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1. REPRESENTATIONS OF LIE GROUPS.

Representation theory of groups is a vast subject. Many of the aspects of this theory
that are of interest in Harmonic Analysis, and, in particular, of that body of ideas
and techniques that might be collectively referred to as Applied Harmonic Analysis,
can be studied within the class of locally compact and second countable topological
groups, a family whose nickname in the group theory jargon is “lcsc”. Most interesting
examples in which we are interested, however, belong to the smaller and nicer class
of Lie groups, which feature an additional geometric-analytic nature that allows, for
instance, to speak about dimension or to perform handy calculations such as taking
derivatives or solving differential equations. As it is often the case, there is a trade-
off between the beautiful generality and formal simplicity of lcsc groups, for which
a limited number of techniques is available, and the class of Lie groups, which is

harder to define, but enjoys many more desirable properties. At the level of practical
1



2 The use of representations

examples, the theoretical obstacles fade out almost completely because one is in the end
dealing with matrix groups whose description in coordinates is often quite natural, and
the computations that are at times hard to formalize in the general setup are simple
extentions of those that everyone is familiar with in R?. What is gained is a general
conceptual landscape that provides insight and makes full use of the simmetries that
are involved in the problems at hand. Finally, we believe that research in this area
requires a wide box of mathematical tools, including those that are pertinent to Lie
groups, because of their effectiveness, flexibility and depth.

For these reasons we shall work mostly within this family, even though we by no
means use the full force of the representation theory of Lie groups. On the reader’s
side, we take for granted some working knowledge of topology, calculus, linear algebra
and elementary differential geometry. From the latter, we essentially need the notion of
smooth manifold, the basic constructs of tangent vectors and vector fields and the use
of tangent mappings, or differentials, that we actually very quickly review. Some of the
results concerning Lie groups that are summarized in Section 1.2 below are used in the
sections that follow, others are presented in order to achieve a better understanding of
the main ideas.

1.1. Locally compact groups. We start with some fundamental definitions and re-
sults. For a detailed account on these matters the reader may consult [14].

Definition 1.1. A topological group is a group G endowed with a topology relative to
which the group operations

(9.h) > gh,  g—g~
are continuous as maps G x G — G and G — G, respectively. G 1is locally compact
if every point has a compact neighborhood. We shall also assume our groups to be

Hausdorff.

Definition 1.2. A Borel measure u defined on the o-algebra generated by the open
sets of the topological space X s called a Radon measure if:

(i) it is finite on compact sets;
(ii) it is outer reqular on the Borel sets: for every Borel set E
p(E) =inf{u(U) :U > E, U open }
(iii) it is inner reqular on the open sets: for every open set U
w(U) =sup{u(K): K c E, K compact }.

Definition 1.3. A left Haar measure on the topological group G is a non zero Radon
measure | such that p(zE) = p(E) for every Borel set E < G and every x € G.
Similarly for right Haar measures.

Of course, the prototype of Haar measure is the Lebesgue measure on the additive
group R, which is invariant under left (and right) translations.

Theorem 1.4. Every locally compact group G has a left Haar measure X, which is
essentially unique in the sense that if p is any other left Haar measure, then there
exists a positive constant C' such that p = cX.
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If we fix a left Haar measure A on G, then for any = € G the measure A\, defined by
A:(E) = A(Ex)

is again a left Haar measure. Therefore there must exist a positive real number, denoted
A(x) such that
Ae = A(z) A

The function A : G — R, is called the modular function.

Proposition 1.5. Let G be a locally compact group. The modular function A : G — R,
1s a continuous homomorphism into the multiplicative group R, . Furthermore, for
every f e LYG) we have

L f(ey) de = Ady)™ L f(@) de.

In the Section 1.2.8 below we give some examples in the context of Lie groups. A
group for which for which the modular function is identically equal to one, is called
unimodular. Large classes of groups are unimodular, such as the Abelian, compact,
nilpotent, semisimple and reductive groups. Nevetherless, in Applied Harmonic Anal-
ysis non-unimodular groups play a prominent role, such as the affine group “ax + b”
that we define in the next section.

1.2. Lie groups and Lie algebras. We recall, without proofs, some basic facts about
Lie groups and Lie algebras. For a concise and effective exposition, see [23]. Classical
references with a wider scope are [17] and [22]. We shall often use the word “smooth”
in place of “C'*”.

Definition 1.6. A Lie group G is a smooth manifold endowed with a group structure
such that the group operations (g,h) — gh and g — g~' are smooth.

Example 1.7. Clearly, R? is an additive, Abelian Lie group. Similarly C¢, identified
with R?? as manifolds. Any real or complex vector space can be given the structure of
Lie group simply choosing a basis and then identifying with R¢.

Example 1.8. The sphere S' = {e?? : § € [0,27)} is an Abelian compact Lie group.

Example 1.9. The multiplicative group GL(d,R) of invertible matrices is a Lie group.
Indeed, it is an open submanifold of R with the global coordinates x;; that assign to a
matrix its ij—th entry. If y, 2 € GL(d,R), then z;;(yz) and z;;(y~') are rational func-
tions of {z;;(y),z;;j(2)} and of {x;;(y)}, respectively, with non vanishing denominator.
Hence they are smooth functions.

Great attention deserve the closed subgroups of GL(d,R). They are automatically
Lie groups, and in fact enjoy additional nice features from the topological point of view.
This very important result is due to Cartan and is recalled below in Theorem 1.26.

A remarkable closed subgroup of GL(d,R) is the symplectic group Sp(d,R), that
plays an important role in this article. It is defined by

(1.1) Sp(d,R) = {ge GL(d,R) : 'gJg = J}
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where ‘g is the transpose of g and where J is the canonical skew-symmetric matrix

(1.2) J— [_OId ﬂ

that defines the standard symplectic form (see Section 3.1 for more details). Notice
that for d = 1 we have Sp(1,R) = SL(2,R), the latter being the group of 2 x 2 real
matrices with deteminant equal to one.

Example 1.10. The affine group “ax + b”. There are several possible versions of this
group. Let G = R, x R as a manifold. One can visualize it as the right half plane.
The multiplication is obtained by thinking of the pair (a,b), with @ > 0 and b € R, as
identifying the affine transformation of the real line given by x +— ax + b, whence the
name. The composition of maps

r—ax+b—d(ax+b)+b =[da]x+ [a'b+ b]

yields the product rule
(a',b')(a,b) = (d'a,d'b+ V).

Evidently, both functions a’a and a’b + b are smooth in the global coordinates on G,
which is then a Lie group. Evidently, GG is connected. When speaking of the “ax + b”
group we refer to this group.

A non-connected version arises by taking a € R* = R\{0} instead of a > 0. We shall
refer to this as the full affine group. Yet another slightly different construction comes
from thinking of the pair (a,b) as identifying the affine transformation = — a(z + b).
This point of view yields both a connected and a non-connected Lie group.

Definition 1.11. A Lie algebra g over R is a real vector space endowed with a bilinear
operation [-,-] : g x g — @, called bracket, such that

i) [X,Y] =—[Y, X] for every X,Y € g,
i) [X, [V, Z]] = [[X, Y], 2] + [V, [X, Z]] for every X, Y, Z € g.

[tem ii), oterwise known as the Jacobi identity, should be thought of as an analogous
version of the derivative of the product. Indeed, if for any X € g we put

(1.3) adX :g—g, ad X (V) =[X,Y]
the Jacobi identity may be formulated:
ad X([Y, Z]) = [ad X(Y), Z] + [V, ad X (Z)],

which reminds the derivative of the product, with the bracket as product. This seem-
ingly awkward notation comes from the fact that the map X — ad X defines the
so-called adjoint representation (see Subsection 1.2.6 below for details).

Example 1.12. If V' is a vector space, the set End(V') of all linear maps of V' into
itself is a Lie algebra under the commutator [¢, 1] = ¢1b — 1h¢ as bracket. With this
structure understood, it is denoted by gl(V').
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It should be clear what is meant by Lie subalgebra of a Lie algebra g: it is a vector
subspace h which is closed under bracket, that is, such that if A, B € h then [A, B] € h.
A stronger notion is that of ideal: it is a Lie subalgebra b of g with the stronger property
that [h, g] < b, which means that for every A € hh and every B € g we have [A, B] € .

1.2.1. Tangent vectors and vector fields. Tangent vectors can be defined in several
equivalent ways. A natural way to think of a tangent vector at the point p of the
manifold M is to introduce an equivalence relation among all the smooth curves ¢
defined in some open interval containing 0 € R with values in M such that ¢(0) = p.
We establish that ¢; ~ ¢y if for every smooth function f : U, — R it holds

d d
NGO RGO}

where U, is an open neighborhood of p in M. The equivalence class {c), of any of these
curves is then a tangent vector to M at p. This line of thoughts will be adopted in
Section 2 when computing the generators of the Lie algebra of the Heisenberg group.
The set of all tangent vectors at p is a vector space, the tangent space of M at p,
denoted T,(M). Once a coordinate patch (U, z',...,2%) around p € M has been
fixed, the equivalence class of the special curve ¢; defined by ¢t — (py,...,p;+t, ..., D)
is identified with the tangent vector denoted by

0

oxt

p
because it operates on any function f defined and smooth on U, by
0 d
| f== (1),
e Rl A Q)

the common value attained along all curves equivalent to ¢;. These particular tangent
vectors give rise to a basis of the vector space T,(M). A sensible expression for a
tangent vector at p is therefore

d
0

(1.4) X, = Z;a i, € T, (M),

with aq,...,aq € R. As implicitly said in the previous paragraph, a tangent vector

acts on a function v defined locally around p as a first order differential operator
and produces a real number, the effect of the derivative X, defined in (1.4). Using
equivalence classes of curves, this real number is

@nf = 2| fe(t)

A vector field X on the manifold M is a smooth map that assigns to each point p € M
a tangent vector at that point, that is, an element X, € T,(M). The simplest example
of a locally defined vector field is

0 0

ort’ P o

p
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Vector fields act on functions, in the sense that if X is a vector field and ¢ is a function,
then X1 is the function that at the point p takes the value

Xp(p) = Xp(¥)-

The smoothness of X is, by definition, the requirement that X1 is smooth whenever
¥ is such. Let X(M) denote the set of all smooth vector fields on M. They can
be interpreted as the derivations of C*(M), the algebra of smooth functions. This
means that any X € X(M) acts on smooth functions linearly (that is, X(ap + Bg) =
aX () + X (¢) for any choice of scalars a and (), producing new smooth functions,
and that the derivative rule

X(pv) = X(@)Y + X (¥)
holds. As a consequence, in any local coordinate system (U, z",...,x?%) a vector field
X € X(M) can be expressed as

b0
X=;f%

where f1,..., fs € C®(M). The action of X on a function ¢ € C*(M) is then the
function X1 whose value at peld < M is

Xtp(p) = ] fi(p)%@)-
i=1
Thus X is smooth if and only if the functions f; are smooth.

1.2.2. Lie algebras of vector fields. The set X(M) enjoys a structural algebraic prop-
erty, it is a C®(M)-module. This means that the vector fields form an Abelian group
under the natural (pointwise) sum, and they can be multiplied (pointwise) by smooth
functions, respecting the rules that modules require, namely

FXHY) = X4 fY, (F+a)X = fX +gX, f(aX) = (fo)X. 1X =X,

where X|Y € X(M), f,g € C*(M) and 1 is the function equal to one on M. More
remarkably, X(M) is a (typically infinite dimensional) Lie algebra under the commu-
tator. This is a consequence of the fact that

[X,) Y] =XoY —-YoX

is in fact a first order differential operator because the second order terms vanish due
to the equality of mixed partials. Therefore [X,Y] e X(M) and the Jacobi identity is
readily established, together with bilinearity and skew-symmetry. As we shall see be-
low, the main feature of Lie groups is that, thanks to the presence of (left) translations,
the Lie algebra X(G) always admits a very natural finite dimensional Lie subalgebra.
Any smooth map F : M — N between smooth manifolds gives rise to the tangent
map F of the corresponding tangent bundles. Thus, for any p € M the tangent map at
p, also known as the differential of F' at p, is the linear map F,p : T,(M) — Tpp)(N)
carrrying the tangent vector X, € T,(M) to the tangent vector Fi,X, € Tpy) (V)
whose action (as a derivation) on a function ¢ defined in a neighborhood of F(p) is

Fop X, (¢) = Xp( o F).
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When M and N are open subsets of R? and R", respectively, the differential is
expressed in the canonical bases by the n x d Jacobian matrix.

Let now G be a Lie group and denote by I, : G — G the left translation by g € G,
that is [,(h) = gh. A vector field X € X(G) is called left invariant on G if for every
g,h € G it satisfies

(ly)enXn = Xon-
The set of all left invariant vector fields on G will be denoted L(G).

Proposition 1.13. Let G be a Lie group and denote by L(G) the set of left invariant
vector fields on G. Then:

i) L(G) is an R-vector space and the linear map o : L(G) — T.(G) defined by
a(X) = X.is a vector space isomorphism between L(G) and the tangent space
to G at the identity e € G. Consequently, dim L(G) = dimT,(G) = dim G.

i) The commutator [X,Y] = X oY —Y o X of two left invariant vector fields
is again a left invariant vector field. With this bracket, L(G) becomes a Lie
algebra, which will be called the Lie algebra of G.

We shall now discuss in some detail an example that plays a crucial role in what
follows and illustrates the concepts that we have just introduced. Perhaps the most
important Lie group in which we are interested is GL(d,R), the invertible d x d ma-
trices. Indeed, as we shall see, most of the groups at which we look in this article arise
as closed subgroups of GL(d,R). Therefore, GL(d,R) serves as a large ambient group
in which the action takes place. We shall now see that its Lie algebra is naturally
identified with the Lie algebra of all d x d matrices. The identification that we present
provides the most basic insight when dealing with matrix Lie groups.

Let us denote by gl(d,R) the Lie algebra whose underlying vector space is the set
M,(R) of square d x d matrices with real entries and whose bracket is the commutator
[A,B] = AB — BA. The reader may check that this is indeed a bracket, in the sense
that it defines a bona fide Lie algebra structure on My(R). If we use global coordinates
on GL(d,R) as an open subset of R* (se Example 3 above), then a tangent vector to
GL(d,R) at g € GL(d,R) may be written as

= o
7 (?xij

for some d* real numbers a;;. If h € GL(d,R), then the image of ¢ under the differ-
ential ()., is the tangent vector

0
(n)eg & = ) bijz—

e T, (GL(d,R))

g

€ Thy (GL(d,R)),

hg

where again b;; are d? suitable real numbers . In order to compute the explicit value
of these coordinates as functions of a;; and of h, we use the fundamental identification
of a tangent vectors as first order differential operators discussed above and evaluate



8 The use of representations

the vector field ()., & on the the coordinate function z;;. Explicitely, we get

bij = ((In)sg &) (2ij)
= & (w5 01p)

0
= ; apq@ . (Zk: hikﬂfkg)
= Z apjhip
P4

= (hA)ij,

where A = (a;;) is the d x d real matrix associated to the components a;;. Hence

(1.5) (In)sg § = Z(hA)z'ja%ij

hg‘

This formula suggests an expression for the left invariant vector fields on GL(d,R).
We allude to the following: a left invariant vector field on GL(d,R) is completely
determined by its value at the identity, whose coordinates are encoded by a d x d
matrix, say A. We denote by X4 such vector field. As the next proposition shows,
the correpondence A <> X4 is an instance of the isomorphism described in item (i)
of Proposition 1.13. The isomorphism is very nice and operative, in the sense that
the bracket of the vector fields X4 and X7 is the vector field X4%~B4 so that we
can completely identify the left invariant vector fields on GL(d,R) with the elements
of Lie algebra gl(d,R) and compute directly with matrices instead of going through
complicated expressions that involve partial derivates.

Proposition 1.14. Given any matriz A € M, (R), the vector field X* on GL(d,R)
whose value at g € GL(d,R) is

(1.6) X, = Z(gA)ij%

. 05
iJ g

9

is a left invariant vector field on GL(d,R). Further, the map A — X is a Lie algebra
isomorphism between gl(d,R) and the Lie algebra of GL(d,R).

Proof. The fact that X4 is a left invariant vector field follows at once from (1.5).
Take now A, B € gl(d,R). We now find the component of [X*, X?], by computing
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(XA OXB —XB OXA)g (IL‘U) Since

(X4 o XP), (xy) = Z(QA)pqaxL;q <Z(93)mnax—im g(%’))

rq

- 2<gA>pqai (98),

Tpq'lg

- Z 0qu Zgszk]
= Z (9A)pg Z‘Szp(s 1 Brj)
= Z 9A)iqBy;

q

= (9AB);j,

we get
(X4 o XB — XBoX?), (viy) = (9(AB — BA)),;
and cosequently
(XA, XB] = x5,

which is precisely what we wanted to show. |

1.2.3. Homomorphisms. Take two Lie groups, G ed H. A map ¢ : G — H is a Lie
group homomorphism if it is a group homomorphism (hence if p(zy) = ¢(x)p(y) for
every x,y € G and if ¢(e) = e, the identities of G and H, respectively) and also
a smooth map of manifolds. We say that ¢ is a Lie group isomorphism if it is a
diffeomorphism, that is, a smooth bijection with smooth inverse.

Example 1.15. A good example of homomorphism is the map ¢ : U(2) — Sp(2,R)
defined by
. X Y
(X +1iY) = [—Y X] :

Here U(2) stands for the 2 x 2 complex unitary matrices, those for which ‘gg = I.
Now, if g = X +iY with X, Y € My(R), then 'gg = I is equivalent to ‘XX +YY =T
and 'XY symmetric. But then o(X + 1Y) satisfies

. . X -y If[| X Y
Lo(X +iY)Jp(X +iY) = [tY tX] [_[ } l_Y X]
|-IXY + 'YX XX+ YY _ 7
=YY - IXX WYX - XY
and is therefore symplectic. This proves that ¢ takes values in Sp(2,R). It is easy to
see that ¢(gh) = ¢(g)p(h) whereas ¢(I) = I is obvious. As for smoothness, this is a

somewhat tricky issue that needs not concern us now. Finally, U(2) has dimension 4,
while Sp(2,R) has dimension 10, so ¢ cannot possibly be an isomorphism.



10 The use of representations

An isomorphism of G onto itself is called an automorphism. A natural class of
automorphisms are the so-called inner automorphisms, namely those given by inner
conjugation. If g € G, the inner conugation defined by ¢ is the map

ig: G — G, ig(h) = ghg™".

In general, a Lie group posesses automorphisms that are not inner. A good exam-
ple is given by the automorphisms of the Heisenberg group, that are listed below in
Theorem 2.8.

Observe that the set of linear automorphisms of a finite dimensional R—vector space
V' (hence a Lie group) has itself a natural structure of Lie group, because if a basis
is selected, then the group of all linear invertible maps may be identified with the Lie
group of invertible matrices. This group is denoted by Aut(V). As we shall see in
Section 1.3, a homomorphism 7 : G — Aut(V) is what is called a finite dimensional
representation of G.

If g and b are both real Lie algebras, a linear map ¢ : g — b for which ¢ ([X,Y]) =
[V(X),¥(Y)] is a Lie algebra homomorphism. Further, if ¢ is a linear isomorphism,
then it is called a Lie algebra isomorphism. If h = gl(WW) is the Lie algebra of all
endomorphisms of a vector space W, a Lie algebra homomorphism 1 : g — b is called
a representation of g on W . This is the case of the homomorphism X — ad X, which
defines the adjoint representation of g, a representation of g on itself.

Let ¢ : G — H be a Lie group homomorphism. Its differential evaluated at the
identity @y : T.(G) — T.(H) is a linear map. By the natural identifications T¢.(G) ~
L(G) and T, (H) ~ L(H), ¢« induces a linear map L£(G) — L(H) denoted dyp. More
precisely, if X € L(G), then dp(X) is the unique left invariant vector field on G such
that

(dSD(X»e = Qe Xe-
The following result clarifies matters.

Proposition 1.16. Let ¢ : G — H be a Lie group homomorphism. Then @.,X, =
(de(X))px) for every X € L(G) and dy is a Lie algebra homomorphism.

Take again a Lie group homomorphism ¢ : G — H and assume that ¢ is injective
and that also its differential is injective at every point (such a map is called an injective
immersion). In this case the pair (i, H) is called a Lie subgroup of G. It should be
clear that whenever a Lie subgroup is given, then, upon taking the differential di of
the corresponding immersion, one gets an immersion of Lie algebras. In other words,
to any Lie subgroup there corresponds a Lie subalgebra. The question concerning a
possible reverse correspondence is addressed by the following fundamental result.

Theorem 1.17. Let G be a Lie group with Lie algebra g and take a Lie subalgebra b of
g. Then there ezists a connected Lie subgroup (i, H) of G, unique up to isomorphisms,
such that di(L(H)) = b. Therefore there is a bijective correspondence between the
connected Lie subgroup of a Lie group and the subalgebras of its Lie algebra. Under
this bijection, normal subgroups correspond to ideals.
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The theory of covering groups is also very important, and relevant in the present
context, but we content ourselves with the observation that every connected Lie group
has a simply connected covering that admits the structure of Lie group and for which
the covering homomorphism is a Lie group homomorphism. Furthermore, a Lie group
homomorphism ¢ : G — H is a covering map if and only if dy is a Lie algebra
isomorphism. The following theorem is of central importance in the theory of Lie
groups, it is the monodromy principle for Lie groups, namely the possibility of lifting
homomorphisms from the Lie algebra to the Lie group.

Theorem 1.18. Let Gy and Gy be two Lie groups with Lie algebras g; and gs, re-
spectively, and let X : g1 — g2 be a Lie algebra homomorphism. Then there cannot be
more than one Lie group homomorphism ¢ : Gi — Gy such that dp = \. If Gy s
simply connected, then such a ¢ exists.

1.2.4. Ezxponential mapping. We now review in some detail the definition of the fiunda-
mental map linking the Lie group with its Lie algebra, namely the exponential mapping
exp: g — G. Let R be the additive Lie group of real numbers. Its Lie algebra is one-
dimensional and is generated by the vector field %. Take now a Lie group G with Lie
algebra g, and fix X € g. The map

d
T— — 71X, TelR
dt
is a Lie algebra homomorphism from R into g. Since R is simply connected, there

exists a unique homomorphism £x : R — G such that:

(gX)*T%‘ —_ = Xéx(T)
1.7 t=r
D {@X)*O%\tzo _X,

Conversely, if n : R — G is a Lie group homomorphism, then X = dn(%) satisfies
n = £x . Hence, the correspondence X — &x establishes a bijection between g and the
set of homomorphisms from R into G with the property that déx (%) = X for every
Xeg.

Fix now 7€ R and X € g. Then, if m, denotes the multiplication by 7 in R, the
map n(t) = {x(1t) = Ex om.(t) is again a homomorphism from R into G and since

77*0% 0 = (fX)*OT% o =7Xe,
it follows that n = &, x, that is
(1.8) Eox(t) = Ex (), t,TeR, Xeg.
We define
(1.9) exp X = Ex(1), X eg.

The map exp : g — G is called the exponential mapping. From (1.8) it follows that
{x(t) =exp(tX), teR Xeg

exp0 = e.
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It is easy to check that if X € g e x € G are fixed, the map ¢ — zexp(tX) defines
the integral curve relative to X passing through x, namely the smooth curve whose
differential carries the tangent vector in R to the value of the vector field at the image
point. Hence, for every C*-function f in a neighborhood of x we have

(1.10) X.(f) = Et:of(xeXth)'

An immediate consequence of the fact that £x is a homomorphism are the formulae
(1.11) exp(t + s)X = exptX expsX

(1.12) exp(—tX) = (exptX) .

The following formulae require some harder work:

(1.13) exptX exptY = exp{t(X +Y) + L*[X,Y] + O(t*)}

(1.14) exp(—tX)exp(—tY)exptX exptY = exp{t?[X,Y] + O(t*)}

(1.15) exptX exptY exp(—tX) = exp{tY + *[X,Y] + O(*)}.

Formula (1.13) is the well-known Baker—Campbell-Hausdorff formula. The exponential
map is in general neither injective nor surjective, but it is locally very nice:

Proposition 1.19. The exponential map is C'* and its differential at zero is the
identity map of g. Consequently, exp establishes a diffeomorphism of a neighborhood
of 0 € g onto a neighborhood of e € GG.

One of the most fundamental properties of the exponential mapping is that it always
intertwines the homomorphisms of Lie groups with the corresponding homomorphisms
of the Lie algebras:

Theorem 1.20. Let ¢ : G — H be a Lie group homomorphism with differential
dp:g—b. Then, for every X € g

(1.16) (exp X ) = exp(dpX).

By means of the previous result it is easy to show the next one, which is of practical
use because it allows to calculate the Lie algebra of a subgroup of G' as a subalgebra
of the Lie algebra of G.

Proposition 1.21. Let H be a Lie subgroup of the Lie group G and let h < g be the
corresponding Lie algebras. Fiz X € g. If X € by, then exptX € H for every t € R.
Conversely, if exptX € H for every t e R, then X € b.

Refining the above result one obtains the next, which is useful when dealing with
the classical matrix groups and algebras.

Proposition 1.22. Let A be an abstract subgroup of the Lie group G and let a be a
vector subspace of the Lie algebra g of G'. Let U be a neighborhood of 0 € g diffeomor-
phic via exp to the neighborood V' of e € GG. Suppose that

exp(Una)=AnV.



Representations of Lie groups 13

Then, endowed with the relative topology, A is a Lie subgroup of G and a is its Lie
algebra.

The set of all n x n real matrices endowed with the bracket [A, B] = AB — BA is
a Lie algebra, and, as any vector space, a smooth manifold with coordinates given by
any choice of a basis. As we have seen in Propositionl.14, the Lie algebra of GL(d, R)
is canonically identified with gl(d,R). The ordinary matrix exponentiation gives rise
to a unique homomorphism from R into GL(d,R)

400 k
o (t4)
(1.17) t et = ;’6 o

that satisfies the properties (1.7) which define the exponential mapping, so that

(1.18) exp A = et
A classic application of Jordan normal forms yields
(1.19) det e = ¢4,

so that the exponential of any square matrix A is an invertible matrix and exp maps
indeed gl(d,R) to GL(d,R). We observe en passant that (1.19) implies that the
exponential maps sl(d,R) to SL(d,R), that is, the Lie algebra of traceless matrices
to the Lie group of matrices with determinant equal to one. For later use, we remark
that (1.17) entails

(1.20) Het) = e

and that for any invertible B

(1.21) Be*B~! = B4

Example 1.23. We show that the Lie algebra of Sp(d,R) is
(1.22) sp(d,R) = {X e gl(d,R) : 'XJ+ XJ =0},

where J is the canonical skew-symmetric matrix defined in (1.2). If X € sp(d,R), the
relation 'XJ = —JX, together with J? = —I and (1.20) and (1.21), implies

HeX)J(eX) = eXJeX = J(Je™ T NeX = Je /XX = Je XX = .
Conversely, we show that if Y = eX € V n Sp(d,R), then X.J+ JX = 0. This can be
done by observing that

J =) J(eX) = XX
implies e Xe’X7™" = I and hence by (1.12)

e~ X — IXIT
Take now a neighborhood U of 0 € gl(d,R) diffeomorphic under exp to the neighbor-
hood V' of I € GL(d,R). Assuming that U is small enough, that is, intersecting it
with —'U = {~7 : Z € U} and with JUJ ! = {JZJ~': Z € U}, which are both open
and contain the zero matrix, we may assume that both —!X and JX.J! belong to
U, where the exponential is a diffeomorphism. Hence —'X = JXJ~!, which amounts
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to XJ + JX = 0. Applying now Proposition 1.22 we obtain the claimed description
of sp(d,R), which can be made even more explicit. Indeed, if

A B
x-|4 plewar.

then

0= %X J 4 JX — [—tCJrC tA+D]

D-A 'B-B
implies that in fact X € sp(d,R) if and only if

(1.23) X = [é _f?A] . B,CeSym(dR).

Example 1.24. Arguing as in the previous example, one can show that the Lie algebra
of the special orthogonal group, namely the compact Lie group

SO(d) = {ge GL(d,R) : 'gg = I, det g = 1},
is the Lie algebra of skew-symmetric matrices
(1.24) so(d) = {X e gl(d,R) : 'X + X = 0}.
Example 1.25. Another basic fact: the Lie algebra of the unitary group
U(n) ={g€ GL(n,C): 'gg = I}
is the Lie algebra of skew-hermitian matrices
u(d) = {X egl(d,C): 'X + X =0}.

1.2.5. Closed subgroups. As the examples at the end of the previous section indicate,
many of the most interesting matrix Lie groups arise by imposing extra equations on
GL(d,R). Since these equations are often of the form F(gy;) = 0 with F : R — R
a polynomial or a rational function of the entries, hence continuous on some open set,
their solutions cut out subgroups that are topologically closed. The closed subgroups
are very special. The first major result is the followimng

Theorem 1.26. (Cartan) Let G be a Lie group and let A be a closed subgroup of G.
Then A has a unique smooth (in fact analytic) structure that makes it a Lie subgroup

of G.

Theorem 1.27. Let G be a connected Lie group with Lie algebra g and let ¢ : G — H
be a Lie group homomorphism of G into the Lie group H, whose Lie algebra is b.
Then:

(i) ker(yp) is a closed Lie subgroup of G with Lie algebra ker(dy);
(ii) ¢(G) is a Lie subgroup of H with Lie algebra dp(g) € b.

An important example of closed Lie subgroup is the center Zg of GG, namely
Zg={9eG:gzg " =z, forallzeG}.

The fact that Zg is indeed closed can either be shown directly (with sequences) or by
using Corollary 1.30 below, which exhibits the center as the kernel of a very important
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homomorphism of G into the automorphisms of its Lie algebra, the adjoint represen-
tation. Observe that, besides being closed, the center Zs is always normal in G, just
as any other kernel of any smooth homomorphism.

Suppose now that H is any closed and normal subgroup of GG, not necessarily its
center. Then G/H has a natural group structure, and it is natural to ask whether it
might be a Lie group. This is indeed the case:

Theorem 1.28. If H is a closed and normal subgroup of G then there exists a unique
manifold structure on the quotient group G/H that turns it into a Lie group. Moreover,
the natural projection p : G — G/H is a smooth surjection.

The projection map p : G — G/H described in the above proposition is thus a
smooth Lie group homomorphism whose kernel is exactly H. Therefore, the closed
normal subgroups always do appear as kernels of smooth homomorphisms.

Many examples of quotient Lie groups can be given. In Chapter 2 below we are
mostly concerned with the Heisenberg group H¢, whose center is isomorphic to R.
The quotient H¢/Z is (isomorphic to) the Abelian group R??.

1.2.6. Adjoint representations. The most important finite dimensional representation
of a Lie group G is certainly the adjoint representation, which acts on its Lie algebra
g. Given any real Lie algebra g, we shall denote by gl(g) the Lie algebra of all
endomorphisms of g with the commutator as bracket and by GL(g) the group of all
non singular endomorphisms of g as a vector space. Hence gl(g) is the Lie algebra
of GL(g). The map X — ad X is a Lie algebra homomorphism whose image is a
Lie subalgebra of gl(g) denoted adg. Let Int(g) be the connected Lie subgroup of
GL(g) whose Lie algebra is adg. The group Int(g) is called the adjoint group of g.
Schematically:

gl(g) «— GL(g)

) )

adg «— Int(g)

where the arrows stand for the correspondence group-algebra. Next, let Aut(g) be the
Lie subgroup of GL(g) consisting of all the automorphisms of g (the invertible Lie
algebra homomorphisms of g onto itself) and denote by dg its Lie algebra. We know
that dg consits of all the endomorphisms D € gl(g) such that exptD e Aut(g) for
every t € R. From exp(tD)[X,Y] = [exp(tD)X, exp(tD)Y], taking the derivative at
t =0, it follows that

D[X,Y] = [DX,Y] + [X,DY].

Any such operator is called a derivation of g. Conversely, if D is a derivation, then by
induction

so that exp(tD)[X,Y] = [exp(tD)X,exp(tD)Y]. It follows that dg consists of all the
derivations of g. Finally, since ad X is a derivation of g for every X € g, we may
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refine the preceeding diagram and get:

ollg) «— GL(g)

dg «— Aut(g)
\ )

adg «— Int(g)
It is easy to see that Int(g) is a normal subgroup of Aut(g) and ad g is an ideal in dg.

Let G' be a Lie group and take g € G. Denote by i4the inner conjugation in G,
namely x — gzg~! and put

Adg:=diy,: g — g.
Since i, is an isomorphism go G it follows that Ad g € Aut(g). The map
Ad: G — Aut(g), ¢g— Adyg

is a homomorphism of Lie groups and is called the adjoint representation of G. As it will
be clear in the sections that follow, Ad is indeed a finite dimensional representation
of G (on a real vector space). On the classical matrix Lie groups, in particular on
GL(d,R) and hence on its closed subgroups, we have

(1.25) Adg(X) = gXg "
Also, the universal intertwining property of exp given in Theorem 1.20 entails:
exp(Ad g(X)) = exp(di, (X)) = i,(exp X) = g(exp X)g ™,
which is a general version of (1.21).
Theorem 1.29. Ad is a smooth map and dAd = ad. In particular, for any X € g
Ad(exp X) = ¥,

Corollary 1.30. The adjoint representation of G is a smooth surjective homomor-
phism of G onto Int(g) whose kernel is the center Zg of G. Hence, G/Zg ~ Int(g)

From the previous result and from Theorem 1.2.5, it follows that the center of a
connected Lie group is a closed Lie subgroup. It then follows again from Theorem 1.2.5
that the Lie algebra of the center of GG is the center of the Lie algebra, namely

3g:{Xeg : [X,Y]zOforallYeg}.

We deduce from this that a Lie group is Abelian (i.e., it has trivial center) if and only
if its Lie algebra is such.
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1.2.7. Semidirect products. Suppose that G and H are two Lie groups and that there
we are given a group homomorphism

7: H — Aut(G), h— T,

such that the map (g, h) — 7,(g) is a smooth map of G x H into H. Hence, for every
h € H the map 75, is an invertible Lie group homomorphism of G onto itself, and
Thie = Tp O Ty, for every h,k € H. It is then possible to define the semidirect product
of G and H. It is the group denoted G x H whose elements are those of G x H and
where the product is defined by

(91, h1) (92, ha) = (9170, (g2), hiha).

It is immediate to check that this is a group law, and indeed smooth, so that G x H
is a Lie group. Inverses are given by

(g.h) " = (mha(g™"), 7).

If we identify G and H with the subsets of G x H given by {(g,e) : g € G} and
{(e,;h) : h € H}, respectively, then both G and H are closed subgroups and G is a
normal subgroup in G x H.

Example 1.31. The most obvious example of semidirect product is the “ax + b”
group. Evidently, H = R,, G = R and 7,(b) = ab. One possible generalization in
higher dimensions is the Euclidean motion group in R?, where H = SO(d) acts in the
natural linear fashion on G = R?.

Example 1.32. Another example of semidirect product is the Poincaré group. Here

H= SO(1,3) = {h € SL(4,R) . th[1’3h = ]1,3},

where
~1 00 0
sLo_|0 100
B=10 010
0 00 1

As G, we take R*. Again, 7,(x) = hx for h e SO(1,3) and z € R?.

Other useful examples of semidirect products will be discussed in Section 2 and also
in Section 3.

Exercise 1.33. This exercise aims at showing what is the sensible notion of semidirect
product of Lie algebras. Let a and b denote two Lie algebras and suppose that we
are given a Lie algebra homomorphism 7 : a — b into the derivations of b. Show
that there exists a unique Lie algebra structure on the vector space g = a + b which
preserves the Lie algebra structures of both a and b, and such that [A, B] = 7(A)(B)
for every A € a and every B € b. Further, show that a is a subalgebra and b is an
ideal in g.
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1.2.8. Haar measure on Lie groups and integration. For Lie groups, left Haar measures
are very easy to construct. One takes any positive definite inner product on the tangent
space at the identity T.G and carries it around with the differential of left translations,
thereby obtainining a Riemannian structure. The corresponding volume form is a Haar
measure. Furthermore, in every local coordinate system, it is given by a C* density
times the Lebesgue measure. We do not appeal here to these facts that go beyond our
scopes, and simply quote a handy result.

Proposition 1.34. If G is a Lie group whose underlying manifold is an open set in
R? and if the left translations are given by affine maps, that is

zy = A(x)y + b(z),

where A(x) is a linear transformation and b(x) € R?, then |det A(x)|~'dx is a Haar
measure on G.

Example 1.35. For example, in the group “ax + b” the left translations are

la) (@, B) = lg 2] [g] i m

so that by Proposition 1.34 we have

d
| det A(a,b)| " dadb = —db.
a

As for the modular function, in any Lie group we have
A(g) = | det Ad(g)[™".

It is possible to realize the “ax 4+ b” group as a matrix group. The reader may check
that the correspondence
a b
v o]

establisehes an isomorphism of “ax+b” with a closed Lie subgroup of GL(2,R), whose
Lie algebra ie easily seen to consists of the matrices

A B
0 0"
The adjoint representation takes the form
a b||A B|la! —ba'| |A —bA+aB
0 1]{0 0 0 1 |0 0

and it is thus the linear map
A o A
B b al||B|’

1 0],- _
A(a,b)=|detl b a}| L=at.

It follows that
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One can check directly with a change of variable that indeed
da da
| stama@m Ga=a| ran) G
R+ xR R+ xR

1.2.9. Convolutions. The convolution of integrable functions defined on R? involves
translations. It is thus suitable for interpretation on any group G on which a reasonable
notion of measure is given, like for example Lie groups. Indeed, if G is a Lie group
with left Haar measure dz and if f,g € L'(G), then the convolution of f and g is the
function defined by

(1.26) frg(x) = L fW)g(y"z)dy

By the left invariance of dx, we have that

[ s o= |

1f(y)
so that, by Fubini’s theorem, f * g€ L'(G) and
1f =gl <1 flxlgl-

The convolution of L' functions can be expressed in several different ways:

(1.27) f fy)g(y~'x)dy

z)| dxdy = || fl1] gl

=, flay)g(y™) dy

= Gf(y‘l)g(yaf)A(y‘l) dy

- Lf(xyl)y@)A(yl)dy.

It must be noticed that, unless the group G is itself commutative, in general the
convolution is not commutative.

Exercise 1.36. Show that on the affine group “ax + b” the convolution is

frgla fRfab) (‘;‘5 )—db

a a?

and verify that it is not commutative.

Exercise 1.37. Show that on any Lie group G and for any f,g € L'(G) one has
Az)(fxg) =) f) =g, pla)(fxg)=f=*(p(x)g),

where A\ and p are the left and right translations, respectively.

The mapping properties of (left or right) convolution operators have been studied
in much detail. We collect here some facts that will be useful. For a detailed proof of
many statements see [4], whereas [14] contains the basic facts. If f,g € LL _(G), if the
convolution f = g defined by (1.26) exists, and if |f| = |g| is in L{_ (@), then we say
that f and g are convolvable.
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Theorem 1.38. Let f,g be two measurable funcions on the Lie group G.

(i) If f e LYG) and g € LP(G) with 1 < p < o, then the integrals in (1.27)
converge for almost every x € G, we have f = ge LP(G) and

1= gly < 171 lglp-

Furthermore, if p = o0, then f =g is also continuous.

(i) If fe LP(G), ge LYG) and g€ LYG) where 1 <p < 4w and 1 < g < +©
satisfy %—ké = 1+% with r > 1, then f and g are convolvable and f+g belongs
to L"(G). Furthermore, if |g|, = |lgl,, then

(1.28) 1f = gle < [flplglle-

(iii) If f € L*(G), g € LY(G) and § € LYG), where 1 <p < +0 and  + 1 =1,
then f and g are convolvable, f =g belongs to Co(G) and

(1.29) 1 gl < £ lplgle-

1.3. Representation theory. Let H; and H, be two Hilbert spaces and suppose
that T : H; — Ho is linear and bounded, that is T € B(Hi, Hz). Recall that T is
an sometry if |Tu| = |ul| for every u € H;. Since |Tul* = (Twu,Tuy = {T*Tu,u)
and |lu|? = (u,u), the polarition identity implies that T is an isometry if and only if
T*T = idy, . Hence, isometries are injective, but they are not necessarily surjective.
A bijective isometry is called a unitary map. If T is unitary, such is also 7! and in
this case TT* = idy, . In particular if H; = Hy = H, the set

U(H) ={T € B(H) : T is unitary}

forms a group. Evidently, U(H) < B(H), the space of bounded linear operators of H
onto itself.

Let now G be a Lie' group.

Definition 1.39. A unitary representation of G on the Hilbert space H is a group
homomorphism w : G — U(H) continuous in the strong operator topology. This means:
i) m(gh) = w(g)m(h) for every g,h e G;

i) m(g7") =m(9)~! =m(g)* for every g€ G;
iii) g — m(g)u is continuous from G to H, for every ue H.

Observe that from the equality |7(g)u — w(h)u| = |7 (hg™')u — ul| it follows that it
is enough to check iii) for g = e, the identity of G.

Example 1.40. Let G = R be additive group and H = C. For every s € R we
define the function y,(t) = € and we identify the complex number e¢®* with the

n all what follows, it would suffice to consider a locally compact Hausdorff topological group.
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multiplication operator on C defined by z — ze". Clearly, x, : R — U(C) is a
unitary representation, because

Xs(z +y) = Xs(2)xs(y)

Xs(—2) = xs5(2) " = X, (@)

t — ez is continuous for every z € C.
Example 1.41. Let G be any locally compact group and choose H = L?(G). Define
(1.30) NiG UMY, g A Af(y) = fa ).

It is easy to check that this is a unitary representation, the so-called left reqular repre-
sentation. Similarly, the right reqular representation is defined by

(1.31) piG—UM), g pay paf(y) = A2)?f(y2).
The modular function is necessary in order that p, is unitary.
Example 1.42. Let G be the “ar + b” group and H = L?(R). Define

(1.32) w(a,b) f(z) = 7 (“;_b), a>00beR

the so-called wavelet representation. Notice that it is just the composition of the two
very important and basic unitary maps

(1.33) Tyf(x) = f(z —b) (translation operator)
(1.34) D, f(x) = \/L& (g) (dilation operator)

for indeed

TL,Dof(x) = To(Daf)(x) = Dof(x = b) = 7 (x . b>

Observe that
TbTb’ = Tb+b’7 DaDa’ = Daa’-
It is important to notice that T,D, + D,T;,. More precisely,

mnﬂw=%ﬂwM9=j%(§—®=7—(

In other words

—ab

):anM-

D, Ty, = TyD,.
It follows that
(Ts3Do)(TyDy) = Ts(DoTy) Dy = T3(Top Do) Do = (T5T01)(DaDy) = Tt apDoa-
so that 7 is a homomorphism:
(e, B)7(a,b) = w(aa, B + ab) = ((a, B)(a,b)).

Finally, it is instructive to check the strong continuity, which is left as an exercise.
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Example 1.43. A variant of (1.32) is the analogous that arises by considering the full
affine group acting on L*(R):

1 x—b
(135) 7Tfu11(a,, b)f(l’) = \/—ﬂf (—) s a e R*, beR
a a
Definition 1.44. Let M be a closed subspace of the Hilbert space H. We say that
M is an invariant subspace for the unitary representation 7 if w(g)M < M for every
g € G. We say that m is irreducible if H does not contain proper non trivial closed
invariant subspaces, that is, closed invariant subspaces other than H and {0}.

Exercise 1.45. Prove that if M is an invariant subspace for 7 then such is also M=+
and that m = my @ mar, where 7y is the restriction of 7 to M and similarly for
M. This means that for every g € G the linear map m(g) is the direct sum of the
linear maps my¢ and 7y, each acting on the appropriate space.

Definition 1.46. Let m be a unitary representation of G on H eand take £&,m € H.
The function G — C defined by g — (&, m(g)n) is called the coefficient of m relative
to (&,m). If & =n, it is called a diagonal coefficient. Notice that all coefficients are
continuous functions and [&,mw(g)n)| < |I€]In] -

Exercise 1.47. Prove that if m; and 7y are equivalent, they have the same coefficients.
Conversely, assume that 7 and 7y are irreducible and suppose that they have the same
non zero diagonal coefficients. Show that 7; and 7y are equivalent. [Hint: take & e &
such that (&1, m1(9)&) = (&, ma(g)&2) £ 0 for all g € G and define U on the elements
of the form £ = Z?zl a;m(x;)& via the formula UE = 25:1 a;ma(z;)Es ]
Proposition 1.48. . The following two conditions for a representation are equivalent

(i) 7 s irreducible

(i) if & and n are non zero vectors in H , then the coefficient {{,m(g)n) is non zero

as a continuous map.

Proof. Suppose that 7 is irreducible and assume by contradiction that we can find
two non zero 7,§ € H for which (¢, 7(g)n) = 0. The space

M, = clir(g)n: g € G}
is a closed invariant subspace, it is not the zero space because n € M, and it cannot be
‘H because & € M# This contradicts the hypothesis that 7 is irreducible. Conversely,
if (i) holds, take any closed invariant subspace M # {0} and take a non zero vector
ne M, so that w(g)n e M for every g€ G. If M # H, then M+ # {0} and therefore

there exists a non zero & € M*. But this entails that (£, 7(g)n) = 0 for every g € G,
contrary to assumption. Hence M = H and = is irreducible. |

Example 1.49. CITARE HEIL WALNUT Using the previous proposition, we
show that the wavelet representation (1.32) of the “az + b” group is not irreducible,
whereas the wavelet representation (1.35) of the full affine group is. The calculations
that follow are very basic and important. We shall use the Fourier transform F, defined

on L'(RY) n L?(R%) by

(1.36) f(&) = Fre) = Rdf(x)e*mf dz.
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A straightforward computation yields
(1.37) F(r(a,0)f)(€) = Vae > f(af), a>0,beR
(1.38) F(maan(a, ) f)(€) = V/]ale *™ f(a8),  acR*beR.

We start with m and show that it is not irreducible. To this end, take two non zero
f,g € L*(R). Then, by Plancherel

f (@ b)f >|2 dadb ) dadb

I<F(7T( 0)f), F9)l
G
? dadb

a?

fR Ve (ag)3(€) de

_( y(fflwa)(—b)\ db@
JG

where w,(€) = f(a€)j(€). Hence, again by Plancherel
da db d
| 1ran ol T = | @ a5

(1.39) = (] 1reor) ok ac

Define now the following (Hardy) spaces:

(1.40) Hi(R) = {fe L’(R): f(§) = 0if £ < 0}
(1.41) H_(R) = {f e L*(R) : f(&) =0if &> 0}.

Now, if we take f e H,(R) and g € H_(R), then the support of g is contained in the
negative reals, so that we may suppose that, in the inner integral in (1.39), a§ < 0 for
every a > 0. Hence a& is outside the support of f for every a > 0. It follows that the
coefficient {(r(a,b)f, g) vanishes and that 7 is not irreducible.

It is actually not hard to show that the Hardy spaces are both closed subspaces of
L*(R) and, by (1.37), that they are both invariant under . This provides a direct
alternative way to see that 7 is not irreducible. The above computations, however,
reveal a lot more than the simple fact that 7 is not irreducible. First of all, if we
restrict 7 to H, (R), that is, if both f,g € H,(R), then since their Fourier transforms
are supported in the positive reals, for any fixed £ > 0 we may make the change of
variable a — a/¢ in the inner integral in (1.39) and obtain

we [ eansor S0 ([ i) ([ e ).

This proves that for f, g € H,(R) both non zero we have {7 (a,b)f,g) # 0 as a contin-
uous function, because neither f nor ¢ can identically vanish. Hence the restriction of
7 to Hy(R) is irreducible. The same holds true for H_(R). We leave it as an exercise
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to show that L*(R) = H, (R)®H_(R) and that 7 = 7, @7_. We observe en passant
that if f e H(R) is such that

+oo da
(1.43) | f@rs -
0 a
then, by Plancherel and (1.42) we have
(1.44) I<m(a, 0) £, )llezey = 9], ®)

and similarly for H_(R). Equation (1.43) is called a Calderén equation and a function
f € Hi(R) that satisfies it is called a wavelet.
Let us now consider the full affine group. A calculation analogous to the previous

one yields
2 dadh i
[ imatensor 40 = | ( [ iaerts )\g@)Pdg
Gtunl R ’ |

This time, for any non zero £, as a ranges in R the numbers aé cover R and the
change of variable a — a/¢ in the inner integral gives

ws) [ el T - ([ i) ([l ).

which cannot be zero if both f and ¢ are not zero. This proves that mg; is an
irreducible unitary representation of Gpy. The Calderén equation for the full affine
group is thus

(1.46) | Fp -1

Definition 1.50. Let © be a representation of G on H. A vector uw € H is called a
cyclic vector for the representation if the closed linear span M, of {m(x)u : v € G}
coincides with ‘H . Clearly, in general, M, is a closed m-invariant subspace of H. The
representation is called cyclic if it has a cyclic vector.

Definition 1.51. Let m; : G — U(H,;), i = 1,2 be two unitary representations of G.
They are called unitarily equivalent if there exists a unitary operator U : Hi — Ho
such that

(1.47) ma(g) o U = U o m(yg), for every g € G.

In this case, U 1is called an intertwining operator between 7, and mw. The set of all
intertwining operators between m and o will be denoted I(my,ms). If My = my = T,
we write Z(mw, ) = Z(m).

Exercise 1.52. controllare se dopo rimane lambda o L Let A be the left regular
representation of R on L?(R), namely \,f(y) = f(y — x), and let p the right regular
representation of R on L?(R), namely p,f(y) = f(y + z). Exhibit a unitary operator
on L*(R) that intertwines p and \.

Exercise 1.53. Let M < H be a closed subspace and denote by P the orthogonal
projection onto M. Prove that M is m—invariant if and only if P € Z(r).
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The next result is of crucial importance in representation theory. For a proof see for
example [15].

Lemma 1.54. (Schur’s lemma.) i) A unitary representation of G is irreducibile if
and only if Z(m) contains only scalar multiples of the identity.

ii) Let m, e my be two unitary irreducible representations of G. If they are equivalent,
then I(my,m2) has dimension one, otherwise I(my,m) = {0}.

Corollary 1.55. Fvery irreducible representation of an Abelian group is one dimen-
sional.

Proof. Suppose that GG is Abelian and take a representation m of . Then all
the operators 7(z) commute and hence are in Z(w). If 7 is irreducible, then m(x)
is a constant multiple of the identity and every one dimensional subspace of H, is
invariant. Therefore H, must be one dimensional. ]

Suppose that G is a Lie group with a unitary representation 7 and that N is a
closed and normal subgroup of G. Then, as we know from Theorem 1.28, the quotient
G/N is a Lie group. If the kernel of 7 contains N, that is, if m(n) is the identity
operator for every n € N, then it is possible to project m to a representation 7 of the
quotient G/N. Indeed, one puts

T(gN) = 7(g)

and obtains a well defined unitary representation of the Lie group G/N on the same
Hilbert space on which 7 was defined. It is easy t see that if 7 is irreducible, then
such is 7

1.4. Square integrability. We are interested in the properties of the coefficients of a
given unitary representation of G. More precisely, we fix a vector v € H and consider
the so-called wvoice transform associated to it, namely

(1.48) Vi :H— L*(G) n C(G)
defined by
(1.49) Vou(z) = vy m(x)u), veH.

Thus, for fixed u, the voice transform maps elements in the Hilbert space H to func-
tions on G that are bounded and continuous, as established formally in Proposition 1.56
below. For reasons that will become clear in what follows, the function

(1.50) K, (z) = Vu(z) = {u, m(x)u)

is of particular relevance, and is called the kernel of the voice transform. By definition,
it is the diagonal coefficient of the representation corresponding to u. Below and in
the remaining part of this article we write

fl@) = fa™)

whenever f is a function on the group G.
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Proposition 1.56. Let m be a unitary representation of the Lie group G on the Hilbert
space H and let we H be a fived vector. Then:

(i) the transforms V,v are bounded continuous functions on G, for all ve H;
(ii) the voice transform V, satisfies V,, o m(x) = A(x) oV, for every x € G;
(iii) w 1s a cyclic vector for w if and only if V, is an injective map of H into
L*(G) n C(G);
(iv) the kernel K, satisfies K, = K, .

Proof. (i) The continuity of x — (v, n(z)u)y follows from the continuity of the
representation (strong continuity implies weak continuity). Boundedness follows from
V()| = Ku, m(z)u)| < o [lu].

(ii) This is just a direct computation that uses the fact that = is unitary, hence
7(y)* = 7(y~'). Indeed:
Vi (m(y)v) () = {r(y)v, m(@)uy = o,y o)uy = Vo(y™'a) = (My)Vao) (2)
(iii) Take v € H. Then
V() =0 = @ n(Juy =0 = ve My,

where the first two equalities refer to the function on GG which is identically zero. Now,
u is cyclic if and only if ML = {0} and this is equivalent to the fact that the only zero
transform V,v is when v = 0, which is the injectivity of V.

(iv) This is immediate, since

K (x) = (um@)uy = (r(e)u,uy = (u,me™ ) = Ky(a7h) = Ko (a).

O

Definition 1.57. Let m be a unitary representation of the Lie group G on the Hilbert
space H . If there exists a vector u € H, called admissible, for which the corresponding
voice transform takes values in L*(G) and is an isometry, that is, if

(1.51) Vi H — L*(G), Vool = v

for every v e H, then we say that the system (G, m,H,u) is reproducing, or, for short,
that u is an admissible vector for .

By the polarization identity, the isometry property ||V, v|| = |v| is equivalent to
(1.52) Vv, Vyw)e = (v, w)y, v,we H,

where we have stressed that the first inner product is in L?*(G) and the second in
H. We observe en passant that if v is an admissible vector for 7, then it is a cyclic
vector for . This is because if V,, is an isometry, then it is injective on H and (iii) of
Proposition 1.56 applies.

In the literature, the notion of reproducing system is primarily studied when 7 is
irreducible. If this is the case, and if 7 admits an admissible vector, then one says
that 7 is square integrable. Since in many important examples in analysis one has non
irreducible representations, we allow for this situation to happen.
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Many relevant properties concerning reproducing systems are expressed efficiently
with the notion of weak integral. We do not develop this theory in full here, but simply
record what is needed to us. Suppose that ¥ : G — H is a continuous map and
suppose further that for any v € H the integral

L@(x), vy da

is absolutely convergent for every v € H. Then, as a consequence of the closed graph
theorem, the mapping v — {,(¥(z),v) dx defines a continuous linear functional on #.
We collect these two properties by saying that W is scalarly continuously integrable.
Then by the Riesz representation theorem there exists a unique element in H, denoted

JG U (z)dz

and called the weak integral of ¥, for which
(1.53) <J U (z)dz,v) = f (U(x),v)yde, veH.
G G

Proposition 1.58. Suppose that (G,m,H,u) is a reproducing system. Then the re-
producing formula

(1.54) v = JG@, m(z)uym(z)udx

holds for v e H, where the right hand side is interpreted as weak integral. The adjoint
of the voice transform is given as weak integral by the formula

(1.55) V¥ = fG F(z)n(z)ude, Fe L*(Q)

and V¥V, =idy.

Proof. Since the voice transform V, maps H into L?(G) by assumption, and since
it satisfies the isometric property (1.52), for every w € H we have

(1.56) f (o, m(x)u)n(z)u, w) de = J Voo(z)Vyw(z) de
: = <‘(;uv, V,w)
= (v, w).
This shows that the continuous mapping V¥, : G — H defined for fixed v € H by
(1.57) U, (z) = v, m(z)uym(x)u

is scalarly continuously integrable, because w +— (v, w) is well defined and continuous.
Hence ¥, is weakly integrable, and the weak integral of ¥, must be equal to v because
(1.56) entails

(| Wy dowy = o0
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for every w € H. This establishes (1.54). As for (1.55), we notice that for any
F € L*(G) the continuous mapping @ : G — H defined by ®p(z) = F(z)7(z)u is
scalarly continuously integrable because

L<F(x)7r(x)u, w) d — L Fla)Vow(a) dz — (F, Vo).

Formula V*V,, = idy follows from (1.55) applied to F' = V,v and from (1.54), for

ViV, = J
G

Vov(z)m(x)udr = J (v, m(x)uym(z)ude = v.
G
O
Before we proceed further, some comments are in order. The first observation con-
cerns the geometric interpretation of (1.54). The mapping V¥, defined in (1.57) asso-
ciates to = € G the projection of v along 7(x)u. The reproducing formula (1.54) then
expresses the fact that we can recover any element v € H by gluing all its projections
with an integral, so that in some sense the collection of all the vectors {7 (z)u : z € G},
called the orbit of u under G, consists of sufficiently many “directions”.
Secondly, the weak integral (1.55) that defines the adjoint of the voice transform is

at times referred to as the Fourier transform of F' evaluated at u, and is written
(1.58) VIEF = m(F)u.

A third comment concerns general properties of isometries. As already mentioned
in the beginning of Section 1.3, a bounded linear operator T" : ‘H; — H, between
Hilbert spaces is an isometry if and only if 7*T = idy,. Thus, the last statement in
the previous theorem is in fact a simple consequence of the fact that V,, is an isometry.
Furthermore, if T' is an isometry, then TT* is the projection onto the range of T, for
TT* is selfadjoint and idempotent.

Example 1.59. The following is an important example of reproducing system: the
(irreducible) wavelet system that was discussed in Section 1.49. We consider the full
affine group “ax +0", where a is any non zero real number and b € R. The representa-
tion 7y is defined in (1.35) and the representation space is H = L*(R). If f € L*(R)
satisfies the Calderén equation (1.46), then (1.45) becomes

da db
f g, mrn(a, )P
Grull

2
a
which shows that the voice transform V;, whose explicit form is given by

1 x—b
Vigla.t) = —— [ gto)f ( ) dr
Vlal Jr o
is indeed an isometry of L*(R) into L?(G). Thus, the Calderén equation (1.46) se-
lects the admissible vectors for the wavelet representation, namely the wavelets. The
reproducing formula (1.54) is often written as:

(159 oa) = || visa ) TDu s

The reader is referred to [9, 16, 21] for further reading on this very wide topic.

= | gl3.

dadb

a?
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The next result describes this operator as a convolution with the kernel K.

Proposition 1.60. Suppose that (G, 7, H,u) is a reproducing system. Then the pro-
jection onto the range of the voice transform is given by

(1.60) VLVEF = F « K,, Fe L*(Q).
In particular, K, is a convolution idempotent, that is
(1.61) K,=K,*K,.

Proof. First of all, notice that K, = V,u € L*(G) and K, = K, € L*(G), so that,
by (iii) of Theorem 1.38 (with p = ¢ = 2), the convolution F' = K, is well defined for
every I € L*(G). Therefore, taking into account the various properties, we have

Vu(Vi F)(x) =V, F m(x)u)
= (F, Vi(m(z)u))
= (F, Nz)V,u)
= (E A\ (@) K

- | PR

_ L F(y)Kuly™'z) dy
= F =« K,(x).

The second statement is obvious, because K, is of course in the range of V,, and hence
coincides with its projection onto the range. O

1.5. Unbounded operators. In this section H is a fixed Hilbert space. We say that
T is an operator on H if it is a linear map defined on a linear subspace D(T) < H,
called its domain with image R(T) = H, another linear suspace called its range. It is
not assumed that T is bounded or continuous. Of course, if T is continuous, then it
has a continuous extension on the closure of D(T') and hence on H. In other words,
in this case T is the restriction to D(T') of some T € B(H). The graph of T in H x H
will be denoted G(T"). Observe that a linear map S is an extension of 7" if and only
if G(T') = G(S5), so that in this case we may write 7' < S. An operator is called closed
if such is its graph. The closed graph theorem asserts that 7" € B(H) if and only if
D(T) =H and T is a closed operator.

Next we define the adjoint of 7', denoted T*. Its domain D(T™*) consists of all the
vectors y € H for which the linear functional
(1.62) x> Tz, y)

is continuous on D(T"). Thus, if y € D(T*), then the Hahn-Banach theorem allows
us to extend the functional in (1.62) to a continuous linear functional on H and hence
there exists an element, denoted T™*y for which

(1.63) (Tz,yy = {x,T"y), x € D(T).
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Clearly, T*y is uniquely determined by (1.63) if and only if D(T) is dense in H. We
shall then define T only for the densely defined operators T'.

Exercise 1.61. Show that if 7" is a densely defined operator, then 7™ is an operator
on H. Prove further that if T e B(#), then the definition of 7% coincides with the
usual one. In particular, D(T*) = H and T* € B(H).

Exercise 1.62. Let R, S and T be operators on H. Prove the following relations:

D(S+T)=D(S)nD(T);

D(ST) = {zx € D(T) : Tz € D(S)};
(R+S)+T=R+(S+T);
(RS)T = R(ST);

(R+S)T = RT + ST}

TR+TS cT(R+S).

Exercise 1.63. Let S, T and ST be densely defined operators on. Prove that then
T*S* < (ST)*. Furthermore, if S € B(H), then T*S* = (ST)*.

Definition 1.64. An operator on H is said to be symmetric if for every x € D(T)
and y € D(T)

(1.64) (T, y) = (x,Ty).
The symmetric densely defined operators are those for which
(1.65) Tc T

If T =T%*, then T is called selfadjoint. Finally, we say that T is skewadjoint if iT is
selfadjoint.

Observe that a bounded operator is symmetric if and only if it is selfadjoint. In
general this is not true. Furthermore, if D(T') is dense and (T'z,y) = {(x, Sy) for every
x € D(T) and every y € D(S), then S < T*.

Example 1.65. Let H = L?([0,1]) with the Lebesgue, measure, and put:
D(Ty) = {fe AC[0,1] : f'eL?}
D(Tz) = D(Th) n {f : f(0) = f(l)}
D(T3) = D(T) n{f : f(0) = f(1) =0},

where A.C.[0, 1] is the space of absolutely continuous functions on [0, 1]. Define next
T.f =if', feD(Ty), k=1,2,3.
It is not hard to show that
TF =Ts, Ty =T, T;="T.

Since clearly T3 < Ty < T}, it follows that T3 is a selfadjoint extension of T3, which is
symmetric but not selfadjoint, and that the extension T} of T, is not symmetric.
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We now discuss a phenomenon that is relevant in the representation theory of the
Heisenberg group. Take again H = L*([0, 1]) as above and consider Df = f' on D(T3)
and M f(t) =tf(t). It is immediate to check that (DM — M D)f = f, that is

(1.66) DM — MD =1,

where [ is the identity on the domain of D. Thus, the identity appears as the commu-
tator of two operators, only one of which is bounded (| M f|2 < || f|l2 because ¢ € [0, 1]).

One can legitimately ask if it is possible to realize an equality like (1.66) with two
bounded operators. The answer is negative, not only in the Banach algebra B(H) but
in any other Banach algebra with unit. The very elegant proof of the proposition that
follows is due to Wielandt.

Theorem 1.66. Let A be a Banach algebra with unit e. If x, y€ A, then
xy —yr £ e.

Proof. Suppose that xy — yx = e and let us make the inductive assumption

Iny - yxn _ na:nfl’

which is true for n = 1. Then

"y — ya"t = 2" (zy — yx) + (2"y — ya")x

= 2" +nz" lz

= (n+1)a",

so that the relation is true for all positive integers n. It then follows that

" =

nlz la™y — ya™[| < 2l2"y] < 2" =[]yl

that is n < 2|z||y|| for every n. This is impossible. ]

1.6. Stone’s theorem and the differential of a representation. In this section
we state Stone’s theorem, an infinite dimensional analogue of the fact that the Lie
algebra of the unitary group is the skew-hermitian matrices. We then explain how to
any unitary representation of a Lie group G there corresponds a representation of its
Lie algebra by “skew hermitian”, i.e. skewadjoint, operators.

Definition 1.67. A one parameter group of operators on H is a family {U; : t € R} <
B(H) that satisfies

1) UO = [,'

ii) Uirs = UUs;

iii) limy_o U — x| = 0 for every x € H

If 7 is a unitary representation on H of the Lie group G with Lie algebra g, then
for any fixed X € g the family {U; = w(exptX) : t € R} is a one parameter group of
unitary operators on H.

In analogy with the case H = C, in which every differentiable function such that
f(s+t) = f(s)f(t) is of the form f(t) = e with a = f'(0), it is possible to associate to
any one parameter group of operators a “generating” operator, in general unbounded,
as explained in the definition that follows.
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Definition 1.68. Let {U; : t € R} be a one parameter group of operators on H and
let D(A) denote the subspace of H consisting of the vectors x € H for which
Ux — x

(1.67) 11_1)% ;

=: Ax

exists in the norm topology of H. The operator A (necessarily linear) defined on D(A)
by (1.67) is called the infinitesimal generator of the group.

Below is the classical statement of the celebrated theorem by M.H. Stone. For a
proof see for instance [20].

Theorem 1.69. (Stone’s theorem) Let {U;} be a one parameter group of unitary
operators on H. The infinitesimal generator A of {U;} is densely defined on H and
s skewadjoint. Conversely, if A is a densely defined operator on H and is skewad-
joint, then there exits a unique one parameter group of unitary operators on H whose
infinitesimal generator is A.

Let’s go back to the case when H is the space on which the unitary representation

7 of the Lie group G acts. By means of (1.67), we define the differential dm on g as
tX)r —

(1.68) dr(X)z — lim TR =

t—0 t

which we sometime write as

(1.69) dr(X)z m(exptX)w.

~ dth=o

Our next objective is to show that dm indeed defines a representation of g, that is, to
make sure that the various operators dm(X) can be properly composed and satisfy

dr([X,Y]) = dn(X) odrn(Y) —dn(Y) o dn(X).
We must therefore study the domains D(dn(X)).

Recall that a function f defined on an open € € R? with values in H is differentiable
at xg € § if there is a linear map df,, : R? — H, necessarily unique, such that

lim f(ZL‘) B f(IL‘()) B dfxo(x B l’o)

== | = o

=0,

where | -| is any norm in R%. The map df,, is then the differential of f at xq. If f is
differentiable at all points of 2, then x — df, is a map from  into End(R?, #H). The
latter is, in turn, is a topological vector space in a canonical way. We then say that f
is of class C' if x — df, is continuous, of class C? if z + df, is of class C', and so
on. We say that f is of class C® if it is of class C* for all k.

The notion of C'® map is clearly local and applies to the case of maps defined on a
Lie group G with values in H. The following result establishes an analogue of formula
(1.10) adapted to this setup.
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Proposition 1.70. Let G be a Lie group with Lie algebra g and take X € g. If
F:G—H isa C® map with values in the Hilbert space H, then the map

F X)—F
(1.70) g X,F = lim (geXptt) (¥)

1s also of class C'*.

Proof. The composition (g,t) — (g,exptX) — gexptX — F(gexptX) is C*.
Hence, its partial derivative with respect to ¢ at zero is C'° with respect to g. m]

We can finally introduce the space on which the operators that arise from the dif-
ferential of a unitary representation of a Lie group are naturally defined.

Definition 1.71. Let w be a unitary representaiton of the Lie group G on H. An
element & € H is called a C* -vector for m if g — 7w(g)¢ is of class C* on G. The
space of C® -vectors for m will be denoted C* (7).

Theorem 1.72. Let m be a unitary representation of the Lie group G on the Hilbert
space H. For any X € g, dn(X) sends C*(w) into itself and

(1.71) dr([X,Y])E = (dﬂ(X) odrn(Y) —dn(Y) o dw(X)){', £ e C%(n).

From Theorem 1.72 it is easy to derive the following facts.

Proposition 1.73. Let m be a unitary representation of the Lie group G on the Hilbert
space ‘H and let g denote the Lia algebra of G. Then:

i) for every X € g, the operator dn(X) is skew symmetric on C*(w);
ii) for every ge G, m(g) sends C*®(w) into itself ;
iii) for every g € G and every X € g the formula w(g)dn(X)w(g9)™' = dr(Ad gX)
holds.

We conclude this section with a crucial result, which implies that the operators
dm(X) are densely defined on H. For a proof, see for instance [18]

Theorem 1.74. Let w be a unitary representation of the Lie group G on the Hilbert
space ‘H. The space C*(m) is dense in H.
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2. THE HEISENBERG GROUP AND ITS REPRESENTATIONS

2.1. The group and its Lie algebra. We shall denote by H? the Heisenberg group,
namely the smooth manifold R? x R? x R endowed with the product

(2.72) (g2, 0)(d, P, t) = (g+d,p+ 9t +1 — (‘" = 'pq)).

Let w: R* x R?? — R be the standard symplectic form given by (1.2), that is

(2.73) w(z, ') ="rJ2,

Upon writing @ = x4y, = ‘[¢,p] € R*, we may formulate (2.72) in terms of the

symplectic form, namely:
(2.74) (2, ) (& t) = (x4 2t + 1 — %w(x, ).

It is clear from (2.72) and (2.74) that the product in H¢ is given by functions that are
C* in the global R?¢*! coordinates (q,p,t). Furthermore, one checks at once that

(:L‘, t)il = (—:L', _t)a

another C* formula. Hence H? is a Lie group.
Observe that H! can also be seen as a particular group of symplectic matrices, that
is, a subgroup of Sp(2,R), in the sense of (1.1). Indeed, if we put

1 0 0 0
B P 1 0 0
—q/2 0 0 1

then it is easy to check that the very same product formula as in (2.74) holds true.

Exercise 2.1. Prove that the center of H? is Z = {(0,¢) : t € R}. Show that the
quotient group H?/Z is isomorphic to the Abelian Lie group R??.

Exercise 2.2. Write explicitely the inner conjugation i,(h) = ghg™.

Exercise 2.3. Prove that L; = {(¢,0,t) : ¢ € Ryt € R} and Ly, = {(0,p,t)
p € Rét e R} are two Lie subgroups of H? which are mutually isomorphic but not
conjugate.

Exercise 2.4. Check that the matrices in (2.75) are in Sp(2,R) and that they satisfy
the product law (2.74).

Exercise 2.5. Extend the embedding (2.75) to arbitrary dimension.

We next want to identify the Lie algebra h? of H? in terms of left invariant vector
fields. To this end, fix (¢,p,t) € H? and f € C*(H?) and consider the smooth curve
¢;(s) = (se;,0,0), with s € (—e,¢), where e; denotes the j—th unit coordinate vector
in RY. Then

d

d 1
% Szof((q7pat)(sejﬂ0>0) = 5 f(q+3€j>p7t+_8pj)

dsls=0 2
of

1 of
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Hence, the equivalence class of the curve ¢; at (q,p,t) is the differential operator

0 N 1 0
6qj (g,p,t) 2pj ot (g:pyt)

An analogous calculation with the curves p;(s) = (0, se;,0) and ¢(s) = (0,0, s) shows
that a basis for h? is given by the vector fields {Q1,...,Qq, Py, ..., Py, T}, where

o 1 0
= = i=1,....d
0 1 0
P=— — —q— =1,....d
Vi ap] quﬁt’ j ? Y
0
T="2.
ot

It is also straightforward to check that
[Qj, Pr] = =0T, g k=1,....d

[QJ7T]:[‘IDJ7T]:O7 .]:177d

the celebrated Heisenberg commutation relations. Therefore, identifying R??*! with
he via the map (v1,...,2q,91,...,Ya, 2) — Z;l:l(ijj + y;P;) + 2T, we obtain the

following Lie algebra structure on R24+!:

(2.76) (X, 2), (X", 2")] = (0, —w(X, X")).

From this commutator rule, one sees immediately that [A, [B,C]] = 0 for every choice
of A, B and C in h?. Similarly, any higher order bracket vanishes. This fact is
expressed technically by saying that ¢ is a two-step nilpotent Lie algebra. The Baker—
Campbell-Hausdorff formula (1.13) becomes A, B € h?

expAexp B = exp(A + B + %[A, B])
and since for A = (X, z2) and B = (X', 2/) it holds
A+ B+ %[A, Bl=(X+Xz2+7— %w(X, X)),
which coincides with the product (2.74), we infer that

(2.77) exp(X,2) = (X, 2) for every (X, z) e R**1,

This simply says that the exponential mapping is nothing else but the identity map of
R24*1 when we identify the latter with h? on the one hand and with H? on the other
hand.

Exercise 2.6. Prove that the adjoint action of H? on h¢ is given by

(2.78) Ad(y, s)(X,t) = (X, t —w(y, X)).
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Automorphisms. Given a Lie group G with Lie algebra g it is often interesting
(and many times difficult) to understand their automorphism groups. Recall that an
automorphism of the Lie group G is an invertible group homomorphism. Unravelling
the definition, this means a bijective smooth map ¢ : G — G preserving products,
namely satisfying ¢(zy) = ¢(x)¢(y) and p(e) = e. The collection of all such maps is,
in turn, a group under composition, denoted Aut(G). Under favorable circumstances?,
and surely this is the case for H?, the group Aut(G) has itself a natural structure of
Lie group, though we shall not insist on this. Notice that since we have identified H¢
with R?¥*! we are in fact looking at maps ¢ : R?+! — R2d+1

Similarly, one may consider the automorphisms of g, namely the bijective linear
maps ® : g — g satisfying ®([X,Y]) = [®(X),®(Y)]. As we know, they form a
group, denoted by Aut(g). Since its elements are linear maps, Aut(g) is in fact a
(closed) subgroup of GL(d,R) in a natural fashion, where d is the dimension of g.
Hence Aut(g) can be given the structure of a Lie group without problems. Also, the
differential dy of any ¢ € Aut(G) is easily seen to belong to Aut(g). This accounts
for an immersion of Aut(G) into Aut(g) whenever G is connected. When looking at
the Heisenberg group, things are even nicer than this, and the following results show
exactly how. Very clear proofs of the statements that follow can be found in [15].

Proposition 2.7. Aut(H?) = Aut(h?).

It is actually possible to give an explicit description of the automorphisms of H¢. It
is immediate to see that each of the following families of maps are automorphisms:

(i) Symplectic maps: For any A € Sp(d,R), ([Z] ,t) — (A LZ] ).

(ii) Inner automorphisms.

(iii) Homogeneous dilations: For any a € R, , d,(z,t) = (ax,a’*t). Observe that
for any a,a’ > 0 it holds 6,04 = 0ga -

(iv) Inversion: (¢, p,t) — (p,q,—t).

We shall momentarily denote by G the automorphism group generated by the
trasformations of type j, with j € {(), (i7), (iii), (iv)}.

Theorem 2.8. Every automorphism of H? can be written uniquely as ojasosoy , with
a; € Gj .
It is important to observe that the only automorphisms that leave the center fixed

are those of the kind (7) e (i7). We shall denote by T the group generated by them.

Exercise 2.9. Define the semidirect product R?*? x Sp(d, R) as the set R?? x Sp(d, R)
endowed with the product

(x, A)(z', A") = (z + Az, AA").

2As it was shown by Hochschild in 1951, it is enough that the group of components of G is finitely
generated.
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Show that the map (x,A) — W, 4y, where

\I[(m,A) (?/, t) = Z‘(z,O) (Ayv t)a (l’, 0)7 (yv t) € Hd

defines an isomorphism of R??x Sp(d, R) with 7. Define further the semidirect product
H¢ x Sp(d,R) via the formula

(279) (0,0 A (&', #); A') = (2, 0)(AL, £); AL,
Calculate its center Z and prove that H¢ x Sp(d,R)/Z is isomorphic to R?? x Sp(d, R).

Exercise 2.10. Consider the symplectic matrix

1 0 0 0
0 d 0 —2¢
0 —b2 0 a

where ad — bc = 1, so that

A= [Z Z] € SL(2,R).

Using the embedding (2.75), show that ©ag(q,p,t)¢," = g(¢’,p',t) where

-1 alB)

Thus the automorphisms of type (i) of H' can be realized inside Sp(2,R) as conjuga-
tions. The six dimensional subgroup of Sp(2,R) generated by the matrices g(q,p,t)
and @4 is the so-called Jacobi group. Show that the Jacobi group is isomorphic to
the semidirect product H' x SL(2,R) of Exercise 2.9 for d = 1, where the group law
is given in (2.79). More on the Jacobi group is to be found in [3]. A classification
of its subgroups up to conjugation is given in [12]. From the point of view of square
integrability issues, it has been studied in [13].

Exercise 2.11. Show how to realize the automorphisms of type (ii) inside Sp(2,R) as
conjugations.

Exercise 2.12. Consider next the symplectic matrix

al 000
0 100
A“:00@0
0 00 1

Prove that A,gA;! = d,(g) for every g as in (2.75). Thus, also the automorphisms of
type (iii) of H' can be realized inside Sp(2,R) as conjugations. The four dimensional
subgroup of Sp(2,R) generated by the matrices g(g,p,t) and A, is isomorphic to the
so-called extended Heisenberg group. The latter is the Heisenberg group extended by
the group of homogeneous dilations, namely the semidirect product H¢ x R, where
the product is

(h,a)(h',a") = (hd.(h'),aa").

Exhibit the explicit isomorphism.
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2.2. The Schrodinger representation. Let m be a unitary and irreducible repre-
sentation of H¢ on the Hilbert space . Then all the operators 7(0,0,t) are in Z(7)
because the center of H¢ consists of the elements of the form (0,0,¢). Schur’s Lemma
implies that there exists a complex number of modulus one, denoted x(t), such that
(2.80) 7(0,0,t) = x(t)In.

Therefore the function ¢ — x(¢) is continuous from R into T and satisfies the equality
X(s+t) = x(s)x(t). Thus there exists a unique A € R such that

(2.81) x(t) = e

Now, if A = 0, then 7(0,0,¢) = I3, so that Z < ker w and the representaion 7 projects
onto a representation 7 on the quotient H?/Z ~ R2?. The representation 7 is still
unitary and irreducible. But R?? is Abelian and hence, by Corollary 1.55, dimH = 1,
namely H = C. Therefore, there exists a unique vector (£,7) € R?? such that

ﬁ(x, y) _ ei(é-r+n-y)jc

and hence 7 acts on C as

(2.82) m(z,y,t)z = &) 4,

Consider next the case A + 0. From (2.80) e (2.81), taking the differential, it follows
(2.83) dr(T) = i\y.

In particular dn(T) is a bounded operator. But we also know that for every j = 1,...,d

we have [Q;, Pj] = =T, so that necessarily
[dr(Q,), dn(P})] = —dn(T) = —iXly.

By modifying Theorem 1.66 in the case of a multiple of the identity (the details are
left as an exercise) we see that the operators dm(Q;) and dm(P;) cannot be both
bounded and, in particular, the representation space H cannot be finite dimensional.
In conclusion, every unitary and irreducible representation of H? which is not trivial
on the center is necessarily infinite dimensional.

The next step consists in looking for the unitary and irreducible representations of
H? that are not trivial on the center. The most natural way to go about it is to
compare the commutation Heisenberg relations with (1.66). We shall start from a very
natural representation of the Lie algebra h? and then use some heuristics, together
with Stone’s Theorem, in order to get the corresponding representation of the group.
To this end, we introduce a useful Lie subalgebra of the Lie algebra of all differential
operators with polynomial coefficients on R¢.

Let PD(R?) denote the vector space of all differential operators with polynomial
coefficients on R?. Under composition, it is an associative algebra generated by the 2d
elements

0

D, = ——
J (9.13]'

As any other associative algebra, PD(R?) becomes a Lie algebra if we define the bracket
as the commutator, that is [A,B] = Ao B — Bo A. The generators D; and M,

R Mj = (27T’i).§(fj, ] = 1,. .. ,d.
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together with the operator “2mwi—times the identity”, give rise to a finite dimensional
Lie subalgebra of PD(R?) which is isomorphic to h?. Indeed, the correspondence
D; — Qj, M; — P; and (2mi)] — T establishes the isomorphism. This isomorphism
is actually a faithful (i.e. injective) representation of the Heisenberg algebra and should
be thought of as the differential of the representation we are looking for. In order to
find the representation space, it will then be enough to find a Hilbert space of functions
on R? on which the operators we are dealing with are skew-adjoint. Finally, we shall
exponentiate the representation of h?.

Let H = L*(R%) and D = S(R?), the Schwartz space of rapidly decreasing functions.
Both the derivations D; and the multiplications M; are densely defined on H since
D is a natural common domain for them, which is dense in H. The operators are
formally skew-adjoint because for every ¢, € S(R?) we have

<MJ%¢> = _<907Mj¢>7 <DJ<P7¢> = _<907Dj¢>7
where we are using L? inner products and, in the second, integration by parts.

Observe that it is not necessary to specify the skew-adjoint extensions of M, and
of D;. It will be sufficient to exhibit one-parameter groups of unitary operators on
L?*(R%) whose infinitesimal generators extend our operators, for Stone’s Theorem guar-
antees that these groups are the appropriate ones. Consider then the following formal
computation:

I
s
<
E
=
=
&

exp(tD;) f(x) -
I 10
= f(x —tej)

Similarly,
exp(tM;) f(x) = €™ f(x).
It is also quite clear that the operators
Ut(])f(x) = flz —te;), V;(])f(x) _ 62mmjf(x)
give rise to one-parameter groups of unitary operators on L2(R%).

Exercise 2.13. Prove that the Schwartz space S(R?) is contained in the domain of
the infinitesimal generators of {U)} and {V;%'}.

From the previous computations, it is natural to set:

7(q,0,0)f(z) = f(z —q)
(2.84) m(0,p,0)f(z) = ¥ f(x)
7(0,0,t) f(x) = 2™ f(x).
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Finally, since for every (¢, p,t) € H? we have

1
(Q7p7 t) = <O7 07 t— §q : p)(07p7 0)((]7 07 0)7

by composing the various (2.84) we obtain
(2.85) (g, p, 1) f(x) = e TIPSR (1 — q).

It is now elementary to check that (2.85) defines a representation of H?, called the
Schrodinger representation. While it is clear that the thus defined operators are unitary
because they are compositions of unitary operators, irreducibility requires some extra
work. Reall that for us the Fourier transform is as in (1.36).

Theorem 2.14. Formula (2.85) defines a unitary irreducible representation of H® on
L*(RY).

Proof. In order to show that 7 is continuous in the strong operator topology it is
enough to prove that if (¢,p,t) — (0,0,0), then 7(q,p,t)f — f in L?*(RY) for every
f e L*(RY). Now,

(|, @@ = ) ) = ([ e=mmmsmve o= g) - fo)f ar)

R4

NI

[N

< (Ld |€27rit—7riq~p+27rip~z _ 1|2|f<l')|2 dl‘)

1
w10 - ra)f i)’
and both summands tend to zero as (¢, p,t) — (0,0,0).

Let’s show irreducibility. Take a closed subspace M < L*(RY) and suppose that it
is m—invariant. If f € M, then the translate 7,f = 7(¢,0,0)f in also in M. If P is
the orthogonal projection onto M, then P commutes with translations. Hence there
exists a multiplier m € L*(R?) such that

(2.86) FP)E) =m(EF[(E).

Since P2 = P, then also m? = m. Upon considering (0, p,0), one sees that P
commutes also with multiplication by any of the characters e,(z) = ¢*™7*. Therefore,
from (2.86) we infer

FLP(ep)IE) = m(&) Flepf1(€) = m(E)FF(€ = p),
FlepPf1(§) = FIPf1(§ —p) = m(§ —p)Ff(€ —p),
which yield
m(&) = m(§ — p), for every p € R%.
Hence m is constant and since m? = m it must be either m = 0, that is M = {0}, or
else m = 1, that is M = L*(RY). O

By means of formulae (2.85), we have build a unitary and irreducible representation
7 of H¢ for which 7(0,0,t) = e*[;,, that is, recalling (2.80) and (2.81), the repre-
sentation corresponding to the case A = 27. It is now easy to define a representation
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corresponding to the real number A\ = 27h, with h € R\{0}. It is enough to put
(2.87) 7n(q, p, 1) f(x) = 7(hq,p, ht) f(x) = 2 Me ™IMP2TPT (4 hg).

The non zero real number A that labels the Schrodinger representation 7, is known
as Planck’s constant. For comments concerning the physical meaning of h see [15].

Exercise 2.15. Check that 7, is a unitary and irreducible representation of H¢ for
every h # 0, and that if A & A’, then the corresponding representations are inequiva-
lent.

The following celebrated theorem by M. Stone and J. von Neumann is of fundamental
importance in harmonic analysis: it states that the representations that we have built
so far exhaust, up to equivalence, the class of unitary and irreducible representation of
H?. For a proof, see, for example, [15].

Theorem 2.16. (Stone—von Neumann) Every unitary and irreducible representa-
tion of H? is unitarily equivalent to either one of the one-dimensional representations
(2.82), or to a Schrédinger representation m, defined in (2.87).

It is worth observing that the determination of the Planck’s constant is very simple:
just compute the representation on the central elements (0,0,t): by (2.87) this must
be just e2™].

2.3. Time-frequency analysis. In this section we indicate the basic role that the
representation theory of the Heisenberg group plays in time-frequency analysis, in
particular in the study of the so-called short-time Fourier transform (often abbreviated
in STFT). The basic reference on this topic is the book [16].

We first introduce some basic ingredients of time-frequency analysis and then show
the connections to the representation theory of the (reduced) Heisenberg group. The
basic issue is that the STFT can be viewed in the framework of reproducing systems,
as discussed in Section 1.4 In order to stress the link between the STFEFT and the
representation theory of the Heisenberg group, we follow the convention of denoting by
x or ¢ the spatial variable of functions (or time for d = 1) and by £ or p the frequency
variable. Also, we indicate with a dot the scalar product in R¢.

2.3.1. Short time Fourier transform. The most basic operations in time-frequency anal-
ysis are the shifts in time and in frequency. For ¢,p € R? and f : RY — C, we define
the time shift by

(2.89) T,f) = fo—q), qreR
and the frequency shift by
(2.89) M,f(€) = ¥4 f(€), & peR™

It is a matter of simple computation to establish a version of the canonical commutaion
relations, namely

(2.90) T,M, = e ™ P M,T,.
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It follows in particular that 7T and M, commute if and only if ¢-p € Z. Furthermore,

writing f for the Fourier transform Ff defined in (1.36), and using the well-known
properties of Ff, we have the formulae

(2'91) (qu)AZ M—qf» (Mpf)A: Tpf-
From these it follows what is to be regarded as the most important formula in time-
frequency analysis, namely

(2.92) (Tquf)A: M—quf = ei%iq'prM—qJEa
whose proof is is left as an exercise.

The short-time Fourier transform is a mathematical device that is meant to capture
the local contributions to the Fourier transform of a given function: one restricts the
function to a small intervall by a cut-off function (preferably some smooth window)
and then takes the Fourier transform; by sliding the interval, one sees what are the
various contributions from different regions of the time domain. Formally, we have:

Definition 2.17. Let n & 0 be a fived window, that is, a function defined on R?. The
short-time Fourier transform of the function f : R4 — C with respect to n is defined

by

(2.93) S,0(0) = | S ge s qpeR
R

whenever the integral makes sense.

A most fundamental observation is that the STFT is a function on the so-called
phase-space, namely the 2d-space R?? in which times and frequencies simultaneously
lie. In other words, it is a function of time and frequency. The time variable labels
the “center” of the window and the frequency labels the point at which the Fourier
transform is evaluated.

At this stage we do not insist much on the precise domains for 7 or for f. The most
basic properties of the STFT are given in the result that follows. The proof is easy.

Proposition 2.18. If f,ne L?*(RY), then S,f is uniformly continuous in R* and

(2.94) Snf(a:p) = F(f - Tm)(p)
(2.95) = {f, MpTym)

(2.96) = {f, T, M)
(2.97) = e 9P S, f(p, —q)-

Some comments. Formula (2.94) says what the STFT really is, the Fourier trans-
form of a localized version of f. Formulae (2.95) and (2.96) indicate that it looks
formally like the coefficient of some representation. Formula (2.97) exhibits a most
intriguing symmetry in time and frequency, together with a ninety-degree rotation
(¢,p) — (p, —q) in phase-space (given by the action of the matrix .J).

In the next three results we state some of the most remarkable features of the STFT.
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Theorem 2.19 (Orthogonality relations for the STFT). Let f1, f2, 71,72 € L*(RY).
Then S, f; € L*(R*) for j = 1,2 and
(2.98) (S fr, Sna fop = {fr, F2)Xms m2).

It must be observed that the first inner product in (2.98) is in L?(R?*?) (phase space)
whereas the ones appearing in the right-hand side are both in L?(R?), in the time
domain or in the frequency domain, as one prefers, because of Parseval’s equality.

Corollary 2.20. If f,ne L*(RY), then
150 fll2 = [ fl2lnll2-
In particular, if ||n|s =1, then
(2.99) [Syflz=1fl2  for all f e L*(RY)
and in this case the STFT is an isometry of L*(R?) into L*(R?).

Theorem 2.21 (Inversion of the STFT). Let n,v € L*(R%) be such that {n,~) + 0.
Then, for every f e L*(RY)

1
(2.100) f= Wﬂg Syf(q,p)MyTyy dgdp

holds as a weak integral.

It must be pointed out that in many cases one choses 7 = v and assumes further
that [|n]s = 1, so that (2.100) simplifies to

f= Hqup Tqn dqdp,
R2d
a formula that is sometimes referred to as the reproducing formula for the STFT.
2.3.2. Square integrability and the reduced Heisenberg group. First of all,we show that
(2.101) m(q,p,t) = ™™ P T, M,
Indeed, for any f e L*(R%) we have, by (2.90) and (2.85)
627ri15€7riq-p Tquf(y> _ 6271'1'1567riq-p 6727riq-p Mquf(y)

_ e?m’te—ﬂ'iq'p e?ﬂ'ip-y qu(y)

_ e?ﬂite—mqp 627rip-y f(y . q)

=7(q,p,t) f(y)-
Secondly, for fixed 7, f € L*(R?), the coefficient (f,7(q,p,t)n) of the Schrodinger
representation satisfies, according to (2.101), (2.90) and (2.95)

(2.102) (fom(ap tyny = e™e ™I Ty Myn) = e7*™'e™7S, f(q, p),

Therefore the STFT is nothing else but a multiple (with a complex number of mod-
ulus one) of the voice transform associated to the Schrodinger representation of HY.
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One extra step needs to be made to recast the main properties of the STF'T in the
language of reproducing systems. Indeed, the STFT of a funcion is not a function on
the Heisenberg group but on R??, and, secondly, even if we include the phase factor
e~ in the definition so that it does become a function on H?, then there would be a
serious integrability issue because the right hand side of (2.102) is not in L?(H¢) since
the integral of its square modulus would certainly diverge in the ¢ variable. Things
can be fixed by introducing the reduced Heisenberg group.

We start by computing the kernel of the Schrodinger representation. Using formula
(2.101), it is immediate that w(q,p,t)f = f for every f e L*(RY) if and only if
g=p=0and teZ. Thus

kerm = {(0,0,k): ke Z} ~ Z.

The reduced Heisenberg group is nothing else but H?/ker 7. To have a workable model,
one simply puts H? = R?! x T, where T are the complex numbers of modulus one,
and defines
(,0)(a",0) = (z + x,00'c ™),

It is quite clear that the map

(l’,t) s (l’,€2mt)
is a surjective homomorphism of H? onto H¢ whose kernel is exactly ker 7, so that we
have established a model for the quotient H?/ker 7.

Exercise 2.22. Show that if we parametrize the elements of H? by (z,e*™") where
7€ [0,1), then a left Haar measure on H? is dxdr.

By the very construction of H?, the Schrodinger representation projects onto an
irreducible representation p := 7 of H? on L?(R%). With slight abuse, it is called the
Schrodinger representation p of H¢ and its explicit formula is

(2.103) p(g,p,0) = 0™IPT, M, (q,p,0) € HY.

Exercise 2.23. Derive a theorem that describes all the irreducible representations of
H? starting from the Stone-von Neumann theorem.

Finally, we compute the voice transform V; of p and find from (2.102) that

(2.104) Vof(a:p,0) = {f, p(q,p,0)n) = 6e™7S, f(q, p)
Therefore, appealing to the orthogonality relations in the form (2.99), we get

1
—2miT  Tiq- 2
Wadlvag = | | &7, @) dadpdr = 15,71a = | lalnla
0 2

This proves that any unit vector n € L%(R¢) is an admissible vector for the Schrodinger
representation p of HY.

Exercise 2.24. Write the inversion formula of the STF'T as the reproducing formula
(1.54) associated to the square integrable representation p of H.
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3. THE METAPLECTC REPRESENTATION

The meteplectic representation is a double-valued unitary representation of the sym-
plectic group Sp(d,R) on L?(R%), or, more technically speaking, a unitary representa-
tion of the double cover of Sp(d,R), otherwise known as the metaplectic group Mp(d).
It has many other names in the literature, such as the oscillator representation, or the
Segal-Shale-Weil representation, and it appears pervasively in mathematics. We point
out right from the start that it is not irreducible: both the spaces L?(R?) and L?(R¢)
of even and odd (square integrable) functions, respectively, are closed and invariant,
and on each of them the metaplectic representation is irreducible.

In very practical terms, the metaplectic representation assigns to each symplectic
matrix a unitary operator on L?(R?), which is well-defined only up to a sign. This
ambiguity, though mathematically important and not removable, plays a very mild
role, if none at all; in many of the most important aspects in which it appears in
Applied Harmonic Analysis. In particular, this ambiguity is irrelevant in the context
of reproducing formulae, that is, when square integrability issues arise.

As hinted in the previous paragraph, the very definition of the metaplectic represen-
tation is troublesome, and there are different ways of going about it. For a thorough
presentation of this topic, the reader is referred to [15, 16, 19]. Here we content our-
selves with a discussion of the main features rather than delving into the full machinery
of proofs. The reason is because our interest resides in the restriction of the metaplectic
representation to a particular class of triangular Lie subgroups of Sp(d,R). This class,
known as the class £, contains a rich subclass of reproducing groups, with interesting
new examples, as well as well known ones. This general theme of reproducing groups
for the metaplectic representation started with [12, 13] and has then been investigated
in a series of more recente papers [1, 2, 5, 6, 7, 8, 10].

We start by summarizing some useful properties of the symplectic group and of its
Lie algebra. A direct proof of most of the statements may be found in [15]. The
most advanced ones, such as for example the Iwasawa decomposition, can be found for
example in [17].

3.1. More on the symplectic group. As we have seen, the symplectic group is the
group of invertible 2d x 2d matrices preserving the standard symplectic form, that is,
the skew symmetric form w : R* x R* — R given by the matrix J defined in (1.2).

Exercise 3.1. Show that an invertible matrix ¢ satisfies w(gz, gy) = w(x,y) for every
x,y € R* if and only if ‘gJg = J.

Recall that, under the usual identifications, the Lie algebra sp(d,R) of Sp(d,R) is
explicitly described in (1.22) and (1.23). It is worth observing that from these it follows
immediately that X € sp(d,R) if and only if ‘X € sp(d,R). In particular, we obtain
that both JX and X.J are symmetric. Indeed, (JX) = X' = —'XJ = JX by
X J + JX = 0. Similarly, one uses ‘X € sp(d,R) to show that XJ is symmetric.

The symplectic group has many interesting subgroups. Among many others, the
compact group

K = Sp(d,R) n O(2d),
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which was implicitly introduced in the beginning of Section 1.2.3, where we also describe
an explicit isomorphism of K with the unitary group U(d). We formalize this:

Proposition 3.2. K = Sp(d,R) n O(2d) is a mazimal compact subgroup of Sp(d,R)
and it is isomorphic to the unitary group U(d) under the natural map induced on linear
maps by the identification (x,y) — x + iy of R?*? with C?.

Other very important groups of Sp(d,R) are

D:{ g th?_l]:deth?éo}

S - { ! ﬂ :aeSym(d,R)}

A= { g Eoll B = diag(eM,...,eM), \j e R}
where evidently Sym(d,R) stands for the vector space of all symmetric d x d real
matrices. Clearly, D ~ GL(d,R). Using D, we can embed any (closed) subgroup of

GL(d,R) into Sp(d,R) in a canonical fashion, like for example the special linear group
SL(d,R) or the special orthogonal group SO(d)

SL(d,R) — {[g tho_l] . he SL(, R)} c D < Sp(d,R)

SO(d) — {[g tho_ll he SO(d)} c D < Sp(d,R).

Exercise 3.3. Show that D, A and S are indeed closed subgroups of Sp(d,R). Show
that D a normalizes S, that is, that dsd~! € S whenever d € D and s € S. Describe
explicitly the group

SD ={sd:de D,se S}

and exhibit its semidirect product structure. This group is called the standard mazximal
parabolic subgroup of Sp(d,R). Show also that

gz{tszseS}

is a subgroup of Sp(d,R) and make the appropriate statements for SD. Prove that
SD and SD are conjugate.

Proposition 3.4. The symplectic group is generated by S v D v {J} and also by
SuDu{J}.

The meaning of the above statements is that any element in Sp(d, R) can be written
as a finite product of elements all taken from SuDuU{J}, or all taken from SuDU{J}.
This fact is of practical relevance, as we shall see, when dealing with the metaplectic
representation.
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3.2. Construction of the metaplectic representation. We now proceed to define
the metaplectic representation abstractly. Later we indicate how one can go about
clearing out all the unsettled points.

Recall that the group 7 of automorphisms of the Heisenberg group that leave the
center poinwise fixed is generated by the inner automorphisms and by the symplectic
maps. More precisely, the maps i, with h e H and T, with g € Sp(d,R) given by

Uy (@0, 1) = (2,9, 2)(q,p, ) (2,9, 2) " = (gt +2-p—y-q)
TQ(Q7p7 t) = (g(Q7p>7t)7
where g(g, p) simply means the effect of the linear map g on the vector (q,p) € R*.

If T e T, we can precompose the Schrodinger representation m with T to obtain a
new representation o7 of H? on L*(RY). Indeed, if h, k € H?, then

(m o T)(hk) = 7(T(hk)) = n(T(W)T(k)) = w(T(h))7(T(k)) = (7 o T)(h)(m o T)(K)
2.85) shows that

_ 627rzt]‘

~~

shows that it is indeed a representation and furthermore
(moT)(0,0,t) = =n(7(0,0,t)) = 7(0,0,¢

By the Stone-von Neumann theorem, m and 7 o T" must be equivalent. Hence there
must be a unitary operator u(7) on L%*(R?) that intertwines the two representations:

(3.105) roT(h) = u(T)r(R)u(T)™",  heH~

Moreover, by Schur’s Lemma, namely item ii) of Lemma 1.54, u(7") is determined
up to a phase factor because the space Z(m,m o T') of all intertwining operators is
one dimensional and contains a unitary operator, hence all its multiples by complex
numbers of modulus one. Now, if we write (3.105) for the product T'S we find that
w(T)p(S) does the job, so there exists crg € S such that

w(TS) = erspu(T)u(S).
This means that p defines a projective representation of 7, that is, a homomorphism
into the quotient of the group of unitary operators modulo its center {cI : c € S'}.
Now, if T' = 45, with h € H?, then since
(hgh™) = m(h)m(g)m(h)~",
we can certainly take p(ip) = w(h). Thus we may restrict ourselves to the subgroup of
T consisting of the automorphisms 7, with ¢g € Sp(d,R), a group manifestly isomor-
phic to Sp(d,R) itself. We shall write for simplicity p(g) instead of p(7}). From the

above discussion it follows that the unitary operator p(g) is determined up to a phase
factor by the relation

(3.106) m(9(q,p),0) = p(g)m(q,p,0)u(g) "

It may be shown (see below for further comments) that the phase factors can be chosen
in one and only one way up to a sign, so that u becomes a double-valued unitary
representation of Sp(d,R). In other words, it holds

nlgh) = £u(g)u(h), — g,h e Sp(d,R).

~—
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With this choice, u is called the metaplectic representation.

We should either think of i as a genuine unitary representation of the double cover
Mp(d) of Sp(d,R) or as a homomorphism of Sp(d,R) into the quotient of the group
of unitary operators modulo its center {£I}. Given a single g € Sp(d,R), we could
also think of p(g) as a pair of unitary operators that differ from each other by —1, but
we shall not do so. In explicit formulas, this ambiguity usually appears as the possible
choice of sign of a square root.

Next we compute pu(g) for certain particular types of g, up to phase factors.

(i) Take g € D, that is g = lg th0_1] with h € GL(d,R). Then

(9(q.p),0)f(x) = m(hq, n~"p, 0) f(x)
_ e*ﬁi(hq)-(th_lp)e%ri(th_lp)-:pf(x . hq)
_ €—7riq~p627rip~h*1:c(f o h)(h_l.flf . q)
The unitary operator on L?(R%) given by Uf(x) = |det h|~V2f(h~'z) satisfies
Un(q,p,0)U" f(x) = |det h|~"2(n(q,p, 0)U " f)(h™ ')
= | det h|"(w(q, p,0)| det b f o h)(h ™ x)
= n(q,p,0)(f o h)(h ")
_ e—wiq-pe%rip-h*lz(f o h)(h_1$ . C])
Hence U satisfies (3.106), so it must coincide with u(g) up to a phase factor.

O] with ¢ € Sym(d,R). Then

(ii)) Take now g € S, that is, g = l(l; 7

m(9(a,p), 0)f(x) = m(g, 09 +p,0) f(2)
_ e—7riq~(aq+p)€27ri(0q+p)-xf(aj _ q)

_ 6—7riq~p€27rip'xe—m’q-aqe%riq-oxf(:E . q)
The unitary operator on L?*(R?) given by V f(z) = ™% f(z) satisfies

Va(q,p, )V f(x) = e (n(g,p,0)V ") (2)
_ eﬂir-are—ﬂiq~p€27rip~x(V—lf) (.CE . q)
_ 67ri:c-a:c€—7riq~p627rip'ac6—7ri(a;—q)~0(ac—q)f(:L, . q)
_ efmq-pe%rip-zefmq-oqe%riq-crxf(x o q)
Hence V satisfies (3.106), so it must coincide with u(g) up to a phase factor.
(iii) Finally, take g = J. Then

(J(g,p),0)f(§) = 7(p, —q,0) f(§) = e™Pe T f(§ —p)
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Denote the Fourier transform on L*(R?) by F. For f e L?*(R?) we have
Fr(q:p,0)F ' f(€) = f@‘mg'“’ﬂ(qm, 0)(F~'f)(x) dx
= f6_2”5“6_“‘1'1”62”1”(.F_lf)(x —q)dz
= e TP J 62”@75)"”(]—"7%)@ —q)dx
= e—quvf62wi(p—£)~(q+y)(f—1f)(y) dy
— TP 2mi(p—E)-q f e2fri(pf£)-y( Fl f) (y) dy

= e (e ).
Hence F satisfies (3.106), so it must coincide with p(g) up to a phase factor.
In summary, up to phase factors, we have identified p(g) on a generating set of

elements (thanks to Proposition 3.4), so in principle we know p up to phase factors.
Anticipating what can be made rigorous, we actually have

(3.107) i qg th0—1]> F(x) = (det h) "2 f(h~'x)

s ([ 9) = s

(3.109) p(J) flx) = i F f(x).

It must be pointed out that in formulae (3.107) and (3.109) the sign of the square root
accounts exactly for the ambiguity in sign.

Exercise 3.5. Show that both the even and odd parts of L?, namely
Ly(RY) = {f € L*(RY) : f(~2) = f(2)}
LyRY) = {f € L*(R) : f(~=x) = —f(2)},

are closed invariant subspaces on each of which the action of u is irreducible.

3.2.1. An outline of the full construction. The question remains: how to define p in full
detail? Our next target is to outline how to do this. The several nontrivial technicalities
will not be unravelled completely. The construction can be summarized in the following
three basic steps, for each of which we will then give some further information.

(i) Define first the infinitesimal representation dju of the Lie algebra sp(d,R) by
densely defined unbounded and essentially skew-adjoint operators on L2(R).
This step is obtained by means of the so called Weyl calculus, realizing first
sp(d,R) as a Lie algebra of polynomials.

(ii) “Integrate” the representation to a representation of the universal cover of
Sp(d,R). This step uses the notion of analytic vector for a representation.
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(iii) Show that the representation actually factors to a representation of the double
cover of Sp(d,R).

3.3. Restriction to triangular subgroups. We finally present the class of examples

Definition 3.6. A Lie subgroup G of Sp(d,R) belongs to the class & if it is of the

form
h 0
G = {lah th_l] heH, aez},
where H is a connected Lie subgroup of GL(d,R) and ¥ is a subspace of the space
Sym(d,R) of d x d symmetric matrices. We further require that both ¥ and H are
not trivial.

In order for G to be a group it is necessary and sufficient that hf[¥] = X for all
h e H, where

(3.110) mo] = o™t

If G € £, both ¥ and H are naturally identified as Lie subgroups of G. Clearly,
YH =G, ¥n H = {e}, ¥ is a normal subgroup of G and it is invariant under the
action of H given by (3.110), so that G is the semi-direct product ¥ x H.

Suppose that G = ¥ x H is in the class £. A left Haar measure and the modular
function of G are

(3.111) dg = x(h) 'dodh Ag(o,h) = x(h) Ay (h),

where do is a Haar measure of X, dh is a left Haar measure of H, Ay is the modular
function of H, and y is the positive character of H given by

(3.112) x(h) = |det o — h'[c]|.

Exercise 3.7. Prove all the statements that have been made in the previous paragraph:
G is a group if and only if AT[X] = X for all h € H, and the formulae (3.111) do define
Haar measure and modular function.

There is a surprisingly large class of groups in the class £ that are relevant in the
study of reproducing systems.

Example 3.8. For d = 1, that is, for SL(2,R), there is a very remarkable example,
namely a copy of the “ax +b” group. It is actually completely obvious that, for d =1,
in the class £ there is exactly one group, that will be denoted E;. The map

- 5

establishes an isomorphism between “ax + 0" and the group £, as one checks imme-
diately. Observe that, for the group Fj, (3.107) is meaningful for the 1 x 1 positive
matrix h = 1/4/a (no sign ambiguity) and if one takes the plus sign in (3.108), then
one gets a perfectly well defined unitary representation on F;, and it not necessary
to appeal neither to projective representations nor to coverings. As we will see, this
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argument holds for all groups in the class £ so that it is legitimate to speak about the
metaplectic representation for groups in £, which will again be denoted by pu.

We show next that the restriction of i to E; acting on the space of even L? functions
on the line is equivalent to the subrepresentation 7 of the wavelet representation (1.32)
of “ax 4+ b” on the Hardy space H_(R) defined in (1.41). In other words, denoting by
1€ the former and by 7~ the latter, we will show that

ue o~
Similarly, p° ~ «t for the subrepresentations on odd functions and positively sup-
ported transforms, respectively, so that in the end we obtain

:U’|E1 =
This proves that the wavelet representation is given by restricting the metaplectic
representation to a suitable subgroup of SL(2,R).

A crucial remark in order to prove the sought for equivalence is that one should think
of i as acting on Fourier transforms. For this reason, we write R for the frequency
domain, L?(R,) for the L?-transforms that are supported in R, and L?(R) for the
even L?-transforms. The map x, : L?(R) — L?(R,) defined by

(x+9)(€) = V2x10,40)()3(8)
is an obvious unitary isomorphism. Next we put

(26)"19(V2) €20

O Ry~ IP(RY), (9)(6) - {0 ‘<0

Clearly, ® is unitary as well. Finally, we denote by R the reflection Rf(z) = f(—x).
Since R commutes with F, it sends H, (R) unitarily onto H_(R), and viceversa. We
show next that the unitary map

T:L*R)>H . (R), T=RoF 'odoy,
intertwines ¢ and 7, that is, for every fe Lg(]@) it holds
(3.113) T(uZ,bf) = W;b(TJE)-

Here we have written for short xg , in place of u°(¢(a,b)) and 7, instead of 7~ (a,b).
Applying the definition, and reflection on both sides, (3.113) is equivalent to

FHOx4 (1, f)) = Ry R(FOx. f)

which, after Fourier transformation, is in turn equivalent to
(3.114) Ox: (s ))(E) = F R R(F'Ox. )| () ao ¢eR

Next we observe that R, ;R sends each H(R) into itself and satisfies, for h € L*(R),

1 b
RrapyRh(z) = \/_Eh (x;— > = Ta—ph(x).
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Therefore, using this and (1.37), the right hand side of (3.114) becomes
F [ru o (F 00 1)) (©) = vac ™ (@x., f)(ag)

= V2y/ae"(2a€) "M f (/20
for £ > 0, and vanishes for £ < 0. The left hand side of (3.114) is

V2(26) 7, f (V/26) = V2(26) T eV f(Van/26)
for £ = 0, and vanishes for £ < 0. This establishes (3.113).

As already remarked in the example that we have just discussed, for the groups
in £ it is perfectly legitimate to speak about tu as a bona fide representation. The
reason is the following. If ¥ x H € £, then H is required to be connected and
hence the determinant of all its elements is necessarily positive, which makes (3.107)
unambiguous. Secondly, if one takes the plus sign in (3.108) then it is easy to see that
(3.115) fom [ () = (det B)™7 ™75 f(p~1g)

is indeed a a unitary representation.
We illustrate next a remarkable struc tural feature of the groups in £ and present a
general geometric result.

3.3.1. The symbol. The restriction p of the metaplectic representation to G € &£ is
completely characterized by a “symbol” @, as we now explain. Given® w € R?, the
map o +— —% {ow,w) is a linear functional on ¥ and hence it defines a unique element
®(w) € ¥*, the dual of ¥, by the requirement that

(3.116) O (w)(o) = —% (oW, W)ga

for all ¢ € ¥. The corresponding function ® : R — ¥* is called the symbol associated
to X and has the invariance property (3.118) that we now explain. Observe first that
the contragredient action of (3.110) is given, for c* € ¥* o€ ¥, and h e H, by

(3.117) hlo*)(o) = o*((h™")![o]) = o*("hoh),
Next, notice that the group H acts naturally on R? by means of
h.w = hw.

The invariance property that we are after is that for all w € RY and he H
(3.118) O (h.w) = h[P(w)].
This is seen by observing that for all o € ¥ we have, by (3.117)

O (h.w)(o) = —% <th0hw,w>Rd = O(w)((hHT[e]) = r[®(w)](0).
Therefore, for 0 € ¥ and h € H, we may rewrite

(3.119) fom [ (@) = (det h) ™7 e 2M®@I@) f(p=10),

3The reason for the symbol w instead of z rests in the fact that we should think of 1 as acting in
the frequency domain.
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which exhibits p as completely determined by the symbol. Also, this proves that p is
a representation of the kind considered in [10], with a quadratic symbol.

3.3.2. Geometric characterization. The next result gives some necessary and sufficient
conditions for a group G € £ to be reproducing. In order to state it, we need to
introduce some standard terminology. First, the set
H[y] = {hly] € R" : h e H)}
is called the orbit of H in R, where we have identified >* with R™ and where evidently
n = dim . Secondly the closed Lie group of H defined by
Hy = {heH:hly] =y}

is called the stability subgroup at y € R™. Thirdly, we recall that a subset A in a
topological space X is locally closed if it is the intersection of an open and a close set
of X. Equivalently, if each point in A has an open neighborhood U < X such that
A is closed in U (with the subspace topology), or, yet equivalently, if A is open in its
closure (with the subspace topology). Finally, let D®(w) denote the n x d Jacobian

6(@1, ey Spn)

a(wh s 7wd)

and by J®(w) = 4/det D®(w) !DP(w) the Jacobian determinant. With this notation,
the critical points of ® are precisely the solutions of the equation J®(w) = 0.

Theorem 3.9. [10, 2| Take G = X x H € £ and assume that the orbit H|y| is locally
closed in R™ for every y e R". If G is a reproducing group, then

Do (w) =

i) G is non-unimodular;
i) dim > < d;
iii) the set of critical points of ®, which is an H -invariant closed subset of R%, has
zero Lebesgue measure.

Furthermore, if dim Y = d, then

w) for almost every y € ®(R?) the stability subgroup H, is compact.
Conversely, if i), ii) i) and ) (without assuming dim> = d) hold true, then G is
reproducing.

If we look at what happens when d = 2, we find that there is a wealth of reproducing
systems arising from groups in £: there are in fact 16 families of inequivalent repro-
ducing groups. For a full discussion, the reader is referred to [1, 2], where these groups
are classified up to the appropriate notion of equivalence and where the admissibility
conditions analogous to the Calderén equation (1.43) are derived. Here we content
ourselves with two examples that underline why this class is interesting.

Example 3.10. (Shearlets.) The Heisenberg group can be realized inside Sp(2,R) in
a slightly different way from (2.75), which entails a direct realization of the standard
product given in (2.74). By this we mean that the latter can be read off from the matrix
product of the matrices (2.75), and conversely. There is, however, another standard
realization of the Heisenberg group, known as the polarized version Hllml, that yields
an embedding in the symplectic group as an element of the class £.
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The polarized Heisenberg group may be seen as the set of the 3 x 3 matrices

1 pt
(3120) gpol(Qapa t) =10 1 ql,
0 01

which obey the product rule

(3.121) ool (@, 1 1) Gpor (@, P: 1) = Gpor(q + ¢/, p + D', t + ' + pd).
Exercise 3.11. Check that (3.121) is true and prove that
ap
o H > Hi,  9(9(a,:1) = goarla,p:t + =)

d and extend all the above to general d.

is a group isomorphism. Define HY ),

Next we show how to see Héol as a group in £. For this purpose, put

o R

Then
1 0 0 O
[r o] | » 1 00
(3.122) e(q.p;t) = lah th1] o |t—agp/2 —q/2 1 —p
—q/2 0 0 1

and it is immediate to check that

e(g,p, t)e(q,p,t) =elg+q,p+p,t+t +pq),

as required to see that this is an embedding of the polarized group. Finally, we show
that the extended (polarized) Heisenberg group (see Exercise 2.12) can also be seen as
an element in the class €. This is achieved by extending H to

(3.123) H, - {B?% ﬂ a>0pe ]R} .

By doing so, one gets the matrices

1/\/a 0 0 0
pia 10 0
3.124 Gpt) =
(3120 ap D= i apava -2 Va —p
—q/2+/a 0 0 1
that satisfy the product rule
(3.125) e(a,q,p,t)ea, ¢, p',t) = e(aa, q + vag', p + Vap', t + at’ + \/apq').

For brevity, we shall denote by H! = 3 x H, the group consisting of all the elements
in the form (3.124). Evidently, H! € £. Observe that

e(a7 07 07 0)6(17 Q7p7 t)e(a7 07 O? 0)_1 = 6(]‘7 \/6Q7 \/ap7 at)?
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so that we are indeed extending the Heisenberg group via its homogeneous dilations.
We now compute the various ingredients that are needed. First of all, we write

t  —q/2
O(tq) = [—q/Q 0 ]

thereby identifying ¥ with R2. The elements of X* are in turn identified with vectors
in R? in the sense that to y € R? there corresponds the functional o, for which

o, (o) =y (tq).
Secondly,
-1 _
h log] = "hap U(t,q)ha,zlj

eI e
_ [at_ ++/apg —q\/ﬁ/Q]
qv/a/2 0

Thus, hf[o(,q] is the element of ¥ associated to the vector:

] - 2]l

This means that the action h;p is expressed in R? by the matrix M, ,. Therefore, the
positive character defined in (3.112) is

X(hap) = a*?.

By (3.111), we then have that
AH}i (G(CL, q,p, t)) = aig/zAHULa,p)

and since Ag(h,,) = a™', as it is easily checked computing for example the adjoint
representation of H on its Lie algebra, we infer that G is not unimodular. Next, since

the contragredient action y — h[y| corresponds to tMaf z}’ we have

N S M I

We next compute the symbol . Since

1 1 t —q/2| |w 1,1
—§<U(t,q)w7w> Y w1 wo] [_q/g 0 ] L‘@ = (—§wf, §w1w2) - (t,q),

1

the symbol of H! is

1 1
O (wy,wy) = (—§wf, 5&]1&)2).
The Jacobian is easily computed to be
1
J(I)(wl,CL)Q> = 5\/((&.1% — W1W2)(w% + wch)Q)

and its zero set is

{(wy,ws) € R?:w; = 0} U {(w,ws) € R?:w; = +ws},
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a set of Lebesgue measure zero. The image of ® is the closed left half plane.

It is readily seen that the action (3.126) has five orbits in R?: the origin, the two half
lines {(0,y2) : y2 > 0} and {(0,y2) : y2 < 0} and the two half spaces {(y1,¥2) : 11 > 0}
and {(y1,y2) : y1 > 0}. Each of these sets is locally closed because it is the intersection
of a closed and an open set in the plane.

FIGURE 1. The five orbits of H

Formula (3.126) also allows us to compute, for every y € ®(R?) the stability group
H,, which is evidently the identity matrix, hence compact, because

Y1 Y1
ha = =1, =0 hap = Is.
’p[[’yz]] [?ﬁ] = a D — hay 9
Therefore, all the hypotheses of Theorem 3.9 are satisfied and we may conclude that
the restriction® of y to to H!, which by (3.115) or (3.119) is just

(3127) M(aa q,p, t).]?(wly w?) = a1/4€—7ri(t,q)-(—w%,w1w2)f(\/awl’ Wz — pwl) )

is reproducing. This fact had been established directly in [7] (that is, without the use
of Theorem 3.9) and can also be found in [2]. In both papers, Calderén equations for
the admissible vectors are also worked out.

A very remarkable fact, one which is particularly relevant for this book, is the fol-
lowing theorem, that is proved in [11]. For the reader’s convenience, we give below a
direct argument.

Theorem 3.12. [11] The metaplectic representation restricted to the extended Heisen-
berg group M. is equivalent to the shearlet representation of the connected Shearlet

group.

First of all, we introduce the connected shearlet group S, that will be discussed in
detail in the other chapters of this book, to which we refer for historical and biblio-
graphical information. It is the set R, x R x R? endowed with the group operation

(a,s,t)(d’,s', t) = (ad, s + a'/?s', t + S, At)),

4Once more, we think of the metaplectic representation as acting on the frequency side.
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o R A

We can thus write the group law more explicitly as

where

(3.128) (a,s,t)(d, s, 1) = (ad’, s + a¥*s', t, + at) + \/ath, to + v/ath).

In order to understand the statement of Theorem 3.12, we observe that the map
U:S, - H, (a,s,t1,ta) — e(a,ty, s,t1),

which amounts to renaming the variables according to

(3.129) p < 8, ty «—— t, ty <« q,

establishes a Lie group isomorphism. Secondly, the shearlet representation on the
frequency domain, that is, on L?(IR?) is defined by:

(3-130) '(&(a,s,t) (Wl,wz) = a3/4€_2mw1/;(aw17 \/&(SWI + w2)).
Renaming the variables after (3.129), this becomes
(3.131) Viagpn) (W1, wa) = e 2D ey (g fa(pwy + wy)).

We now proceed to show the claimed equivalence..
Proof. (of Theorem 3.12.) The first remark concerns irreducibility. For simplicity, put
Q= {(w,ws) €eR? 1wy >0}, Q- = {(wy,ws) € R?: wy < 0},

It is clear that the spaces L?(€2,) and L?*(2_) are closed invariant spaces both for the
shearlet representation and for the metaplectic representation (3.127). Furthermore,
the subrepresentations obtained by restriction to L*(2+) are mutually equivalent, be-
cause the reflection Rf(wy,ws) = f(—wi,ws) sends one space unitarily into the other,
and intertwines the two pairs of subrepresentations. Further, it may be shown that
each such subrepresentation is in fact irreducible. Finally, there is an intertwining
operator £ that realizes a unitary equivalence between the restriction to L*(2_) of
the shearlet representation with the restriction to L?(2,) of p. The interesting fact
is that L is essentially constructed by means of the symbol ® : 2, — Q_ . which is a
diffeomorphism with Jacobian determinant w?/2. We define

LoL3Q) - LA(),  Low) = j—gm(w)).

For any ¢ € L*(€2_), we have

2

J, tepr o= | ISt = | e G- [ lpwfas

Q4 _
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so that £ is unitary. Using (3.131) we have

~ Wy~
‘C<w(a7q7p,t))<w1>w2) = 71/’ aqpt) (P(W))
2
w1 ~» Wi Wis
— %w(a,q,p,t) (_77 T)
_ W 3/4 ,—mi(t,q)(—w? wiwa) ( wl w1w2 >
= —=a' '€ ,
7 Va(=p 5 )

and using (3.127) we have
(@, ¢, p, 1) (L) (wr, wp) = e ™D B (£4)) (awy, wp — pun)

A 1
= g!/Aemilta) (~wiwiws \lew ( a;ul ) 5(\/5(w1w2 —pwf)) .

This establishes the intertwining property

£(Paapn) = nla. g, p, 1) (LD)
and the proof of Theorem 3.12. O

Example 3.13. (Schrodingerlets.) This is perhaps one of the few examples of a 3-
dimensional reproducing systems in L?(R?). The group G consists of the matrices

a'?R 0
|:ta—1/2R @1/2R ) tER7a > O,RE SO(Q)
The rotations in SO(2) are parametrized in the standard way, namely

~ i anel. e,

ks singp  cosp

Therefore G in the class £, with ¥ = {tl; : t € R} and H = R, - SO(2), an Abelian
group. En passant, here d = 2 and n = 1. The metaplectic representation u restricted
to G, thought in the frequency domain, is given by formula (3.115), namely

£ mit|w|? £ ¢ ™
u(t,a,0) f(w) = a2 f(a?R_w), f e L*(R?).
The space-domain version of this representation explains the reason of the name that

is used for the admissible vectors relative to this group. Denote by fi the unitary
representation obtained by conjugating p with the Fourier transform, that is

i(g)f = F topu(g)oF.

We interpret t € R as a time parameter and look at the evolution flow of a function in
the space domain f e L'(R?) n L?*(R?), given by

(t,2) = uf (x) = A(t,1,0)f(2) = | Flw)emithol? iz g,
R
It is straightforward to verify that the flow fi,f(z) satisfies the Schrodinger equation

<—47ri% + A),&tf(x) —0
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where A is the spacial Laplacian
0? 0?
A=—+—.
oxr?  Ox3
For this reason the admissible vectors of GG are called Schrodingerlets. In summary,
the system of unitary operators attached to GG is generated by rotations, by dilations
and by the evolution flow of the Schrodinger operator.
We show next that p restricted to G is indeed reproducing. First of all, writing

ha,p, = a_1/2R¢, we have
Wl Lo = hy Louh, L = taly = 0.

Thus, the action hIW is expressed in R as multiplication by a, so that the contragre-
dient action y — hq,[y] amounts to multiplication by a~'. It follows that the positive
character defined in (3.112) is

X(hay) = a.
By (3.111), taking into account that H, being Abelian, is unimodular we have that

AG’(CL7 s t)) = a_17
so that G itself is not unimodular. As for the symbol ® : R? — R, since

1 1
—§<Utw7¢0> = —QHWHZt,
it is the mapping given by
1
D) = Ll
Its image is the closed left half line (—o0,0] and its Jacobian is
JO(wi,w2) = ],

whose zero set is just the origin of R?, obviously of Lebesgue measure zero. The
action y — h[y] has three orbits in R: the origin and the two half lines (—o0,0) and
(0, +00), each of which is locally closed. For every y < 0, hence almost everywhere
in ®(R?) = (—o0,0], the stability group H, is the identity matrix, hence compact.
Therefore, all the hypotheses of Theorem 3.9 are satisfied and G is reproducing. The
reader is referred to [2] for the Calderén equations for the admissible vectors.
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