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Abstract—This paper analyzes different Kalman filtering al-
gorithms for the real-time State of Charge (SoC) estimation of
Battery Energy Storage System (BESS). Accurate SoC estimation
is a key issue for microgrid real-time operation involving opti-
mal model-based control. A BESS composed of Li-ion battery
equipped with a Battery Management System (BMS) is charac-
terized by fitting the parameters of a dynamic model, validated
through experimental tests. Particular attention is devoted to
the identification and representation of model nonlinearities in
order to design robust Kalman filtering SoC estimation methods.
Performance evaluation of the proposed algorithms are carried
out by statistical simulations and experimental real-time tests.
The analysis also takes in consideration the computational
performances of the different methods in order to match the
requirements of real-time control routines.

Index Terms—State of charge estimation, storage device,
Kalman filter, microgrid.

I. INTRODUCTION

In recent years, power systems are experiencing quite a large

revolution due to the massive penetration of power generators

fed by renewable sources like wind and sun and the concurrent

course in power generation practice of using distributed and

dispersed medium and small generators. The combination of

these two tendencies is essential towards a cleaner environment

and also for a more resilience network if properly managed.

The combination of intermittency and diffusion may also

bring out and worsen problems in transmission and distribu-

tion networks [1]. Using a traditional planning approach the

solution can be provided only by transmission and distribution

equipment reinforcement, which is, for sure, the most costly

way to work out the complex problems posed by this new

context. A different solution is offered by managing distri-

bution networks using a microgrid approach. In this context

microgrid and in particular storage can perform their full role

to guarantee a more flexible network. Therefore, it is necessary

integrate energy storage devices in the control loop of these

future networks.

Storage systems can be exploited by owners and investors

to mitigate the uncertainty deriving from renewable energy

randomness. In fact, energy storage can be seen not only as

an “energy buffer” to be used to keep the energy delivered

at Point of Common Coupling (PCC) as close as possible to

the declared value, but also as a real time reservoirs that can

react to power imbalances of the grid. This use of storage

devices is more challenging since the State of Charge (SoC)

has to be computed in real time in order to optimal control

the microgrid in a short time interval. In [2] a lithium-ion

storage battery is incorporated into the microgrid during grid-

connected operation and islanded operation using a Model

Predictive Control. These types of approach require a precise

SoC estimation to perform optimal decision over the time

horizon.

Traditionally, state of sharge (SoC) estimation algorithms

are designed and tested mainly on single cells [3], [4], [5],

[6]. This commonly-used procedure is suited to test the

effectiveness of the different proposed algorithms but has never

been implemented on a commercial storage system. In fact, the

presence of a battery management system (BMS) cannot be

neglected when considering energy storage devices in a power

system, especially when used for energy-intensive tasks [7].

Different works on SoC estimation of the single cell have

been investigated but for the full control of a microgrid it is

essential to perform the estimation of a full Battery Energy

Storage System (BESS) including the BMS [8]. An analysis

of different SoC estimation algorithms when applied to the

scheduling of a storage device is performed. In particular, a Li-

ion battery (made up of 80, series connected, 40 Ah, 3.7 V -

rated cells), which is operating, as depicted in Fig. 1, in a

microgrid at the University of Genova, has been characterized

by fitting the parameters of a proper dynamic model.

Several modeling and estimation approaches have been

proposed by literature [3], [4], [5], [6], [9], [10], [11]. This

paper focuses on Kalman filtering algorithms based on RC-

equivalent circuit models.

Different Kalman filtering techniques are considered [4],

[12], [13]. A statistical analysis is carried out on synthetic

data generated by simulating the BESS. Finally on-line com-

munication between SoC estimation routines and BMS is



Figure 1. Diagram of the LV microgrid test site at University of Genova.

allowed to test the real-time/real-framework performances of

the candidate SoC estimation algorithms.

The paper is organized as follows. Section II describes the

BESS characterization. SoC estimation methods are introduced

in Section III. Section IV presents the on-line implementation

and the experimental results. Finally, conclusions are provided

in Section V.

II. BATTERY CHARACTERIZATION

A. System Description

The battery energy storage system (BESS) considered, is

a 12 kWh - 10 kW Lithium-ion battery, composed by five

trays connected in series. Each tray includes 16 cells (3.75 V

and 40 Ah), thus the rated values of the battery are 300 V

and 40 Ah. The energy system available includes also: the

switch gear, the inverter, the transformer and the BMS, which

interfaces with the operator for managing and controlling the

whole system. The BMS provides measures of SoC and both

the current flow and voltage value at the DC link bus.

The battery is remotely controlled through a protected

Ethernet TCP/IP connection which is established by an OPC

Server that collects all the available measurements and com-

mands using Modbus protocol.

B. Model

The BESS is modelled by a second order equivalent elec-

trical circuit (also called Randles model) [14], [4], [3]. The

circuit scheme is depicted in Fig. 2.
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Figure 2. Dynamic model of the energy storage device.

The battery state-of-charge (SoC) [%] is represented

by the voltage VSoC [V] across the whole-charge ca-

pacitor Cb [A]. Battery SoC and VSoC are related by

SoC = VSoC/V
nom

· 100, where V nom is the rated voltage.

The model describes the dynamical relation between VSoC and

the measured terminal voltage VB [V] and load current IB [A].

Accordingly to Fig. 2, VB is expressed as a function of VSoC

and IB:

VB = VOC(VSoC)− Vf − Vs −R0IB, (1)

where:

• VOC(VSoC) is the nonlinear mapping from the battery

SoC and the open-circuit voltage (OCV) VOC [V] (here-

after referred to as SoC-OCV map);

• Vf and Vs [V] are the voltages across the two RC

networks (Rf , Cf ) and (Rs, Cs), respectively;

• R0 [Ω] is the internal battery resistance.

The dynamics of Vf , Vs and VSoC is given by

V̇f = −

1

RfCf
Vf +

1

Cf
IB (2)

V̇s = −

1

RsCs
Vs +

1

Cs
IB (3)

V̇SoC = −

1

Cb
IB . (4)

C. Characterization Tests

Similarly to [3], [4], the identification of the model pa-

rameters is based on the test results obtained by driving the

battery by load current defined paths. In particular, two profiles

(charge and discharge) are designed: starting from a state

of total discharge/charge, battery is fully charged/discharged

through a sequence of current steps. Each step is 2 minutes

long and followed by 12 minutes pause, during which the

system rests. The steps amplitude is the nominal current value

allowed by the BMS: which is about the declared value of

40 A. Globally the tests last for 9 hours. Both charge and

discharge tests are conducted two times. All measurements

are collected with 1 sec granularity.

The OCV VOC , is assumed equal to the voltage value

measured at the end of the resting period. In Fig. 3 the circles

show when the VOC evaluation is performed in a charge test.
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Figure 3. Current and voltage profiles during a charge test.

During the tests each VOC value is collected together

with the SoC provided by the BMS. Globally, 140 pairs of

(SoC, VOC) values are registered and processed through a



fitting procedure to identify the SoC-OCV map. The best

result in terms of minimal root-mean-square-error (RMSE) is

obtained adopting a truncated Fourier series fitting function of

sixth order with 14 coefficients, depicted in Fig. 4 together

with the registered pairs (SoC, VOC).
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Figure 4. SoC-OCV map truncated Fourier series fitting curve. Black dots
are the registered pairs (SoC, VOC).

D. Parameters Identification

Referring to model (1)–(4) described in section II-B, (1) can

be formulated in the Laplace domain as follows:

VB(s) = VOC(s)−R0IB(s)−Gm(s)IB(s), (5)

Gm(s) =
Rs

1 + sRsCs
+

Rf

1 + sRfCf
. (6)

Assuming (5)–(6), parameters are determined as follows.

• Cb: excluding the temperature effects, the whole-charge

capacity is equal to 3600 · (Nominal Capacity) [Ah]. The

resultant capacity is therefore Cb = 144000 F.

• R0: the internal resistance is evaluated as the ratio be-

tween the instantaneous voltage variation and the ampli-

tude of the k-th current step as shown in Fig. 5:

R0,k =
vmin,k − vmax,k

imin,k − imax,k
. (7)
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Figure 5. R0,k evaluation example.

The global value of R0 is calculated as the mean value

of whole set of the computed internal resistances:

R0 =

N
∑

k=1

R0,k/N. (8)

• RC Network: (5) can be rewritten as

VOC − VB −R0IB = GmIB =: Veq , (9)

where, assuming dIB/dt = 0 in the sampling pe-

riod Ts = 1 sec, time-discretization provides, using Z-

transform:

Veq(z) =

(

Rf (1− e−Ts/Tpf )z−1

1− e−Ts/Tpf z−1

+
Rs(1− e−Ts/Tps)z−1

1− e−Ts/Tpsz−1

)

IB(z)

=

(

z−1(b1 + b2z
−1)

1 + a1z−1 + a2z−2

)

IB(z) (10)

where, Tps, Tpf are the time constants of the two RC
sub-networks. Coefficients a1, a2, b1, b2 were identified

by the ARX system identification method [12]. These

values were then combined to calculate the parameters in

Table I.

TABLE I. RC NETWORK PARAMETERS

Parameter Value

R0 78.3 mΩ
Rf 41.2 mΩ
Rs 35.2 mΩ
Cf 561.94 F
Cs 4943.08 F
Tpf 23.15 s
Tps 173.87 s

E. Validation

The identified model parameters are validated by four sim-

ulation tests. The values reported in Section II-D are exploited

in model (1)–(4) and used to reply the paths run by the battery

during the characterization tests. One of the VB profiles during

discharge simulations is graphically reported in Fig. 6, while

the Mean Absolute Percentage Errors (MAPE), calculated

according to (11), are listed in Table II:

MAPE =
1

N

N
∑

i=1

∣

∣

∣

∣

VB,real,i − VB,sim,i

VB,real,i

∣

∣

∣

∣

· 100 (11)

where: N is the number of samples, VB,real,i is the i-th value

of the measured voltage, and VB,sim,i is the i-th value of the

simulated voltage.
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Figure 6. Real and simulated behavior in a discharge tests.



TABLE II. MAPE VALUES OF VALIDATION TESTS

Test MAPE [%]

charge 1 0.0334
charge 2 0.0471

discharge 1 0.0387
discharge 2 0.0440

III. SOC ESTIMATION METHODS

The objective of this work is to consider Kalman filtering

procedures to estimate the BESS SoC following an approach

similar to [3], [4], [5], [6], but considering a proper linear

or nonlinear representation of the BESS SoC-OCV map. The

idea is to correct through a filtering algorithm based on the

dynamic model (1)–(4) the SoC estimated by Coulomb Count-

ing methodologies, which consist in the simple integration

of the differential equation (4). Notice that observer based

approaches like the one in [3] have been not considered since

BMS measurements are time sampled and therefore require

discrete-time estimation methods.

In order to introduce the filtering techniques, in the fol-

lowing Section III-A, model (1)–(4) is firstly written in the

standard continuous-time state space form. In Section III-B

different representations of the system nonlinearities are dis-

cussed. In Section III-C, once time-discretization is operated,

model uncertainty and measurements errors are suitably mod-

elled. Finally, Section III-D introduces the filtering procedures

and in Section III-E off-line validation tests are presented.

A. State-space representation

As said in Section II-A, the measurements provided by the

BMS, with a sampling time Ts, are the terminal voltage VB

and the load current IB . The latter is usually considered as a

known control variable but in the case of the complex BESS

subject of this paper, to consider current as a measured quan-

tity is more reasonable. Therefore, assuming again dIB/dt = 0
within a sampling interval, model (1)–(4) can be written in the

continuous-time state-space form

ẋ = Āx (12)

y = h(x) (13)

where x and y are the system state and output vector, respec-

tively defined as

x =
[

Vf Vs VSoC IB
]T

, y =
[

VB IB
]T

(14)

and where

Ā =













−
1

RfCf
0 0 1

Cf

0 −
1

RsCs
0 1

Cs

0 0 0 −
1
Cb

0 0 0 0













, (15)

h(x) =

[

VOC(x3)− x1 − x2 −R0x4

x4

]

. (16)

B. Nonlinear modelling of the SoC-OCV map

System (12)–(13) is nonlinear because of the SoC-OCV

map appearing in the output map (16). Therefore, nonlinear

Kalman filtering approaches are required. It is well known

that nonlinear filtering performances depend on the model

accuracy, as well as for any model based estimation algorithm,

but also on the capability of representation and/or approxima-

tion of the system nonlinearities. To find the optimal trade-

off between accuracy and mathematical simplicity is always

needed. Therefore, three possible representation of the SoC-

OCV map are considered here:

• truncated Fourier series fitting curve: as mentioned in

Section II-C it has resulted as the best fitting curve

in terms of minimal RMSE among a considerable set

of possible candidates. In this case the SoC-OCV map

(expressed as function of VSoC = x3) has the following

form:

V F
OC(x3) = a0 +

6
∑

i=1

[ai(cos(iwx3)) + bi(sin(iwx3))];

(17)

• polynomial fitting curve: the SoC-OCV map is modelled

by a fifth order polynomial function:

V P
OC(x3) =

5
∑

i=0

aix
i
3; (18)

• linear approximation: as proposed in [4], within the

interval 10 − 100%, the SoC-OCV map is represented

by a linear function:

V L
OC(x3) = a0 + a1x3. (19)

Figure 7 depicts the versions of the three listed types

of fitting curves, each obtained by minimizing the RMSEs

reported in Table III. Concerning the linear approximation,

optimization has been computed considering the SoC in-

terval 10-100%. Just regarding Fig. 7, it results clear that

the truncated Fourier series is the more accurate, whereas

linearization is the poorest, especially within the SoC interval

0-20%. Accuracy is however paid with complexity. Indeed,

the Fourier representation is the most complex and nonlinear.
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Figure 7. SoC-OCV map representations with truncated Fourier series,
polynomial, and linear fittings. Black dots are the registered pairs (SoC, VOC ).



TABLE III. RMSES OF SOC-OCV MAP FITTING CURVES.

Fitting curve RMSE [V]

Fourier 1.2487
Polynomial 1.4403

Linear 2.7710

On the contrary, using linearization the output map (16), and

consequently the overall system (12)–(13), become linear.

The error committed using any of presented SoC-OCV

maps, can be modelled by a zero-mean Gaussian noise term

ε, with standard deviation σε set equal to the RMSEs reported

in Table III. Therefore, VOC(x3) in (16) is substituted with

VOC(x3) = V ty

OC(x3) + εty (20)

where ty = F, P, or L, depending on the type of fitting curve.

C. Time-discretization and uncertainties modelling

After time-discretization system (12)–(13) assumes the form

xk+1 = Axk + wk, (21)

yk = h(xk) + vk, (22)

where xk = x(Tsk), yk = y(Tsk) and A = eĀTs . Sequences

wk and vk are supposed to be zero-mean, white, Gaussian and

mutually independent. They are added to the state and output

equations in order to represent the model uncertainties and the

measurement errors. More precisely:

• wk is characterized by the covariance matrix Ψw and

models the state equations uncertainty, i.e. the uncertainty

on the parameters of (2)–(4) identified in Section II;

• vk is composed by two independent components,

vk = [v1,k v2,k]. First component v1,k is related

to the measurement of the terminal voltage VB . It is

supposed to be the sum of two independent noises: εtyk ,

representing the uncertainty of the SoC-OCV map (see

Section III-B), and nV,k, with variance σ2
V , modelling

the voltage metering errors. Under these assumptions,

v1,k results to be characterized by the variance σ2
ε + σ2

V .

Second component v2,k models the current meter errors

and it is characterized by the variance σ2
I .

D. Kalman Filtering Methods

System (21)–(22) is amenable to be processed by a Kalman

filtering procedure to estimate the state vector xk, whose third

component corresponds to the estimate of the SoC voltage

VOC at the time step k. Taking into account the three types of

SoC-OCV map fitting curves presented in Section III-B, three

different Kalman filtering procedures, listed in the following,

have been selected.

• Kalman filter (KF): using the linear approximation

V L
OC(SoC), standard (linear) KF [15] can be applied to

the linear system (21)–(22), as done in [4]. In this case

no linearization is operated by the filtering procedure.

Therefore, filtering optimally manages the model, which,

as remarked above, is however less accurate with respect

to nonlinear models.

• Extended Kalman Filter (EKF): using V F
OC(SoC) or

V P
OC(SoC) the nonlinear system (21)–(22) is processed

by the standard EKF algorithm [15], which operates the

linearization of the output map (16) at each filtering step.

In this case, model is more accurate with respect to the

case of KF, but filtering must approximate V F
OC(SoC) or

V P
OC(SoC) through linearization.

• Unscented Kalman Filter (UKF): using V F
OC(SoC) or

V P
OC(SoC) the nonlinear system (21)–(22) is processed

by the UKF algorithm [13], which has represented an

interesting novelty in the nonlinear filtering field thanks to

the idea of approximating the state conditional probability

density function (PDF), instead of the system equations,

with a bounded number of parameters. This algorithm has

been proved to be superior to EKF with a comparable

computational complexity. In this case no direct approx-

imation of V F
OC(SoC) or V P

OC(SoC) is operated by the

filtering procedure.

To summarize, five candidate algorithms are defined: L-KF:

KF using V L
OC ; F-EKF: EKF using V F

OC ; P-EKF: EKF using

V P
OC ; F-UKF: UKF using V F

OC ; P-UKF: UKF using V P
OC .

E. Off-line tests

The proposed filtering algorithms are analyzed through

a statistical analysis employing synthetic data. The BESS

characterized in Section II-C is simulated by implementing

model (1)–(4) on the Matlab platform. This synthetic battery

is initialized with SoC = 85% and driven by the 12 hours load

current profile depicted in Fig. 8.
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Figure 8. Load current profile used to drive the synthetic battery.

Measurements of IB and VB are generated with sampling

time Ts= 1 sec, corrupted by additive Gaussian noise, with

standard deviations σI = 0.1 A and σV = 100 mV, respectively.

The measurements of VB are generated by (1) using the

Fourier fitting curve in Fig. 4 as “real” SoC-OCV map. Two

sets of synthetic data are generated, both consisting of 100

realizations of random noises. In the first set (Dataset 1)

no perturbation to the SoC-OCV map is simulated. In the

second set (Dataset 2), the SoC-OCV map is perturbed with a

Gaussian random noise with variance 1.2487, i.e. equal to the

RMSE computed for the Fourier fitting curve (see Table III).

The synthetic data are processed by the estimation algo-

rithms introduced in Section III-D. All filters start from an

initial SoC estimate with 10% Gaussian error. At each time

step, the RMSEs of all SoC estimates are computed over the



100 noise realizations. Then time average is operated to obtain

the performance index values reported in Table IV. Such an

index is referred to simply as RMSE.

TABLE IV. SOC ESTIMATION RMSES AND COMPUTATIONAL TIMES.

SoC RMSEs [%]

Filter Dataset 1 Dataset 2 Comp. Time [ms]

KF 6.53 10.78 38.0
F-EKF 0.37 2.16 87.7
P-EKF 3.07 5.88 61.3
F-UKF 0.12 2.02 415.0
P-UKF 3.04 5.88 320.8

It appears clear that nonlinear filtering is more adequate

since using standard KF introduces significant estimation

errors. The RMSE is halved by adopting the polynomial rep-

resentation in P-EKF and P-UKF for both datasets. Errors are

further decreased when the Fourier representation is employed.

However, this occurs more significantly for dataset 1. This is

not surprising because the Fourier representation is used as

“real” SoC-OCV map. In dataset 2, where the SoC-OCV map

is perturbed, the relative difference between these two classes

of filters is reduced. In general, no significant differences result

between UKF and EKF. Figure 9 shows the SoC estimates

obtained for one of the noise realizations in Dataset 1.
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Figure 9. Example of SoC estimation results with no perturbation of the
SoC-OCV map. Right figure is a zoom of the section of the SoC profiles
within the orange rectangle in the left figure. In both the figures red and blue
lines (solid and dashed) are overlapping almost everywhere.

It is important to stress that both EKF and UKF have

no problems in managing the battery model nonlinearities.

More precisely, no typical drawbacks of nonlinear filters, such

as the possible divergence of estimates due to linearization

and/or numerical errors, occur in the case under consideration.

There are no drawbacks also from the computational point

of view. Indeed, the average Matlab computational time per

filtering iteration, executed by a CPU Intel(R) Core(TM) i-7

2.70 GHz, is always lower than the 1 sec sampling time, as

shown in Table IV. However, the UKF computational burden is

significantly higher. Thus, considering that estimation results

are comparable, it can be concluded that EKF is preferable

to UKF. Finally notice that there are no severe time dif-

ferences between the use of polynomial and Fourier series

fitting curves. Therefore, from the present study there is no

motivation to prefer the simplest polynomial representation to

the Fourier series one.

IV. ON-LINE IMPLEMENTATION AND EXPERIMENTAL

RESULTS

As described in Section II-A, an OPC Server allows the

considered BESS to be remotely monitored. The estimation

algorithms introduced in Section III have been implemented

on the Matlab(R) platform in order to be executed in real-time

and to communicate with the OPC Server, which provides the

BMS measurements with 1 sec granularity.

All filters are initialized with the SoC measurements

provided by the BMS, assuming Gaussian error with

a 10% standard deviation. Filtering parameters are:

σV = 1 mV, σI = 0.1 A, σε equal to the RMSEs

in Table III, depending on the considered filter, and

Ψw = diag([0.282mV2 0.072mV2 1.42mV2 52A2]).
In order to evaluate the performances of the filtering al-

gorithms in this real-time framework, the three SoC battery

profiles depicted in Fig. 10 have been generated. In Profile 1,

SoC moves within the interval 70-85%, in Profile 2 between

40-75%, in Profile 3 between 5-25%. All profiles are obtained

by driving the BESS with the load current path reported in

the top pictures of Fig. 10 starting from different initial SoC

(≈ 85%, ≈ 55%, ≈ 25%, respectively). Such a path consists of

twelve sub-profiles of 10 minutes, separated by pause intervals

lasting 20 or 30 minutes.

During pauses, SoC does not change, whereas the measured

terminal voltage VB converges to the corresponding OCV.

Therefore, a set of thirteen OCV values is collected for each

profile by registering the terminal voltages VB at the end of the

pause intervals. The real SoC levels reached at the beginning

of pauses are then post-computed from the collected OCVs

by inverting SoC-OCV map. The inverse map is obtained

with high accuracy by employing the spline smoothing fitting

technique [16] over the same 40 pairs (SoC, VOC ) used to

identify the direct SoC-OCV maps in III-C.

The filtering performances can be thus evaluated by com-

puting thirteen SoC estimation errors for each profile, as

difference between the filters SoC estimates at the beginning

of pauses and the thirteen post-computed real SoC values.

Figure 10 shows the estimation results of KF, F-EKF and

F-UKF compared with the BMS SoC measurements and the

post-computed real SoC values, depicted at the beginning of

pause intervals as black squares. P-EKF and P-UKF are not

reported in Fig. 10 in order to preserve the figures readability.

Bottom figures depict the absolute values of the thirteen SoC

estimation errors per profile. It appears clear that F-EKF and

F-UKF significantly improve the estimation performances both

of KF and BMS, in particular in the 40-75% (Profile 2) and

5-25% (Profile 3) SoC zones. Notice that, without surprise,

in the 5-25% zone, KF is completely inadequate. However,

also BMS measurements become largely imprecise, whereas

F-EKF and F-UKF seems to keep similar performances is all

the considered SoC zones.
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Figure 10. Real-time SoC estimation results. Top figures are the measured load current profiles. Center figures depict the estimated SoC profiles, together
with the BMS SoC measurements and the set of post-computed real SoC values. Bottom figures depict the absolute values of the SoC estimation errors in
correspondence of the post-computed real SoC values.

TABLE V. EXPERIMENTAL RESULTS: SOC ESTIMATION RMSES [%]

Filter Profile 1 Profile 2 Profile 3

KF 1.89 4.93 13.20
F-EKF 0.54 0.37 0.10
P-EKF 1.44 0.99 1.57
F-UKF 0.59 0.42 0.26
P-UKF 1.35 0.97 1.66

BMS 1.36 1.99 2.98

These considerations are confirmed by the numerical data

in Table V, which provides the RMSEs computed over the

SoC estimation errors, including also P-EKF and P-UKF.

The F-EKF results to have the better performances, even if

comparable with the F-UKF, exactly as it arises in the off-line

tests presented in Section III-E. Generally, all results obtained

in the off-line tests are confirmed by the experimental data.

The conclusions of the study can be summarized as follows.

Standard KF with linear approximation of the SoC-OCV map

(proposed for example in [4]) is inadequate for a complex

BESS; EKF and UKF have comparable estimation accuracy;

EKF is preferable because of a lower computational burden;

the truncated Fourier series representation of the SoC-OCV

map is preferable to the polynomial one.

V. CONCLUSIONS

In this work a full characterization of a real BESS coupled

to a PV plant has been carried out. SoC estimation is of

paramount importance in power system application. In fact,

as the presence of renewable (and, thus, intermittent) en-

ergy sources grows, energy management must exploit energy

storage devices in order to increase efficiency and allow

regulation. Optimal scheduling and management algorithms

strongly rely on the estimation of the actual state of the grids.

SoC evolution is nonlinear and it has been demonstrated

that the simple integration of the current flowing through the

BESS may lead to great errors. A bad estimation of the SoC

may impair the correct operation of those algorithms, as may

lead to inefficient (or even unfeasible) actions.

In this paper, five different algorithms for on-line SoC

estimation have been tested on a real BESS. They all have

been compared to the traditional BMS provided by the manu-

facturer. Extended Kalman Filter with truncated Fourier series

representation of nonlinearities has resulted as the best algo-

rithm both for estimation accuracy and computational time.

Future works will be devoted to the consideration of more

complex battery models to evaluate the impact on the estima-

tion performances into the context of microgrid operation.
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