Spinocerebellar ataxia type 28 (SCA28) is a neurodegenerative disease caused by mutations of the mitochondrial protease AFG3L2. The SCA28 mouse model, which is haploinsufficient for Afg3l2, exhibits a progressive decline in motor function and displays dark degeneration of Purkinje cells (PC-DCD) of mitochondrial origin. Here, we determined that mitochondria in cultured Afg3l2-deficient PCs ineffectively buffer evolved Ca\(^{2+}\) peaks, resulting in enhanced cytoplasmic Ca\(^{2+}\) concentrations, which subsequently triggers PC-DCD. This Ca\(^{2+}\)-handling defect is the result of negative synergism between mitochondrial depolarization and altered organelle trafficking to PC dendrites in Afg3l2-mutant cells. In SCA28 mice, partial genetic silencing of the metabolic glutamate receptor mGluR1 decreased Ca\(^{2+}\) influx in PCs and reversed the ataxic phenotype. Moreover, administration of the β-lactam antibiotic ceftriaxone, which promotes synaptic glutamate clearance, thereby reducing Ca\(^{2+}\) influx, improved ataxia-associated phenotypes in SCA28 mice when given either prior to or after symptom onset. Together, the results of this study indicate that ineffective mitochondrial Ca\(^{2+}\) handling in PCs underlies SCA28 pathogenesis and suggest that strategies that lower glutamate stimulation of PCs should be further explored as a potential treatment for SCA28 patients.
PCs are some of the largest and most complex neurons of the mammalian CNS. They present extremely branched dendritic trees with a large number of active spines, which uniquely receive glutamatergic stimulation of ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and metabotropic receptors (e.g., mGluR1) asafferent inputs. PCs are therefore exposed to massive and sudden Ca\(^{2+}\) influx and are especially vulnerable to glutamate-mediated excitotoxicity (21). To control Ca\(^{2+}\) homeostasis, PCs take advantage of several Ca\(^{2+}\) clearance systems: the Ca\(^{2+}\)-ATPase and the Ca\(^{2+}\)-Na\(^{+}\) exchanger at the plasma membrane, the Ca\(^{2+}\) ATPase at the ER, and Ca\(^{2+}\)-binding proteins (22).

Mitochondria accumulate Ca\(^{2+}\) in the matrix via the low-affinity mitochondrial Ca\(^{2+}\) uniporter (MCU) in a process that depends on the electrical potential across the inner membrane (\(\Delta W_{\text{mito}}\)) (23). While the capability of mitochondria to internalize Ca\(^{2+}\) is undisputed, their functional role in living cells, and especially in neurons, is less clear. Compelling evidence indicates that mitochondria can act as local Ca\(^{2+}\) buffers in different neuronal cell types (24-26), but the effective impact of this process on neuronal Ca\(^{2+}\) homeostasis and physiology remains to be clarified.

The efficacy of mitochondrial Ca\(^{2+}\) uptake is strictly dependent on the proximity of the organelles to the Ca\(^{2+}\) source (e.g., ER, plasma membrane, dendritic spines) (23, 27). Neurons are therefore particularly reliant on proper trafficking of mitochondria to these sites and consequently on their dynamic properties. Mitochondria continuously fuse and fragment to mix lipids and matrix content and are also actively recruited to subcellular sites, such as the axonal and dendritic processes. Defects in these key features are indeed associated with neurodegenerative diseases (28). Also, alterations in both fusion and fission have been shown to decrease mitochondrial movement (29). Interestingly, loss of AFG3L2 results in increased organellar fragmentation due to enhanced processing of OPA1 (12, 16).

In this study, we have dissected the pathogenetic mechanism of SCA28 in primary PC neurons and provide the first evidence to our knowledge of a pharmacological treatment for this disease in preclinical models. Indeed, we have demonstrated in cultured PCs that Afg3l2 depletion causes defective Ca\(^{2+}\) uptake by mitochondria. The inefficient buffering and shaping of Ca\(^{2+}\) peaks by mutant mitochondria provoke an increase in cytoplasmic Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]\(_{\text{cyto}}\)), thus triggering PC-DCD. The impaired mitochondrial Ca\(^{2+}\) buffering results from the negative synergism of both depolarization of mitochondria and alteration of the mitochondrial morphology, which also hamper the proper trafficking of the organelles into dendrites.

As a proof of principle of this pathogenetic mechanism, we show that half dosage of mGluR1 (and thus reduced Ca\(^{2+}\) influx into PCs) completely reverses both motor impairment and PC-DCD in Afg3l2\(^{-/-}\) mice.

Finally, we obtained the same result by pharmacological treatment with ceftriaxone, an antibiotic able to increase expression of the astrocytic glutamate transporter EAAT2, thereby lowering the glutamatergic stimulation of PCs.

Results

Afg3l2 depletion in PCs leads to increased susceptibility to high Ca\(^{2+}\) concentrations. In Afg3l2\(^{-/-}\) mice, PCs present morphological features typical of DCD (Figure 1A). DCD in this model represents approximately 20% to 30% of PCs at 8 months, as already reported (16). This phenomenon is caused by an increase in [Ca\(^{2+}\)]\(_{\text{cyto}}\), thus activating calpains, which are Ca\(^{2+}\)-sensitive cysteine proteases that mediate cytoskeletal breakdown (30–32). Looking for molecular evidence of activation of this pathway in SCA28, we assayed calpain-mediated proteolysis of all-spectrin, which was expected to result in 2 proteolytic fragments of nearly equal electrophoretic mobility (~150 kDa) (33). These fragments were indeed found in the cerebellum of Afg3l2\(^{-/-}\) mice by Western blot (WB) analysis and comigrated with the fragments obtained by treating WT cerebellar extracts with recombinant m-calpain plus 2 mM Ca\(^{2+}\), thus demonstrating increased [Ca\(^{2+}\)]\(_{\text{cyto}}\) and calpain activation (Figure 1, B and C).

We then investigated whether PCs in which Afg3l2 expression is reduced or abolished are selectively susceptible to stimuli that increase [Ca\(^{2+}\)]\(_{\text{cyto}}\). To this end, we used cerebellar sections from Afg3l2-depleted mice and WT littermates and elicited DCDs by a brief exposure to AMPA (34). In fact, PCs express high levels of AMPA receptors, whose activation is able to increase [Ca\(^{2+}\)]\(_{\text{cyto}}\) (21). Upon AMPA treatment, we found that the number of PC-DCDs (identified by immunofluorescence [IF] using an Ab that specifically recognizes the amino-terminal breakdown product of calpain-cleaved spectrin; ref. 30), was increased in Afg3l2\(^{-/-}\) PCs compared with the number in WT PCs, and this effect was even greater in Afg3l2\(^{-/-}\) cells (Figure 1, D and E, and Supplemental Figure 1), supporting a higher susceptibility of Afg3l2-depleted PCs to stimuli that increase [Ca\(^{2+}\)]\(_{\text{cyto}}\). We obtained the same result by performing WB analysis of cerebellar slices using an Ab against spectrin (Figure 1B), which revealed an increased amount of cleaved spectrin in Afg3l2\(^{-/-}\) and Afg3l2\(^{-/-}\) PCs compared with that detected in WT slices (Figure 1F).

Loss of Afg3l2 in PCs results in reduced mitochondrial Ca\(^{2+}\) uptake and increased cytosolic Ca\(^{2+}\) concentration. In the SCA28 mouse, PC-DCD originates from mitochondrial dysfunction (16). Since PCs are exposed to massive Ca\(^{2+}\) influx (21) and mitochondria can transiently store large amounts of Ca\(^{2+}\) (23, 27), we reasoned that defective Ca\(^{2+}\) buffering operated by Afg3l2-mutant mitochondria in PCs could increase [Ca\(^{2+}\)]\(_{\text{cyto}}\) and cause DCD, thus mimicking excitotoxicity. This hypothesis was also supported by our previous data showing reduced [Ca\(^{2+}\)] in the mitochondrial matrix of Afg3l2-depleted fibroblasts (13).

To address this issue, we decided to measure (a) mitochondrial [Ca\(^{2+}\)]\(_{\text{mito}}\) ([Ca\(^{2+}\)]\(_{\text{mito}}\)) and (b) [Ca\(^{2+}\)]\(_{\text{cyto}}\) in primary cerebellar cultures from Afg3l2-depleted mice. In these cultures PCs are present together with other cerebellar neurons (mainly granule cells) and Bergmann glia (Supplemental Figure 2A), which are required for PC survival and function (35). We first performed a quantitative evaluation of PC morphology by IF using anti-calbindin Ab at day 14 in vitro (14 DIV). Afg3l2\(^{-/-}\) PCs appeared comparable to those in WT mice, while in Afg3l2\(^{-/-}\) PCs, we found that dendrites were slightly decreased in number and length (Supplemental Figure 2, B and C), but were considerably reduced in terms of area, appearing thinner with shorter side branches (Figure 2, A and B). Spines were visible in the dendrites of PCs of each genotype, with no significant differences in spine density (Supplemental Figure 2D). We also verified that PCs correctly expressed mGluR1 receptors (Supplemental Figure 2A).
response elicited by acute exposure to 30 mM KCl was significantly higher than that in Afg3l2+/– and WT PCs (Figure 2F). Of note, the peak Ca2+ response observed in Afg3l2–/– PCs was comparable to that measured by pretreating WT PCs with the respiratory chain uncoupler trifluorocarbonyl cyanide phenylhydrazone (FCCP) (Figure 2F). Our analysis of the decay kinetics revealed no significant differences among the genotypes, demonstrating that active Ca2+ clearance systems of mutant PCs (e.g., plasma membrane Ca2+ ATPase and ER Ca2+ ATPase) were unaffected (Figure 2, G and H).

We verified that an increased Ca2+ response in the absence of AFG3L2 in PCs occurs not only in the presence of a depolarizing stimulus such as KCl, but also in the presence of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG), which is capable of inducing Ca2+ release from the ER (21). We first confirmed the absence of a Ca2+ response in primary PCs lacking mGluR1 (Supplemental Figure 3, A and B). We then treated Afg3l2–/– and Afg3l2+/– mice with DHPG and measured the Ca2+ response in transduced neurons. We observed that mitochondrial Ca2+ rises of transduced neurons were significantly smaller in Afg3l2–/– PCs compared with those in Afg3l2+/– and WT cells (Figure 2, C and D).

In parallel, we performed ratiometric measurement of [Ca2+]\textsubscript{cyt} in PCs by using the high-affinity Ca2+ indicator fura-2. We found that the basal levels of [Ca2+]\textsubscript{cyt} were identical in the 3 genotypes (Figure 2E). In contrast, we observed that in Afg3l2+/– and WT cells, the peak Ca2+ response elicited by acute exposure to 30 mM KCl was significantly higher than that in Afg3l2–/– PCs (Figure 2F). Of note, the peak Ca2+ response observed in Afg3l2–/– PCs was comparable to that measured by pretreating WT PCs with the respiratory chain uncoupler trifluorocarbonyl cyanide phenylhydrazone (FCCP) (Figure 2F). Our analysis of the decay kinetics revealed no significant differences among the genotypes, demonstrating that active Ca2+ clearance systems of mutant PCs (e.g., plasma membrane Ca2+ ATPase and ER Ca2+ ATPase) were unaffected (Figure 2, G and H).

We verified that an increased Ca2+ response in the absence of AFG3L2 in PCs occurs not only in the presence of a depolarizing stimulus such as KCl, but also in the presence of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG), which is capable of inducing Ca2+ release from the ER (21). We first confirmed the absence of a Ca2+ response in primary PCs lacking mGluR1 (Supplemental Figure 3, A and B). We then treated Afg3l2–/– and WT mice with DHPG and measured the Ca2+ response in transduced neurons. We observed that mitochondrial Ca2+ rises of transduced neurons were significantly smaller in Afg3l2–/– PCs compared with those in Afg3l2+/– and WT cells (Figure 2, C and D).

In parallel, we performed ratiometric measurement of [Ca2+]\textsubscript{cyt} in PCs by using the high-affinity Ca2+ indicator fura-2. We found that the basal levels of [Ca2+]\textsubscript{cyt} were identical in the 3 genotypes (Figure 2E). In contrast, we observed that in Afg3l2+/– and WT cells, the peak Ca2+ response elicited by acute exposure to 30 mM KCl was significantly higher than that in Afg3l2–/– PCs (Figure 2F). Of note, the peak Ca2+ response observed in Afg3l2–/– PCs was comparable to that measured by pretreating WT PCs with the respiratory chain uncoupler trifluorocarbonyl cyanide phenylhydrazone (FCCP) (Figure 2F). Our analysis of the decay kinetics revealed no significant differences among the genotypes, demonstrating that active Ca2+ clearance systems of mutant PCs (e.g., plasma membrane Ca2+ ATPase and ER Ca2+ ATPase) were unaffected (Figure 2, G and H).

We verified that an increased Ca2+ response in the absence of AFG3L2 in PCs occurs not only in the presence of a depolarizing stimulus such as KCl, but also in the presence of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG), which is capable of inducing Ca2+ release from the ER (21). We first confirmed the absence of a Ca2+ response in primary PCs lacking mGluR1 (Supplemental Figure 3, A and B). We then treated Afg3l2–/– and WT mice with DHPG and measured the Ca2+ response in transduced neurons. We observed that mitochondrial Ca2+ rises of transduced neurons were significantly smaller in Afg3l2–/– PCs compared with those in Afg3l2+/– and WT cells (Figure 2, C and D).

In parallel, we performed ratiometric measurement of [Ca2+]\textsubscript{cyt} in PCs by using the high-affinity Ca2+ indicator fura-2. We found that the basal levels of [Ca2+]\textsubscript{cyt} were identical in the 3 genotypes (Figure 2E). In contrast, we observed that in Afg3l2+/– and WT cells, the peak Ca2+ response elicited by acute exposure to 30 mM KCl was significantly higher than that in Afg3l2–/– PCs (Figure 2F). Of note, the peak Ca2+ response observed in Afg3l2–/– PCs was comparable to that measured by pretreating WT PCs with the respiratory chain uncoupler trifluorocarbonyl cyanide phenylhydrazone (FCCP) (Figure 2F). Our analysis of the decay kinetics revealed no significant differences among the genotypes, demonstrating that active Ca2+ clearance systems of mutant PCs (e.g., plasma membrane Ca2+ ATPase and ER Ca2+ ATPase) were unaffected (Figure 2, G and H).

We verified that an increased Ca2+ response in the absence of AFG3L2 in PCs occurs not only in the presence of a depolarizing stimulus such as KCl, but also in the presence of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG), which is capable of inducing Ca2+ release from the ER (21). We first confirmed the absence of a Ca2+ response in primary PCs lacking mGluR1 (Supplemental Figure 3, A and B). We then treated Afg3l2–/– and WT mice with DHPG and measured the Ca2+ response in transduced neurons. We observed that mitochondrial Ca2+ rises of transduced neurons were significantly smaller in Afg3l2–/– PCs compared with those in Afg3l2+/– and WT cells (Figure 2, C and D).

In parallel, we performed ratiometric measurement of [Ca2+]\textsubscript{cyt} in PCs by using the high-affinity Ca2+ indicator fura-2. We found that the basal levels of [Ca2+]\textsubscript{cyt} were identical in the 3 genotypes (Figure 2E). In contrast, we observed that in Afg3l2+/– and WT cells, the peak Ca2+ response elicited by acute exposure to 30 mM KCl was significantly higher than that in Afg3l2–/– PCs (Figure 2F). Of note, the peak Ca2+ response observed in Afg3l2–/– PCs was comparable to that measured by pretreating WT PCs with the respiratory chain uncoupler trifluorocarbonyl cyanide phenylhydrazone (FCCP) (Figure 2F). Our analysis of the decay kinetics revealed no significant differences among the genotypes, demonstrating that active Ca2+ clearance systems of mutant PCs (e.g., plasma membrane Ca2+ ATPase and ER Ca2+ ATPase) were unaffected (Figure 2, G and H).

We verified that an increased Ca2+ response in the absence of AFG3L2 in PCs occurs not only in the presence of a depolarizing stimulus such as KCl, but also in the presence of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG), which is capable of inducing Ca2+ release from the ER (21). We first confirmed the absence of a Ca2+ response in primary PCs lacking mGluR1 (Supplemental Figure 3, A and B). We then treated Afg3l2–/– and WT mice with DHPG and measured the Ca2+ response in transduced neurons. We observed that mitochondrial Ca2+ rises of transduced neurons were significantly smaller in Afg3l2–/– PCs compared with those in Afg3l2+/– and WT cells (Figure 2, C and D).
The molecular basis of the decreased mitochondrial Ca\(^{2+}\) buffering in Afg3l2-depleted PCs, we examined the morphology, distribution, and metabolic status of mitochondria in primary PCs. We first performed IF and confocal microscopy using an Ab against both COX1 (mitochondrial marker) and calbindin (PC marker). In Afg3l2–/– PCs, mitochondria were mostly round shaped, as was previously observed in MEFs (13), in contrast to the tubular-shaped organelles we observed in syngenic controls (Figure 3A). We also investigated whether alterations of mitochondrial morphology alter the trafficking of organelles to the distal dendritic branches of PCs. Using 3D reconstruction of confocal stacks, PCs with DHPG, which elicited an increased peak Ca\(^{2+}\) response in Afg3l2–/– cells compared with that seen in WT cells (Supplemental Figure 3C, Supplemental Results, and Supplemental Methods), in agreement with what we showed in Figure 2F after the administration of a depolarizing stimulus that enhanced Ca\(^{2+}\) influx into the cell from the plasma membrane. This result demonstrates that the inefficient mitochondrial Ca\(^{2+}\) buffering in Afg3l2–/– PCs causes abnormal cytosolic Ca\(^{2+}\) elevation, even in the presence of a stimulus inducing Ca\(^{2+}\) release from the ER.

Loss of Afg3l2 in primary PCs induces mitochondrial morphological alterations and depletion of dendritic mitochondria. To understand the molecular basis of the decreased mitochondrial Ca\(^{2+}\) buffering in Afg3l2-depleted PCs, we examined the morphology, distribution, and metabolic status of mitochondria in primary PCs. We first performed IF and confocal microscopy using an Ab against both COX1 (mitochondrial marker) and calbindin (PC marker). In Afg3l2–/– PCs, mitochondria were mostly round shaped, as was previously observed in MEFs (13), in contrast to the tubular-shaped organelles we observed in syngenic controls (Figure 3A). We also investigated whether alterations of mitochondrial morphology alter the trafficking of organelles to the distal dendritic branches of PCs. Using 3D reconstruction of confocal stacks.
of PCs stained with anti-calbindin and anti-COX1 Ab, we analyzed the volume of mitochondria in the whole PC volume and in dendrites. We observed no change in total mitochondrial volume in Afg3l2−/− PCs, though these cells contained fewer mitochondria in their dendrites, indicating an accumulation of organelles in the soma (Figure 3, B and C).

Alteration of cristae morphology correlates with mitochondrial depolarization in Afg3l2-depleted PCs. To further address the defective trafficking of mitochondria, we assayed the mitochondrial ultrastructure by electron microscopy (EM). In WT PCs, we observed that mitochondria were evenly distributed in the cell soma and dendrites, had structurally intact inner and outer membranes with well-defined cristae, and were tubular in shape. In contrast, in Afg3l2−/− PCs, we observed a remodeling of the inner membrane conformation, ranging from widening to vesiculation in dendrites. We observed no change in total mitochondrial volume among PCs stained with anti-calbindin and anti-COX1 Ab, we analyzed the volume of mitochondria in the whole PC volume and in dendrites. We observed no change in total mitochondrial volume in Afg3l2−/− PCs, though these cells contained fewer mitochondria in their dendrites, indicating an accumulation of organelles in the soma (Figure 3, B and C).

Figure 3. Loss of Afg3l2 in PCs alters dendritic mitochondrial content. (A) IF images of primary PCs from the indicated genotypes at 14 DIV using Ab against the PC marker calbindin and the mitochondrial marker COX1 analyzed by confocal imaging. Scale bar: 25 μm. (B and C) Quantification of total mitochondria volume relative to total PC volume (B) or relative to PC dendrite volume (C) analyzed by 3D reconstruction of consecutive confocal stacks taken at 0.3 μm. n = 15 PCs analyzed per genotype. *P < 0.05 and **P < 0.001 by Student’s t test.

Organellar morphological alterations in the heterozygous mice may not be severe enough to hamper entry of the organelles into the dendritic tree, at least in culture conditions.

These data prompted us to evaluate the metabolic status of the organelles in Afg3l2-depleted conditions. We therefore tested Δψ

"m" by live-imaging measurement of the potentiometric dye tetramethylrhodamine methyl ester (TMRM) in primary PCs. In Afg3l2−/− PCs, and to a greater extent in Afg3l2−/− PCs, we observed a depolarization of mitochondria in the soma that was even more pronounced in dendrites (Figure 4C), indicating that PC mitochondria lacking AFG3L2 or with a halved dosage of AFG3L2 are metabolically dysfunctional.

Reduced excitatory stimulation of PCs rescues the ataxic phenotype of Afg3l2−/− mice. Considering these pieces of evidence, we designed a rescue strategy based on the rationale that reducing Ca2+ influx into PCs by lowering their glutamatergic stimulation could prevent, or at least ameliorate, the cerebellar phenotype of SCA28 mutants. We addressed this goal using a binary approach, i.e., a genetic and pharmacological rescue.

Activation of the mGluR1 receptor is linked to IP3-mediated Ca2+ release from the ER (21). We thus crossed Afg3l2-haploinsufficient mice with cervelet-4 (crv4) heterozygous mice, which carry a spontaneous mutation causing loss of function of mGluR1 encoded by the Grm1 gene (37). We first verified a halved amount of the mGluR1 receptor (Supplemental Figure 4A) and excluded increased levels of AMPA receptors (Supplemental Figure 4B), signs of gait ataxia and cerebellar morphological alterations in Grm1+/crv4 mice (Supplemental Figure 4, C and D). Also, we found no mGluR5 expression in adult PCs in either WT or Grm1+/crv4 mice (Supplemental Figure 4E).

In agreement with the proposed mechanism of pathogenesis, we demonstrated that the SCA28 phenotype is fully rescued by halving the amount of the mGluR1 receptor and thus reducing the release of Ca2+ from the ER. Indeed, the Afg3l2−/− Grm1+/crv4 double mutants displayed motor function and coordination within the normal range, as demonstrated by beam-walking tests (Figure 5A and Supplemental Videos 1 and 2). Accordingly, neuropathological examination indicated that rescue of the ataxic phenotype correlated with decreased PC-DCD in Afg3l2−/− Grm1+/crv4.
versus Afg3l2+/– mice (Figure 5, B–E). The molecular link between decreased PC-DCD and lower Ca\(^{2+}\) peaks was complemented by in vitro experiments, which disclosed a significant reduction in peak Ca\(^{2+}\) responses in Afg3l2–/– Grm1+/crv4 versus Afg3l2–/– primary PCs after DHPG stimulation (Supplemental Figure 3C), strongly indicating that mGluR1 haploinsufficiency is protective and able to prevent the exacerbation of glutamate stimulation in Afg3l2–/– PCs.

In order to test the rescue of the ataxic phenotype by drug treatment, Afg3l2+/– mice were administered the β-lactam antibiotic ceftriaxone, which is capable of increasing EAAT2 expression and activity (38). We used this drug to specifically reduce postsynaptic glutamatergic stimulation of PCs in Afg3l2–/– mice, and thus Ca\(^{2+}\) influx. We first determined that EAAT2-increased expression was maintained for approximately 7 to 8 weeks in the cerebellum after ceftriaxone treatment (Supplemental Figure 5A). We thus treated Afg3l2–/– and WT mice at 3 months of age (about 1 month before the onset of motor impairment; ref. 16) and repeated the treatment 2 months later. We observed that ceftriaxone adminis-
tation markedly improved the motor capabilities of SCA28 mice. Indeed, the drug-treated mice made significantly fewer footslips in traversing the beam compared with saline-treated mutants at both 8 and 12 months of age (Figure 6A and Supplemental Video 3 and 4). This indicates that ceftriaxone treatment at presymptomatic stages is able to prevent, and not just delay, the ataxic phenotype in Afg3l2-haploinsufficient mice. In accordance with these findings, semithin sections of the cerebellum revealed a reduced number of PC-DCDs in treated Afg3l2+/− mice (Figure 6, B and C) that was also confirmed by WB, which showed an attenuation of calpain-mediated αII-spectrin cleavage (Figure 6D). Also, we found that PC numbers and dendritic tree arborization were completely recovered in the drug-treated mutants, as shown by IF using calbindin Ab (Figure 6B and Supplemental Figure 5B). Ceftriaxone treatment (as well as a halved dosage of mGluR1) produced neither adverse effects nor body-weight alterations, as demonstrated by the results of the SHIRPA (SmithKline Beecham, Harwell, Imperial College, Royal London Hospital, phenotype assessment) protocol (39), which revealed normal motor, sensory, autonomic, and neuropsychiatric functions (Supplemental Tables 1 and 2).

Of note, we demonstrated that ceftriaxone treatment is effective after onset of the ataxic phenotype. In fact, Afg3l2+/- mice treated at 8 and 10 months of age showed a significant amelioration of their motor coordination skills (Figure 6E and Supplemental Video 5 and 6).

The genetic and pharmacological rescues of the SCA28 phenotype were both based on the rationale that reducing Ca2+ influx into PCs could ameliorate DCD and ataxia in Afg3l2-haploinsuff-

Figure 5. Half dosage of mGluR1 restores motor performances of Afg3l2+/- mice. (A) Beam-walking test performed on Afg3l2+/- Grm1+/-/+/+ mice and their littermates at 8 and 12 months of age. Data represent the mean ± SD of 4 independent tests; n = 13-15. *P < 0.05 and **P < 0.001 by Student’s t test. (B) Cryostat-cut sections of cerebellum from Afg3l2+/- Grm1+/-/+/+ mice and their littermates at 8 months of age stained with anti-calbindin Ab. Scale bar: 100 μm. (C) Semithin sections of cerebellum from Afg3l2+/- Grm1+/-/+/+ mice and their littermates at 8 months of age stained with toluidine blue. Arrows indicate dark PCs. (D) Quantification of healthy and dark PCs in 8-month-old Afg3l2+/- Grm1+/-/+/+ mice. Data represent the mean ± SD; n = 4. P < 0.001 by Student’s t test for both healthy (*) and dark (§) PCs. (E) WB analysis of cerebellar extracts from of Afg3l2+/- Grm1+/-/+/+ mice and their littermates using anti-spectrin Ab. A cerebellar extract treated with 2 mM CaCl2 and 1 U calpain was used as a positive control. Actin was used to verify equal loading.
controls. EM analysis of cerebellar sections revealed no significant amelioration of mitochondrial morphology in Afg3l2+/– Grm1+/crv4 mice compared with that seen in Afg3l2+/– mice (Supplemental Figure 6, A and B), nor was this observed in Afg3l2+/– mice treated with ceftriaxone compared with vehicle-treated Afg3l2+/– mice (Supplemental Figure 6, C and D).

Also, EM study of primary PCs showed no amelioration of primary PC mitochondrial structures in Afg3l2–/– Grm1+/crv4 mice compared with those observed in Afg3l2–/– mice in both basal conditions and after acute stimulation with DHPG (Supplemental Figure 6E).

We also performed a spectrophotometric assay of respiratory complex I activity on cerebellar protein extracts. As expected, we found a significant reduction in complex I activity in Afg3l2+/– mice compared with that in WT mice. However, this defect was not rescued in Afg3l2+/– Grm1+/crv4 mice compared with that in WT mice. This was consistent with what we observed in the EM studies (Supplemental Figure 7, A and B).

Figure 6. Presymptomatic treatment with ceftriaxone rescues both motor symptoms and PC-DCD in SCA28 mice. (A) Beam-walking test performed on Afg3l2+/– and WT mice treated with vehicle or ceftriaxone at presymptomatic stages. Data represent the mean ± SD of 4 independent tests; n = 15. ∗P < 0.05 and ∗∗P < 0.001 by Student’s t test. (B) Semithin (upper panels) and cryostat-cut sections (lower panels) of cerebellum from ceftriaxone-treated versus vehicle-treated Afg3l2+/– and WT mice at 8 months of age stained with toluidine blue and anti-calbindin Abs, respectively. Arrows indicate dark PCs. Scale bars: 100 μm. (C) Quantification of healthy and dark PCs in ceftriaxone-treated versus vehicle-treated Afg3l2+/– mice. Data represent the mean ± SD; n = 4. ∗P < 0.001 by Student’s t test for both healthy (∗) and dark (§) PCs. (D) WB analysis of cerebellar extracts from Afg3l2+/– and WT mice treated with vehicle or ceftriaxone using anti-spectrin Ab. A control cerebellar extract treated with 2 mM CaCl2 and 1 U calpain was used as a positive control. (E) Beam-walking test performed on Afg3l2+/– mice and their littermates at postsymptomatic stages (8 months) and after ceftriaxone treatment. Data represent the mean ± SD of 4 independent tests; n = 15. ∗P < 0.05 and ∗∗P < 0.001 by Student’s t test.
The Journal of Clinical Investigation

These data indicate that the reduction of Ca\(^{2+}\) concentrations in PCs achieved by our interventions, while rescuing DCD and the clinical phenotype, was not able to recover the alterations in mitochondrial morphology and metabolism in SCA28 mice.

Discussion

In the present study, we provide evidence for a pathogenic mechanism of SCA28 that involves defective mitochondrial Ca\(^{2+}\) buffering as a primary triggering event. The inefficient shaping of Ca\(^{2+}\) rises operated by mutant mitochondria upon stimulation results in a pathological increase in \([Ca^{2+}]_{\text{cyto}}\), which in turn triggers PC-DCD. Several data support this mechanism. First, we demonstrated in cerebellar slices treated with AMPA that Afg3l2\(^{-/-}\) and Afg3l2\(^{+/+}\) PCs are more prone to undergo DCD, indicating a reduced ability of mutant cells to cope with stimuli that increase \([Ca^{2+}]_{\text{cyto}}\).

We then determined that the increased sensitivity to high Ca\(^{2+}\) levels was due to reduced mitochondrial Ca\(^{2+}\) handling. We previously reported defective mitochondrial Ca\(^{2+}\) uptake in Afg3l2\(^{-/-}\) fibroblasts, but this had no impact on cellular Ca\(^{2+}\) homeostasis (13), as is expected for nonexcitable and nonpolarized cells. We thus tested this hypothesis in primary PCs. The uniqueness of these neurons resides in their large soma and huge dendritic trees, which only receive glutamate excitatory synaptic input from a single climbing fiber and from approximately 200,000 parallel fibers. Thus, PCs require more precise control of Ca\(^{2+}\) homeostasis than do other neurons, implying greater Ca\(^{2+}\)-buffering power (27). These features suggest that mitochondrial Ca\(^{2+}\) buffering is crucial to PCs.

We directly measured \([Ca^{2+}]_{\text{cyto}}\) in primary PCs after KCl induction and found it markedly reduced in Afg3l2\(^{-/-}\) PCs. This defect had a marginal involvement in the maintenance of resting Ca\(^{2+}\) levels in PCs, since we determined that \([Ca^{2+}]_{\text{cyto}}\) was unchanged in Afg3l2\(^{-/-}\) PCs under basal conditions. In contrast, we found that the evoked peak \([Ca^{2+}]_{\text{cyto}}\) response was markedly increased in Afg3l2\(^{-/-}\) PCs, and this result perfectly matches the one obtained with treating control PCs with FCCP, which inhibits mitochondrial Ca\(^{2+}\) uptake. Of note, \([Ca^{2+}]_{\text{cyto}}\) pathological elevation in Afg3l2\(^{-/-}\) PCs occurs not only in the presence of a depolarizing stimulus causing massive Ca\(^{2+}\) influx from the plasma membrane, but also in the presence of an mGluR1 agonist, which induces Ca\(^{2+}\) release from the ER. Previous studies showed that massive Ca\(^{2+}\) increases can be substantially buffered by mitochondria in other neuronal cell types, in which the addition of uncoupling agents results in a marked elevation of peak cytosolic Ca\(^{2+}\) levels (24–26). Our data, aside from elucidating the pathogenetic mechanism of SCA28, demonstrate for the first time to our knowledge the impact of defective mitochondrial Ca\(^{2+}\) uptake on local Ca\(^{2+}\) signaling in a physiopathological condition of the nervous system. This concept has been proposed as a potential pathogenetic mechanism of neurodegenerative disorders (27, 41) but has never been directly demonstrated and has thus far remained largely speculative.

We also demonstrated that reduced mitochondrial Ca\(^{2+}\) uptake capacity in Afg3l2-mutant PCs is the result of the negative synergy between alterations of mitochondrial morphology and impaired mitochondrial metabolism. Indeed, EM analysis revealed drastic alterations of organelar ultrastructure in mutant PCs, showing mitochondria with vesiculation of the inner membrane or a completely swollen appearance. We observed aberrant organelles in Afg3l2\(^{-/-}\) PCs, but also in Afg3l2\(^{+/+}\) PCs, indicating that Afg3l2 haploinsufficiency is sufficient to exert mitochondrial damage in neuronal cells in vitro as well. In addition to these ultrastructural defects, Afg3l2\(^{-/-}\) PCs showed increased mitochondrial network fragmentation and faulty mitochondrial distribution in the dendritic tracks. In particular, we observed that the mitochondrial volume associated with dendrites was reduced in the absence of AFG3L2, indicating a skewed distribution of mitochondria toward the cell soma.

Afg3l2 controls the morphology of the mitochondrial network via regulation of OPA1 processing. In particular, the absence of AFG3L2 causes increased mitochondrial fragmentation due to enhanced OPA1 processing (12, 13). Fragmentation of the mitochondrial network can modify organelle Ca\(^{2+}\) uptake by changing the interaction with the Ca\(^{2+}\) source (e.g., the ER and/or plasma membrane) and limiting proper diffusion of the Ca\(^{2+}\) wave along the mitochondrial network (42, 43). Indeed, this was the case in Afg3l2\(^{-/-}\) fibroblasts (13).

Defects in both fusion and fission have been shown to affect mitochondrial movement (29). In Afg3l2\(^{-/-}\) PCs, the increased diameter of mitochondria due to cristae disruption and swelling may hamper their efficient entry into dendrites, resulting in a lack of mitochondria in these processes. A similar situation was previously observed in mice in which mitofusin 2, a protein involved in mitochondrial fusion, was specifically ablated in PCs (44), indicating that these neurons are particularly sensitive to perturbations of mitochondrial dynamics.

In line with the morphological alterations, mitochondria in Afg3l2-mutant PCs were also metabolically dysfunctional, displaying reduced \(\Delta \psi_{\text{mito}}\) in both soma and dendrites as a consequence of the respiratory chain defect we reported previously (9).

Thus, we propose a pathogenetic mechanism in which loss and haploinsufficiency of Afg3l2 cause fragmentation and mild depolarization of mitochondria, which weakens mitochondrial buffering of Ca\(^{2+}\) elevations in the soma. This scenario is worsened in mutant dendrites due to underpopulation of mitochondria, too.

It is also conceivable that reduced ATP production by mutant mitochondria can locally slow down the kinetics of Ca\(^{2+}\) pumps, affecting extrusion of Ca\(^{2+}\) from the cytosol into the ER and across the plasma membrane in dendrites; however, this does not apply to the soma of PCs, in which the kinetics of Ca\(^{2+}\) recovery after stimulation is unaffected.

According to the proposed mechanism of neurodegeneration, the SCA28 phenotype is fully rescued by halving the amount of the mGlur1 receptor. The Afg3l2\(^{-/-}\) Grm1\(^{+/+}\) double mutants display motor function and coordination within the normal range, and degenerating PCs are markedly reduced compared with those in Afg3l2\(^{-/-}\) mice. Adult PCs express high levels of mGluR1 (but not mGluR5) in the soma and in dendritic spines, and this receptor is essential for synapse plasticity and motor coordination. Indeed, mice lacking mGluR1 display severe ataxia and deficits in spatial and associative learning (37, 45), and homozygous mutations in GRM1 have been recently associated with a recessive form of congenital cerebellar ataxia (46).

Finally, we treated Afg3l2\(^{-/-}\) mice with ceftriaxone, a safe and multipotent agent used for decades as an antimicrobial agent. This drug was shown to consistently increase the transcription levels of the astrocyte glutamate transporter EAAT2 (38).
On the basis of the SCA28 pathogenetic mechanism that we defined in this work, we used this drug to reduce the glutamatergic stimulation of PCs in Afg3l2+/– mice. We demonstrated that ceftriaxone treatment at both pre- and postsymptomatic stages was able to consistently reduce the number of PC-DCDs in the SCA28 model.

As expected, we found no amelioration of mitochondrial parameters in Afg3l2+/– mice treated with ceftriaxone or in Afg3l2+/–; Grm1+/–/crv4 double mutants. Indeed, our genetic and pharmacological interventions, by consistently reducing [Ca2+]cyto and thus acting downstream of the primary insulting event at the mitochondrial level, were effective in rescuing DCD and the ataxic phenotype, but not the mitochondrial phenotypes. While further studies aimed at discovering therapies that specifically address SCA28 mitochondrial impairment are needed, administering ceftriaxone downstream in the pathogenic cascade is a potentially effective approach to treating additional forms of SCA that share the final stage of degeneration with SCA28 (i.e., elevated [Ca2+]cyto in PCs).

The data presented in this work disclose important steps in the molecular pathogenesis of SCA28 and provide a strong rationale for a new approach to treating this disease. At present, effective therapies for cerebellar ataxias are lacking, although some improvements in ataxic and nonataxic symptoms have been reported in a few clinical trials (47). We believe our data will contribute to advancing therapeutics for patients with SCA28, as ceftriaxone is a widely used, well-tolerated antibiotic drug that represents an immediately available therapy for SCA28 patients as well as for those affected by other SCAs characterized by PC-DCD.

Methods

Animals, drug administration, and motor tests. Afg3l2+/– mice (16) were bred on an FVB/N background, and Grm1+/–/crv4 mice were bred on a BALB/c background (37). In the genetic rescue experiments, Afg3l2+/–; Grm1+/–/crv4 mice and their littermates were bred on an FVB/N BALB/c mixed background. For the presymptomatic treatment, ceftriaxone (Sigma-Aldrich) was administered to 3-month-old mice by daily i.p. injection at a dose of 200 mg/kg body weight for 5 consecutive days (2 months before the onset of motor impairment in SCA28 mice; ref. 16). The treatment was repeated 2 months later. For the postsymptomatic treatment, ceftriaxone was administered to mice at 8 and 10 months of age by daily i.p. injection at a dose of 200 mg/kg body weight for 5 consecutive days. Beam-walking and SHIRPA tests were performed as previously described (16), and investigators were blinded to the treatment group during assessments.

Abs, drugs, and reagents. For WB analysis, commercially available monoclonal Abs were used for the detection of rabbit anti-GLT1 (PA3-040A; Thermo Scientific); mouse anti-spectrin (MAB1622; EMD Millipore); mouse anti-β-actin–peroxidase clone AC-15 (A3854; Sigma-Aldrich); and rat anti–PSD-95 (ab2723; Abcam). ECL anti–actin−peroxidase clone AC-15 (A3854; EMD Millipore); mouse anti–β-tubulin (Tub-1; Sigma-Aldrich); and mouse anti–NeuN were purchased from GE Healthcare.

For IF experiments, the following Abs were used: rabbit anti-spectrin–breakdown product (anti-SBDP) (30, 31); mouse anti–GFAP clone G-A-5 (G3893; Santa Cruz Biotechnology Inc.); mouse anti–NeuN clone A60 (MAB377; EMD Millipore); rabbit anti–calbinbin 28 kDa (300; Swant); and anti–OxPhos complex IV subunit I (A-6403; Invitrogen). Secondary Abs were conjugated with Alexa 488 and Alexa 596 (A11001 and A11010; Invitrogen).

WB analyses. Spectrin band patterns were analyzed by standard WB procedure. Briefly, tissues were homogenized in 50 mM Tris-HCl (pH 7.4), 5 mM EDTA, 1% Triton X-100, and 1 mM DTT using a glass-Teflon homogenizer and incubated for 90 minutes on ice. Cell debris was discarded by centrifugation at 8,000 g for 5 minutes at 4°C. Controls consisted of WT lysates treated with 100 μM or 2 mM CaCl2, or 1 U recombinant rat calpain (EMD Millipore) for 30 minutes at 37°C.

For EAAT2 detection, synaptosomes were isolated as follows: mouse cerebellum was homogenized in sucrose buffer (320 mM sucrose, 5 mM HEPES [pH 7.4], and 2 mM EDTA) and a protease inhibitor cocktail (PIC) (Sigma-Aldrich) using a glass-Teflon homogenizer. Tissue debris was discarded by centrifugation at 1,000 g for 10 minutes at 4°C. Supernatants were centrifuged at 10,000 g for 15 minutes at 4°C, and the pellet was resuspended in 5 mM HEPES (pH 7.4) plus PIC, homogenized with a glass-Teflon homogenizer, incubated for 30 minutes on ice, and centrifuged at 20,000 g for 30 minutes at 4°C. The synaptosomal pellet was resuspended in sucrose buffer and analyzed by WB.

Organotypic slices and PC primary cultures. Organotypic slices from cerebellum were prepared from P10 mice, as previously described (32). Cerebella were removed from newborn Afg3l2 mice. Sagittal cerebellar sections (400-μm thickness) were cut using a chopper tissue slicer (Mcllwain tissue Chopper; Stoeclig Co.) and placed on Millicell-CM organotypic tissue–culture plate inserts (EMD Millipore) in a medium containing Basal Medium Eagle (Sigma-Aldrich), 25% horse serum (Invitrogen), 0.5% glucose, 2 mM Glutamax (Invitrogen), and 2.5 mM arabinofuranosyl cytidine (Ara-C; Sigma-Aldrich). After 4 to 5 DIV, slices were exposed to 50 μM AMPA (Tocris) for 30 minutes. Controls consisted of identical manipulation for the entire experiment without AMPA. Slices were then fixed in 4% paraformaldehyde solution, transferred to a 10%–20%, and finally a 30%, sucrose solution and then frozen. Sections (16-μM thickness) were cryostat cut with a Leica CM1850.

For primary PC cultures, a modified version of previously described protocols (48) was used. Cerebella from newborn mice were incubated in HBSS 1X (Invitrogen) containing 5 U/ml papain (Sigma-Aldrich), 50 mg/ml cystein-HCl, 0.1 mM EDTA, and 1 mg/ml DNase I (EMD Millipore) for 30 minutes at 37°C. Tissues were then dissociated by mechanical trituration. The reaction was blocked with 10% horse serum, and samples were centrifuged at 100 g for 10 minutes. The cellular pellet was washed twice in HBSS 1X and resuspended in cultured medium containing Neurobasal (Invitrogen), B27 supplement (Invitrogen), 200 mg/ml D-glucose, 2 mM Gluta-Max (Invitrogen), 100 U/ml PenStrep (Invitrogen), and 1% horse serum (Invitrogen), 3 mM KCl, and 50 ng/ml NGF 2.5S (EMD Millipore). Cells were plated at a density of 1.5 × 10^4/cm² on coverslips (14 mm or 24 mm in diameter) or in glass-bottom culture dishes (MatTek) coated with Poly-L-lysine (Sigma-Aldrich).

Measurement of Δψ_m and Δψ_mem. Measurement of Δψ_m was performed using the potentiometric dye TMRM (Invitrogen). Primary PCs at 14 DIV were incubated with 50 nM TMRM, 2 mM CsH (Vinci-Biochem), and 2 mg/ml Hoechst 33342 (Invitrogen) in phenol red-free HBSS 1X for 30 minutes at 37°C. Imaging of TMRM fluorescence was performed using an Axio Observer.Z1 inverted microscope (Zeiss). Data represent the average of 4 images acquired every 15 seconds. FCCP (1 μM) was added at the end of acquisition. Images were analyzed using ImageJ software (NIH).

Morphometric analyses of primary PCs. IF was performed on primary PCs at 14 DIV. Stacks of consecutive confocal images were taken.
at 0.3-μm intervals using a PerkinElmer UltraVIEW Spinning Disk Confocal Microscope. Analyses of soma and dendrite area and total mitochondria volume were performed using Velocity 3D Image Analysis Software, version 5.5.1 (PerkinElmer). For mitochondrial volume evaluation, a region of interest (ROI) was drawn to cover the profile of each PC (or dendrites only). A threshold for the red signal (mitochondria) and green signal (PCs) was set in order to exclude the background. Mitochondria with a red signal intensity greater than or equal to the green threshold were identified as belonging to PCs. This analysis was extended to the whole cell volume.

Syn-4mtD1cpv RAd construction, production, and titering. 4mtD1cpv pcDNA3 was used as a template in a PCR with the following primers: forward, 5′-TTATGCCGAATTTAATACGACTCACGTTGGAATTGCCACCATGTCCGTC-3′; reverse, 5′-CCCCCGCATGTTGATGGATATCTGCAGAATTTCTTAACG-3′. The forward primer was designed to introduce an EcoRI restriction site at the 5′ end of 4mtD1cpv and a Kozak sequence to improve translation efficiency. The PCR product was then cloned in the EcoRI site of the pDC511 syn BGH-polyA vector (49). This shuttle plasmid carries the 470-bp human synapsin promoter to guarantee neuron-specific expression of the chameleon probe.

Second-generation rAd was produced by transfecting E2T cells (50) with the genomic helper plasmid (Microbix Biosystems Inc.) that had been modified to contain the E2a deletion and the pDC511 syn 4mtD1cpv-BGH PolyA vector, as previously described (49). Preparation of a high-titer viral stock from crude lysate was performed as described by Ng and Graham (51). The titer was determined by limiting dilution to obtain 3.1 × 10⁷ PFU/ml.

Ca²⁺ imaging. [Ca²⁺]cyt measurements were performed as previously described (52). Fura-2 acetoxymethyl ester (Calbiochem, Merck KGaA) loading was performed at 37°C (4 μM, 40 minutes) in Krebs Ringer HEPES buffer (containing 5 mM KCl, 125 mM NaCl, 2 mM CaCl₂, 1.2 mM MgSO₄, 1.2 mM KH₂PO₄, 6 mM glucose, and 20 mM HEPES [pH 7.4]). When the K⁺ concentration was increased in the solution, the concentration of Na⁺ was adjusted to maintain isotonicity. Excitation wavelengths of 340 and 380 nm were used with an emission wavelength of 510 nm. The 340:380 fura-2 ratio was calculated as mean values within ROIs drawn in neuronal soma. The time course of the intensity ratio was analyzed by custom-written routines in MATLAB (The MathWorks Inc.): the code scans each response curve to find its maximum value and fits the subsequent decay with a monoexponential in order to quantify the amplitude of the response and the characteristic time of the decay. To generate the average responses showed in Figure 2G, the curves were first synchronized to the time of maximum fold change, corresponding to the onset of the Ca²⁺ response to KCl.

For fluorescence resonance energy transfer (FRET) experiments, PCs were transduced at 5 DIV with an MOI of 60 and imaged for Ca²⁺ measurement 72 hours after infection. The FRET data were acquired on a Leica TCS SP-5 DS confocal microscope equipped with a ×63 NA 1.4 oil-immersion objective lens (Leica Microsystems). The light of a 405-nm solid-state laser was used to excite CFP, and the fluorescence emission from both CFP and YFP was collected simultaneously using 2 separate detection channels (CFP, 470–505 nm and YFP, 525–600 nm, respectively). PCs were easily distinguished from granule cells and neurons, being markedly larger and more ramified. Time series of 100 frames were collected using an imaging time of 1.314 seconds per image. After approximately 20 images, 30 mM KCl was added to the imaging medium as described above to quantify the mitochondrial calcium response. The FRET signal was quantified by measuring the background-subtracted ratio between YFP and CFP channels on pixels corresponding to mitochondria.

EM analysis. The semithin and ultrathin sections from mouse tissues and primary PCs at 14 DIV were prepared as previously described (16).

Statistics. Results are reported as the mean ± SD or SEM. Most of the experiments were evaluated by a 2-tailed Student’s t test. P values were adjusted for multiple testing by applying the Holm-Bonferroni method (53). A χ² test with 2 degrees of freedom was applied for analysis of the ultrastructure of mitochondria. Scores from SHIRPA analysis were analyzed by a nonparametric Mann-Whitney U test. Comparisons were considered statistically significant when P was less than 0.05.

Study approval. All experiments involving animals were performed in accordance with experimental protocols approved by the IACUC of the San Raffaele Scientific Institute.

Acknowledgments This work was supported by the Italian Telethon Foundation (GGP12235); Fondazione Cariplo (2012 0646); Ministero Italiano dell’Università e della Ricerca (MIUR, 20108WT59Y 001); Associazione Italiana Sindromi Atassiche (AISA); and Max Planck Society (to S.M. Young Jr.). F. Maltecca is a recipient of a Young Investigator Award for SCA research from the National Ataxia Foundation (NAF); I. Drago is a recipient of an EMBO fellowship (ASTF 365.00-2010). We thank Tullio Pozzan and Laura Cassina for critical discussion, Diana Pendin for virus preparation, Laura Corti for histological technical assistance and management of mouse colonies, and Valeria Barilli for technical support with cerebellar slice preparation. We thank Alessandro Ambrosi for his support with statistical analyses throughout the study.

Address correspondence to: Giorgio Casari, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. Phone: 39.02.2643.3502; E-mail: casari.giorgio@hsr.it.

