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Abstract

Germline mutations in the cyclin-dependent kinase inhibitor 2A gene (CDKN2A) are frequently 

identified among melanoma kindreds, and are associated with increased atypical nevus counts. 

However, a clear relationship between pathogenic CDKN2A mutation carriage and other nevus 

phenotypes including counts of common acquired nevi has not yet been established. Using data 

from GenoMEL, we investigated the relationships between CDKN2A mutation carriage and 2 

mm, 5 mm, and atypical nevus counts among blood-related members of melanoma families. 

Compared to individuals without a pathogenic mutation, those who carried one had an overall 

higher prevalence of atypical (OR=1.64; 95% CI: 1.18, 2.28) nevi, but not 2 mm nevi (OR=1.06; 

95% CI: 0.92, 1.21) or 5 mm nevi (OR=1.26; 95% CI: 0.94, 1.70). Stratification by case status 

revealed more pronounced positive associations among non-case family members, who were 

nearly three times (OR=2.91; 95% CI: 1.75, 4.82) as likely to exhibit nevus counts at or above the 

median in all three nevus categories simultaneously when harboring a pathogenic mutation (vs. not 

harboring one). Our results are supportive of the hypothesis that unidentified nevogenic genes are 

co-inherited with CDKN2A and may influence carcinogenesis.

Introduction

Germline mutations in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene are 

frequently identified in familial melanoma (Goldstein et al., 2006; Goldstein et al., 2007), 

with prevalence in families with three or more members diagnosed with melanoma ranging 

between 20 and 50% (Goldstein and Tucker, 2001; Harland et al., 2014; Kefford et al., 
1999). In contrast, these mutations account for only 1–2% of population-based melanoma 

cases (Harland et al., 2014). Germline mutations in CDKN2A have also been associated 

with familial atypical multiple mole melanoma (FAMMM) syndrome, an autosomally 

dominant condition exemplified by a family history of melanoma and high numbers of 

atypical nevi (Eckerle Mize et al., 2009; Goldstein et al., 2007). However, estimating the 

prevalence of FAMMM has been difficult due to intra- and inter-family variability in the 

FAMMM phenotype (Goldstein et al., 2000; Lynch et al., 2002; Rulyak et al., 2003), and a 
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clear relationship between CDKN2A mutation classification and number of atypical nevi has 

not yet been established (Bishop et al., 2000; de Snoo et al., 2008; Nielsen et al., 2010).

Few studies have examined the relationship between germline CDKN2A mutational status 

and number of common melanocytic nevi among melanoma families, even though evidence 

from previous genome-wide association studies (GWAS) suggests that variation near the 

CDKN2A locus is associated with nevus count (Barrett et al., 2011; Falchi et al., 2009). 

Here, we evaluate associations between germline CDKN2A pathogenic mutation 

classification and nevus phenotype among participants in research performed by the 

GenoMEL consortium (www.genomel.org). A better understanding of CDKN2A’s influence 

on nevogenesis among blood-related cases and non-cases of melanoma may aid in the search 

of other risk modifying nevogenic genes. In addition, robust phenotypic indicators of 

CDKN2A pathogenic mutation carriers, especially among non-case members (i.e. 
individuals who have not been diagnosed with melanoma) of melanoma families, could 

influence clinicians’ surveillance and prevention strategies in this high-risk population.

Results

CDKN2A genotype was available for at least one member of 896 (78%) families comprising 

3,990 individuals, of whom 1,651 (41%) also submitted to nevus phenotyping (Table 1). All 

analyses were confined to this final analytic cohort of 1,651 participants. The median values 

of 2 mm, 5 mm, and atypical nevus counts were similar among those with and without a 

pathogenic CDKN2A mutation, although we observed a higher degree of variation among 

pathogenic mutation carriers compared to those without a pathogenic mutation (Figure 1). 

Total nevus count (i.e. the sum of 2 mm, 5 mm, and atypical nevus counts) was highly 

correlated (r=0.99) with number of 2 mm nevi. Median 2 mm nevus counts for those with 

and without a pathogenic mutation were 54 (interquartile range (IQR)=102) and 47 

(IQR=87) respectively. For 5 mm nevus counts, those with a pathogenic mutation had a 

median value of 2 (IQR=5) whereas a median value of 1 (IQR=5) was observed among 

individuals without a pathogenic mutation. Those with and without a pathogenic mutation 

had a median value of 0 for atypical nevus counts with an IQR of 2 for pathogenic mutation 

carriers and 1 for those without a pathogenic mutation.

Compared to individuals without a pathogenic CDKN2A mutation, pathogenic mutation 

carriers had an overall higher prevalence of atypical nevi (OR=1.64; 95% CI: 1.18, 2.28). 

Moreover, pathogenic mutation carriers were almost twice as likely as those without a 

pathogenic mutation (OR=1.83; 95% CI: 1.25, 2.67) to exhibit nevus counts at or above the 

center-specific medians in all three categories of nevi (mole gestalt scores of 3 vs. 0). 

Pathogenic CDKN2A mutation carriage was not associated with common acquired (2 mm, 5 

mm) nevus counts (Table 2). Total nevus count was not associated with carriage of 

CDKN2A mutations and, as expected, point estimates were nearly identical to those 

observed for 2 mm nevus counts (data not tabulated).

Upon stratification by melanoma case status, we observed more pronounced positive 

associations between CDKN2A pathogenic mutation carriage and nevus counts among the 

non-case family members. Among non-case participants, those harboring a pathogenic 
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mutation were nearly three times as likely to demonstrate the highest mole gestalt score (3 

vs. 0) compared to those without a pathogenic mutation (OR=2.91; 95% CI: 1.75, 4.82) and 

exhibited approximately twice as many atypical nevi compared to non-cases without a 

pathogenic mutation (OR=1.98; 95% CI: 1.34, 2.90). In contrast, carriage of a pathogenic 

mutation among melanoma cases was inversely associated with mole gestalt score (3 vs. 0) 

compared to those without a pathogenic mutation (OR=0.90; 95% CI: 0.53, 1.53) and 

showed a modest, but statistically nonsignificant, positive association with number of 

atypical nevi compared to wildtype carriage (OR=1.47; 95% CI: 0.92, 2.33) (Table 2).

We further explored associations stratified by GenoMEL study centers grouped according to 

proximity to the equator to assess the relative influence of increasing daylight hours; and one 

stratified by anatomic site of first melanoma classified by relative duration of UV exposure. 

Latitude did not demonstrate a statistically significant influence on the association between 

any CDKN2A mutation carriage and nevus phenotype (p-interaction >0.05 for all nevus 

phenotype categories), nor could we discern any clear patterns of association according to 

relative UV exposure of anatomic site of first verified melanoma (Supplemental Tables 2 and 

3).

Discussion

Within melanoma families, we observed higher mole gestalt scores among pathogenic 

CDKN2A mutation carriers compared to those without a pathogenic mutation, indicating 

that carriers tended to have more nevus laden phenotypes. Estimates within individual nevus 

phenotype categories (i.e. 2 mm, 5 mm, and atypical nevus counts) indicate pathogenic 

mutation carriers exhibit greater numbers of atypical nevi compared to non-carriers.

To date, few studies have examined the influence of germline CDKN2A mutation carriage 

on common acquired nevus counts among melanoma-prone families. A longitudinal study of 

a large melanoma family from Utah reported increasing nevus counts among carriers of the 

specific V126D mutation compared to wildtype over a 15 year interval (Florell et al., 2004). 

However, the impact of the mutation on atypical nevi is unclear as total nevus count was 

reported. Twin studies identified a quantitative-trait locus (microsatellite marker D9S942) 

for nevus density in a noncoding region of CDKN2A (Falchi et al., 2006; Zhu et al., 1999; 

Zhu et al., 2007), which may suggest a broader role of CDKN2A in nevogenesis among the 

majority of individuals who do not harbor a rare germline mutation. However, an adolescent 

twin study from the UK found no evidence for D9S942 as a quantitative-trait locus 

influencing nevus density (Barrett et al., 2003) and a familial-based investigation of a 

potentially nevogenic variant (A148T) near D9S942 also found no association with common 

acquired nevus counts (Bertram et al., 2002). Germline mutations in CDKN2A are strongly 

associated with FAMMM syndrome, and individual members of these families often have 

abundant numbers of atypical and common nevi (Gruis et al., 1995; Hussussian et al., 1994; 

Soura et al., 2016). However, not all individuals with CDKN2A mutations present with 

excessive or even higher nevus counts. Studies of Dutch and Swedish melanoma kindreds 

have reported low atypical and common nevus counts among CDKN2A mutation carriers 

(Ipenburg et al., 2016; Nielsen et al., 2010). Similar findings were reported among 

melanoma families from the UK (Newton Bishop et al., 1994). The range of atypical nevi 
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(0–94) observed in GenoMEL family members with pathogenic CDKN2A mutations further 

highlights the influence of CDKN2A on phenotypic heterogeneity.

Evaluating individual nevus types among GenoMEL participants suggests that germline 

pathogenic mutations at CDKN2A are more predictive of number of atypical nevi compared 

to common acquired nevi (2 mm and 5 mm nevi), a result which is consistent with previous 

findings (Bishop et al., 2000). These results are also interesting in light of recent research 

that suggests intermediate lesions, a classification that includes atypical/dysplastic nevi, are 

likely to exhibit hemizygous loss of CDKN2A, supporting a role for this locus in the 

development of histological atypia in nevi (Shain et al., 2015). It is important to note that the 

defining criteria of atypical nevi in the present study were clinical and not pathologically-

based; it is possible that very subtle atypical nevi could have been misclassified as 5 mm 

nevi. Furthermore, although we took a conservative approach when assigning pathogenicity 

to CDKN2A variants/mutations, it is possible that our designation of some common variants 

as not pathogenic is not accurate. We based our assessment on evidence of a deleterious 

effect, and for some of the common variants there is no such evidence to date.

Our observation of distinct differences in associations according to case status is interesting. 

Non-case members of melanoma-prone families demonstrated relatively strong associations 

of CDKN2A pathogenic mutation carriage with mole gestalt score and number of atypical 

nevi, while corresponding associations among case family members tended to be attenuated. 

Pathogenic germline mutations in CDKN2A and number of nevi are both important risk 

factors for melanoma. The observed pronounced difference in the relationship between 

CDKN2A mutational status and nevus phenotype according to case status may be due, in 

part, to the higher proportion of pathogenic CDKN2A mutations among cases (42%) 

compared to non-cases (25%). If CDKN2A influences nevogenesis, we might expect to see 

diminished associations between pathogenic CDKN2A mutation carriage and nevus 

phenotype among cases compared to non-cases. The higher nevus count distributions we 

observed among cases compared to non-cases tends to support this hypothesis 

(Supplemental Figure 1). It is also possible that case members are affected by yet-to-be-

discovered nevogenic genes that cosegregate with CDKN2A and either modify CDKN2A’s 

nevogenic function or influence nevogenesis independently. Another possible explanation is 

that non-case family members may be more likely to inherit unidentified lower penetrance 

genes that are important risk modifiers of nevus formation, potentially hinder melanoma 

initiation, and cosegregate with CDKN2A.

Zhu et al. have speculated that environmental factors affecting spontaneous somatic 

mutation rates (e.g. UV exposure) in tumor suppressor genes may help to explain nevus 

count variation between individuals as well as familial correlations in nevus counts (Zhu et 
al., 2007). However, our analyses by latitude of ascertainment center and anatomic site of 

melanoma—arguably two proxy measures of UV exposure—did not reveal meaningful 

nevus phenotype differences across strata. This exploratory analysis did not take into 

consideration behaviors that influence UV exposure (e.g. sunbathing/tanning, sunscreen 

usage, apparel).
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In summary, our results are consistent with previous studies reporting that CDKN2A plays a 

role in nevogenesis (Bishop et al., 2000; Cannon-Albright et al., 1994; Florell et al., 2004; 

Shain et al., 2015; Zhu et al., 1999). In general, pathogenic mutation carriers are 

significantly more likely to exhibit higher than median nevus counts in all three categories of 

nevus phenotype simultaneously compared to those without a pathogenic CDKN2A 
mutations, as evidenced by our mole gestalt score results. Acknowledging the potential 

nevus phenotype overlap between those with and without a pathogenic CDKN2A mutation 

(Bishop et al., 2000), we examined associations based on case status among melanoma 

family members. Associations between CDKN2A pathogenic mutational status and nevus 

phenotype according to case status contrasted sharply. These differences may be explained if 

CDKN2A possesses a degree of nevogenic function since case family members exhibited 

higher nevus counts and were more likely to harbor a pathogenic CDKN2A mutation 

compared to non-case members, which could result in diminished associations among case 

members. Our findings are generally supportive of the hypothesis that unidentified 

nevogenic genes are co-inherited with CDKN2A (Florell et al., 2004).

Materials & Methods

Over the past two decades, GenoMEL has aggregated data from individuals belonging to 

melanoma families from around the globe. We refer to participants with a melanoma 

diagnosis at the time of recruitment as cases, whereas family members who had not been 

diagnosed with melanoma at the time of recruitment are referred to as non-cases. Currently, 

GenoMEL consists of 29 centers from Australia, Europe, the Middle East, and North and 

South America.

GenoMEL employed a common protocol for data collection from prospectively enrolled 

participants, although family identification and recruitment procedures were allowed to 

differ among study centers. Additionally, centers had a degree of autonomy over the data 

collection process, which resulted in different contributions across various protocol 

components. Thus, not all centers completed all portions of the research protocol for each 

enrolled participant. Regulatory approval was obtained by the institutional review boards of 

each GenoMEL study center, and written informed consent was obtained for each 

participant. Individuals who signed informed consent were asked about their personal and 

familial melanoma history and to submit to a full phenotypic examination by research staff, 

which included an evaluation of nevus counts by anatomic site. Training was carried out for 

all staff performing phenotyping on participants in the prospective study in the UK. 

Consolidation of that training was subsequently carried out in Italy. Several GenoMEL study 

centers had extant data previously collected from members of melanoma families under 

local regulatory approval, and where possible this information was harmonized with data 

arising from participants enrolled in the prospective GenoMEL study.

A melanoma family was defined by the presence of three or more cases of confirmed 

cutaneous melanoma in the same lineage, or two cases of confirmed cutaneous melanoma in 

first-degree relatives. Melanoma case family members with a diagnosis of mucosal or ocular 

melanoma did not contribute to defining a melanoma family and were excluded from 

analysis. Confirmation of diagnosis was made by: pathology report (75%), physician letter 
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or clinical document verifying melanoma diagnosis (19%), death certificate (2%), or cancer 

registry data (4%). Individuals who are members of melanoma families by virtue of 

marriage and not ancestry, or for whom family relationship information was ambiguous or 

missing, were excluded from this study. Family members who reported a melanoma, but for 

whom verification of diagnosis was not available, were also excluded from analyses.

Nevi ≥ 2 mm but <5 mm in diameter (hereinafter referred to as 2 mm nevi) were counted on 

exposed skin, in addition to nevi ≥ 5 mm in diameter (hereinafter referred to as 5 mm nevi) 

and clinically atypical nevi; sites not examined were the genitalia and female breasts. An 

atypical nevus was defined as a nevus ≥ 5 mm in diameter and containing a flat component, 

with at least two of the following characteristics: variable pigmentation, asymmetrical shape 

or diffuse border. We also derived a summary variable from 2 mm, 5 mm, and atypical nevus 

counts to describe an individual’s overall nevus phenotypic landscape. Specifically, 

individuals were assigned a dichotomous score within each category of 2 mm, 5 mm, and 

atypical nevus count according to the study center-specific median. Individuals with at least 

the median nevus count were scored as 1, with those exhibiting fewer than the median nevus 

count scored as 0; each individual then received an aggregate “mole gestalt” summary score 

between 0 and 3 based on the sum of these three dichotomous scores.

Germline DNA of consenting participants was screened for mutations in CDKN2A (exons 

1α, 1β, 2 and 3) as previously described (Harland et al., 2008). Mutation evaluation, 

predominantly by sequencing or denaturing high performance liquid chromatography 

followed by sequencing, was conducted at each study center. Previous evaluation has 

confirmed consistent mutation detection across the consortium (Harland et al., 2008). 

Sequencing results were collated and mutational status was assigned according to 

pathogenicity as outlined in Supplemental Table 1. Briefly, pathogenic variants were 

adjudicated based on demonstrated (i.e. published) impact on the biological function of 

CDKN2A or bioinformatically inferred deleterious impact on CDKN2A function, and 

evidence of cosegregation within melanoma families. Variants not meeting any of these 

criteria were classified as benign (Taylor et al., 2016). Individual participants were classified 

based on presence of a pathogenic mutation; benign variant carriers and wildtype individuals 

were combined for analyses and classified as having “no known pathogenic” mutations at 

CDKN2A. Individuals who carried both a pathogenic mutation and a benign mutation were 

classified as pathogenic.

We used the generalized estimating equation (GEE) method implemented in SAS v.9.4 (SAS 

Institute, Cary, NC) to calculate odds ratios and 95% confidence intervals for associations 

between nevus phenotypes and CDKN2A mutational status. For our nevus count outcomes 

we used Poisson regression (2 mm nevi) or negative binomial regression when nevus counts 

were right skewed (5 mm and atypical nevi), whereas a multinomial model was used to 

evaluate the “mole gestalt” variable. Designating a Type I. error rate of α=0.05, we 

performed score tests of the null hypothesis that no differences exist between nevus counts 

within strata of mutational status. Analyses were adjusted for age at phenotyping, sex, the 

interaction between age and sex, melanoma status and, study center, and we accounted for 

the non-independence of observations arising from familial clustering within study center 

using the repeated subject statement of the GENMOD SAS procedure.
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We examined associations by latitude by grouping GenoMEL ascertainment centers 

according to equatorial proximity. Among family members with a diagnosis of melanoma, 

we also examined associations between CDKN2A mutational status and nevus phenotype by 

anatomic location of an individual’s first verified melanoma. Anatomic sites were classified 

as those usually exposed (head, neck, lower arms and scalp-male), intermittently exposed 

(trunk, back, upper arms, lower legs, and scalp-female), and usually unexposed (buttock, 

upper legs) to UV radiation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
2 mm, 5 mm, and atypical nevus count distributions among GenoMEL melanoma family 

members across all ascertainment centers according to CDKN2A mutational status. Crude 

nevus counts are plotted and are not representative of center-specific measures adopted for 

statistical modeling. Heavy horizonal lines indicate 50th percentile counts, boxes indicate 

25th and 75th percentile counts, whiskers indicate 5th and 95th percentile counts, and circles 

represent values in the top or bottom 5% of counts.
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Table 1

CDKN2A status in melanoma families and family members participating in the GenoMEL Study by 

ascertainment center*

Center Total # of families Number of families with ≥1 
member who is CDKN2A 

genotyped

Number of family 
members with known 

CDKN2A genotype

Number of family members 
phenotyped with known 

CDKN2A genotype

Barcelona, ES 25 25 116 83

Bethesda, US 49 48 782 468

Cesena, IT 24 24 116 17

Copenhagen, DK 18 15 18 0

Genoa, IT 14 14 45 31

Leeds, GB 76 74 282 216

Leiden, NL 61 59 600 240

Ljubljana, SI 4 4 11 10

Lund, SE 8 8 97 74

Montevideo, UY 4 4 23 23

Paris, FR 181 181 588 161

Philadelphia, US 36 36 104 47

Porto Alegre, BR 10 5 12 4

Queensland, AU 230 22 172 11

Riga, LV 5 5 8 5

Salt Lake City, US 1 1 3 3

Santiago, CL 2 2 6 6

São Paulo, BR 12 7 28 25

Stockholm, SE 27 25 118 113

Sydney, AU 319 311 820 85

Tel Aviv, IL 28 21 25 25

Valencia, ES 15 5 16 4

Total 1,149 896 3,990 1,651

*
Melanoma families are defined by 3 or more members with a verified melanoma or 2 first degree relatives with verified melanomas. Married-in 

relatives not belonging to a melanoma family lineage are excluded.
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