. Modern OMT solvers support

9 https://www.darpa.mil/attachments/DARPA-BAA-16-
53.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 19

combinations (lexicographic, pareto, box) of objective
functions that can be specified by the user. In this
framework, a valid explanation could be to point out
the differences in the metrics and show the different
effects they have, e.g., in terms of the obtained final
reward.

Example. Let us consider a simple example based on
the production process of Fig. 10. Let us assume a con-
troller has been requested by the user and the reward
scheme of Eq. (25) – which yields plans with minimum
makespan – has been used. A sample plan as produced
by one of our controllers might have the structure de-
picted in black in Fig. 15, where three robots are used.

Now suppose we want to know whether a better
makespan could be achieved using less robots. One sim-
ple way to check this could be to extend our optimiza-
tion problem by including an additional objective, e.g.,

maximize

p∑
j=1

Rj

which implicitly forces the solver to select robots whose
integer ids have higher value – e.g., robot 3 will be
preferred over robot 1. The result is shown in red in
Fig. 15. As we can see, it is sufficient to ask the same
robot – robot 2 in this case – to perform actions 7 and
6 to obtain a plan that has the same makespan as the
original one, but uses only two robots. So in this case, by
pointing out the differences in the metrics used to drive
the synthesis procedure, one could produce a reason
as to explain to the end-user why the second solution
should be preferred over the first one.

Explaining why a controller can not be synthesized.
This question arises when the solver fails to synthe-
size a controller for the problem at hand. AI planners
are typically not very effective at proving unsolvability
of a plan. In contrast, OMT-based approaches are well
positioned to address this challenge. Our system frames
controller synthesis as a bounded model-checking prob-
lem, therefore if the solver states that the desired ob-
jective can not be met within a given deadline (and/or
within a planning horizon) then this is a proof that no
controllers can be produced to accomplish the task.

Besides proving the non-existence of a controller,
modern OMT solvers also allow to extract unsatisfiable
cores that additionally provide a reason for unsatisfi-
ability. Formally, given an unsatisfiable input formula
ϕ = ∧ni=1ϕi, an unsatisfiable core of ϕ is an unsatisfi-
able formula ψ = ∧i∈Iϕi for some I ⊆ {1, . . . , n}. With
other words, an unsatisfiable core of ϕ is an unsatisfi-
able formula ψ which is either ϕ itself or ϕ = ψ∧ψ′ for
some ψ′.

Though smaller unsat cores typically provide more
compact information, minimal unsat cores (i.e., un-
sat cores ∧i∈Iϕi for which ∧i∈I′ϕi is satisfiable for all
I ′ ⊂ I) are computationally hard to compute. There-
fore, most solvers aim at generating small explanations
but they seldomly guarantee minimality. Since for prac-
tical problems unsat cores might be too large to be
analyzed by humans, SMT/OMT solvers that follow
the SMT-LIB standard10 require that the user specifies
a label for each of the conjunctive subformulas (also
called assertions) of interest, and only the labeled for-
mulas in the unsat core are listed as output (i.e., the
provided explanation together with the unlabeled as-
sertions form an unsat core).

Example. To illustrate how unsat cores can be used
to explain unsolvability, consider the following exam-
ple. The RCLL rules impose that machines can be out
of service for a given time at any point in the game.
To capture this information, we extend the encoding of
machine states of Section 6 by introducing the integer-
valued variables state0Aj and state0Bj . Such variables
encode whether the machine used in step j is fully func-
tional before and after action Aj respectively. If a ma-
chine goes down, then all the actions involving that
machine can not be performed any more, making it im-
possible to complete the production of pieces requiring
the broken machine. To model this, we extend each ac-
tion rule (Eq. (24), Section 6) with the additional pre-
condition that the machine required at step j must be
working. For instance, the rule for the delivery action
will become:

Aj = 11 =⇒
(Mj = 2 ∧ state0Aj = 1 ∧ state0Bj = 1∧
state1Aj = 8 ∧ state1Bj = 0 ∧ state2Bj = state2Aj∧
state3Bj = state3Aj ∧mdj = 15∧
posj = 2 ∧ holdAj = 3 ∧ holdBj = 0 ∧ rdj = 10)

Furthermore, we label each constraint in order to enable
unsat core generation. Let us now assume our synthesis
procedure is triggered under the condition that the de-
livery station DS is broken. This means that the actions
involving DS won’t be realizable, as a precondition for
them to be performed is that the machine has to be
operational, i.e., state0Aj = 1.

Listing 5 shows the unsat core produced by Z3 when
we impose that the delivery station breaks at step 10,
i.e., state0A10 = 0. The unsat core produced here shows
that the delivery station could not be prepared for de-
livery, therefore making delivery impossible.

10 https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Leofante et al.

j
Planning horizon

R1

A3=1 A4=2 A5=3 A6=8 A9=9 A10=10A11=11

R2

A2=6 A7=4 A8=5

R3

A1=7

A2=7 A3=6 A8=5

A1=2 A4=1 A5=3 A6=8 A7=4 A9=9 A10=10A11=11

Fig. 15: Example of plans with minimum makespan for the production of a C0 piece, using two (red) and three
(black) robots. The makespan of both plans is 58.52s . Action are encoded by integer ids as in Fig. 10.

1 Start solving ...
2 No solution found
3 Time: 0.209315061569
4 Unsat core:
5 prepare_DS_for_slide_specified_order_10

Listing 5: Unsat core generated when DS is down.

8 Challenges, Observations and
Recommendations

As a result of the efforts put into solving the problem
presented in this work, we gained interesting insights
on the problem of synthesizing controllers for robotics
using OMT. We detail in the following some observa-
tions and ideas that could be useful for other researchers
considering similar problems and applications.

Domain-specific knowledge. Incorporating domain-specific
knowledge in the encoding leads to considerable speed-
up in the solving process. This could be done, e.g., by
explicitly encoding partial orders on actions, where one
specifies causal/temporal relations between production
steps (and actions).

Building efficient models. To reduce the number and
size of theory checks, we also experimented with par-
tial bit-blasting. We directly encoded some states of
the system by means of bit-vector variables instead of
integers. We did so to help the solver to detect incon-
sistencies at the propositional level without the need to
call more expensive theory checks. However, such hand-
crafted encoding turned out to be more error prone
and less efficient than relying on the bit-blasting some
solvers perform internally – when bounds on integer-
valued variables are given. Furthermore, when working
with complex domains as the RCLL, dealing with in-
teger quantities instead of Boolean ones reduces the
modeling effort.

Solvers and optimization. There exist efficient solvers
for different types of optimization problems like com-
binatorial optimization or integer programming. How-
ever, there seems to be room for improvements on prob-
lems where the objective function is an arithmetic func-
tion but the search is over a finite set of objects, i.e.,
where the problem seems to involve optimization in the
arithmetic domain but at its core it is a purely combi-
natorial optimization problem. For our application, the
controller generation problem could be specified as a
Boolean combination of equalities between arithmetic
terms, i.e., only the combinatorial optimization plays
a role. However, the solvers do not recognize this fact
and invoke also arithmetic optimization. For the lat-
ter, equalities seem to be more problematic, therefore
we partially replaced them by inequalities and forced
equalities by the objective function. This is an exam-
ple where knowledge about the internal solving mecha-
nisms is needed to achieve better encodings.

Planning and OMT. Encoding domains using PDDL
is easier for non-expert users, as the language provides
a more general and intuitive way to describe planning
problems. For this reason, we believe it would be inter-
esting to study how the two communities, AI planning
and SMT, could benefit from each other. Empirical ev-
idence shows that general-purpose planners achieve im-
pressive performances when it comes to fast exploration
of large state-spaces. Starting from this observation, it
would be interesting to investigate whether planning
heuristics can be imported as tactics into OMT solvers
to speed up the search.

Explaining OMT solutions. We have introduced the prob-
lem of computing understandable explanations for con-
trollers generated with OMT. We showed the potential
of OMT solving techniques to ease explaining, and pro-
vided initial results in this direction. We believe that
these initial ideas open up several interesting research

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 21

directions in automated reasoning to provide effective
explanations. To do so, a full formalization of what rep-
resents a good explanation is required.

Further technical challenges. Several problems of tech-
nical nature are to be faced when integrating OMT-
based solutions in planning and execution systems. Not
all solvers provide anytime solving in the context of op-
timization, making it difficult to implement online syn-
thesis strategies. Furthermore, current software archi-
tectures in robotics do not offer easily usable interfaces
for the integration of OMT solvers. Given the recent
advancements in SMT and OMT, solvers are now able
to deal with rich and complex models. Therefore, hav-
ing interfaces with software libraries for robotics such
as the Robot Operating System (ROS) (Quigley et al,
2009) would ease the process to challenge solvers with
concrete problems from that field.

9 Conclusions

In this work we presented an integrated system for gen-
erating, executing and monitoring optimal-by-constru-
ction controllers for multi-robot systems. By combining
the power of Optimization Modulo Theories with the
flexibility of an on-line executive, we showed how to
synthesize optimal controllers for high-level task plan-
ning, and provide runtime feedback on their feasibility.
We also discussed how our system can be extended to
communicate in a human-readable fashion the decision-
making process underlying our synthesis procedure.

This work could be extended in several directions.
First of all, we would like to investigate how OMT could
be used to implement reactive control with fixed-step
lookahead. To do so, we will improve the on-line ca-
pabilities of our approach by increasing the amount of
information exchanged between our OMT module and
the execution and monitoring system. The problem of
providing effective explanations will be further inves-
tigated, starting from a sound formalization of what
constitutes a valid explanation. Finally, we would like
to study how our module could be integrated into a goal
reasoning framework, where solutions computed by the
OMT solver could be used to make informed choices on
what goals to pursue in the future.

References

Ábrahám E, Kremer G (2016) Satisfiability checking:
Theory and applications. In: Proc. of SEFM’16, pp
9–23

Bensalem S, Havelund K, Orlandini A (2014) Verifi-
cation and validation meet planning and scheduling.
STTT 16(1):1–12

Berry G, Gonthier G (1992) The Esterel synchronous
programming language: Design, semantics, imple-
mentation. Sci Comput Program 19(2):87–152

Biere A, Cimatti A, Clarke EM, Zhu Y (1999) Sym-
bolic model checking without BDDs. In: In Proc. of
TACAS’99, pp 193–207

Bjørner N, Phan A, Fleckenstein L (2015) νz - An opti-
mizing SMT solver. In: Proc. of TACAS’15, pp 194–
199

Cashmore M, Fox M, Long D, Magazzeni D, Ridder
B, Carrera A, Palomeras N, Hurtós N, Carreras M
(2015) Rosplan: Planning in the robot operating sys-
tem. In: Proc. of ICAPS’15, pp 333–341

Cashmore M, Fox M, Long D, Magazzeni D (2016) A
compilation of the full PDDL+ language into SMT.
In: Proc. of ICAPS’16, pp 79–87

Cimatti A, Franzén A, Griggio A, Sebastiani R,
Stenico C (2010) Satisfiability modulo the theory of
costs: Foundations and applications. In: Proc. of
TACAS’10, pp 99–113

Coles A, Coles AJ, Clark A, Gilmore S (2011) Cost-
sensitive concurrent planning under duration un-
certainty for service-level agreements. In: Proc. of
ICAPS’11, pp 34–41

Corzilius F, Kremer G, Junges S, Schupp S, Ábrahám
E (2015) SMT-RAT: An open source C++ toolbox
for strategic and parallel SMT solving. In: Proc. of
SAT’15, pp 360–368

Dantam NT, Kingston ZK, Chaudhuri S, Kavraki LE
(2016) Incremental task and motion planning: A
constraint-based approach. In: Proc. of RSS’16

Dornhege C, Eyerich P, Keller T, Trüg S, Bren-
ner M, Nebel B (2009) Semantic attachments for
domain-independent planning systems. In: Proc. of
ICAPS’09, pp 114–121

Forgy CL (1982) Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artifi-
cial Intelligence 19(1):17–37

Fox M, Long D (2003) PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J
Artif Intell Res (JAIR) 20:61–124

Fox M, Long D, Magazzeni D (2017) Explainable plan-
ning. CoRR abs/1709.10256, URL http://arxiv.
org/abs/1709.10256, 1709.10256

Giarratano JC (2007) CLIPS Reference Manuals.
http://clipsrules.sf.net/OnlineDocs.html

Hofmann T, Niemueller T, Claßen J, Lakemeyer G
(2016) Continual planning in Golog. In: Proc. of
AAAI’16, pp 3346–3353

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Leofante et al.

Ingham M, Ragno R, Williams B (2001) A reactive
model-based programming language for robotic space
explorers. In: Proc. of i-SAIRAS’01

Ingrand FF, Chatila R, Alami R, Robert F (1996) PRS:
A high level supervision and control language for au-
tonomous mobile robots. In: Proc. of ICRA’96, pp
43–49

Leofante F, Ábrahám E, Niemueller T, Lakemeyer G,
Tacchella A (2017) On the synthesis of guaranteed-
quality plans for robot fleets in logistics scenarios via
optimization modulo theories. In: Proc of IRI’17, pp
403–410

McDermott D, Ghallab M, Howe A, Knoblock C, Ram
A, Veloso M, Weld D, Wilkins D (1998) PDDL – The
Planning Domain Definition Language. Tech. rep.,
AIPS-98 Planning Competition Committee

Nedunuri S, Prabhu S, Moll M, Chaudhuri S, Kavraki
LE (2014) SMT-based synthesis of integrated task
and motion plans from plan outlines. In: Proc. of
ICRA’14, pp 655–662

Niemueller T, Ferrein A, Lakemeyer G (2009) A Lua-
based behavior engine for controlling the humanoid
robot Nao. In: RoboCup Symposium 2009

Niemueller T, Lakemeyer G, Ferrein A (2013) Incre-
mental task-level reasoning in a competitive factory
automation scenario. In: Proc. of AAAI’13 Spring
Symposium

Niemueller T, Lakemeyer G, Ferrein A (2015) The
RoboCup Logistics League as a benchmark for plan-
ning in robotics. In: Proc. of PlanRob@ICAPS’15

Niemueller T, Karpas E, Vaquero T, Timmons E
(2016a) Planning competition for logistics robots in
simulation. In: Proc. of PlanRob@ICAPS’16

Niemueller T, Neumann T, Henke C, Schönitz S, Reuter
S, Ferrein A, Jeschke S, Lakemeyer G (2016b) Im-
provements for a robust production in the RoboCup
Logistics League 2016. In: Proc. of RoboCup’16, pp
589–600

Nieuwenhuis R, Oliveras A (2006) On SAT modulo the-
ories and optimization problems. In: Proc. of SAT’06,
pp 156–169

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs
J, Wheeler R, Ng AY (2009) ROS: An open-source
robot operating system. In: ICRAWorkshop on Open
Source Software, vol 3, p 5

RCLL Technical Committee (2017) RoboCup Logistics
League – Rules and regulations 2017

Saha I, Ramaithitima R, Kumar V, Pappas GJ, Seshia
SA (2014) Automated composition of motion primi-
tives for multi-robot systems from safe LTL specifi-
cations. In: Proc. of IROS’14, pp 1525–1532

Sebastiani R, Tomasi S (2015) Optimization modulo
theories with linear rational costs. ACM Trans Com-

put Log 16(2):12:1–12:43
Sebastiani R, Trentin P (2015a) OptiMathSAT: A
tool for optimization modulo theories. In: Proc. of
CAV’15, pp 447–454

Sebastiani R, Trentin P (2015b) Pushing the enve-
lope of optimization modulo theories with linear-
arithmetic cost functions. In: Proc. of TACAS’15, pp
335–349

Verma V, Estlin T, Jónsson A, Pasareanu C, Simmons
R, Tso K (2005a) Plan execution interchange lan-
guage (PLEXIL) for executable plans and command
sequences. In: Proc. of i-SAIRAS’05

Verma V, Jónsson A, Simmons R, Estlin T, Levinson
R (2005b) Survey of command execution systems for
NASA spacecraft and robots. In: Plan Execution: A
Reality Check, Workshop at ICAPS’05

Verma V, Jónsson A, Pasareanu C, Iatauro M (2006)
Universal executive and PLEXIL: Engine and lan-
guage for robust spacecraft control and operations.
In: American Institute of Aeronautics and Astronau-
tics Space

Wang Y, Dantam NT, Chaudhuri S, Kavraki LE (2016)
Task and motion policy synthesis as liveness games.
In: Proc. of ICAPS’16, p 536

Wygant RM (1989) CLIPS: A powerful development
and delivery expert system tool. Computers & In-
dustrial Engineering 17(1–4)

Zwilling F, Niemueller T, Lakemeyer G (2014) Simu-
lation for the RoboCup Logistics League with real-
world environment agency and multi-level abstrac-
tion. In: Robot Soccer World Cup, Springer, pp 220–
232

Biographies

Francesco Leofante is a Ph.D. student under the joint
supervision of Erika Ábrahám at RWTH Aachen Uni-
versity (Germany) and Armando Tacchella at the Uni-
versity of Genoa (Italy). Francesco received his M.Sc.
Degree in Advanced Robotics from the University of
Genoa in 2014 and one in Robotique et Informatique
Appliquée from Ecole Centrale Nantes (France) in 2015.
His research focuses on the application of automated
reasoning techniques to model and verify controllers for
autonomous robotic systems.

Erika Ábrahám graduated in computer science at the
Christian-Albrechts-University Kiel (Germany), and re-
ceived her Ph.D. from the University of Leiden (The
Netherlands) for her work on the development and ap-
plication of deductive proof systems for concurrent pro-
grams. Then she moved to the Albert-Ludwigs-Univer-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Synthesis and Execution of Optimal Controllers for Multi-Robot Systems in Logistics 23

sity Freiburg (Germany), where she started to work on
formal methods for hybrid and probabilistic systems.
Currently she is Full Professor at RWTH Aachen Uni-
versity (Germany) and leads the research group Theory
of Hybrid Systems. Her research focuses on SMT solv-
ing for real and integer arithmetic, and formal methods
for probabilistic and hybrid systems.

Tim Niemueller received the M.Sc. (diploma) degree
in computer science from the RWTH Aachen Univer-
sity (Germany) in 2010, and is currently working to-
wards the Ph.D. degree at the Knowledge-Based Sys-
tems Group at the same university. He has worked at
the Personal Robotics Lab of the Carnegie Mellon Uni-
versity with Siddhartha Srinivasa and as a freelancer
for SRI International supervised by Robert C. Bolles.
He is member of the RoboCup Executive Committee
and team leader of the Carologistics and AllemaniACs
RoboCup teams. His research interests are cognitive
robotics in the areas of task planning, reasoning, and
execution monitoring, world modeling and memory per-
sistence, and robust system integration for personal and
industrial autonomous mobile robots.

Gerhard Lakemeyer received his Ph.D. from the Uni-
versity of Toronto in 1990. After six years at the Univer-
sity of Bonn he joined the Department of Computer Sci-
ence at RWTH Aachen University, where he is Full Pro-
fessor and heads the Knowledge-Based Systems Group.
He is also a Full Professor (status-only) at the Univer-
sity of Toronto, Canada, and a Professorial Fellow at
the University of New South Wales, Australia. His re-
search interests include knowledge representation and
cognitive robotics. He has published more than 150 sci-
entific papers and has served on numerous program
committees, including IJCAI, AAAI, ECAI, and KR.
He is a Fellow of the European Association for Arti-
ficial Intelligence (EurAI), current President of EurAI
and an Associate Editor of Artificial Intelligence and
Computational Intelligence. He is also a member of the
Editorial Board of the Journal of Applied Logic, and
was a member of the Editorial and Advisory Board of
the Journal of Artificial Intelligence Research.

Armando Tacchella graduated in computer science
and engineering in 1997 at the University of Genoa
(Italy), and received his Ph.D. in electrical engineering
and computer science in 2001 from the same univer-
sity. He is Associate Professor in Information Process-
ing Systems at the Polytechnic School of the University
of Genoa (Italy), where he teaches Design and Analy-
sis of Algorithms, AI, Formal Verification, and Machine

Learning courses for students in computer science and
engineering. His research interests focus on modeling
and verification of intelligent systems, with an emphasis
on adaptive cyber-physical systems. He published more
than fifty papers in international journals and confer-
ences in the fields of AI, Computer Aided Verification
and Reasoning, and Knowledge Representation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

IEEE FMi paper extension for publication in ISF

To the anonymous reviewers,

This letter is meant to highlight the changes that were made to the original
paper when preparing this extended version.

The original paper submitted to the 5th IEEE International Workshop on For-
mal Methods Integration was extended with the following content:

• Section 2 includes now related work in plan execution, needed to better
situate our contribution in the field;

• The RoboCup Logistics League (RCLL) is now presented more in detail in
Section 3. The original paper only dealt with exploration in RCLL, while
this version presents production as well. For this reason more details on
the RCLL domain are given.

• Section 4 presents the integrated system which constitutes one of the el-
ements of novelty of the extended version. There we detail how control
synthesis via Optimization Modulo Theories (OMT) is integrated with an
online execution and monitoring agent based on CLIPS. We present the
formalization of our synthesis approach, then present the execution and
monitoring agent based on CLIPS. We then show how the two components
are integrated, discussing the data structures used to guarantee seamless
integration;

• Section 6 presents recent results obtained for the production problem in
RCLL. This section extends the original paper with a new encoding to han-
dle production of products in the RCLL, and with a thorough experimental
evaluation comparing our approach with other AI-based approaches;

• Section 7 represents a novel addition to the original paper. There, the
problem of generating explanations for controller synthesis is presented.
We then show how salient features of our system can be used to solve the
above mentioned problem. Illustrative examples and preliminary results
demonstrating how approach are presented;

• Section 8 is also new, and is meant to collect together observations and
useful recommendations for fellow researchers who might be interested in
venturing in this field (controller synthesis with OMT, controller execu-
tion). There we discuss the insights we gained while working on encoding
the RCLL into OMT, and present some standing challenges.

1

letter describing changes Click here to download Manuscript letter.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/isfi/download.aspx?id=44894&guid=f9ace4cf-9114-4423-b561-3337b147afc6&scheme=1
http://www.editorialmanager.com/isfi/download.aspx?id=44894&guid=f9ace4cf-9114-4423-b561-3337b147afc6&scheme=1

