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1. Representations of Lie groups.

Representation theory of groups is a vast subject. Many of the aspects of this theory
that are of interest in Harmonic Analysis, and, in particular, of that body of ideas
and techniques that might be collectively referred to as Applied Harmonic Analysis,
can be studied within the class of locally compact and second countable topological
groups, a family whose nickname in the group theory jargon is “lcsc”. Most interesting
examples in which we are interested, however, belong to the smaller and nicer class
of Lie groups, which feature an additional geometric-analytic nature that allows, for
instance, to speak about dimension or to perform handy calculations such as taking
derivatives or solving differential equations. As it is often the case, there is a trade-
off between the beautiful generality and formal simplicity of lcsc groups, for which
a limited number of techniques is available, and the class of Lie groups, which is
harder to define, but enjoys many more desirable properties. At the level of practical
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2 The use of representations

examples, the theoretical obstacles fade out almost completely because one is in the end
dealing with matrix groups whose description in coordinates is often quite natural, and
the computations that are at times hard to formalize in the general setup are simple
extentions of those that everyone is familiar with in Rd . What is gained is a general
conceptual landscape that provides insight and makes full use of the simmetries that
are involved in the problems at hand. Finally, we believe that research in this area
requires a wide box of mathematical tools, including those that are pertinent to Lie
groups, because of their effectiveness, flexibility and depth.

For these reasons we shall work mostly within this family, even though we by no
means use the full force of the representation theory of Lie groups. On the reader’s
side, we take for granted some working knowledge of topology, calculus, linear algebra
and elementary differential geometry. From the latter, we essentially need the notion of
smooth manifold, the basic constructs of tangent vectors and vector fields and the use
of tangent mappings, or differentials, that we actually very quickly review. Some of the
results concerning Lie groups that are summarized in Section 1.2 below are used in the
sections that follow, others are presented in order to achieve a better understanding of
the main ideas.

1.1. Locally compact groups. We start with some fundamental definitions and re-
sults. For a detailed account on these matters the reader may consult [14].

Definition 1.1. A topological group is a group G endowed with a topology relative to
which the group operations

pg, hq ÞÑ gh, g ÞÑ g´1

are continuous as maps G ˆ G Ñ G and G Ñ G, respectively. G is locally compact
if every point has a compact neighborhood. We shall also assume our groups to be
Hausdorff.

Definition 1.2. A Borel measure µ defined on the σ -algebra generated by the open
sets of the topological space X is called a Radon measure if:

(i) it is finite on compact sets;
(ii) it is outer regular on the Borel sets: for every Borel set E

µpEq “ inftµpUq : U Ą E, U open u

(iii) it is inner regular on the open sets: for every open set U

µpUq “ suptµpKq : K Ă E, K compact u.

Definition 1.3. A left Haar measure on the topological group G is a non zero Radon
measure µ such that µpxEq “ µpEq for every Borel set E Ă G and every x P G.
Similarly for right Haar measures.

Of course, the prototype of Haar measure is the Lebesgue measure on the additive
group Rd , which is invariant under left (and right) translations.

Theorem 1.4. Every locally compact group G has a left Haar measure λ, which is
essentially unique in the sense that if µ is any other left Haar measure, then there
exists a positive constant C such that µ “ cλ.
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If we fix a left Haar measure λ on G , then for any x P G the measure λx defined by

λxpEq “ λpExq

is again a left Haar measure. Therefore there must exist a positive real number, denoted
∆pxq such that

λx “ ∆pxqλ.

The function ∆ : GÑ R` is called the modular function.

Proposition 1.5. Let G be a locally compact group.The modular function ∆ : GÑ R`
is a continuous homomorphism into the multiplicative group R` . Furthermore, for
every f P L1pGq we have

ż

G

fpxyq dx “ ∆pyq´1

ż

G

fpxq dx.

In the Section 1.2.8 below we give some examples in the context of Lie groups. A
group for which for which the modular function is identically equal to one, is called
unimodular. Large classes of groups are unimodular, such as the Abelian, compact,
nilpotent, semisimple and reductive groups. Nevetherless, in Applied Harmonic Anal-
ysis non-unimodular groups play a prominent role, such as the affine group “ax ` b”
that we define in the next section.

1.2. Lie groups and Lie algebras. We recall, without proofs, some basic facts about
Lie groups and Lie algebras. For a concise and effective exposition, see [23]. Classical
references with a wider scope are [17] and [22]. We shall often use the word “smooth”
in place of “C8”.

Definition 1.6. A Lie group G is a smooth manifold endowed with a group structure
such that the group operations pg, hq ÞÑ gh and g ÞÑ g´1 are smooth.

Example 1.7. Clearly, Rd is an additive, Abelian Lie group. Similarly Cd , identified
with R2d as manifolds. Any real or complex vector space can be given the structure of
Lie group simply choosing a basis and then identifying with Rd .

Example 1.8. The sphere S1 “ teiθ : θ P r0, 2πqu is an Abelian compact Lie group.

Example 1.9. The multiplicative group GLpd,Rq of invertible matrices is a Lie group.

Indeed, it is an open submanifold of Rd2 with the global coordinates xij that assign to a
matrix its ij–th entry. If y, z P GLpd,Rq , then xijpyzq and xijpy

´1q are rational func-
tions of txijpyq, xijpzqu and of txijpyqu , respectively, with non vanishing denominator.
Hence they are smooth functions.

Great attention deserve the closed subgroups of GLpd,Rq . They are automatically
Lie groups, and in fact enjoy additional nice features from the topological point of view.
This very important result is due to Cartan and is recalled below in Theorem 1.26.

A remarkable closed subgroup of GLpd,Rq is the symplectic group Sppd,Rq , that
plays an important role in this article. It is defined by

(1.1) Sppd,Rq “
 

g P GLpd,Rq : tgJg “ J
(



4 The use of representations

where tg is the transpose of g and where J is the canonical skew-symmetric matrix

(1.2) J “

„

0 Id
´Id 0



,

that defines the standard symplectic form (see Section 3.1 for more details). Notice
that for d “ 1 we have Spp1,Rq “ SLp2,Rq , the latter being the group of 2 ˆ 2 real
matrices with deteminant equal to one.

Example 1.10. The affine group “ax` b”. There are several possible versions of this
group. Let G “ R` ˆ R as a manifold. One can visualize it as the right half plane.
The multiplication is obtained by thinking of the pair pa, bq , with a ą 0 and b P R , as
identifying the affine transformation of the real line given by x ÞÑ ax` b , whence the
name. The composition of maps

x ÞÑ ax` b ÞÑ a1pax` bq ` b1 “ ra1asx` ra1b` bs

yields the product rule

pa1, b1qpa, bq “ pa1a, a1b` b1q.

Evidently, both functions a1a and a1b` b are smooth in the global coordinates on G ,
which is then a Lie group. Evidently, G is connected. When speaking of the “ax` b”
group we refer to this group.

A non-connected version arises by taking a P R˚ “ Rzt0u instead of a ą 0. We shall
refer to this as the full affine group. Yet another slightly different construction comes
from thinking of the pair pa, bq as identifying the affine transformation x ÞÑ apx` bq .
This point of view yields both a connected and a non-connected Lie group.

Definition 1.11. A Lie algebra g over R is a real vector space endowed with a bilinear
operation r¨, ¨s : gˆ gÑ g, called bracket, such that

i) rX, Y s “ ´rY,Xs for every X, Y P g,
ii) rX, rY, Zss “ rrX, Y s, Zs ` rY, rX,Zss for every X, Y, Z P g.

Item ii), oterwise known as the Jacobi identity, should be thought of as an analogous
version of the derivative of the product. Indeed, if for any X P g we put

(1.3) adX : gÑ g, adXpY q “ rX, Y s

the Jacobi identity may be formulated:

adXprY, Zsq “ radXpY q, Zs ` rY, adXpZqs,

which reminds the derivative of the product, with the bracket as product. This seem-
ingly awkward notation comes from the fact that the map X ÞÑ adX defines the
so-called adjoint representation (see Subsection 1.2.6 below for details).

Example 1.12. If V is a vector space, the set EndpV q of all linear maps of V into
itself is a Lie algebra under the commutator rφ, ψs “ φψ ´ ψφ as bracket. With this
structure understood, it is denoted by glpV q .
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It should be clear what is meant by Lie subalgebra of a Lie algebra g : it is a vector
subspace h which is closed under bracket, that is, such that if A,B P h then rA,Bs P h .
A stronger notion is that of ideal: it is a Lie subalgebra h of g with the stronger property
that rh, gs Ă h , which means that for every A P h and every B P g we have rA,Bs P h .

1.2.1. Tangent vectors and vector fields. Tangent vectors can be defined in several
equivalent ways. A natural way to think of a tangent vector at the point p of the
manifold M is to introduce an equivalence relation among all the smooth curves c
defined in some open interval containing 0 P R with values in M such that cp0q “ p .
We establish that c1 „ c2 if for every smooth function f : Up Ñ R it holds

d

dt

ˇ

ˇ

ˇ

t“0
fpc1ptqq “

d

dt

ˇ

ˇ

ˇ

t“0
fpc2ptqq,

where Up is an open neighborhood of p in M . The equivalence class xcyp of any of these
curves is then a tangent vector to M at p . This line of thoughts will be adopted in
Section 2 when computing the generators of the Lie algebra of the Heisenberg group.
The set of all tangent vectors at p is a vector space, the tangent space of M at p ,
denoted TppMq . Once a coordinate patch pUp, x1, . . . , xdq around p P M has been
fixed, the equivalence class of the special curve ci defined by t ÞÑ pp1, . . . , pi` t, . . . , pdq
is identified with the tangent vector denoted by

B

Bxi

ˇ

ˇ

ˇ

p

because it operates on any function f defined and smooth on Up by

B

Bxi

ˇ

ˇ

ˇ

p
f “

d

dt

ˇ

ˇ

ˇ

t“0
fpciptqq,

the common value attained along all curves equivalent to ci . These particular tangent
vectors give rise to a basis of the vector space TppMq . A sensible expression for a
tangent vector at p is therefore

(1.4) Xp “

d
ÿ

i“1

ai
B

Bxi

ˇ

ˇ

ˇ

p
P TppMq,

with a1, . . . , ad P R . As implicitly said in the previous paragraph, a tangent vector
acts on a function ψ defined locally around p as a first order differential operator
and produces a real number, the effect of the derivative Xpψ defined in (1.4). Using
equivalence classes of curves, this real number is

xcypf “
d

dt

ˇ

ˇ

ˇ

t“0
fpcptqq.

A vector field X on the manifold M is a smooth map that assigns to each point p PM
a tangent vector at that point, that is, an element Xp P TppMq . The simplest example
of a locally defined vector field is

B

Bxi
, p ÞÑ

B

Bxi

ˇ

ˇ

ˇ

p
.
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Vector fields act on functions, in the sense that if X is a vector field and ψ is a function,
then Xψ is the function that at the point p takes the value

Xψppq “ Xppψq.

The smoothness of X is, by definition, the requirement that Xψ is smooth whenever
ψ is such. Let XpMq denote the set of all smooth vector fields on M . They can
be interpreted as the derivations of C8pMq , the algebra of smooth functions. This
means that any X P XpMq acts on smooth functions linearly (that is, Xpαϕ` βgq “
αXpϕq ` βXpψq for any choice of scalars α and β ), producing new smooth functions,
and that the derivative rule

Xpϕψq “ Xpϕqψ ` ϕXpψq

holds. As a consequence, in any local coordinate system pU , x1, . . . , xdq a vector field
X P XpMq can be expressed as

X “

d
ÿ

i“1

fi
B

Bxi

where f1, . . . , fd P C
8pMq . The action of X on a function ψ P C8pMq is then the

function Xψ whose value at p P U ĂM is

Xψppq “
d
ÿ

i“1

fippq
Bψ

Bxi
ppq.

Thus X is smooth if and only if the functions fi are smooth.

1.2.2. Lie algebras of vector fields. The set XpMq enjoys a structural algebraic prop-
erty, it is a C8pMq-module. This means that the vector fields form an Abelian group
under the natural (pointwise) sum, and they can be multiplied (pointwise) by smooth
functions, respecting the rules that modules require, namely

fpX ` Y q “ fX ` fY, pf ` gqX “ fX ` gX, fpgXq “ pfgqX, 1X “ X,

where X, Y P XpMq , f, g P C8pMq and 1 is the function equal to one on M . More
remarkably, XpMq is a (typically infinite dimensional) Lie algebra under the commu-
tator. This is a consequence of the fact that

rX, Y s :“ X ˝ Y ´ Y ˝X

is in fact a first order differential operator because the second order terms vanish due
to the equality of mixed partials. Therefore rX, Y s P XpMq and the Jacobi identity is
readily established, together with bilinearity and skew-symmetry. As we shall see be-
low, the main feature of Lie groups is that, thanks to the presence of (left) translations,
the Lie algebra XpGq always admits a very natural finite dimensional Lie subalgebra.

Any smooth map F : M Ñ N between smooth manifolds gives rise to the tangent
map F˚ of the corresponding tangent bundles. Thus, for any p PM the tangent map at
p , also known as the differential of F at p , is the linear map F˚p : TppMq Ñ TF ppqpNq
carrrying the tangent vector Xp P TppMq to the tangent vector F˚pXp P TF ppqpNq
whose action (as a derivation) on a function ψ defined in a neighborhood of F ppq is

F˚pXppψq “ Xppψ ˝ F q.
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When M and N are open subsets of Rd and Rn , respectively, the differential is
expressed in the canonical bases by the nˆ d Jacobian matrix.

Let now G be a Lie group and denote by lg : GÑ G the left translation by g P G ,
that is lgphq “ gh . A vector field X P XpGq is called left invariant on G if for every
g, h P G it satisfies

plgq˚hXh “ Xgh.

The set of all left invariant vector fields on G will be denoted LpGq .

Proposition 1.13. Let G be a Lie group and denote by LpGq the set of left invariant
vector fields on G. Then:

i) LpGq is an R-vector space and the linear map α : LpGq Ñ TepGq defined by
αpXq “ Xe is a vector space isomorphism between LpGq and the tangent space
to G at the identity e P G. Consequently, dimLpGq “ dimTepGq “ dimG.

ii) The commutator rX, Y s “ X ˝ Y ´ Y ˝ X of two left invariant vector fields
is again a left invariant vector field. With this bracket, LpGq becomes a Lie
algebra, which will be called the Lie algebra of G.

We shall now discuss in some detail an example that plays a crucial role in what
follows and illustrates the concepts that we have just introduced. Perhaps the most
important Lie group in which we are interested is GLpd,Rq , the invertible d ˆ d ma-
trices. Indeed, as we shall see, most of the groups at which we look in this article arise
as closed subgroups of GLpd,Rq . Therefore, GLpd,Rq serves as a large ambient group
in which the action takes place. We shall now see that its Lie algebra is naturally
identified with the Lie algebra of all dˆ d matrices. The identification that we present
provides the most basic insight when dealing with matrix Lie groups.

Let us denote by glpd,Rq the Lie algebra whose underlying vector space is the set
MdpRq of square dˆd matrices with real entries and whose bracket is the commutator
rA,Bs “ AB ´ BA . The reader may check that this is indeed a bracket, in the sense
that it defines a bona fide Lie algebra structure on MdpRq . If we use global coordinates

on GLpd,Rq as an open subset of Rd2 (se Example 3 above), then a tangent vector to
GLpd,Rq at g P GLpd,Rq may be written as

ξ “
ÿ

ij

aij
B

Bxij

ˇ

ˇ

ˇ

g
P Tg pGLpd,Rqq

for some d2 real numbers aij . If h P GLpd,Rq , then the image of ξ under the differ-
ential plhq˚g is the tangent vector

plhq˚g ξ “
ÿ

ij

bij
B

Bxij

ˇ

ˇ

ˇ

hg
P Thg pGLpd,Rqq ,

where again bij are d2 suitable real numbers . In order to compute the explicit value
of these coordinates as functions of aij and of h , we use the fundamental identification
of a tangent vectors as first order differential operators discussed above and evaluate
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the vector field plhq˚g ξ on the the coordinate function xij . Explicitely, we get

bij “ pplhq˚g ξq pxijq

“ ξ pxij ˝ lhq

“ ξ

˜

ÿ

k

hikxkj

¸

“
ÿ

pq

apq
B

Bxpq

ˇ

ˇ

ˇ

g

˜

ÿ

k

hikxkj

¸

“
ÿ

pq

apjhip

“ phAqij,

where A “ paijq is the dˆ d real matrix associated to the components aij . Hence

(1.5) plhq˚g ξ “
ÿ

ij

phAqij
B

Bxij

ˇ

ˇ

ˇ

hg
.

This formula suggests an expression for the left invariant vector fields on GLpd,Rq .
We allude to the following: a left invariant vector field on GLpd,Rq is completely
determined by its value at the identity, whose coordinates are encoded by a d ˆ d
matrix, say A . We denote by XA such vector field. As the next proposition shows,
the correpondence A Ø XA is an instance of the isomorphism described in item (i)
of Proposition 1.13. The isomorphism is very nice and operative, in the sense that
the bracket of the vector fields XA and XB is the vector fieldXAB´BA , so that we
can completely identify the left invariant vector fields on GLpd,Rq with the elements
of Lie algebra glpd,Rq and compute directly with matrices instead of going through
complicated expressions that involve partial derivates.

Proposition 1.14. Given any matrix A P MnpRq, the vector field XA on GLpd,Rq
whose value at g P GLpd,Rq is

(1.6) XA
g “

ÿ

ij

pgAqij
B

Bxij

ˇ

ˇ

ˇ

g

is a left invariant vector field on GLpd,Rq. Further, the map A ÞÑ XA is a Lie algebra
isomorphism between glpd,Rq and the Lie algebra of GLpd,Rq.

Proof. The fact that XA is a left invariant vector field follows at once from (1.5).
Take now A,B P glpd,Rq . We now find the component of rXA, XBsg by computing
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pXA ˝XB ´XB ˝XAqg pxijq . Since

pXA
˝XB

qg pxijq “
ÿ

pq

pgAqpq
B

Bxpq

ˇ

ˇ

ˇ

g

˜

ÿ

mn

pgBqmn
B

Bxmn

ˇ

ˇ

ˇ

g
pxijq

¸

“
ÿ

pq

pgAqpq
B

Bxpq

ˇ

ˇ

ˇ

g
pgBqij

“
ÿ

pq

pgAqpq
B

Bxpq

ˇ

ˇ

ˇ

g
p
ÿ

k

gikBkjq

“
ÿ

pq

pgAqpqp
ÿ

k

δipδqkBkjq

“
ÿ

q

pgAqiqBqj

“ pgABqij,

we get

pXA
˝XB

´XB
˝XA

qg pxijq “ pgpAB ´BAqqij

and cosequently

rXA, XB
s “ X rA,Bs,

which is precisely what we wanted to show. [\

1.2.3. Homomorphisms. Take two Lie groups, G ed H . A map ϕ : G Ñ H is a Lie
group homomorphism if it is a group homomorphism (hence if ϕpxyq “ ϕpxqϕpyq for
every x, y P G and if ϕpeq “ e , the identities of G and H , respectively) and also
a smooth map of manifolds. We say that ϕ is a Lie group isomorphism if it is a
diffeomorphism, that is, a smooth bijection with smooth inverse.

Example 1.15. A good example of homomorphism is the map ϕ : Up2q Ñ Spp2,Rq
defined by

ϕpX ` iY q “

„

X Y
´Y X



.

Here Up2q stands for the 2 ˆ 2 complex unitary matrices, those for which tḡg “ I .
Now, if g “ X`iY with X, Y PM2pRq , then tḡg “ I is equivalent to tXX` tY Y “ I
and tXY symmetric. But then ϕpX ` iY q satisfies

tϕpX ` iY qJϕpX ` iY q “

„

tX ´ tY
tY tX

 „

I
´I

 „

X Y
´Y X



“

„

´ tXY ` tY X tXX ` tY Y
´ tY Y ´ tXX tY X ´ tXY



“ J

and is therefore symplectic. This proves that ϕ takes values in Spp2,Rq . It is easy to
see that ϕpghq “ ϕpgqϕphq whereas ϕpIq “ I is obvious. As for smoothness, this is a
somewhat tricky issue that needs not concern us now. Finally, Up2q has dimension 4,
while Spp2,Rq has dimension 10, so ϕ cannot possibly be an isomorphism.



10 The use of representations

An isomorphism of G onto itself is called an automorphism. A natural class of
automorphisms are the so-called inner automorphisms, namely those given by inner
conjugation. If g P G , the inner conugation defined by g is the map

ig : GÑ G, igphq “ ghg´1.

In general, a Lie group posesses automorphisms that are not inner. A good exam-
ple is given by the automorphisms of the Heisenberg group, that are listed below in
Theorem 2.8.

Observe that the set of linear automorphisms of a finite dimensional R–vector space
V (hence a Lie group) has itself a natural structure of Lie group, because if a basis
is selected, then the group of all linear invertible maps may be identified with the Lie
group of invertible matrices. This group is denoted by AutpV q . As we shall see in
Section 1.3, a homomorphism π : G Ñ AutpV q is what is called a finite dimensional
representation of G .

If g and h are both real Lie algebras, a linear map ψ : gÑ h for which ψprX, Y sq “
rψpXq, ψpY qs is a Lie algebra homomorphism. Further, if ψ is a linear isomorphism,
then it is called a Lie algebra isomorphism. If h “ glpW q is the Lie algebra of all
endomorphisms of a vector space W , a Lie algebra homomorphism ψ : gÑ h is called
a representation of g on W . This is the case of the homomorphism X ÞÑ adX , which
defines the adjoint representation of g , a representation of g on itself.

Let ϕ : G Ñ H be a Lie group homomorphism. Its differential evaluated at the
identity ϕ˚e : TepGq Ñ TepHq is a linear map. By the natural identifications TepGq »
LpGq and TepHq » LpHq , ϕ˚e induces a linear map LpGq Ñ LpHq denoted dϕ . More
precisely, if X P LpGq , then dϕpXq is the unique left invariant vector field on G such
that

pdϕpXqqe “ ϕ˚eXe.

The following result clarifies matters.

Proposition 1.16. Let ϕ : G Ñ H be a Lie group homomorphism. Then ϕ˚gXg “

pdϕpXqqϕpXq for every X P LpGq and dϕ is a Lie algebra homomorphism.

Take again a Lie group homomorphism i : G Ñ H and assume that i is injective
and that also its differential is injective at every point (such a map is called an injective
immersion). In this case the pair pi,Hq is called a Lie subgroup of G . It should be
clear that whenever a Lie subgroup is given, then, upon taking the differential di of
the corresponding immersion, one gets an immersion of Lie algebras. In other words,
to any Lie subgroup there corresponds a Lie subalgebra. The question concerning a
possible reverse correspondence is addressed by the following fundamental result.

Theorem 1.17. Let G be a Lie group with Lie algebra g and take a Lie subalgebra h of
g. Then there exists a connected Lie subgroup pi,Hq of G, unique up to isomorphisms,
such that dipLpHqq “ h. Therefore there is a bijective correspondence between the
connected Lie subgroup of a Lie group and the subalgebras of its Lie algebra. Under
this bijection, normal subgroups correspond to ideals.
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The theory of covering groups is also very important, and relevant in the present
context, but we content ourselves with the observation that every connected Lie group
has a simply connected covering that admits the structure of Lie group and for which
the covering homomorphism is a Lie group homomorphism. Furthermore, a Lie group
homomorphism ϕ : G Ñ H is a covering map if and only if dϕ is a Lie algebra
isomorphism. The following theorem is of central importance in the theory of Lie
groups, it is the monodromy principle for Lie groups, namely the possibility of lifting
homomorphisms from the Lie algebra to the Lie group.

Theorem 1.18. Let G1 and G2 be two Lie groups with Lie algebras g1 and g2 , re-
spectively, and let λ : g1 Ñ g2 be a Lie algebra homomorphism. Then there cannot be
more than one Lie group homomorphism ϕ : G1 Ñ G2 such that dϕ “ λ. If G1 is
simply connected, then such a ϕ exists.

1.2.4. Exponential mapping. We now review in some detail the definition of the fiunda-
mental map linking the Lie group with its Lie algebra, namely the exponential mapping
exp : gÑ G . Let R be the additive Lie group of real numbers. Its Lie algebra is one-
dimensional and is generated by the vector field d

dt
. Take now a Lie group G with Lie

algebra g , and fix X P g . The map

τ
d

dt
ÞÑ τX, τ P R

is a Lie algebra homomorphism from R into g . Since R is simply connected, there
exists a unique homomorphism ξX : RÑ G such that:

(1.7)

#

pξXq˚τ
d
dt

ˇ

ˇ

t“τ
“ XξXpτq

pξXq˚0
d
dt

ˇ

ˇ

t“0
“ Xe

Conversely, if η : R Ñ G is a Lie group homomorphism, then X “ dηp d
dt
q satisfies

η “ ξX . Hence, the correspondence X ÞÑ ξX establishes a bijection between g and the
set of homomorphisms from R into G with the property that dξXp

d
dt
q “ X for every

X P g .

Fix now τ P R and X P g . Then, if mτ denotes the multiplication by τ in R , the
map ηptq “ ξXpτtq “ ξX ˝mτ ptq is again a homomorphism from R into G and since

η˚0
d

dt

ˇ

ˇ

ˇ

t“0
“ pξXq˚0τ

d

dt

ˇ

ˇ

ˇ

t“0
“ τXe,

it follows that η “ ξτX , that is

(1.8) ξτXptq “ ξXpτtq, t, τ P R, X P g.

We define

(1.9) expX “ ξXp1q, X P g.

The map exp : gÑ G is called the exponential mapping. From (1.8) it follows that

ξXptq “ expptXq, t P R, X P g

exp 0 “ e.
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It is easy to check that if X P g e x P G are fixed, the map t ÞÑ x expptXq defines
the integral curve relative to X passing through x , namely the smooth curve whose
differential carries the tangent vector in R to the value of the vector field at the image
point. Hence, for every C8 -function f in a neighborhood of x we have

(1.10) Xxpfq “
d

dt

ˇ

ˇ

ˇ

t“0
fpx exp tXq.

An immediate consequence of the fact that ξX is a homomorphism are the formulae

exppt` sqX “ exp tX exp sX(1.11)

expp´tXq “ pexp tXq´1.(1.12)

The following formulae require some harder work:

exp tX exp tY “ expttpX ` Y q ` 1
2
t2rX, Y s `Opt3qu(1.13)

expp´tXqexpp´tY q exp tX exp tY “ exptt2rX, Y s `Opt3qu(1.14)

exp tX exp tY expp´tXq “ expttY ` t2rX, Y s `Opt3qu.(1.15)

Formula (1.13) is the well-known Baker–Campbell–Hausdorff formula. The exponential
map is in general neither injective nor surjective, but it is locally very nice:

Proposition 1.19. The exponential map is C8 and its differential at zero is the
identity map of g. Consequently, exp establishes a diffeomorphism of a neighborhood
of 0 P g onto a neighborhood of e P G.

One of the most fundamental properties of the exponential mapping is that it always
intertwines the homomorphisms of Lie groups with the corresponding homomorphisms
of the Lie algebras:

Theorem 1.20. Let ϕ : G Ñ H be a Lie group homomorphism with differential
dϕ : gÑ h. Then, for every X P g

(1.16) ϕpexpXq “ exppdϕXq.

By means of the previous result it is easy to show the next one, which is of practical
use because it allows to calculate the Lie algebra of a subgroup of G as a subalgebra
of the Lie algebra of G .

Proposition 1.21. Let H be a Lie subgroup of the Lie group G and let h Ă g be the
corresponding Lie algebras. Fix X P g. If X P h, then exp tX P H for every t P R.
Conversely, if exp tX P H for every t P R, then X P h.

Refining the above result one obtains the next, which is useful when dealing with
the classical matrix groups and algebras.

Proposition 1.22. Let A be an abstract subgroup of the Lie group G and let a be a
vector subspace of the Lie algebra g of G. Let U be a neighborhood of 0 P g diffeomor-
phic via exp to the neighborood V of e P G. Suppose that

exppU X aq “ AX V.
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Then, endowed with the relative topology, A is a Lie subgroup of G and a is its Lie
algebra.

The set of all n ˆ n real matrices endowed with the bracket rA,Bs “ AB ´ BA is
a Lie algebra, and, as any vector space, a smooth manifold with coordinates given by
any choice of a basis. As we have seen in Proposition1.14, the Lie algebra of GLpd,Rq
is canonically identified with glpd,Rq . The ordinary matrix exponentiation gives rise
to a unique homomorphism from R into GLpd,Rq

(1.17) t ÞÑ etA “
`8
ÿ

k“0

ptAqk

k!

that satisfies the properties (1.7) which define the exponential mapping, so that

(1.18) expA “ eA

A classic application of Jordan normal forms yields

(1.19) det eA “ etrA,

so that the exponential of any square matrix A is an invertible matrix and exp maps
indeed glpd,Rq to GLpd,Rq . We observe en passant that (1.19) implies that the
exponential maps slpd,Rq to SLpd,Rq , that is, the Lie algebra of traceless matrices
to the Lie group of matrices with determinant equal to one. For later use, we remark
that (1.17) entails

(1.20) t
peAq “ e

tA

and that for any invertible B

(1.21) BeAB´1
“ eBAB

´1

.

Example 1.23. We show that the Lie algebra of Sppd,Rq is

(1.22) sppd,Rq “
 

X P glpd,Rq : tXJ `XJ “ 0
(

,

where J is the canonical skew-symmetric matrix defined in (1.2). If X P sppd,Rq , the
relation tXJ “ ´JX , together with J2 “ ´I and (1.20) and (1.21), implies

t
peXqJpeXq “ e

tXJeX “ JpJe
tXJ´1

qeX “ Je´J
tXJeX “ Je´XeX “ J.

Conversely, we show that if Y “ eX P V XSppd,Rq , then tXJ ` JX “ 0. This can be
done by observing that

J “ t
peXqJpeXq “ e

tXeJXJ
´1

J

implies e
tXeJXJ

´1
“ I and hence by (1.12)

e´
tX
“ eJXJ

´1

.

Take now a neighborhood U of 0 P glpd,Rq diffeomorphic under exp to the neighbor-
hood V of I P GLpd,Rq . Assuming that U is small enough, that is, intersecting it
with ´ tU “ t´ tZ : Z P Uu and with JUJ´1 “ tJZJ´1 : Z P Uu , which are both open
and contain the zero matrix, we may assume that both ´ tX and JXJ´1 belong to
U , where the exponential is a diffeomorphism. Hence ´ tX “ JXJ´1 , which amounts
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to tXJ ` JX “ 0. Applying now Proposition 1.22 we obtain the claimed description
of sppd,Rq , which can be made even more explicit. Indeed, if

X “

„

A B
C D



P sppd,Rq,

then

0 “ tXJ ` JX “

„

´ tC ` C tA`D
´ tD ´ A tB ´B



implies that in fact X P sppd,Rq if and only if

(1.23) X “

„

A B
C ´ tA



, B, C P Sympd,Rq.

Example 1.24. Arguing as in the previous example, one can show that the Lie algebra
of the special orthogonal group, namely the compact Lie group

SOpdq “ tg P GLpd,Rq : tgg “ I, det g “ 1u,

is the Lie algebra of skew-symmetric matrices

(1.24) sopdq “ tX P glpd,Rq : tX `X “ 0u.

Example 1.25. Another basic fact: the Lie algebra of the unitary group

Upnq “ tg P GLpn,Cq : tgg “ Iu

is the Lie algebra of skew-hermitian matrices

updq “ tX P glpd,Cq : tX `X “ 0u.

1.2.5. Closed subgroups. As the examples at the end of the previous section indicate,
many of the most interesting matrix Lie groups arise by imposing extra equations on
GLpd,Rq . Since these equations are often of the form F pgijq “ 0 with F : Rn2

Ñ R
a polynomial or a rational function of the entries, hence continuous on some open set,
their solutions cut out subgroups that are topologically closed. The closed subgroups
are very special. The first major result is the followimng

Theorem 1.26. (Cartan) Let G be a Lie group and let A be a closed subgroup of G.
Then A has a unique smooth (in fact analytic) structure that makes it a Lie subgroup
of G.

Theorem 1.27. Let G be a connected Lie group with Lie algebra g and let ϕ : GÑ H
be a Lie group homomorphism of G into the Lie group H , whose Lie algebra is h.
Then:

(i) kerpϕq is a closed Lie subgroup of G with Lie algebra kerpdϕq;
(ii) ϕpGq is a Lie subgroup of H with Lie algebra dϕpgq P h.

An important example of closed Lie subgroup is the center ZG of G , namely

ZG “
 

g P G : gxg´1
“ x, for all x P G

(

.

The fact that ZG is indeed closed can either be shown directly (with sequences) or by
using Corollary 1.30 below, which exhibits the center as the kernel of a very important
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homomorphism of G into the automorphisms of its Lie algebra, the adjoint represen-
tation. Observe that, besides being closed, the center ZG is always normal in G , just
as any other kernel of any smooth homomorphism.

Suppose now that H is any closed and normal subgroup of G , not necessarily its
center. Then G{H has a natural group structure, and it is natural to ask whether it
might be a Lie group. This is indeed the case:

Theorem 1.28. If H is a closed and normal subgroup of G then there exists a unique
manifold structure on the quotient group G{H that turns it into a Lie group. Moreover,
the natural projection p : GÑ G{H is a smooth surjection.

The projection map p : G Ñ G{H described in the above proposition is thus a
smooth Lie group homomorphism whose kernel is exactly H . Therefore, the closed
normal subgroups always do appear as kernels of smooth homomorphisms.

Many examples of quotient Lie groups can be given. In Chapter 2 below we are
mostly concerned with the Heisenberg group Hd , whose center is isomorphic to R .
The quotient Hd{Z is (isomorphic to) the Abelian group R2d .

1.2.6. Adjoint representations. The most important finite dimensional representation
of a Lie group G is certainly the adjoint representation, which acts on its Lie algebra
g . Given any real Lie algebra g , we shall denote by glpgq the Lie algebra of all
endomorphisms of g with the commutator as bracket and by GLpgq the group of all
non singular endomorphisms of g as a vector space. Hence glpgq is the Lie algebra
of GLpgq . The map X ÞÑ adX is a Lie algebra homomorphism whose image is a
Lie subalgebra of glpgq denoted ad g . Let Intpgq be the connected Lie subgroup of
GLpgq whose Lie algebra is ad g . The group Intpgq is called the adjoint group of g .
Schematically:

glpgq ÐÑ GLpgq

Y Y

ad g ÐÑ Intpgq

where the arrows stand for the correspondence group-algebra. Next, let Autpgq be the
Lie subgroup of GLpgq consisting of all the automorphisms of g (the invertible Lie
algebra homomorphisms of g onto itself) and denote by Bg its Lie algebra. We know
that Bg consits of all the endomorphisms D P glpgq such that exp tD P Autpgq for
every t P R . From expptDqrX, Y s “ rexpptDqX, expptDqY s , taking the derivative at
t “ 0, it follows that

DrX, Y s “ rDX, Y s ` rX,DY s.

Any such operator is called a derivation of g . Conversely, if D is a derivation, then by
induction

Dk
rX, Y s “

ÿ

i`j“k

k!

i!j!
rDiX,DjY s,

so that expptDqrX, Y s “ rexpptDqX, expptDqY s . It follows that Bg consists of all the
derivations of g . Finally, since adX is a derivation of g for every X P g , we may
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refine the preceeding diagram and get:

glpgq ÐÑ GLpgq

Y Y

Bg ÐÑ Autpgq

Y Y

ad g ÐÑ Intpgq

It is easy to see that Intpgq is a normal subgroup of Autpgq and ad g is an ideal in Bg .

Let G be a Lie group and take g P G . Denote by ig the inner conjugation in G ,
namely x ÞÑ gxg´1 and put

Ad g :“ dig : gÑ g.

Since ig is an isomorphism go G it follows that Ad g P Autpgq . The map

Ad : GÑ Autpgq, g ÞÑ Ad g

is a homomorphism of Lie groups and is called the adjoint representation of G . As it will
be clear in the sections that follow, Ad is indeed a finite dimensional representation
of G (on a real vector space). On the classical matrix Lie groups, in particular on
GLpd,Rq and hence on its closed subgroups, we have

(1.25) Ad gpXq “ gXg´1.

Also, the universal intertwining property of exp given in Theorem 1.20 entails:

exppAd gpXqq “ exppdigpXqq “ igpexpXq “ gpexpXqg´1,

which is a general version of (1.21).

Theorem 1.29. Ad is a smooth map and dAd “ ad. In particular, for any X P g

AdpexpXq “ eadX .

Corollary 1.30. The adjoint representation of G is a smooth surjective homomor-
phism of G onto Intpgq whose kernel is the center ZG of G. Hence, G{ZG » Intpgq

From the previous result and from Theorem 1.2.5, it follows that the center of a
connected Lie group is a closed Lie subgroup. It then follows again from Theorem 1.2.5
that the Lie algebra of the center of G is the center of the Lie algebra, namely

zg “
 

X P g : rX, Y s “ 0 for all Y P g
(

.

We deduce from this that a Lie group is Abelian (i.e., it has trivial center) if and only
if its Lie algebra is such.
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1.2.7. Semidirect products. Suppose that G and H are two Lie groups and that there
we are given a group homomorphism

τ : H Ñ AutpGq, h ÞÑ τh

such that the map pg, hq ÞÑ τhpgq is a smooth map of GˆH into H . Hence, for every
h P H the map τh is an invertible Lie group homomorphism of G onto itself, and
τhk “ τh ˝ τk for every h, k P H . It is then possible to define the semidirect product
of G and H . It is the group denoted G¸H whose elements are those of GˆH and
where the product is defined by

pg1, h1qpg2, h2q “ pg1τh1pg2q, h1h2q.

It is immediate to check that this is a group law, and indeed smooth, so that G ˆH
is a Lie group. Inverses are given by

pg, hq´1
“ pτh´1pg´1

q, h´1
q.

If we identify G and H with the subsets of G ¸ H given by tpg, eq : g P Gu and
tpe, hq : h P Hu , respectively, then both G and H are closed subgroups and G is a
normal subgroup in G¸H .

Example 1.31. The most obvious example of semidirect product is the “ax ` b”
group. Evidently, H “ R` , G “ R and τapbq “ ab . One possible generalization in
higher dimensions is the Euclidean motion group in Rd , where H “ SOpdq acts in the
natural linear fashion on G “ Rd .

Example 1.32. Another example of semidirect product is the Poincaré group. Here

H “ SOp1, 3q “ th P SLp4,Rq : thI1,3h “ I1,3u,

where

I1,3 “

»

—

—

–

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

.

As G , we take R4 . Again, τhpxq “ hx for h P SOp1, 3q and x P R4 .

Other useful examples of semidirect products will be discussed in Section 2 and also
in Section 3.

Exercise 1.33. This exercise aims at showing what is the sensible notion of semidirect
product of Lie algebras. Let a and b denote two Lie algebras and suppose that we
are given a Lie algebra homomorphism π : a Ñ Bb into the derivations of b . Show
that there exists a unique Lie algebra structure on the vector space g “ a ` b which
preserves the Lie algebra structures of both a and b , and such that rA,Bs “ πpAqpBq
for every A P a and every B P b . Further, show that a is a subalgebra and b is an
ideal in g .
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1.2.8. Haar measure on Lie groups and integration. For Lie groups, left Haar measures
are very easy to construct. One takes any positive definite inner product on the tangent
space at the identity TeG and carries it around with the differential of left translations,
thereby obtainining a Riemannian structure. The corresponding volume form is a Haar
measure. Furthermore, in every local coordinate system, it is given by a C8 density
times the Lebesgue measure. We do not appeal here to these facts that go beyond our
scopes, and simply quote a handy result.

Proposition 1.34. If G is a Lie group whose underlying manifold is an open set in
Rd and if the left translations are given by affine maps, that is

xy “ Apxqy ` bpxq,

where Apxq is a linear transformation and bpxq P Rd , then | detApxq|´1 dx is a Haar
measure on G.

Example 1.35. For example, in the group “ax` b” the left translations are

lpa,bqpα, βq “

„

a 0
0 a

 „

α
β



`

„

0
b



,

so that by Proposition 1.34 we have

| detApa, bq|´1 da db “
da

a2
db.

As for the modular function, in any Lie group we have

∆pgq “ | det Adpgq|´1.

It is possible to realize the “ax ` b” group as a matrix group. The reader may check
that the correspondence

pa, bq Ø

„

a b
0 1



establisehes an isomorphism of “ax`b” with a closed Lie subgroup of GLp2,Rq , whose
Lie algebra ie easily seen to consists of the matrices

„

A B
0 0



.

The adjoint representation takes the form
„

a b
0 1

 „

A B
0 0

 „

a´1 ´ba´1

0 1



“

„

A ´bA` aB
0 0



and it is thus the linear map
„

A
B



ÞÑ

„

1 0
´b a

 „

A
B



.

It follows that

∆pa, bq “ | det

„

1 0
´b a



|
´1
“ a´1.
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One can check directly with a change of variable that indeed
ż

R`ˆR
fppα, βqpa, bqq

da

a2
db “ α

ż

R`ˆR
fppa, bqq

da

a2
db.

1.2.9. Convolutions. The convolution of integrable functions defined on Rd involves
translations. It is thus suitable for interpretation on any group G on which a reasonable
notion of measure is given, like for example Lie groups. Indeed, if G is a Lie group
with left Haar measure dx and if f, g P L1pGq , then the convolution of f and g is the
function defined by

(1.26) f ˚ gpxq “

ż

G

fpyqgpy´1xq dy.

By the left invariance of dx , we have that
ż

G

ż

G

|fpyqgpy´1xq| dxdy “

ż

G

ż

G

|fpyqgpxq| dxdy “ }f}1}g}1

so that, by Fubini’s theorem, f ˚ g P L1pGq and

}f ˚ g} ď }f}1}g}1.

The convolution of L1 functions can be expressed in several different ways:

f ˚ gpxq “

ż

G

fpyqgpy´1xq dy(1.27)

“

ż

G

fpxyqgpy´1
q dy

“

ż

G

fpy´1
qgpyxq∆py´1

q dy

“

ż

G

fpxy´1
qgpyq∆py´1

q dy.

It must be noticed that, unless the group G is itself commutative, in general the
convolution is not commutative.

Exercise 1.36. Show that on the affine group “ax` b” the convolution is

f ˚ gpα, βq “

ż

R

ż

R`
fpa, bq g

´α

a
,
β ´ b

a

¯ da

a2
db

and verify that it is not commutative.

Exercise 1.37. Show that on any Lie group G and for any f, g P L1pGq one has

λpxqpf ˚ gq “ pλpxqfq ˚ g, ρpxqpf ˚ gq “ f ˚ pρpxqgq,

where λ and ρ are the left and right translations, respectively.

The mapping properties of (left or right) convolution operators have been studied
in much detail. We collect here some facts that will be useful. For a detailed proof of
many statements see [4], whereas [14] contains the basic facts. If f, g P L1

locpGq , if the
convolution f ˚ g defined by (1.26) exists, and if |f | ˚ |g| is in L1

locpGq , then we say
that f and g are convolvable.
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Theorem 1.38. Let f, g be two measurable funcions on the Lie group G.

(i) If f P L1pGq and g P LppGq with 1 ď p ď 8, then the integrals in (1.27)
converge for almost every x P G, we have f ˚ g P LppGq and

}f ˚ g}p ď }f}1}g}p.

Furthermore, if p “ 8, then f ˚ g is also continuous.
(ii) If f P LppGq, g P LqpGq and ǧ P LqpGq where 1 ă p ă `8 and 1 ă q ă `8

satisfy 1
p
` 1

q
“ 1` 1

r
with r ą 1, then f and g are convolvable and f ˚g belongs

to LrpGq. Furthermore, if }ǧ}q “ }g}q , then

(1.28) }f ˚ g}r ď }f}p}g}q.

(iii) If f P LppGq, g P LqpGq and ǧ P LqpGq, where 1 ă p ă `8 and 1
p
` 1

q
“ 1 ,

then f and g are convolvable, f ˚ g belongs to C0pGq and

(1.29) }f ˚ g}8 ď }f}p}ǧ}q.

1.3. Representation theory. Let H1 and H2 be two Hilbert spaces and suppose
that T : H1 Ñ H2 is linear and bounded, that is T P BpH1,H2q . Recall that T is
an isometry if }Tu} “ }u} for every u P H1 . Since }Tu}2 “ xTu, Tuy “ xT ˚Tu, uy
and }u}2 “ xu, uy , the polarition identity implies that T is an isometry if and only if
T ˚T “ idH1 . Hence, isometries are injective, but they are not necessarily surjective.
A bijective isometry is called a unitary map. If T is unitary, such is also T´1 and in
this case TT ˚ “ idH2 . In particular if H1 “ H2 “ H , the set

UpHq “
 

T P BpHq : T is unitary
(

forms a group. Evidently, UpHq Ă BpHq , the space of bounded linear operators of H
onto itself.

Let now G be a Lie1 group.

Definition 1.39. A unitary representation of G on the Hilbert space H is a group
homomorphism π : GÑ UpHq continuous in the strong operator topology. This means:

i) πpghq “ πpgqπphq for every g, h P G;
ii) πpg´1q “ πpgq´1 “ πpgq˚ for every g P G;

iii) g ÞÑ πpgqu is continuous from G to H , for every u P H .

Observe that from the equality }πpgqu´ πphqu} “ }πphg´1qu´ u} it follows that it
is enough to check iii) for g “ e , the identity of G .

Example 1.40. Let G “ R be additive group and H “ C . For every s P R we
define the function χsptq “ eits and we identify the complex number eits with the

1In all what follows, it would suffice to consider a locally compact Hausdorff topological group.
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multiplication operator on C defined by z ÞÑ zeits . Clearly, χs : R Ñ UpCq is a
unitary representation, because

χspx` yq “ χspxqχspyq

χsp´xq “ χspxq
´1
“ χspxq

t ÞÑ eitsz is continuous for every z P C.

Example 1.41. Let G be any locally compact group and choose H “ L2pGq . Define

(1.30) λ : GÑ UpHq, g ÞÑ λx, λxfpyq “ fpx´1yq.

It is easy to check that this is a unitary representation, the so-called left regular repre-
sentation. Similarly, the right regular representation is defined by

(1.31) ρ : GÑ UpHq, g ÞÑ ρx, ρxfpyq “ ∆pxq1{2fpyxq.

The modular function is necessary in order that ρx is unitary.

Example 1.42. Let G be the “ax` b” group and H “ L2pRq . Define

(1.32) πpa, bqfpxq “
1
?
a
f

ˆ

x´ b

a

˙

, a ą 0, b P R

the so-called wavelet representation. Notice that it is just the composition of the two
very important and basic unitary maps

Tbfpxq “ fpx´ bq (translation operator)(1.33)

Dafpxq “
1
?
a
f
´x

a

¯

(dilation operator)(1.34)

for indeed

TbDafpxq “ TbpDafqpxq “ Dafpx´ bq “
1
?
a
f

ˆ

x´ b

a

˙

.

Observe that

TbTb1 “ Tb`b1 , DaDa1 “ Daa1 .

It is important to notice that TbDa ­“ DaTb . More precisely,

DaTbfpxq “
1
?
a
pTbfq

´x

a

¯

“
1
?
a
f
´x

a
´ b

¯

“
1
?
a
f

ˆ

x´ ab

a

˙

“ TabDafpxq.

In other words

DaTb “ TabDa.

It follows that

pTβDαqpTbDaq “ TβpDαTbqDa “ TβpTαbDaqDa “ pTβTαbqpDaDaq “ Tβ`αbDαa.

so that π is a homomorphism:

πpα, βqπpa, bq “ πpαa, β ` αbq “ πppα, βqpa, bqq.

Finally, it is instructive to check the strong continuity, which is left as an exercise.
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Example 1.43. A variant of (1.32) is the analogous that arises by considering the full
affine group acting on L2pRq :

(1.35) πfullpa, bqfpxq “
1

a

|a|
f

ˆ

x´ b

a

˙

, a P R˚, b P R

Definition 1.44. Let M be a closed subspace of the Hilbert space H . We say that
M is an invariant subspace for the unitary representation π if πpgqM ĂM for every
g P G. We say that π is irreducible if H does not contain proper non trivial closed
invariant subspaces, that is, closed invariant subspaces other than H and t0u.

Exercise 1.45. Prove that if M is an invariant subspace for π then such is also MK

and that π “ πM ‘ πMK , where πM is the restriction of π to M and similarly for
MK . This means that for every g P G the linear map πpgq is the direct sum of the
linear maps πM and πMK , each acting on the appropriate space.

Definition 1.46. Let π be a unitary representation of G on H eand take ξ, η P H .
The function G Ñ C defined by g ÞÑ xξ, πpgqηy is called the coefficient of π relative
to pξ, ηq. If ξ “ η , it is called a diagonal coefficient. Notice that all coefficients are
continuous functions and |xξ, πpgqηy| ď }ξ}}η}.

Exercise 1.47. Prove that if π1 and π2 are equivalent, they have the same coefficients.
Conversely, assume that π1 and π2 are irreducible and suppose that they have the same
non zero diagonal coefficients. Show that π1 and π2 are equivalent. [Hint: take ξ1 e ξ2

such that xξ1, π1pgqξ1y “ xξ2, π2pgqξ2y ­“ 0 for all g P G and define U on the elements

of the form ξ “
řk
j“1 αjπ1pxjqξ1 via the formula Uξ “

řk
j“1 αjπ2pxjqξ2 .]

Proposition 1.48. . The following two conditions for a representation are equivalent

(i) π is irreducible
(ii) if ξ and η are non zero vectors in H , then the coefficient xξ, πpgqηy is non zero

as a continuous map.

Proof. Suppose that π is irreducible and assume by contradiction that we can find
two non zero η, ξ P H for which xξ, πpgqηy “ 0. The space

Mη “ cltπpgqη : g P Gu

is a closed invariant subspace, it is not the zero space because η PMη and it cannot be
H because ξ PMK

η . This contradicts the hypothesis that π is irreducible. Conversely,
if (ii) holds, take any closed invariant subspace M ‰ t0u and take a non zero vector
η PM , so that πpgqη PM for every g P G . If M ‰ H , then MK ‰ t0u and therefore
there exists a non zero ξ PMK . But this entails that xξ, πpgqηy “ 0 for every g P G ,
contrary to assumption. Hence M “ H and π is irreducible. [\

Example 1.49. CITARE HEIL WALNUT Using the previous proposition, we
show that the wavelet representation (1.32) of the “ax ` b” group is not irreducible,
whereas the wavelet representation (1.35) of the full affine group is. The calculations
that follow are very basic and important. We shall use the Fourier transform F , defined
on L1pRdq X L2pRdq by

(1.36) f̂pξq “ Ffpξq “
ż

Rd

fpxqe´2πix¨ξ dx.
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A straightforward computation yields

Fpπpa, bqfqpξq “
?
ae´2πibξf̂paξq, a ą 0, b P R(1.37)

Fpπfullpa, bqfqpξq “
a

|a|e´2πibξf̂paξq, a P R˚, b P R.(1.38)

We start with π and show that it is not irreducible. To this end, take two non zero
f, g P L2pRq . Then, by Plancherel

ż

G

|xπpa, bqf, gy|2
da db

a2
“

ż

G

|xFpπpa, bqfq,Fgy|2 da db
a2

“

ż

G

ˇ

ˇ

ˇ

ˇ

ż

R

?
ae´2πibξf̂paξqĝpξq dξ

ˇ

ˇ

ˇ

ˇ

2
da db

a2

“

ż

G

ˇ

ˇpF´1ωaqp´bq
ˇ

ˇ

2
db
da

a
,

where ωapξq “ f̂paξqĝpξq . Hence, again by Plancherel
ż

G

|xπpa, bqf, gy|2
da db

a2
“

ż

G

|ωapξq|
2 dξ

da

a
,

“

ż

R

ˆ
ż `8

0

|f̂paξq|2
da

a

˙

|ĝpξq|2 dξ.(1.39)

Define now the following (Hardy) spaces:

H`pRq “ tf P L2
pRq : f̂pξq “ 0 if ξ ă 0u(1.40)

H´pRq “ tf P L2
pRq : f̂pξq “ 0 if ξ ą 0u.(1.41)

Now, if we take f P H`pRq and g P H´pRq , then the support of ĝ is contained in the
negative reals, so that we may suppose that, in the inner integral in (1.39), aξ ă 0 for

every a ą 0. Hence aξ is outside the support of f̂ for every a ą 0. It follows that the
coefficient xπpa, bqf, gy vanishes and that π is not irreducible.

It is actually not hard to show that the Hardy spaces are both closed subspaces of
L2pRq and, by (1.37), that they are both invariant under π . This provides a direct
alternative way to see that π is not irreducible. The above computations, however,
reveal a lot more than the simple fact that π is not irreducible. First of all, if we
restrict π to H`pRq , that is, if both f, g P H`pRq , then since their Fourier transforms
are supported in the positive reals, for any fixed ξ ą 0 we may make the change of
variable a ÞÑ a{ξ in the inner integral in (1.39) and obtain

(1.42)

ż

G

|xπpa, bqf, gy|2
da db

a2
“

ˆ
ż `8

0

|f̂paq|2
da

a

˙ˆ
ż

R
|ĝpξq|2 dξ

˙

.

This proves that for f, g P H`pRq both non zero we have xπpa, bqf, gy ‰ 0 as a contin-

uous function, because neither f̂ nor ĝ can identically vanish. Hence the restriction of
π to H`pRq is irreducible. The same holds true for H´pRq . We leave it as an exercise
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to show that L2pRq “ H`pRq ‘H´pRq and that π “ π`‘ π´ . We observe en passant
that if f P H`pRq is such that

(1.43)

ż `8

0

|f̂paq|2
da

a
“ 1,

then, by Plancherel and (1.42) we have

(1.44) }xπpa, bqf, gy}L2pGq “ }g}H`pRq

and similarly for H´pRq . Equation (1.43) is called a Calderón equation and a function
f P H`pRq that satisfies it is called a wavelet.

Let us now consider the full affine group. A calculation analogous to the previous
one yields

ż

Gfull

|xπfullpa, bqf, gy|
2 da db

a2
“

ż

R

ˆ
ż

R˚
|f̂paξq|2

da

|a|

˙

|ĝpξq|2 dξ

This time, for any non zero ξ , as a ranges in R the numbers aξ cover R and the
change of variable a ÞÑ a{ξ in the inner integral gives

(1.45)

ż

Gfull

|xπfullpa, bqf, gy|
2 da db

a2
“

ˆ
ż

R˚
|f̂paq|2

da

|a|

˙ˆ
ż

R
|ĝpξq|2 dξ

˙

,

which cannot be zero if both f and g are not zero. This proves that πfull is an
irreducible unitary representation of Gfull . The Calderón equation for the full affine
group is thus

(1.46)

ż

R
|f̂paq|2

da

|a|
“ 1.

Definition 1.50. Let π be a representation of G on H . A vector u P H is called a
cyclic vector for the representation if the closed linear span Mu of tπpxqu : x P Gu
coincides with H . Clearly, in general, Mu is a closed π -invariant subspace of H . The
representation is called cyclic if it has a cyclic vector.

Definition 1.51. Let πi : G Ñ UpHiq, i “ 1, 2 be two unitary representations of G.
They are called unitarily equivalent if there exists a unitary operator U : H1 Ñ H2

such that

(1.47) π2pgq ˝ U “ U ˝ π1pgq, for every g P G.

In this case, U is called an intertwining operator between π1 and π2 . The set of all
intertwining operators between π1 and π2 will be denoted Ipπ1, π2q. If π1 “ π2 “ π ,
we write Ipπ, πq “ Ipπq.

Exercise 1.52. controllare se dopo rimane lambda o L Let λ be the left regular
representation of R on L2pRq , namely λxfpyq “ fpy ´ xq , and let ρ the right regular
representation of R on L2pRq , namely ρxfpyq “ fpy ` xq . Exhibit a unitary operator
on L2pRq that intertwines ρ and λ .

Exercise 1.53. Let M Ă H be a closed subspace and denote by P the orthogonal
projection onto M . Prove that M is π–invariant if and only if P P Ipπq .
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The next result is of crucial importance in representation theory. For a proof see for
example [15].

Lemma 1.54. (Schur’s lemma.) i) A unitary representation of G is irreducibile if
and only if Ipπq contains only scalar multiples of the identity.

ii) Let π1 e π2 be two unitary irreducible representations of G. If they are equivalent,
then Ipπ1, π2q has dimension one, otherwise Ipπ1, π2q “ t0u.

Corollary 1.55. Every irreducible representation of an Abelian group is one dimen-
sional.

Proof. Suppose that G is Abelian and take a representation π of G . Then all
the operators πpxq commute and hence are in Ipπq . If π is irreducible, then πpxq
is a constant multiple of the identity and every one dimensional subspace of Hπ is
invariant. Therefore Hπ must be one dimensional. [\

Suppose that G is a Lie group with a unitary representation π and that N is a
closed and normal subgroup of G . Then, as we know from Theorem 1.28, the quotient
G{N is a Lie group. If the kernel of π contains N , that is, if πpnq is the identity
operator for every n P N , then it is possible to project π to a representation π̃ of the
quotient G{N . Indeed, one puts

π̃pgNq “ πpgq

and obtains a well defined unitary representation of the Lie group G{N on the same
Hilbert space on which π was defined. It is easy t see that if π is irreducible, then
such is π̃

1.4. Square integrability. We are interested in the properties of the coefficients of a
given unitary representation of G . More precisely, we fix a vector u P H and consider
the so-called voice transform associated to it, namely

(1.48) Vu : HÑ L8pGq X CpGq

defined by

(1.49) Vuvpxq “ xv, πpxquy, v P H.
Thus, for fixed u , the voice transform maps elements in the Hilbert space H to func-
tions on G that are bounded and continuous, as established formally in Proposition 1.56
below. For reasons that will become clear in what follows, the function

(1.50) Kupxq “ Vuupxq “ xu, πpxquy

is of particular relevance, and is called the kernel of the voice transform. By definition,
it is the diagonal coefficient of the representation corresponding to u . Below and in
the remaining part of this article we write

qfpxq “ fpx´1
q

whenever f is a function on the group G .
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Proposition 1.56. Let π be a unitary representation of the Lie group G on the Hilbert
space H and let u P H be a fixed vector. Then:

(i) the transforms Vuv are bounded continuous functions on G, for all v P H ;
(ii) the voice transform Vu satisfies Vu ˝ πpxq “ λpxq ˝ Vu for every x P G;
(iii) u is a cyclic vector for π if and only if Vu is an injective map of H into

L8pGq X CpGq;

(iv) the kernel Ku satisfies Ku “ |Ku .

Proof. (i) The continuity of x ÞÑ xv, πpxquy follows from the continuity of the
representation (strong continuity implies weak continuity). Boundedness follows from

|Vuvpxq| “ |xv, πpxquy| ď }v} }u}.

(ii) This is just a direct computation that uses the fact that π is unitary, hence
πpyq˚ “ πpy´1q . Indeed:

Vu pπpyqvq pxq “ xπpyqv, πpxquy “ xv, πpy
´1xquy “ Vuvpy

´1xq “ pλpyqVuvq pxq

(iii) Take v P H . Then

Vuvp¨q “ 0 ðñ xv, πp¨quy “ 0 ðñ v PMK
u ,

where the first two equalities refer to the function on G which is identically zero. Now,
u is cyclic if and only if MK

u “ t0u and this is equivalent to the fact that the only zero
transform Vuv is when v “ 0, which is the injectivity of Vu .

(iv) This is immediate, since

Kupxq “ xu, πpxquy “ xπpxqu, uy “ xu, πpx
´1
quy “ Kupx

´1
q “ |Kupxq.

[\

Definition 1.57. Let π be a unitary representation of the Lie group G on the Hilbert
space H . If there exists a vector u P H , called admissible, for which the corresponding
voice transform takes values in L2pGq and is an isometry, that is, if

(1.51) Vu : HÑ L2
pGq, }Vuv} “ }v}

for every v P H , then we say that the system pG, π,H, uq is reproducing, or, for short,
that u is an admissible vector for π .

By the polarization identity, the isometry property }Vuv} “ }v} is equivalent to

(1.52) xVuv, Vuwy2 “ xv, wyH, v, w P H,

where we have stressed that the first inner product is in L2pGq and the second in
H . We observe en passant that if u is an admissible vector for π , then it is a cyclic
vector for π . This is because if Vu is an isometry, then it is injective on H and (iii) of
Proposition 1.56 applies.

In the literature, the notion of reproducing system is primarily studied when π is
irreducible. If this is the case, and if π admits an admissible vector, then one says
that π is square integrable. Since in many important examples in analysis one has non
irreducible representations, we allow for this situation to happen.
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Many relevant properties concerning reproducing systems are expressed efficiently
with the notion of weak integral. We do not develop this theory in full here, but simply
record what is needed to us. Suppose that Ψ : G Ñ H is a continuous map and
suppose further that for any v P H the integral

ż

G

xΨpxq, vy dx

is absolutely convergent for every v P H . Then, as a consequence of the closed graph
theorem, the mapping v ÞÑ

ş

G
xΨpxq, vy dx defines a continuous linear functional on H .

We collect these two properties by saying that Ψ is scalarly continuously integrable.
Then by the Riesz representation theorem there exists a unique element in H , denoted

ż

G

Ψpxq dx

and called the weak integral of Ψ, for which

(1.53) x

ż

G

Ψpxq dx, vy “

ż

G

xΨpxq, vy dx, v P H.

Proposition 1.58. Suppose that pG, π,H, uq is a reproducing system. Then the re-
producing formula

(1.54) v “

ż

G

xv, πpxquyπpxqu dx

holds for v P H , where the right hand side is interpreted as weak integral. The adjoint
of the voice transform is given as weak integral by the formula

(1.55) V ˚u F “

ż

G

F pxqπpxqu dx, F P L2
pGq

and V ˚u Vu “ idH .

Proof. Since the voice transform Vu maps H into L2pGq by assumption, and since
it satisfies the isometric property (1.52), for every w P H we have

ż

G

xv, πpxquyxπpxqu,wy dx “

ż

G

VuvpxqVuwpxq dx(1.56)

“ xVuv, Vuwy

“ xv, wy.

This shows that the continuous mapping Ψv : GÑ H defined for fixed v P H by

(1.57) Ψvpxq “ xv, πpxquyπpxqu

is scalarly continuously integrable, because w ÞÑ xv, wy is well defined and continuous.
Hence Ψv is weakly integrable, and the weak integral of Ψv must be equal to v because
(1.56) entails

x

ż

G

Ψvpxq dx, wy “ xv, wy
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for every w P H . This establishes (1.54). As for (1.55), we notice that for any
F P L2pGq the continuous mapping ΦF : G Ñ H defined by ΦF pxq “ F pxqπpxqu is
scalarly continuously integrable because

ż

G

xF pxqπpxqu,wy dx “

ż

G

F pxqVuwpxq dx “ xF, Vuwy.

Formula V ˚u Vu “ idH follows from (1.55) applied to F “ Vuv and from (1.54), for

V ˚u Vuv “

ż

G

Vuvpxqπpxqu dx “

ż

G

xv, πpxquyπpxqu dx “ v.

[\

Before we proceed further, some comments are in order. The first observation con-
cerns the geometric interpretation of (1.54). The mapping Ψv defined in (1.57) asso-
ciates to x P G the projection of v along πpxqu . The reproducing formula (1.54) then
expresses the fact that we can recover any element v P H by gluing all its projections
with an integral, so that in some sense the collection of all the vectors tπpxqu : x P Gu ,
called the orbit of u under G , consists of sufficiently many “directions”.

Secondly, the weak integral (1.55) that defines the adjoint of the voice transform is
at times referred to as the Fourier transform of F evaluated at u , and is written

(1.58) V ˚u F “ πpF qu.

A third comment concerns general properties of isometries. As already mentioned
in the beginning of Section 1.3, a bounded linear operator T : H1 Ñ H2 between
Hilbert spaces is an isometry if and only if T ˚T “ idH1 . Thus, the last statement in
the previous theorem is in fact a simple consequence of the fact that Vu is an isometry.
Furthermore, if T is an isometry, then TT ˚ is the projection onto the range of T , for
TT ˚ is selfadjoint and idempotent.

Example 1.59. The following is an important example of reproducing system: the
(irreducible) wavelet system that was discussed in Section 1.49. We consider the full
affine group “ax`b”, where a is any non zero real number and b P R . The representa-
tion πfull is defined in (1.35) and the representation space is H “ L2pRq . If f P L2pRq
satisfies the Calderón equation (1.46), then (1.45) becomes

ż

Gfull

|xg, πfullpa, bqfy|
2 da db

a2
“ }g}22,

which shows that the voice transform Vf , whose explicit form is given by

Vfgpa, bq “
1

a

|a|

ż

R
gpxqf

ˆ

x´ b

a

˙

dx

is indeed an isometry of L2pRq into L2pGq . Thus, the Calderón equation (1.46) se-
lects the admissible vectors for the wavelet representation, namely the wavelets. The
reproducing formula (1.54) is often written as:

(1.59) gpxq “

ż

R

ż

R˚
Vfgpa, bqTbDafpxq

dadb

a2
.

The reader is referred to [9, 16, 21] for further reading on this very wide topic.
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The next result describes this operator as a convolution with the kernel Ku .

Proposition 1.60. Suppose that pG, π,H, uq is a reproducing system. Then the pro-
jection onto the range of the voice transform is given by

(1.60) VuV
˚
u F “ F ˚Ku, F P L2

pGq.

In particular, Ku is a convolution idempotent, that is

(1.61) Ku “ Ku ˚Ku.

Proof. First of all, notice that Ku “ Vuu P L
2pGq and Ǩu “ Ku P L

2pGq , so that,
by (iii) of Theorem 1.38 (with p “ q “ 2), the convolution F ˚Ku is well defined for
every F P L2pGq . Therefore, taking into account the various properties, we have

VupV
˚
u F qpxq “ xV

˚
u F, πpxquy

“ xF, Vupπpxquqy

“ xF, λpxqVuuy

“ xF, λpxqKuy

“

ż

G

F pyqKupx´1yq dy

“

ż

G

F pyqKupy
´1xq dy

“ F ˚Kupxq.

The second statement is obvious, because Ku is of course in the range of Vu and hence
coincides with its projection onto the range. [\

1.5. Unbounded operators. In this section H is a fixed Hilbert space. We say that
T is an operator on H if it is a linear map defined on a linear subspace DpT q Ă H ,
called its domain with image RpT q Ă H , another linear suspace called its range. It is
not assumed that T is bounded or continuous. Of course, if T is continuous, then it
has a continuous extension on the closure of DpT q and hence on H . In other words,

in this case T is the restriction to DpT q of some rT P BpHq . The graph of T in HˆH
will be denoted GpT q . Observe that a linear map S is an extension of T if and only
if GpT q Ă GpSq , so that in this case we may write T Ă S . An operator is called closed
if such is its graph. The closed graph theorem asserts that T P BpHq if and only if
DpT q “ H and T is a closed operator.

Next we define the adjoint of T , denoted T ˚ . Its domain DpT ˚q consists of all the
vectors y P H for which the linear functional

(1.62) x ÞÑ xTx, yy

is continuous on DpT q . Thus, if y P DpT ˚q , then the Hahn–Banach theorem allows
us to extend the functional in (1.62) to a continuous linear functional on H and hence
there exists an element, denoted T ˚y for which

(1.63) xTx, yy “ xx, T ˚yy, x P DpT q.



30 The use of representations

Clearly, T ˚y is uniquely determined by (1.63) if and only if DpT q is dense in H . We
shall then define T ˚ only for the densely defined operators T .

Exercise 1.61. Show that if T is a densely defined operator, then T ˚ is an operator
on H . Prove further that if T P BpHq , then the definition of T ˚ coincides with the
usual one. In particular, DpT ˚q “ H and T ˚ P BpHq .

Exercise 1.62. Let R , S and T be operators on H . Prove the following relations:

DpS ` T q “ DpSq XDpT q ;
DpST q “

 

x P DpT q : Tx P DpSq
(

;
pR ` Sq ` T “ R ` pS ` T q ;
pRSqT “ RpST q ;
pR ` SqT “ RT ` ST ;
TR ` TS Ă T pR ` Sq .

Exercise 1.63. Let S , T and ST be densely defined operators onH . Prove that then
T ˚S˚ Ă pST q˚ . Furthermore, if S P BpHq , then T ˚S˚ “ pST q˚ .

Definition 1.64. An operator on H is said to be symmetric if for every x P DpT q
and y P DpT q

(1.64) xTx, yy “ xx, Tyy.

The symmetric densely defined operators are those for which

(1.65) T Ă T ˚.

If T “ T ˚ , then T is called selfadjoint. Finally, we say that T is skewadjoint if iT is
selfadjoint.

Observe that a bounded operator is symmetric if and only if it is selfadjoint. In
general this is not true. Furthermore, if DpT q is dense and xTx, yy “ xx, Syy for every
x P DpT q and every y P DpSq , then S Ă T ˚ .

Example 1.65. Let H “ L2pr0, 1sq with the Lebesgue, measure, and put:

DpT1q “
 

f P A.C.r0, 1s : f 1 P L2
(

DpT2q “ DpT1q X
 

f : fp0q “ fp1q
(

DpT3q “ DpT1q X
 

f : fp0q “ fp1q “ 0
(

,

where A.C.r0, 1s is the space of absolutely continuous functions on r0, 1s . Define next

Tkf “ if 1, f P DpTkq, k “ 1, 2, 3.

It is not hard to show that

T ˚1 “ T3, T ˚2 “ T2, T ˚3 “ T1.

Since clearly T3 Ă T2 Ă T1 , it follows that T2 is a selfadjoint extension of T3 , which is
symmetric but not selfadjoint, and that the extension T1 of T2 is not symmetric.
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We now discuss a phenomenon that is relevant in the representation theory of the
Heisenberg group. Take again H “ L2pr0, 1sq as above and consider Df “ f 1 on DpT2q

and Mfptq “ tfptq . It is immediate to check that pDM ´MDqf “ f , that is

(1.66) DM ´MD “ I,

where I is the identity on the domain of D . Thus, the identity appears as the commu-
tator of two operators, only one of which is bounded (}Mf}2 ď }f}2 because t P r0, 1s).

One can legitimately ask if it is possible to realize an equality like (1.66) with two
bounded operators. The answer is negative, not only in the Banach algebra BpHq but
in any other Banach algebra with unit. The very elegant proof of the proposition that
follows is due to Wielandt.

Theorem 1.66. Let A be a Banach algebra with unit e. If x, y P A, then

xy ´ yx ­“ e.

Proof. Suppose that xy ´ yx “ e and let us make the inductive assumption

xny ´ yxn “ nxn´1,

which is true for n “ 1. Then

xn`1y ´ yxn`1
“ xnpxy ´ yxq ` pxny ´ yxnqx

“ xne` nxn´1x

“ pn` 1qxn,

so that the relation is true for all positive integers n . It then follows that

n}xn´1
} “ }xny ´ yxn} ď 2}xn}}y} ď 2}xn´1

}}x}}y},

that is n ď 2}x}}y} for every n . This is impossible. [\

1.6. Stone’s theorem and the differential of a representation. In this section
we state Stone’s theorem, an infinite dimensional analogue of the fact that the Lie
algebra of the unitary group is the skew-hermitian matrices. We then explain how to
any unitary representation of a Lie group G there corresponds a representation of its
Lie algebra by “skew hermitian”, i.e. skewadjoint, operators.

Definition 1.67. A one parameter group of operators on H is a family tUt : t P Ru Ă
BpHq that satisfies

i) U0 “ I ;
ii) Ut`s “ UtUs ;

iii) limtÑ0 }Utx´ x} “ 0 for every x P H

If π is a unitary representation on H of the Lie group G with Lie algebra g , then
for any fixed X P g the family tUt “ πpexp tXq : t P Ru is a one parameter group of
unitary operators on H .

In analogy with the case H “ C , in which every differentiable function such that
fps`tq “ fpsqfptq is of the form fptq “ eat with a “ f 1p0q , it is possible to associate to
any one parameter group of operators a “generating” operator, in general unbounded,
as explained in the definition that follows.
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Definition 1.68. Let tUt : t P Ru be a one parameter group of operators on H and
let DpAq denote the subspace of H consisting of the vectors x P H for which

(1.67) lim
tÑ0

Utx´ x

t
“: Ax

exists in the norm topology of H . The operator A (necessarily linear) defined on DpAq
by (1.67) is called the infinitesimal generator of the group.

Below is the classical statement of the celebrated theorem by M.H. Stone. For a
proof see for instance [20].

Theorem 1.69. (Stone’s theorem) Let tUtu be a one parameter group of unitary
operators on H . The infinitesimal generator A of tUtu is densely defined on H and
is skewadjoint. Conversely, if A is a densely defined operator on H and is skewad-
joint, then there exits a unique one parameter group of unitary operators on H whose
infinitesimal generator is A.

Let’s go back to the case when H is the space on which the unitary representation
π of the Lie group G acts. By means of (1.67), we define the differential dπ on g as

(1.68) dπpXqx “ lim
tÑ0

πpexp tXqx´ x

t

which we sometime write as

(1.69) dπpXqx “
d

dt

ˇ

ˇ

ˇ

t“0
πpexp tXqx.

Our next objective is to show that dπ indeed defines a representation of g , that is, to
make sure that the various operators dπpXq can be properly composed and satisfy

dπprX, Y sq “ dπpXq ˝ dπpY q ´ dπpY q ˝ dπpXq.

We must therefore study the domains DpdπpXqq .

Recall that a function f defined on an open Ω P Rd with values in H is differentiable
at x0 P Ω if there is a linear map dfx0 : Rd Ñ H , necessarily unique, such that

lim
xÑx0

fpxq ´ fpx0q ´ dfx0px´ x0q

}x´ x0}
“ 0,

where } ¨ } is any norm in Rd . The map dfx0 is then the differential of f at x0 . If f is
differentiable at all points of Ω, then x ÞÑ dfx is a map from Ω into EndpRd,Hq . The
latter is, in turn, is a topological vector space in a canonical way. We then say that f
is of class C1 if x ÞÑ dfx is continuous, of class C2 if x ÞÑ dfx is of class C1 , and so
on. We say that f is of class C8 if it is of class Ck for all k .

The notion of C8 map is clearly local and applies to the case of maps defined on a
Lie group G with values in H . The following result establishes an analogue of formula
(1.10) adapted to this setup.
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Proposition 1.70. Let G be a Lie group with Lie algebra g and take X P g. If
F : GÑ H is a C8 map with values in the Hilbert space H , then the map

(1.70) g ÞÑ XgF “ lim
tÑ0

F pg exp tXq ´ F pgq

t
is also of class C8 .

Proof. The composition pg, tq ÞÑ pg, exp tXq ÞÑ g exp tX ÞÑ F pg exp tXq is C8 .
Hence, its partial derivative with respect to t at zero is C8 with respect to g . [\

We can finally introduce the space on which the operators that arise from the dif-
ferential of a unitary representation of a Lie group are naturally defined.

Definition 1.71. Let π be a unitary representaiton of the Lie group G on H . An
element ξ P H is called a C8 -vector for π if g ÞÑ πpgqξ is of class C8 on G. The
space of C8 -vectors for π will be denoted C8pπq.

Theorem 1.72. Let π be a unitary representation of the Lie group G on the Hilbert
space H . For any X P g, dπpXq sends C8pπq into itself and

(1.71) dπprX, Y sqξ “
´

dπpXq ˝ dπpY q ´ dπpY q ˝ dπpXq
¯

ξ, ξ P C8pπq.

From Theorem 1.72 it is easy to derive the following facts.

Proposition 1.73. Let π be a unitary representation of the Lie group G on the Hilbert
space H and let g denote the Lia algebra of G. Then:

i) for every X P g, the operator dπpXq is skew symmetric on C8pπq;
ii) for every g P G, πpgq sends C8pπq into itself ;

iii) for every g P G and every X P g the formula πpgqdπpXqπpgq´1 “ dπpAd gXq
holds.

We conclude this section with a crucial result, which implies that the operators
dπpXq are densely defined on H . For a proof, see for instance [18]

Theorem 1.74. Let π be a unitary representation of the Lie group G on the Hilbert
space H . The space C8pπq is dense in H .
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2. The Heisenberg group and its representations

2.1. The group and its Lie algebra. We shall denote by Hd the Heisenberg group,
namely the smooth manifold Rd ˆ Rd ˆ R endowed with the product

(2.72) ppq, p, tqpq1, p1, t1q “ pq ` q1, p` p1, t` t1 ´ 1
2
p
tqp1 ´ tpq1qq.

Let ω : R2d ˆ R2d Ñ R be the standard symplectic form given by (1.2), that is

(2.73) ωpx, x1q “ txJx1,

Upon writing x “ xpq,pq “
trq, ps P R2d , we may formulate (2.72) in terms of the

symplectic form, namely:

(2.74) ppx, tqpx1, t1q “ px` x1, t` t1 ´
1

2
ωpx, x1qq.

It is clear from (2.72) and (2.74) that the product in Hd is given by functions that are
C8 in the global R2d`1 coordinates pq, p, tq . Furthermore, one checks at once that

px, tq´1
“ p´x,´tq,

another C8 formula. Hence Hd is a Lie group.
Observe that H1 can also be seen as a particular group of symplectic matrices, that

is, a subgroup of Spp2,Rq , in the sense of (1.1). Indeed, if we put

(2.75) gpq, p, tq “

»

—

—

–

1 0 0 0
p 1 0 0
t ´q{2 1 ´p

´q{2 0 0 1

fi

ffi

ffi

fl

,

then it is easy to check that the very same product formula as in (2.74) holds true.

Exercise 2.1. Prove that the center of Hd is Z “ tp0, tq : t P Ru . Show that the
quotient group Hd{Z is isomorphic to the Abelian Lie group R2d .

Exercise 2.2. Write explicitely the inner conjugation igphq “ ghg´1 .

Exercise 2.3. Prove that L1 “ tpq, 0, tq : q P Rd, t P Ru and L2 “ tp0, p, tq :
p P Rd, t P Ru are two Lie subgroups of Hd which are mutually isomorphic but not
conjugate.

Exercise 2.4. Check that the matrices in (2.75) are in Spp2,Rq and that they satisfy
the product law (2.74).

Exercise 2.5. Extend the embedding (2.75) to arbitrary dimension.

We next want to identify the Lie algebra hd of Hd in terms of left invariant vector
fields. To this end, fix pq, p, tq P Hd and f P C8pHdq and consider the smooth curve
qjpsq “ psej, 0, 0q , with s P p´ε, εq , where ej denotes the j–th unit coordinate vector
in Rd . Then

d

ds

ˇ

ˇ

ˇ

s“0
fppq, p, tqpsej, 0, 0q “

d

ds

ˇ

ˇ

ˇ

s“0
fpq ` sej, p, t`

1

2
spjq

“
Bf

Bqj
pq, p, tq `

1

2
pj
Bf

Bt
pq, p, tq.
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Hence, the equivalence class of the curve qj at pq, p, tq is the differential operator

B

Bqj

ˇ

ˇ

ˇ

pq,p,tq
`

1

2
pj
B

Bt

ˇ

ˇ

ˇ

pq,p,tq

An analogous calculation with the curves pjpsq “ p0, sej, 0q and tpsq “ p0, 0, sq shows
that a basis for hd is given by the vector fields tQ1, . . . , Qd, P1, . . . , Pd, T u , where

Qj “
B

Bqj
`

1

2
pj
B

Bt
, j “ 1, . . . , d

Pj “
B

Bpj
´

1

2
qj
B

Bt
, j “ 1, . . . , d

T “
B

Bt
.

It is also straightforward to check that

rQj, Pks “ ´δjkT, j, k “ 1, . . . , d

rQj, T s “ rPj, T s “ 0, j “ 1, . . . , d

the celebrated Heisenberg commutation relations. Therefore, identifying R2d`1 with
hd via the map px1, . . . , xd, y1, . . . , yd, zq ÞÑ

řd
j“1pxjQj ` yjPjq ` zT , we obtain the

following Lie algebra structure on R2d`1 :

(2.76) rpX, zq, pX 1, z1qs “ p0,´ωpX,X 1
qq.

From this commutator rule, one sees immediately that rA, rB,Css “ 0 for every choice
of A , B and C in hd . Similarly, any higher order bracket vanishes. This fact is
expressed technically by saying that hd is a two-step nilpotent Lie algebra. The Baker–
Campbell–Hausdorff formula (1.13) becomes A,B P hd

expA expB “ exppA`B `
1

2
rA,Bsq

and since for A “ pX, zq and B “ pX 1, z1q it holds

A`B `
1

2
rA,Bs “ pX `X 1, z ` z1 ´

1

2
ωpX,X 1

qq,

which coincides with the product (2.74), we infer that

(2.77) exppX, zq “ pX, zq for every pX, zq P R2d`1.

This simply says that the exponential mapping is nothing else but the identity map of
R2d`1 , when we identify the latter with hd on the one hand and with Hd on the other
hand.

Exercise 2.6. Prove that the adjoint action of Hd on hd is given by

(2.78) Adpy, sqpX, tq “ pX, t´ ωpy,Xqq.
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Automorphisms. Given a Lie group G with Lie algebra g it is often interesting
(and many times difficult) to understand their automorphism groups. Recall that an
automorphism of the Lie group G is an invertible group homomorphism. Unravelling
the definition, this means a bijective smooth map ϕ : G Ñ G preserving products,
namely satisfying ϕpxyq “ ϕpxqϕpyq and ϕpeq “ e . The collection of all such maps is,
in turn, a group under composition, denoted AutpGq . Under favorable circumstances2,
and surely this is the case for Hd , the group AutpGq has itself a natural structure of
Lie group, though we shall not insist on this. Notice that since we have identified Hd

with R2d`1 , we are in fact looking at maps ϕ : R2d`1 Ñ R2d`1 .
Similarly, one may consider the automorphisms of g , namely the bijective linear

maps Φ : g Ñ g satisfying ΦprX, Y sq “ rΦpXq,ΦpY qs . As we know, they form a
group, denoted by Autpgq . Since its elements are linear maps, Autpgq is in fact a
(closed) subgroup of GLpd,Rq in a natural fashion, where d is the dimension of g .
Hence Autpgq can be given the structure of a Lie group without problems. Also, the
differential dϕ of any ϕ P AutpGq is easily seen to belong to Autpgq . This accounts
for an immersion of AutpGq into Autpgq whenever G is connected. When looking at
the Heisenberg group, things are even nicer than this, and the following results show
exactly how. Very clear proofs of the statements that follow can be found in [15].

Proposition 2.7. AutpHdq “ Autphdq.

It is actually possible to give an explicit description of the automorphisms of Hd . It
is immediate to see that each of the following families of maps are automorphisms:

(i) Symplectic maps: For any A P Sppd,Rq , p
„

q
p



, tq ÞÑ pA

„

q
p



, tq .

(ii) Inner automorphisms.

(iii) Homogeneous dilations: For any a P R` , δapx, tq “ pax, a
2tq . Observe that

for any a, a1 ą 0 it holds δaδa “ δaa1 .

(iv) Inversion: pq, p, tq ÞÑ pp, q,´tq .

We shall momentarily denote by Gj the automorphism group generated by the
trasformations of type j , with j P tpiq, piiq, piiiq, pivqu .

Theorem 2.8. Every automorphism of Hd can be written uniquely as α1α2α3α4 , with
αj P Gj .

It is important to observe that the only automorphisms that leave the center fixed
are those of the kind piq e piiq . We shall denote by T the group generated by them.

Exercise 2.9. Define the semidirect product R2d¸Sppd,Rq as the set R2dˆSppd,Rq
endowed with the product

px,Aqpx1, A1q “ px` Ax1, AA1q.

2As it was shown by Hochschild in 1951, it is enough that the group of components of G is finitely
generated.
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Show that the map px,Aq ÞÑ Ψpx,Aq , where

Ψpx,Aqpy, tq “ ipx,0qpAy, tq, px, 0q, py, tq P Hd

defines an isomorphism of R2d¸Sppd,Rq with T . Define further the semidirect product
Hd ¸ Sppd,Rq via the formula

(2.79) ppx, tq;Aqppx1, t1q;A1q “ ppx, tqpAx1, t1q;AA1q.

Calculate its center Z and prove that Hd˙Sppd,Rq{Z is isomorphic to R2d˙Sppd,Rq .
Exercise 2.10. Consider the symplectic matrix

ϕA “

»

—

—

–

1 0 0 0
0 d 0 ´2c
0 0 1 0
0 ´b{2 0 a

fi

ffi

ffi

fl

P Spp2,Rq

where ad´ bc “ 1, so that

A “

„

a b
c d



P SLp2,Rq.

Using the embedding (2.75), show that ϕAgpq, p, tqϕ
´1
A “ gpq1, p1, tq where

„

q1

p1



“

„

a b
c d

 „

q
p



.

Thus the automorphisms of type (i) of H1 can be realized inside Spp2,Rq as conjuga-
tions. The six dimensional subgroup of Spp2,Rq generated by the matrices gpq, p, tq
and ϕA is the so-called Jacobi group. Show that the Jacobi group is isomorphic to
the semidirect product H1 ˙ SLp2,Rq of Exercise 2.9 for d “ 1, where the group law
is given in (2.79). More on the Jacobi group is to be found in [3]. A classification
of its subgroups up to conjugation is given in [12]. From the point of view of square
integrability issues, it has been studied in [13].

Exercise 2.11. Show how to realize the automorphisms of type (ii) inside Spp2,Rq as
conjugations.

Exercise 2.12. Consider next the symplectic matrix

∆a “

»

—

—

–

a´1 0 0 0
0 1 0 0
0 0 a 0
0 0 0 1

fi

ffi

ffi

fl

.

Prove that ∆ag∆´1
a “ δapgq for every g as in (2.75). Thus, also the automorphisms of

type (iii) of H1 can be realized inside Spp2,Rq as conjugations. The four dimensional
subgroup of Spp2,Rq generated by the matrices gpq, p, tq and ∆a is isomorphic to the
so-called extended Heisenberg group. The latter is the Heisenberg group extended by
the group of homogeneous dilations, namely the semidirect product Hd ˙ R` where
the product is

ph, aqph1, a1q “ phδaph
1
q, aa1q.

Exhibit the explicit isomorphism.
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2.2. The Schrödinger representation. Let π be a unitary and irreducible repre-
sentation of Hd on the Hilbert space H . Then all the operators πp0, 0, tq are in Ipπq
because the center of Hd consists of the elements of the form p0, 0, tq . Schur’s Lemma
implies that there exists a complex number of modulus one, denoted χptq , such that

(2.80) πp0, 0, tq “ χptqIH.

Therefore the function t ÞÑ χptq is continuous from R into T and satisfies the equality
χps` tq “ χpsqχptq . Thus there exists a unique λ P R such that

(2.81) χptq “ eiλt.

Now, if λ “ 0, then πp0, 0, tq “ IH , so that Z Ă kerπ and the representaion π projects
onto a representation π̃ on the quotient Hd{Z » R2d . The representation π̃ is still
unitary and irreducible. But R2d is Abelian and hence, by Corollary 1.55, dimH “ 1,
namely H “ C . Therefore, there exists a unique vector pξ, ηq P R2d such that

π̃px, yq “ eipξ¨x`η¨yqIC

and hence π acts on C as

(2.82) πpx, y, tqz “ eipξ¨x`η¨yqz.

Consider next the case λ ­“ 0. From (2.80) e (2.81), taking the differential, it follows

(2.83) dπpT q “ iλIH.

In particular dπpT q is a bounded operator. But we also know that for every j “ 1, . . . , d
we have rQj, Pjs “ ´T , so that necessarily

rdπpQjq, dπpPjqs “ ´dπpT q “ ´iλIH.

By modifying Theorem 1.66 in the case of a multiple of the identity (the details are
left as an exercise) we see that the operators dπpQjq and dπpPjq cannot be both
bounded and, in particular, the representation space H cannot be finite dimensional.
In conclusion, every unitary and irreducible representation of Hd which is not trivial
on the center is necessarily infinite dimensional.

The next step consists in looking for the unitary and irreducible representations of
Hd that are not trivial on the center. The most natural way to go about it is to
compare the commutation Heisenberg relations with (1.66). We shall start from a very
natural representation of the Lie algebra hd and then use some heuristics, together
with Stone’s Theorem, in order to get the corresponding representation of the group.
To this end, we introduce a useful Lie subalgebra of the Lie algebra of all differential
operators with polynomial coefficients on Rd .

Let PDpRdq denote the vector space of all differential operators with polynomial
coefficients on Rd . Under composition, it is an associative algebra generated by the 2d
elements

Dj “ ´
B

Bxj
, Mj “ p2πiqxj, j “ 1, . . . , d.

As any other associative algebra, PDpRdq becomes a Lie algebra if we define the bracket
as the commutator, that is rA,Bs “ A ˝ B ´ B ˝ A . The generators Dj and Mj ,
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together with the operator “2πi–times the identity”, give rise to a finite dimensional
Lie subalgebra of PDpRdq which is isomorphic to hd . Indeed, the correspondence
Dj ÞÑ Qj , Mj ÞÑ Pj and p2πiqI ÞÑ T establishes the isomorphism. This isomorphism
is actually a faithful (i.e. injective) representation of the Heisenberg algebra and should
be thought of as the differential of the representation we are looking for. In order to
find the representation space, it will then be enough to find a Hilbert space of functions
on Rd on which the operators we are dealing with are skew-adjoint. Finally, we shall
exponentiate the representation of hd .

Let H “ L2pRdq and D “ SpRdq , the Schwartz space of rapidly decreasing functions.
Both the derivations Dj and the multiplications Mj are densely defined on H since
D is a natural common domain for them, which is dense in H . The operators are
formally skew-adjoint because for every ϕ, ψ P SpRdq we have

xMjϕ, ψy “ ´xϕ,Mjψy, xDjϕ, ψy “ ´xϕ,Djψy,

where we are using L2 inner products and, in the second, integration by parts.

Observe that it is not necessary to specify the skew-adjoint extensions of Mj and
of Dj . It will be sufficient to exhibit one-parameter groups of unitary operators on
L2pRdq whose infinitesimal generators extend our operators, for Stone’s Theorem guar-
antees that these groups are the appropriate ones. Consider then the following formal
computation:

expptDjqfpxq “
8
ÿ

n“0

ptDjq
n

n!
fpxq

“

8
ÿ

n“0

p´tqn

n!

Bnf

Bxnj
pxq

“ fpx´ tejq.

Similarly,

expptMjqfpxq “ e2πixjfpxq.

It is also quite clear that the operators

U
pjq
t fpxq “ fpx´ tejq, V

pjq
t fpxq “ e2πitxjfpxq

give rise to one-parameter groups of unitary operators on L2pRdq .

Exercise 2.13. Prove that the Schwartz space SpRdq is contained in the domain of

the infinitesimal generators of tU
pjq
t u and tV

pjq
t u .

From the previous computations, it is natural to set:

πpq, 0, 0qfpxq “ fpx´ qq

πp0, p, 0qfpxq “ e2πip¨xfpxq(2.84)

πp0, 0, tqfpxq “ e2πitfpxq.
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Finally, since for every pq, p, tq P Hd we have

pq, p, tq “ p0, 0, t´
1

2
q ¨ pqp0, p, 0qpq, 0, 0q,

by composing the various (2.84) we obtain

(2.85) πpq, p, tqfpxq “ e2πite´πiq¨pe2πip¨xfpx´ qq.

It is now elementary to check that (2.85) defines a representation of Hd , called the
Schrödinger representation. While it is clear that the thus defined operators are unitary
because they are compositions of unitary operators, irreducibility requires some extra
work. Reall that for us the Fourier transform is as in (1.36).

Theorem 2.14. Formula (2.85) defines a unitary irreducible representation of Hd on
L2pRdq.

Proof. In order to show that π is continuous in the strong operator topology it is
enough to prove that if pq, p, tq Ñ p0, 0, 0q , then πpq, p, tqf Ñ f in L2pRdq for every
f P L2pRdq . Now,

`

ż

Rd

|πpq, p, tqfpxq ´ fpxq|2 dx
˘1{2

“
`

ż

Rd

|e2πit´πiq¨p`2πip¨xfpx´ qq ´ fpxq|2 dx
˘

1
2

ď
`

ż

Rd

|e2πit´πiq¨p`2πip¨x
´ 1|2|fpxq|2 dx

˘
1
2

`
`

ż

Rd

|fpx´ qq ´ fpxq|2 dx
˘

1
2

and both summands tend to zero as pq, p, tq Ñ p0, 0, 0q .

Let’s show irreducibility. Take a closed subspace M Ď L2pRdq and suppose that it
is π–invariant. If f P M , then the translate τqf “ πpq, 0, 0qf in also in M . If P is
the orthogonal projection onto M , then P commutes with translations. Hence there
exists a multiplier m P L8pRdq such that

(2.86) FpPfqpξq “ mpξqFfpξq.
Since P 2 “ P , then also m2 “ m . Upon considering πp0, p, 0q , one sees that P
commutes also with multiplication by any of the characters eppxq “ e2πip¨x . Therefore,
from (2.86) we infer

FrP pepfqspξq “ mpξqFrepf spξq “ mpξqFfpξ ´ pq,
FrepPf spξq “ FrPf spξ ´ pq “ mpξ ´ pqFfpξ ´ pq,

which yield

mpξq “ mpξ ´ pq, for every p P Rd.

Hence m is constant and since m2 “ m it must be either m “ 0, that is M “ t0u , or
else m “ 1, that is M “ L2pRdq . [\

By means of formulae (2.85), we have build a unitary and irreducible representation
π of Hd for which πp0, 0, tq “ e2πitIH , that is, recalling (2.80) and (2.81), the repre-
sentation corresponding to the case λ “ 2π . It is now easy to define a representation
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corresponding to the real number λ “ 2πh , with h P Rzt0u . It is enough to put

(2.87) πhpq, p, tqfpxq “ πphq, p, htqfpxq “ e2πihte´πiq¨hpe2πip¨xfpx´ hqq.

The non zero real number h that labels the Schrödinger representation πh is known
as Planck’s constant. For comments concerning the physical meaning of h see [15].

Exercise 2.15. Check that πh is a unitary and irreducible representation of Hd for
every h ­“ 0, and that if h ­“ h1 , then the corresponding representations are inequiva-
lent.

The following celebrated theorem by M. Stone and J. von Neumann is of fundamental
importance in harmonic analysis: it states that the representations that we have built
so far exhaust, up to equivalence, the class of unitary and irreducible representation of
Hd . For a proof, see, for example, [15].

Theorem 2.16. (Stone–von Neumann) Every unitary and irreducible representa-
tion of Hd is unitarily equivalent to either one of the one–dimensional representations
(2.82), or to a Schrödinger representation πh defined in (2.87).

It is worth observing that the determination of the Planck’s constant is very simple:
just compute the representation on the central elements p0, 0, tq : by (2.87) this must
be just e2πhtI .

2.3. Time-frequency analysis. In this section we indicate the basic role that the
representation theory of the Heisenberg group plays in time-frequency analysis, in
particular in the study of the so-called short-time Fourier transform (often abbreviated
in STFT). The basic reference on this topic is the book [16].

We first introduce some basic ingredients of time-frequency analysis and then show
the connections to the representation theory of the (reduced) Heisenberg group. The
basic issue is that the STFT can be viewed in the framework of reproducing systems,
as discussed in Section 1.4 In order to stress the link between the STFT and the
representation theory of the Heisenberg group, we follow the convention of denoting by
x or q the spatial variable of functions (or time for d “ 1) and by ξ or p the frequency
variable. Also, we indicate with a dot the scalar product in Rd .

2.3.1. Short time Fourier transform. The most basic operations in time-frequency anal-
ysis are the shifts in time and in frequency. For q, p P Rd and f : Rd Ñ C , we define
the time shift by

(2.88) Tqfpxq “ fpx´ qq, q, x P Rd

and the frequency shift by

(2.89) Mpfpξq “ e2πip¨ξfpξq, ξ, p P Rd.

It is a matter of simple computation to establish a version of the canonical commutaion
relations, namely

(2.90) TqMp “ e´2πiq¨pMpTq.
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It follows in particular that Tq and Mp commute if and only if q ¨ p P Z . Furthermore,

writing f̂ for the Fourier transform Ff defined in (1.36), and using the well-known
properties of Ff , we have the formulae

(2.91) pTqf q̂ “M´qf̂ , pMpf q̂ “ Tpf̂ .

From these it follows what is to be regarded as the most important formula in time-
frequency analysis, namely

(2.92) pTqMpf q̂ “M´qTpf̂ “ e´2πiq¨pTpM´qf̂ ,

whose proof is is left as an exercise.

The short-time Fourier transform is a mathematical device that is meant to capture
the local contributions to the Fourier transform of a given function: one restricts the
function to a small intervall by a cut-off function (preferably some smooth window)
and then takes the Fourier transform; by sliding the interval, one sees what are the
various contributions from different regions of the time domain. Formally, we have:

Definition 2.17. Let η ­“ 0 be a fixed window, that is, a function defined on Rd . The
short-time Fourier transform of the function f : Rd Ñ C with respect to η is defined
by

(2.93) Sηfpq, pq “

ż

Rd

fpxqηpx´ qqe´2πip¨y dx, q, p P Rd

whenever the integral makes sense.

A most fundamental observation is that the STFT is a function on the so-called
phase-space, namely the 2d-space R2d in which times and frequencies simultaneously
lie. In other words, it is a function of time and frequency. The time variable labels
the “center” of the window and the frequency labels the point at which the Fourier
transform is evaluated.

At this stage we do not insist much on the precise domains for η or for f . The most
basic properties of the STFT are given in the result that follows. The proof is easy.

Proposition 2.18. If f, η P L2pRdq, then Sηf is uniformly continuous in R2d and

Sηfpq, pq “ Fpf ¨ Tqηqppq(2.94)

“ xf,MpTqηy(2.95)

“ xf̂ , TpM´qη̂y(2.96)

“ e´2πiq¨pSη̂f̂pp,´qq.(2.97)

Some comments. Formula (2.94) says what the STFT really is, the Fourier trans-
form of a localized version of f . Formulae (2.95) and (2.96) indicate that it looks
formally like the coefficient of some representation. Formula (2.97) exhibits a most
intriguing symmetry in time and frequency, together with a ninety-degree rotation
pq, pq ÞÑ pp,´qq in phase-space (given by the action of the matrix J ).

In the next three results we state some of the most remarkable features of the STFT.
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Theorem 2.19 (Orthogonality relations for the STFT). Let f1, f2, η1, η2 P L
2pRdq.

Then Sηjfj P L
2pR2dq for j “ 1, 2 and

(2.98) xSη1f1, Sη2f2y “ xf1, f2yxη1, η2y.

It must be observed that the first inner product in (2.98) is in L2pR2dq (phase space)
whereas the ones appearing in the right-hand side are both in L2pRdq , in the time
domain or in the frequency domain, as one prefers, because of Parseval’s equality.

Corollary 2.20. If f, η P L2pRdq, then

}Sηf}2 “ }f}2}η}2.

In particular, if }η}2 “ 1, then

(2.99) }Sηf}2 “ }f}2 for all f P L2
pRd
q

and in this case the STFT is an isometry of L2pRdq into L2pRdq.

Theorem 2.21 (Inversion of the STFT). Let η, γ P L2pRdq be such that xη, γy ­“ 0.
Then, for every f P L2pRdq

(2.100) f “
1

xγ, ηy

ĳ

R2d

Sηfpq, pqMpTqγ dqdp

holds as a weak integral.

It must be pointed out that in many cases one choses η “ γ and assumes further
that }η}2 “ 1, so that (2.100) simplifies to

f “

ĳ

R2d

Sηfpq, pqMpTqη dqdp,

a formula that is sometimes referred to as the reproducing formula for the STFT.

2.3.2. Square integrability and the reduced Heisenberg group. First of all,we show that

(2.101) πpq, p, tq “ e2πiteπiq¨p TqMp.

Indeed, for any f P L2pRdq we have, by (2.90) and (2.85)

e2πiteπiq¨p TqMpfpyq “ e2πiteπiq¨p e´2πiq¨pMpTqfpyq

“ e2πite´πiq¨p e2πip¨y Tqfpyq

“ e2πite´πiq¨p e2πip¨y fpy ´ qq

“ πpq, p, tqfpyq.

Secondly, for fixed η, f P L2pRdq , the coefficient xf, πpq, p, tqηy of the Schrödinger
representation satisfies, according to (2.101), (2.90) and (2.95)

(2.102) xf, πpq, p, tqηy “ e´2πite´πiq¨pxf, TqMpηy “ e´2πiteπiq¨pSηfpq, pq,

Therefore the STFT is nothing else but a multiple (with a complex number of mod-
ulus one) of the voice transform associated to the Schrödinger representation of Hd .
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One extra step needs to be made to recast the main properties of the STFT in the
language of reproducing systems. Indeed, the STFT of a funcion is not a function on
the Heisenberg group but on R2d , and, secondly, even if we include the phase factor
e´2πit in the definition so that it does become a function on Hd , then there would be a
serious integrability issue because the right hand side of (2.102) is not in L2pHdq since
the integral of its square modulus would certainly diverge in the t variable. Things
can be fixed by introducing the reduced Heisenberg group.

We start by computing the kernel of the Schrödinger representation. Using formula
(2.101), it is immediate that πpq, p, tqf “ f for every f P L2pRdq if and only if
q “ p “ 0 and t P Z . Thus

kerπ “ tp0, 0, kq : k P Zu » Z.
The reduced Heisenberg group is nothing else but Hd{ kerπ . To have a workable model,
one simply puts Hd

r “ R2d ˆ T , where T are the complex numbers of modulus one,
and defines

px, θqpx1, θq “ px` x, θθ1e´πiωpx,xqq.

It is quite clear that the map
px, tq ÞÑ px, e2πit

q

is a surjective homomorphism of Hd onto Hd
r whose kernel is exactly kerπ , so that we

have established a model for the quotient Hd{ kerπ .

Exercise 2.22. Show that if we parametrize the elements of Hd
r by px, e2πiτ q where

τ P r0, 1q , then a left Haar measure on Hd
r is dxdτ .

By the very construction of Hd
r , the Schrödinger representation projects onto an

irreducible representation ρ :“ π̃ of Hd
r on L2pRdq . With slight abuse, it is called the

Schrödinger representation ρ of Hd
r and its explicit formula is

(2.103) ρpq, p, θq “ θeπiq¨pTqMp, pq, p, θq P Hd
r .

Exercise 2.23. Derive a theorem that describes all the irreducible representations of
Hd
r starting from the Stone-von Neumann theorem.

Finally, we compute the voice transform Vη of ρ and find from (2.102) that

(2.104) Vηfpq, p, θq “ xf, ρpq, p, θqηy “ θ̄eπiq¨pSηfpq, pq

Therefore, appealing to the orthogonality relations in the form (2.99), we get

}Vηf}L2pHd
rq
“

ż 1

0

ż

R2d

ˇ

ˇe´2πiτeπiq¨pSηfpxq
ˇ

ˇ

2
dqdpdτ “ }Sηf}2 “ }f}2}η}2.

This proves that any unit vector η P L2pRdq is an admissible vector for the Schrödinger
representation ρ of Hd

r .

Exercise 2.24. Write the inversion formula of the STFT as the reproducing formula
(1.54) associated to the square integrable representation ρ of Hd

r .
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3. The metaplectc representation

The meteplectic representation is a double-valued unitary representation of the sym-
plectic group Sppd,Rq on L2pRdq , or, more technically speaking, a unitary representa-
tion of the double cover of Sppd,Rq , otherwise known as the metaplectic group Mppdq .
It has many other names in the literature, such as the oscillator representation, or the
Segal-Shale-Weil representation, and it appears pervasively in mathematics. We point
out right from the start that it is not irreducible: both the spaces L2

epRdq and L2
opRdq

of even and odd (square integrable) functions, respectively, are closed and invariant,
and on each of them the metaplectic representation is irreducible.

In very practical terms, the metaplectic representation assigns to each symplectic
matrix a unitary operator on L2pRdq , which is well-defined only up to a sign. This
ambiguity, though mathematically important and not removable, plays a very mild
role, if none at all, in many of the most important aspects in which it appears in
Applied Harmonic Analysis. In particular, this ambiguity is irrelevant in the context
of reproducing formulae, that is, when square integrability issues arise.

As hinted in the previous paragraph, the very definition of the metaplectic represen-
tation is troublesome, and there are different ways of going about it. For a thorough
presentation of this topic, the reader is referred to [15, 16, 19]. Here we content our-
selves with a discussion of the main features rather than delving into the full machinery
of proofs. The reason is because our interest resides in the restriction of the metaplectic
representation to a particular class of triangular Lie subgroups of Sppd,Rq . This class,
known as the class E , contains a rich subclass of reproducing groups, with interesting
new examples, as well as well known ones. This general theme of reproducing groups
for the metaplectic representation started with [12, 13] and has then been investigated
in a series of more recente papers [1, 2, 5, 6, 7, 8, 10].

We start by summarizing some useful properties of the symplectic group and of its
Lie algebra. A direct proof of most of the statements may be found in [15]. The
most advanced ones, such as for example the Iwasawa decomposition, can be found for
example in [17].

3.1. More on the symplectic group. As we have seen, the symplectic group is the
group of invertible 2dˆ 2d matrices preserving the standard symplectic form, that is,
the skew symmetric form ω : R2d ˆ R2d Ñ R given by the matrix J defined in (1.2).

Exercise 3.1. Show that an invertible matrix g satisfies ωpgx, gyq “ ωpx, yq for every
x, y P R2d if and only if tgJg “ J .

Recall that, under the usual identifications, the Lie algebra sppd,Rq of Sppd,Rq is
explicitly described in (1.22) and (1.23). It is worth observing that from these it follows
immediately that X P sppd,Rq if and only if tX P sppd,Rq . In particular, we obtain
that both JX and XJ are symmetric. Indeed, tpJXq “ tX tJ “ ´ tXJ “ JX by
tXJ ` JX “ 0. Similarly, one uses tX P sppd,Rq to show that XJ is symmetric.

The symplectic group has many interesting subgroups. Among many others, the
compact group

K “ Sppd,Rq XOp2dq,
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which was implicitly introduced in the beginning of Section 1.2.3, where we also describe
an explicit isomorphism of K with the unitary group Updq . We formalize this:

Proposition 3.2. K “ Sppd,Rq XOp2dq is a maximal compact subgroup of Sppd,Rq
and it is isomorphic to the unitary group Updq under the natural map induced on linear
maps by the identification px, yq ÞÑ x` iy of R2d with Cd .

Other very important groups of Sppd,Rq are

D “

"„

h 0
0 th´1



: deth ‰ 0

*

S “

"„

I 0
σ I



: σ P Sympd,Rq
*

A “

"„

E 0
0 E´1



: E “ diagpeλ1 , . . . , eλdq, λj P R
*

where evidently Sympd,Rq stands for the vector space of all symmetric d ˆ d real
matrices. Clearly, D » GLpd,Rq . Using D , we can embed any (closed) subgroup of
GLpd,Rq into Sppd,Rq in a canonical fashion, like for example the special linear group
SLpd,Rq or the special orthogonal group SOpdq

SLpd,Rq ãÑ

"„

h 0
0 th´1



: h P SLpd,Rq
*

Ă D Ă Sppd,Rq

SOpdq ãÑ

"„

h 0
0 th´1



: h P SOpdq

*

Ă D Ă Sppd,Rq.

Exercise 3.3. Show that D , A and S are indeed closed subgroups of Sppd,Rq . Show
that D a normalizes S , that is, that dsd´1 P S whenever d P D and s P S . Describe
explicitly the group

SD “ tsd : d P D, s P Su

and exhibit its semidirect product structure. This group is called the standard maximal
parabolic subgroup of Sppd,Rq . Show also that

S “
 

ts : s P S
(

is a subgroup of Sppd,Rq and make the appropriate statements for SD . Prove that
SD and SD are conjugate.

Proposition 3.4. The symplectic group is generated by S Y D Y tJu and also by
S YD Y tJu.

The meaning of the above statements is that any element in Sppd,Rq can be written
as a finite product of elements all taken from SYDYtJu , or all taken from SYDYtJu .
This fact is of practical relevance, as we shall see, when dealing with the metaplectic
representation.
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3.2. Construction of the metaplectic representation. We now proceed to define
the metaplectic representation abstractly. Later we indicate how one can go about
clearing out all the unsettled points.

Recall that the group T of automorphisms of the Heisenberg group that leave the
center poinwise fixed is generated by the inner automorphisms and by the symplectic
maps. More precisely, the maps ih with h P Hd and Tg with g P Sppd,Rq given by

ipx,y,zqpq, p, tq “ px, y, zqpq, p, tqpx, y, zq
´1
“ pq, p, t` x ¨ p´ y ¨ qq

Tgpq, p, tq “ pgpq, pq, tq,

where gpq, pq simply means the effect of the linear map g on the vector pq, pq P R2d .

If T P T , we can precompose the Schrödinger representation π with T to obtain a
new representation π ˝ T of Hd on L2pRdq . Indeed, if h, k P Hd , then

pπ ˝ T qphkq “ πpT phkqq “ πpT phqT pkqq “ πpT phqqπpT pkqq “ pπ ˝ T qphqpπ ˝ T qpkq

shows that it is indeed a representation and furthermore (2.85) shows that

pπ ˝ T qp0, 0, tq “ πpT p0, 0, tqq “ πp0, 0, tq “ e2πitI.

By the Stone-von Neumann theorem, π and π ˝ T must be equivalent. Hence there
must be a unitary operator µpT q on L2pRdq that intertwines the two representations:

(3.105) π ˝ T phq “ µpT qπphqµpT q´1, h P Hd.

Moreover, by Schur’s Lemma, namely item ii) of Lemma 1.54, µpT q is determined
up to a phase factor because the space Ipπ, π ˝ T q of all intertwining operators is
one dimensional and contains a unitary operator, hence all its multiples by complex
numbers of modulus one. Now, if we write (3.105) for the product TS we find that
µpT qµpSq does the job, so there exists cT,S P S

1 such that

µpTSq “ cT,SµpT qµpSq.

This means that µ defines a projective representation of T , that is, a homomorphism
into the quotient of the group of unitary operators modulo its center tcI : c P S1u .

Now, if T “ ih , with h P Hd , then since

πphgh´1
q “ πphqπpgqπphq´1,

we can certainly take µpihq “ πphq . Thus we may restrict ourselves to the subgroup of
T consisting of the automorphisms Tg with g P Sppd,Rq , a group manifestly isomor-
phic to Sppd,Rq itself. We shall write for simplicity µpgq instead of µpTgq . From the
above discussion it follows that the unitary operator µpgq is determined up to a phase
factor by the relation

(3.106) πpgpq, pq, 0q “ µpgqπpq, p, 0qµpgq´1.

It may be shown (see below for further comments) that the phase factors can be chosen
in one and only one way up to a sign, so that µ becomes a double-valued unitary
representation of Sppd,Rq . In other words, it holds

µpghq “ ˘µpgqµphq, g, h P Sppd,Rq.
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With this choice, µ is called the metaplectic representation.

We should either think of µ as a genuine unitary representation of the double cover
Mppdq of Sppd,Rq or as a homomorphism of Sppd,Rq into the quotient of the group
of unitary operators modulo its center t˘Iu . Given a single g P Sppd,Rq , we could
also think of µpgq as a pair of unitary operators that differ from each other by ´1, but
we shall not do so. In explicit formulas, this ambiguity usually appears as the possible
choice of sign of a square root.

Next we compute µpgq for certain particular types of g , up to phase factors.

(i) Take g P D , that is g “

„

h 0
0 th´1



with h P GLpd,Rq . Then

πpgpq, pq, 0qfpxq “ πphq, th´1p, 0qfpxq

“ e´πiphqq¨p
th´1pqe2πip th´1pq¨xfpx´ hqq

“ e´πiq¨pe2πip¨h´1x
pf ˝ hqph´1x´ qq

The unitary operator on L2pRdq given by Ufpxq “ | deth|´1{2fph´1xq satisfies

Uπpq, p, 0qU´1fpxq “ | deth|´1{2
pπpq, p, 0qU´1fqph´1xq

“ | deth|´1{2
pπpq, p, 0q| deth|1{2f ˝ hqph´1xq

“ πpq, p, 0qpf ˝ hqph´1xq

“ e´πiq¨pe2πip¨h´1x
pf ˝ hqph´1x´ qq

Hence U satisfies (3.106), so it must coincide with µpgq up to a phase factor.

(ii) Take now g P S , that is, g “

„

I 0
σ I



with σ P Sympd,Rq . Then

πpgpq, pq, 0qfpxq “ πpq, σq ` p, 0qfpxq

“ e´πiq¨pσq`pqe2πipσq`pq¨xfpx´ qq

“ e´πiq¨pe2πip¨xe´πiq¨σqe2πiq¨σxfpx´ qq

The unitary operator on L2pRdq given by V fpxq “ eπix¨σxfpxq satisfies

V πpq, p, 0qV ´1fpxq “ eπix¨σx
`

πpq, p, 0qV ´1f
˘

pxq

“ eπix¨σxe´πiq¨pe2πip¨x
pV ´1fqpx´ qq

“ eπix¨σxe´πiq¨pe2πip¨xe´πipx´qq¨σpx´qqfpx´ qq

“ e´πiq¨pe2πip¨xe´πiq¨σqe2πiq¨σxfpx´ qq.

Hence V satisfies (3.106), so it must coincide with µpgq up to a phase factor.
(iii) Finally, take g “ J . Then

πpJpq, pq, 0qfpξq “ πpp,´q, 0qfpξq “ eπiq¨pe´2πiq¨ξfpξ ´ pq
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Denote the Fourier transform on L2pRdq by F . For f P L2pRdq we have

Fπpq, p, 0qF´1fpξq “

ż

e´2πiξ¨xπpq, p, 0qpF´1fqpxq dx

“

ż

e´2πiξ¨xe´πiq¨pe2πip¨x
pF´1fqpx´ qq dx

“ e´πiq¨p
ż

e2πipp´ξq¨x
pF´1fqpx´ qq dx

“ e´πiq¨p
ż

e2πipp´ξq¨pq`yq
pF´1fqpyq dy

“ e´πiq¨pe2πipp´ξq¨q

ż

e2πipp´ξq¨y
pF´1fqpyq dy

“ eπiq¨pe´2πiξ¨qfpξ ´ pq.

Hence F satisfies (3.106), so it must coincide with µpgq up to a phase factor.

In summary, up to phase factors, we have identified µpgq on a generating set of
elements (thanks to Proposition 3.4), so in principle we know µ up to phase factors.
Anticipating what can be made rigorous, we actually have

µ

ˆ„

h 0
0 th´1

˙

fpxq “ pdethq´1{2fph´1xq(3.107)

µ

ˆ„

I 0
σ I

˙

fpxq “ ˘eπix¨σxfpxq(3.108)

µ pJq fpxq “ id{2Ffpxq.(3.109)

It must be pointed out that in formulae (3.107) and (3.109) the sign of the square root
accounts exactly for the ambiguity in sign.

Exercise 3.5. Show that both the even and odd parts of L2 , namely

L2
epRd

q “ tf P L2
pRd
q : fp´xq “ fpxqu

L2
opRd

q “ tf P L2
pRd
q : fp´xq “ ´fpxqu,

are closed invariant subspaces on each of which the action of µ is irreducible.

3.2.1. An outline of the full construction. The question remains: how to define µ in full
detail? Our next target is to outline how to do this. The several nontrivial technicalities
will not be unravelled completely. The construction can be summarized in the following
three basic steps, for each of which we will then give some further information.

(i) Define first the infinitesimal representation dµ of the Lie algebra sppd,Rq by
densely defined unbounded and essentially skew-adjoint operators on L2pRdq .
This step is obtained by means of the so called Weyl calculus, realizing first
sppd,Rq as a Lie algebra of polynomials.

(ii) “Integrate” the representation to a representation of the universal cover of
Sppd,Rq . This step uses the notion of analytic vector for a representation.
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(iii) Show that the representation actually factors to a representation of the double
cover of Sppd,Rq .

3.3. Restriction to triangular subgroups. We finally present the class of examples
that has been looked at in the papers ??????

Definition 3.6. A Lie subgroup G of Sppd,Rq belongs to the class E if it is of the
form

G “
!

„

h 0
σh th´1



: h P H, σ P Σ
)

,

where H is a connected Lie subgroup of GLpd,Rq and Σ is a subspace of the space
Sympd,Rq of d ˆ d symmetric matrices. We further require that both Σ and H are
not trivial.

In order for G to be a group it is necessary and sufficient that h:rΣs “ Σ for all
h P H , where

(3.110) h:rσs “ th
´1
σh´1.

If G P E , both Σ and H are naturally identified as Lie subgroups of G . Clearly,
ΣH “ G , Σ X H “ teu , Σ is a normal subgroup of G and it is invariant under the
action of H given by (3.110), so that G is the semi-direct product Σ¸H .

Suppose that G “ Σ ¸H is in the class E . A left Haar measure and the modular
function of G are

(3.111) dg “ χphq´1dσdh ∆Gpσ, hq “ χphq´1∆Hphq,

where dσ is a Haar measure of Σ, dh is a left Haar measure of H , ∆H is the modular
function of H , and χ is the positive character of H given by

(3.112) χphq “ | detσ ÞÑ h:rσs|.

Exercise 3.7. Prove all the statements that have been made in the previous paragraph:
G is a group if and only if h:rΣs “ Σ for all h P H , and the formulae (3.111) do define
Haar measure and modular function.

There is a surprisingly large class of groups in the class E that are relevant in the
study of reproducing systems.

Example 3.8. For d “ 1, that is, for SLp2,Rq , there is a very remarkable example,
namely a copy of the “ax` b” group. It is actually completely obvious that, for d “ 1,
in the class E there is exactly one group, that will be denoted E1 . The map

ϕppa, bqq “

„

1{
?
a 0

b{
?
a
?
a



establishes an isomorphism between “ax` b” and the group E1 , as one checks imme-
diately. Observe that, for the group E1 , (3.107) is meaningful for the 1 ˆ 1 positive
matrix h “ 1{

?
a (no sign ambiguity) and if one takes the plus sign in (3.108), then

one gets a perfectly well defined unitary representation on E1 , and it not necessary
to appeal neither to projective representations nor to coverings. As we will see, this
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argument holds for all groups in the class E so that it is legitimate to speak about the
metaplectic representation for groups in E , which will again be denoted by µ .

We show next that the restriction of µ to E1 acting on the space of even L2 functions
on the line is equivalent to the subrepresentation π of the wavelet representation (1.32)
of “ax` b” on the Hardy space H´pRq defined in (1.41). In other words, denoting by
µe the former and by π´ the latter, we will show that

µe » π´.

Similarly, µo » π` for the subrepresentations on odd functions and positively sup-
ported transforms, respectively, so that in the end we obtain

µ|E1 » π.

This proves that the wavelet representation is given by restricting the metaplectic
representation to a suitable subgroup of SLp2,Rq .

A crucial remark in order to prove the sought for equivalence is that one should think

of µ as acting on Fourier transforms. For this reason, we write pR for the frequency

domain, L2ppR`q for the L2 -transforms that are supported in pR` and L2
ep
pRq for the

even L2 -transforms. The map χ` : L2
ep
pRq Ñ L2ppR`q defined by

pχ`ĝqpξq “
?

2χr0,`8qpξqĝpξq

is an obvious unitary isomorphism. Next we put

Φ : L2
ppR`q Ñ L2

ppR`q, Φpĝqpξq “

#

p2ξq´1{4ĝp
?

2ξq ξ ě 0

0 ξ ă 0.
.

Clearly, Φ is unitary as well. Finally, we denote by R the reflection Rfpxq “ fp´xq .
Since R commutes with F , it sends H`pRq unitarily onto H´pRq , and viceversa. We
show next that the unitary map

T : L2
ep
pRq Ñ H´pRq, T “ R ˝ F´1

˝ Φ ˝ χ`

intertwines µe and π´ , that is, for every f̂ P L2
ep
pRq it holds

(3.113) T pµea,bf̂q “ π´a,bpT f̂q.

Here we have written for short µea,b in place of µepϕpa, bqq and π´a,b instead of π´pa, bq .
Applying the definition, and reflection on both sides, (3.113) is equivalent to

F´1
`

Φχ`pµ
e
a,bf̂q

˘

“ Rπ´a,bR
`

F´1Φχ`f̂
˘

which, after Fourier transformation, is in turn equivalent to

(3.114) Φχ`pµ
e
a,bf̂qpξq “ F

”

Rπ´a,bR
`

F´1Φχ`f̂
˘

ı

pξq q.o. ξ P R.

Next we observe that Rπa,bR sends each H˘pRq into itself and satisfies, for h P L2pRq ,

Rπa,bRhpxq “
1
?
a
h

ˆ

x` b

a

˙

“ πa,´bhpxq.
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Therefore, using this and (1.37), the right hand side of (3.114) becomes

F
”

π´a,´b
`

F´1Φχ`f̂
˘

ı

pξq “
?
ae2πibξ

pΦχ`f̂qpaξq

“
?

2
?
ae2πibξ

p2aξq´1{4f̂p
a

2aξq

for ξ ě 0, and vanishes for ξ ă 0. The left hand side of (3.114) is
?

2p2ξq´1{4µea,bf̂p
a

2ξq “
?

2p2ξq´1{4a1{4eπibp
?

2ξq2 f̂p
?
a
a

2ξq

for ξ ě 0, and vanishes for ξ ă 0. This establishes (3.113).

As already remarked in the example that we have just discussed, for the groups
in E it is perfectly legitimate to speak about tµ as a bona fide representation. The
reason is the following. If Σ ¸ H P E , then H is required to be connected and
hence the determinant of all its elements is necessarily positive, which makes (3.107)
unambiguous. Secondly, if one takes the plus sign in (3.108) then it is easy to see that

(3.115) µpσ,hqfpxq “ pdethq´
1
2 eπixσx,xyfph´1xq

is indeed a a unitary representation.
We illustrate next a remarkable struc tural feature of the groups in E and present a

general geometric result.

3.3.1. The symbol. The restriction µ of the metaplectic representation to G P E is
completely characterized by a “symbol” Φ, as we now explain. Given3 ω P Rd , the
map σ ÞÑ ´1

2
xσω, ωy is a linear functional on Σ and hence it defines a unique element

Φpωq P Σ˚ , the dual of Σ, by the requirement that

(3.116) Φpωqpσq “ ´
1

2
xσω, ωyRd

for all σ P Σ. The corresponding function Φ : Rd Ñ Σ˚ is called the symbol associated
to Σ and has the invariance property (3.118) that we now explain. Observe first that
the contragredient action of (3.110) is given, for σ˚ P Σ˚ , σ P Σ, and h P H , by

(3.117) hrσ˚spσq “ σ˚pph´1
q
:
rσsq “ σ˚p thσhq,

Next, notice that the group H acts naturally on Rd by means of

h.ω “ hω.

The invariance property that we are after is that for all ω P Rd and h P H

(3.118) Φph.ωq “ hrΦpωqs.

This is seen by observing that for all σ P Σ we have, by (3.117)

Φph.ωqpσq “ ´
1

2

@

thσhω, ω
D

Rd “ Φpωqpph´1
q
:
rσsq “ hrΦpωqspσq.

Therefore, for σ P Σ and h P H , we may rewrite

(3.119) µpσ,hqfpωq “ pdethq´
1
2 e´2πiΦpωqpσqfph´1ωq,

3The reason for the symbol ω instead of x rests in the fact that we should think of µ as acting in
the frequency domain.
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which exhibits µ as completely determined by the symbol. Also, this proves that µ is
a representation of the kind considered in [10], with a quadratic symbol.

3.3.2. Geometric characterization. The next result gives some necessary and sufficient
conditions for a group G P E to be reproducing. In order to state it, we need to
introduce some standard terminology. First, the set

Hrys “ thrys P Rn : h P Hu

is called the orbit of H in Rn , where we have identified Σ˚ with Rn and where evidently
n “ dim Σ. Secondly the closed Lie group of H defined by

Hy “ th P H : hrys “ yu

is called the stability subgroup at y P Rn . Thirdly, we recall that a subset A in a
topological space X is locally closed if it is the intersection of an open and a close set
of X . Equivalently, if each point in A has an open neighborhood U Ă X such that
A is closed in U (with the subspace topology), or, yet equivalently, if A is open in its
closure (with the subspace topology). Finally, let DΦpωq denote the nˆ d Jacobian

DΦpωq “
Bpϕ1, . . . , ϕnq

Bpω1, . . . , ωdq

and by JΦpωq “
a

detDΦpωq tDΦpωq the Jacobian determinant. With this notation,
the critical points of Φ are precisely the solutions of the equation JΦpωq “ 0.

Theorem 3.9. [10, 2] Take G “ Σ¸H P E and assume that the orbit Hrys is locally
closed in Rn for every y P Rn . If G is a reproducing group, then

i) G is non-unimodular;
ii) dim Σ ď d;

iii) the set of critical points of Φ, which is an H -invariant closed subset of Rd , has
zero Lebesgue measure.

Furthermore, if dim Σ “ d, then

iv) for almost every y P ΦpRdq the stability subgroup Hy is compact.

Conversely, if i), ii) iii) and iv) (without assuming dim Σ “ d) hold true, then G is
reproducing.

If we look at what happens when d “ 2, we find that there is a wealth of reproducing
systems arising from groups in E : there are in fact 16 families of inequivalent repro-
ducing groups. For a full discussion, the reader is referred to [1, 2], where these groups
are classified up to the appropriate notion of equivalence and where the admissibility
conditions analogous to the Calderón equation (1.43) are derived. Here we content
ourselves with two examples that underline why this class is interesting.

Example 3.10. (Shearlets.) The Heisenberg group can be realized inside Spp2,Rq in
a slightly different way from (2.75), which entails a direct realization of the standard
product given in (2.74). By this we mean that the latter can be read off from the matrix
product of the matrices (2.75), and conversely. There is, however, another standard
realization of the Heisenberg group, known as the polarized version H1

pol , that yields
an embedding in the symplectic group as an element of the class E .
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The polarized Heisenberg group may be seen as the set of the 3ˆ 3 matrices

(3.120) gpolpq, p, tq “

»

–

1 p t
0 1 q
0 0 1

fi

fl ,

which obey the product rule

(3.121) gpolpq, p, tqgpolpq, p, tq “ gpolpq ` q
1, p` p1, t` t1 ` pq1q.

Exercise 3.11. Check that (3.121) is true and prove that

ϕ : H1
Ñ H1

pol, ϕpgpq, p, tqq “ gpolpq, p, t`
qp

2
q

is a group isomorphism. Define Hd
pol , and extend all the above to general d .

Next we show how to see H1
pol as a group in E . For this purpose, put

Σ “

"„

t ´q{2
´q{2 0



: t, q P R
*

, H “

"„

1 0
p 1



: p P R
*

.

Then

(3.122) epq, p, tq “

„

h 0
σh th´1



“

»

—

—

–

1 0 0 0
p 1 0 0

t´ qp{2 ´q{2 1 ´p
´q{2 0 0 1

fi

ffi

ffi

fl

and it is immediate to check that

epq, p, tqepq, p, tq “ epq ` q1, p` p1, t` t1 ` pqq,

as required to see that this is an embedding of the polarized group. Finally, we show
that the extended (polarized) Heisenberg group (see Exercise 2.12) can also be seen as
an element in the class E . This is achieved by extending H to

(3.123) He “

"„

1{
?
a 0

p{
?
a 1



: a ą 0, p P R
*

.

By doing so, one gets the matrices

(3.124) epa, q, p, tq “

»

—

—

–

1{
?
a 0 0 0

p{
?
a 1 0 0

t{
?
a´ qp{2

?
a ´q{2

?
a ´p

´q{2
?
a 0 0 1

fi

ffi

ffi

fl

that satisfy the product rule

(3.125) epa, q, p, tqepa, q1, p1, tq “ epaa, q `
?
aq1, p`

?
ap1, t` at1 `

?
apq1q.

For brevity, we shall denote by H1
e “ Σ ¸He the group consisting of all the elements

in the form (3.124). Evidently, H1
e P E . Observe that

epa, 0, 0, 0qep1, q, p, tqepa, 0, 0, 0q´1
“ ep1,

?
aq,
?
ap, atq,
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so that we are indeed extending the Heisenberg group via its homogeneous dilations.
We now compute the various ingredients that are needed. First of all, we write

σpt,qq “

„

t ´q{2
´q{2 0



thereby identifying Σ with R2 . The elements of Σ˚ are in turn identified with vectors
in R2 in the sense that to y P R2 there corresponds the functional σ˚y for which

σ˚y pσpt,qqq “ y ¨ pt, qq.

Secondly,

h:a,prσpt,qqs “
tha,p

´1
σpt,qqh

´1
a,p

“

„?
a ´p

0 1

 „

t ´q{2
´q{2 0

 „?
a ´p

0 1



“

„

at`
?
apq ´q

?
a{2

´q
?
a{2 0



Thus, h:rσpt,qqs is the element of Σ associated to the vector:

Ma,p

„

t
q



:“

„

a p
?
a

0
?
a

 „

t
q



P R2.

This means that the action h:a,p is expressed in R2 by the matrix Ma,p . Therefore, the
positive character defined in (3.112) is

χpha,pq “ a3{2.

By (3.111), we then have that

∆H1
e
pepa, q, p, tqq “ a´3{2∆Hpha,pq

and since ∆Hpha,pq “ a´1 , as it is easily checked computing for example the adjoint
representation of H on its Lie algebra, we infer that G is not unimodular. Next, since
the contragredient action y ÞÑ hrys corresponds to tM´1

a,p , we have

(3.126) ha,pr

„

y1

y2



s “

„

1{a 0
´p{a 1{

?
a

 „

y1

y2



“

„

y1{a
´py1{a` y2{

?
a



.

We next compute the symbol Φ. Since

´
1

2
xσpt,qqω, ωy “ ´

1

2

“

ω1 ω2

‰

„

t ´q{2
´q{2 0

 „

ω1

ω2



“ p´
1

2
ω2

1,
1

2
ω1ω2q ¨ pt, qq,

the symbol of H1
e is

Φpω1, ω2q “ p´
1

2
ω2

1,
1

2
ω1ω2q.

The Jacobian is easily computed to be

JΦpω1, ω2q “
1

2

b

pω2
1 ´ ω1ω2qpω2

1 ` ω1ω2q

and its zero set is

tpω1, ω2q P R2 : ω1 “ 0u Y tpω1, ω2q P R2 : ω1 “ ˘ω2u,
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a set of Lebesgue measure zero. The image of Φ is the closed left half plane.
It is readily seen that the action (3.126) has five orbits in R2 : the origin, the two half

lines tp0, y2q : y2 ą 0u and tp0, y2q : y2 ă 0u and the two half spaces tpy1, y2q : y1 ą 0u
and tpy1, y2q : y1 ą 0u . Each of these sets is locally closed because it is the intersection
of a closed and an open set in the plane.

Figure 1. The five orbits of H

Formula (3.126) also allows us to compute, for every y P ΦpR2q the stability group
Hy , which is evidently the identity matrix, hence compact, because

ha,pr

„

y1

y2



s “

„

y1

y2



ðñ a “ 1, p “ 0 ðñ ha,p “ I2.

Therefore, all the hypotheses of Theorem 3.9 are satisfied and we may conclude that
the restriction4 of µ to to H1

e , which by (3.115) or (3.119) is just

(3.127) µpa, q, p, tq pfpω1, ω2q “ a1{4e´πipt,qq¨p´ω
2
1 ,ω1ω2q

pf
`?

aω1, ω2 ´ pω1

˘

,

is reproducing. This fact had been established directly in [7] (that is, without the use
of Theorem 3.9) and can also be found in [2]. In both papers, Calderón equations for
the admissible vectors are also worked out.

A very remarkable fact, one which is particularly relevant for this book, is the fol-
lowing theorem, that is proved in [11]. For the reader’s convenience, we give below a
direct argument.

Theorem 3.12. [11] The metaplectic representation restricted to the extended Heisen-
berg group H1

e is equivalent to the shearlet representation of the connected Shearlet
group.

First of all, we introduce the connected shearlet group S` that will be discussed in
detail in the other chapters of this book, to which we refer for historical and biblio-
graphical information. It is the set R` ˆ Rˆ R2 endowed with the group operation

pa, s, tqpa1, s1, t1q “ paa1, s` a1{2s1, t` SsAat
1
q,

4Once more, we think of the metaplectic representation as acting on the frequency side.
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where

Ss “

„

1 s
0 1



, Aa “

„

a 0
0
?
a



, SsAa “

„

a s
?
a

0
?
a



.

We can thus write the group law more explicitly as

(3.128) pa, s, tqpa1, s1, t1q “ paa1, s` a1{2s1, t1 ` at
1
1 `

?
at12, t2 `

?
at12q.

In order to understand the statement of Theorem 3.12, we observe that the map

Ψ : S` Ñ H1
e, pa, s, t1, t2q ÞÑ epa, t2, s, t1q,

which amounts to renaming the variables according to

(3.129) pÐÑ s, t1 ÐÑ t, t2 ÐÑ q,

establishes a Lie group isomorphism. Secondly, the shearlet representation on the

frequency domain, that is, on L2ppR2q is defined by:

(3.130) ψ̂pa,s,tqpω1, ω2q “ a3{4e´2πit¨ωψ̂paω1,
?
apsω1 ` ω2qq.

Renaming the variables after (3.129), this becomes

(3.131) ψ̂pa,q,p,tqpω1, ω2q “ a3{4e´2πipt,qq¨pω1,ω2qψ̂paω1,
?
appω1 ` ω2qq.

We now proceed to show the claimed equivalence..

Proof. (of Theorem 3.12.) The first remark concerns irreducibility. For simplicity, put

Ω` “ tpω1, ω2q P
pR2 : ω1 ą 0u, Ω´ “ tpω1, ω2q P

pR2 : ω1 ă 0u.

It is clear that the spaces L2pΩ`q and L2pΩ´q are closed invariant spaces both for the
shearlet representation and for the metaplectic representation (3.127). Furthermore,
the subrepresentations obtained by restriction to L2pΩ˘q are mutually equivalent, be-

cause the reflection Rf̂pω1, ω2q “ f̂p´ω1, ω2q sends one space unitarily into the other,
and intertwines the two pairs of subrepresentations. Further, it may be shown that
each such subrepresentation is in fact irreducible. Finally, there is an intertwining
operator L that realizes a unitary equivalence between the restriction to L2pΩ´q of
the shearlet representation with the restriction to L2pΩ`q of µ . The interesting fact
is that L is essentially constructed by means of the symbol Φ : Ω` Ñ Ω´ , which is a
diffeomorphism with Jacobian determinant ω2

1{2. We define

L : L2
pΩ´q Ñ L2

pΩ`q, Lϕ̂pωq “ ω1
?

2
ϕ̂pΦpωqq.

For any ϕ̂ P L2pΩ´q , we have

ż

Ω`

|Lϕ̂pωq|2 dω “
ż

Ω`

|
ω1
?

2
ϕ̂pΦpωqq|2 dω “

ż

Ω`

|ϕ̂pΦpωqq|2
ω2

1

2
dω “

ż

Ω´

|ϕ̂pωq|2 dω,
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so that L is unitary. Using (3.131) we have

L
`

ψ̂pa,q,p,tq
˘

pω1, ω2q “
ω1
?

2
ψ̂pa,q,p,tqpΦpωqq

“
ω1
?

2
ψ̂pa,q,p,tq

`

´
ω2

1

2
,
ω1ω2

2

˘

“
ω1
?

2
a3{4e´πipt,qqp´ω

2
1 ,ω1ω2qψ̂

ˆ

´a
ω2

1

2
,
?
ap´p

ω2
1

2
`
ω1ω2

2
q

˙

,

and using (3.127) we have

µpa, q, p, tqpLψ̂qpω1, ω2q “ a1{4e´πipt,qq¨p´ω
2
1 ,ω1ω2qpLψ̂q

`?
aω1, ω2 ´ pω1

˘

“ a1{4e´πipt,qq¨p´ω
2
1 ,ω1ω2q

?
aω1
?

2
ψ̂

ˆ

´
aω2

1

2
,
1

2
p
?
apω1ω2 ´ pω

2
1q

˙

.

This establishes the intertwining property

L
`

ψ̂pa,q,p,tq
˘

“ µpa, q, p, tqpLψ̂q
and the proof of Theorem 3.12. [\

Example 3.13. (Schrödingerlets.) This is perhaps one of the few examples of a 3-

dimensional reproducing systems in L2ppR2q . The group G consists of the matrices
„

a´1{2R 0
ta´1{2R a1{2R



, t P R, a ą 0, R P SOp2q.

The rotations in SOp2q are parametrized in the standard way, namely

Rϕ “

„

cosϕ ´ sinϕ
sinϕ cosϕ



, ϕ P r0, 2πq.

Therefore G in the class E , with Σ “ ttI2 : t P Ru and H “ R` ¨ SOp2q , an Abelian
group. En passant, here d “ 2 and n “ 1. The metaplectic representation µ restricted
to G , thought in the frequency domain, is given by formula (3.115), namely

µpt, a, ϕqf̂pωq “ a1{2eπit}ω}
2

f̂pa1{2R´ϕωq, f̂ P L2
ppR2
q.

The space-domain version of this representation explains the reason of the name that
is used for the admissible vectors relative to this group. Denote by µ̃ the unitary
representation obtained by conjugating µ with the Fourier transform, that is

µ̃pgqf “ F´1
˝ µpgq ˝ F .

We interpret t P R as a time parameter and look at the evolution flow of a function in
the space domain f P L1pR2q X L2pR2q , given by

pt, xq ÞÑ µ̃tfpxq “ µ̃pt, 1, 0qfpxq “

ż

R̃2

f̂pωqeπit}ω}
2

e2πix¨ω dω.

It is straightforward to verify that the flow µ̃tfpxq satisfies the Schrödinger equation
´

´4πi
B

Bt
`∆

¯

µ̃tfpxq “ 0,
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where ∆ is the spacial Laplacian

∆ “
B2

Bx2
1

`
B2

Bx2
2

.

For this reason the admissible vectors of G are called Schrödingerlets. In summary,
the system of unitary operators attached to G is generated by rotations, by dilations
and by the evolution flow of the Schrödinger operator.

We show next that µ restricted to G is indeed reproducing. First of all, writing
ha,ϕ “ a´1{2Rϕ , we have

h:a,ϕrσts “
th´1
a,ϕσth

´1
a,ϕ “ taI2 “ σat.

Thus, the action h:a,ϕ is expressed in R as multiplication by a , so that the contragre-

dient action y ÞÑ ha,ϕrys amounts to multiplication by a´1 . It follows that the positive
character defined in (3.112) is

χpha,ϕq “ a.

By (3.111), taking into account that H , being Abelian, is unimodular we have that

∆Gpa, ϕ, tqq “ a´1,

so that G itself is not unimodular. As for the symbol Φ : R2 Ñ R , since

´
1

2
xσtω, ωy “ ´

1

2
}ω}2 t,

it is the mapping given by

Φpωq “ ´
1

2
}ω}2.

Its image is the closed left half line p´8, 0s and its Jacobian is

JΦpω1, ω2q “ }ω},

whose zero set is just the origin of R2 , obviously of Lebesgue measure zero. The
action y ÞÑ hrys has three orbits in R : the origin and the two half lines p´8, 0q and
p0,`8q , each of which is locally closed. For every y ă 0, hence almost everywhere
in ΦpR2q “ p´8, 0s , the stability group Hy is the identity matrix, hence compact.
Therefore, all the hypotheses of Theorem 3.9 are satisfied and G is reproducing. The
reader is referred to [2] for the Calderón equations for the admissible vectors.
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[18] A.W. Knapp, Representation Theory of Semisimple Lie Groups: An Overview Based on

Examples, Princeton University Press, Princeton, 1988.
[19] G. Lion and M. Vergne, The Weil representation, Maslov index and theta series,
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