Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Intentional dialogues in multi-agent systems based
on ontologies and argumentation

by

Débora Cristina Engelmann

Theses Series DIBRIS-TH-2022-XX

DIBRIS, Universita di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/

Universita degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems
Engineering
Computer Science Curriculum

Intentional dialogues in multi-agent
systems based on ontologies and
argumentation

by

Débora Cristina Engelmann

December, 2022

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei
Sistemi
Universita degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13
[-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum
(S.S.D. INF/01)

Submitted by Débora Cristina Engelmann
DIBRIS, Univ. di Genova

Date of submission:
December 2022

Title:
Intentional dialogues in multi-agent systems based on ontologies and
argumentation

Advisors:
Prof. Dr. Viviana Mascardi and
Prof. Dr. Rafael Heitor Bordini

Co-Advisors:
Prof. Dr. Angelo Ferrando and
Prof. Dr. Alison Roberto Panisson

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Universita di Genova

Ext. Reviewers:
Prof. Dr. Roberta Calegari and
Prof. Dr. Serena Villata

Abstract

Some areas of application, for example, healthcare, are known to resist
the replacement of human operators by fully autonomous systems. It is
typically not transparent to users how artificial intelligence systems make
decisions or obtain information, making it difficult for users to trust them.
To address this issue, we investigate how argumentation theory and on-
tology techniques can be used together with reasoning about intentions
to build complex natural language dialogues to support human decision-
making. Based on such an investigation, we propose MAIDS, a frame-
work for developing multi-agent intentional dialogue systems, which can
be used in different domains. Our framework is modular so that it can
be used in its entirety or just the modules that fulfil the requirements of
each system to be developed. Our work also includes the formalisation of
a novel dialogue-subdialogue structure with which we can address onto-
logical or theory-of-mind issues and later return to the main subject. As
a case study, we have developed a multi-agent system using the MAIDS
framework to support healthcare professionals in making decisions on
hospital bed allocations. Furthermore, we evaluated this multi-agent sys-
tem with domain experts using real data from a hospital. The special-
ists who evaluated our system strongly agree or agree that the dialogues
in which they participated fulfil Cohen’s desiderata for task-oriented dia-
logue systems. Our agents have the ability to explain to the user how they
arrived at certain conclusions. Moreover, they have semantic representa-
tions as well as representations of the mental state of the dialogue par-
ticipants, allowing the formulation of coherent justifications expressed in
natural language, therefore, easy for human participants to understand.
This indicates the potential of the framework introduced in this thesis for
the practical development of explainable intelligent systems as well as
systems supporting hybrid intelligence.

Table of Contents

[Chapter 1 Introduction|

[1.2 Objectives|

1 Main ntri ions|

[Chapter 2 Background|

[2.1 Multi-agent Systems| . . .

[2.2 Explainable Artificial Intelligence and Hybrid Intelligence|.

[2.3 Argumentation Theory| . .

[2.3.1 Abstract Argumentation|

[2.3.2 Monological and Dialogical Argumentation|.

[2.3.3 Argumentation Schemes|

[2.4 Dialogue Systems|

2.5 The JaCaMo Framework] .
2.6 Ontology|

[2.7 Runtime Verification and Runtime Monitoring Language|

2.8 Hospital Bed Allocation Domain|.

[Chapter 3 Conversational Agents Using Structured Dialogues|

3.1 Overview of the Approach|

10
12
13
14
16
19
20
21
23
26

28

3.2 A Multi-Part Belief Base| 29

[3.2.1 The CooL-AgentSpeak Language| 29
[3.2.2 Argumentation-based Reasoning in Agent Programming| 31
[3.2.3 Theory of Mind in Agent Programming| 32
[3.3 The Basis for Argumentation-Based Dialogues| 32

[3.4 Multi-Agent Dialogues with Underlying Ontological and ToM Arguments| 34

[3.4.1 Formalisation of Participating Agents|. 36

[3.4.2 Subdialogue Rules|. 37
[Chapter 4 Multi-Agent Intentional Dialogue System| 41
4.1 Overall Archi TEl . . e e e e e e e e 41
1aldfaCal e 43

4.3 OntodJaCal e e e e e 46
A RVAJACal . . . o o o oo e e e e 51
[Chapter 5 Case Study| 54
[.1 Bed Allocation Ontology| 54
[0.2 Bed Allocation Optimisation| 59
[0.3 Plan Validatonl 60

4 Runtime Verification in Bed All 100 64
[5.4.1 First RML Property for the Bed Allocation Domain| 65

[0.4.2 Second RML Property for the Bed Allocation Domain|. 66
Evaluationl o 68

[5.5.1 Evaluation of System Functionalities for Hospital Bed Allocation| . 69

[5.5.2 Evaluation of Expressiveness of the Framework| 71
[Chapter 6 Related Work 82
[Chapter 7 Conclusions| 87

[/.1 Summary of Results and Discussion| 88

/.2 Thesis publications| o 89
(/.3 Future Workl 90
Appendix A Bed-Allocation Plan Validation Report] 92
Appendix B Evaluation of System Functionalities - Logs| 95
Appendix C Evaluation of Expressivity of the Framework - Logs| 109
[Bibliography| 116

Chapter 1

Introduction

The research reported in this thesis focuses on combining Argumentation Theory
and Ontology techniques to support complex dialogues in natural language. In par-
ticular, we have created an approach to support the development of dialogue systems
that take advantage of that combination of techniques within BDI (Belief-Desire-
Intention) agents to assist humans in decision making. We have made this approach
adaptable enough to be applied across multiple domains.

Many areas can benefit from a decision support system. In the healthcare area, for
example, bed allocation represents a challenge to hospitals (especially in developing
countries such as Brazil) because hospital beds are a scarce resource. Also, hospi-
tal environments are highly dynamic and uncertain, so allocating hospital beds opti-
mally plays an essential role in the overall planning of hospital resources [TEDF™12].
A system that suggests better bed allocations for the professional responsible for this
task is interesting in this context.

Moreover, the healthcare area is known to have a certain resistance to the replace-
ment of human operators by automated systems. This is understandable because it
deals with humans, so a wrong decision by a fully autonomous system - that is, a
system that also takes the final decision on its own - raises legal issues that most
countries cannot yet cope with (who is accountable for a wrong decision? The engi-
neer that implemented the tool? The data scientist that trained it? ...). That is why it
is important to have a system that assists decision making but where the human op-
erator makes the final decision. Also, we need to consider that if the system cannot
explain the suggested decisions, it is possible that the user will not understand and,
because of that, ignore the suggestion. Another important challenge is maintaining
and increasing the user’s willingness to interact with the technical system [NM17]].
In these cases, a mixed-initiative system, which supports human-computer interac-

tion, becomes useful [HLF04]. In the context of Hybrid Intelligence (HI) [ABAR™20],
it requires humans and intelligent systems to work together, and one of the key chal-
lenges to achieving this partnership is the capability of agents to understand human
actors.

The Multi-Agent Intentional Dialogue System (MAIDS) framework we present in
this thesis focuses on combining Argumentation Theory techniques [PB17a, [FRS18,
dOGPB™20], Ontology [Gru95], and Theory of Mind (ToM) [G"12] to support complex
dialogues in natural language. MAIDS includes components to support the develop-
ment of complex Multi-Agent System (MAS) applications, such as: (i) support for the
creation of dialogues in natural language to facilitate the interaction with human
operators; (ii) argumentation-based reasoning and dialogues which allow agents to
reason about and communicate well-supported information; (iii) ontologies to help
agents organise domain knowledge and perform semantic reasoning; and (iv) theory
of mind to allow agents to infer other agents mental attitudes leading to purposeful
communication. All these components are developed on top of an Agent-Oriented
Programming Language (AOPL) based on the BDI architecture, which provides a
suitable basis for all those techniques.

1.1 Motivation

In some areas, there is resistance to replacing human operators with fully autonomous
systems. It is typically not transparent to users how artificial intelligence systems
make decisions or obtain information [HTF]J19], making it difficult for users to trust
them. To address this issue, we have focused our efforts on developing conversa-
tional agents to assist humans in decision-making. Our approach uses Argumenta-
tion Theory and Ontology techniques as the basis for reasoning in natural language
dialogues. Using these techniques, the decisions can be made more transparent and
explainable to users, with more natural and richer dialogue structures. Further-
more, our approach is adaptable enough to be applied across multiple domains, but
we have focused our evaluations on Healthcare.

In the healthcare area, effective management of hospital beds has been the focus
of much research, such as the IMBEDS model that uses artificial neural networks
and multiattribute value theory for decision-making [GACR"18a]; statistical and
data mining approach [TEDF™12]; optimisation model with an evolutionary algo-
rithm for bed allocation [eOdVAP20]; and also reviews of the literature were carried
out [MR11}, /AJSS17]. Although all the work mentioned above seeks to improve bed
management, they do not provide natural language interaction and do not offer de-
cision support for the professional having complete control over the allocations, nor

are the decisions explainable. Also, there are still few studies that practically apply
the formal argumentation-based models of reasoning and dialogue to support inter-
actions between software and human users [ERS™18]. In addition, there is a lack of
work that empirically evaluates such models with human users [ERS™18].

1.2 Objectives

Motivated by the context discussed above, we identified the following general ob-
jective: to investigate how argumentation theory and ontology techniques can be
used together with reasoning about intentions to build complex natural language
dialogues to support human decision making.

Our specific objectives are:

* Design and formalise an approach to argumentation-based dialogues and onto-
logical reasoning.

* Construct an architecture/framework for developing explainable systems and
implement all the necessary components of the architecture.

* Apply the proposed formal model to a real-world domain and problem, such as
healthcare, and fully implement a dialogue system based on that formalisation
using the framework.

* Evaluate the approach with domain experts based on Cohen’s desiderata for
task-oriented dialogue systems [[Coh19].

1.3 Main Contributions

Among the contributions of this thesis we highlight: (i) identification of the ways
that the scientific community have used argumentation techniques to achieve ex-
plainable artificial intelligence in dialogue systems included in a literature survey
published in [EDP22]; (ii) development of the MAIDS framework [EPV™] to support
the development of explainable dialogue systems based on BDI agents to assist hu-
mans in decision making; (iii) introduction and formalisation of a multi-part belief
base for a BDI agent programming language and a structured approach to dialogues
where agents argue about the information from the main belief base component
but can move on to subdialogues to discuss specific issues related to the ontolog-
ical component or the ToM component of the multi-part belief base; (iv) creation

7

of the Dial4JaCa framework [EDK™21b| [EDK"21a] to enable intelligent agents to
communicate with humans through natural-language interaction; (v) creation of the
Onto4JaCa framework to give intelligent agents the ability to use and manage the
information contained in ontologies during their reasoning processes [FPE"22]; (vi)
creation of the RV4JaCa framework [EFPT22] which supports the use of runtime ver-
ification in multi-agent systems developed on the JaCaMo platform [BBHR20]; (vii)
implementation of an explainable system based on the MAIDS framework to assist
in decision making on hospital bed allocation; (viii) evaluation of the system created
using real hospital data and with the help of professionals responsible for the bed
allocation in a hospital.

1.4 Thesis Outline

This thesis proposal is organised as follows. Chapter [2] presents the background
related to multi-agent systems, explainable artificial intelligence and hybrid intelli-
gence, argumentation theory, dialogue systems, JaCaMo framework, ontology, run-
time verification and runtime monitoring language, as well as bed allocation domain.
Chapter|[3] shows our proposed approach. Chapter [4] describes the developed multi-
agent intentional dialogue system framework called MAIDS and its modules. In
Chapter [5] we present the case study in the hospital bed allocation domain. Chap-
ter [6] presents the related work. Last, Chapter[7] final considerations and discusses
future work.

Chapter 2

Background

In this chapter, we bring the background related to this thesis. We will discuss the
following topics: Multi-agent systems, Explainable artificial intelligence, Argumen-
tation theory, Dialogue systems, JaCaMo framework, Ontology, Runtime verification
and Hospital bed allocation domain.

2.1 Multi-agent Systems

Multi-agent systems are systems composed of multiple agents. They seem to be a
natural metaphor for building and understanding a wide range of artificial social
systems and can be applied in several different domains [Wo009]]. There are two
interlocking strands of work in multi-agent systems: the one that concerns individual
agents and the one that deals with the collections of these agents. In practice, agents
rarely act alone. They usually inhabit an environment that contains other agents.
Each agent can control, or partially control, the environment, which is called the
"sphere of influence". It may happen that these spheres of influence overlap with
what causes the environment to be controlled jointly by more than one agent. In this
case, to achieve the desired result, an agent must also consider how other agents
may act. These agents will have some knowledge, possibly incomplete, about the
other agents [BHWO07a].

Wooldridge [Woo09]] believes that to be able to understand a multi-agent domain is
essential to understand the type of interaction that occurs between agents. For in-
telligent autonomous agents, the ability to reach agreements is extremely necessary,
and for this, negotiation and argumentation skills are often necessary. In [EFGMO03]],
the authors cite two types of studies in multi-agent systems; the first one is agent-

centred multi-agent systems (ACMAS), which study, at the level of an agent, states
and the relationship between those states and their general behaviour, which are
projected in terms of the agent’s states of mind. The second one is organisation-
centred multi-agent systems (OCMAS), which are systems whose foundations reside
in the concepts of organisations, groups, communities, roles, and functions, among
others. An OCMAS is not considered in terms of mental states but in capacities and
constraints, which are considered organisational concepts, such as functions, tasks,
groups, and interaction protocols.

In a multi-agent system, the organisation is the collection of roles, relationships, and
other social structures that govern agents’ behaviour. Every multi-agent system has
some form of organisation, even if it is implicit and informal. Organisations guide
the mode of interaction between agents, which may influence data flows, resource
allocation, authority relationships, and various other features of the system [HLO4]].

2.2 Explainable Artificial Intelligence and Hybrid In-
telligence

Explainable Artificial Intelligence (XAI) is a research field that refers “to make Al sys-
tems results more understandable to humans” [AB18]]. These results must be clear
(in non-technical terms) and provide explanations about decisions made [DDE20].
The need for explaining a decision/reasoning/action was discussed as early as the
1970s. It started with the expert systems development and the need for those
systems to explain their decisions not only with traces but also with justifications
[ABdRT20]. Recommend systems also become facilitators to produce a justification
to help users decide whether to follow a recommendation. However, many artificial
intelligence (AI) applications face difficulties explaining their autonomous decision
and actions to human users [GSC"19a]. For instance, when the application involves
the logic of axioms and inferences, the reasoning process’s explanation can be com-
plex [DDE20]. Indeed, if the system is limited to showing the violated axioms, then
the user will probably not understand the results [DDE20].

In [ANCF19], the authors argue that systems which heavily adopt Al techniques are
increasing, and making them explainable is a priority. Thus the area of explain-
able artificial intelligence emerged intending to foster transparency and trustwor-
thiness. Conducting a systematic review of the literature in goal-driven XAI (ex-
plainable agency for robots and agents), they conclude that: (i) most approaches
are based on simple scenarios; (ii) almost all approaches focus on robots/agents ex-
plaining their behaviours to the human users (very few concern about inter-agent

10

explainability); and (iii) only a few works addressed the issues of customisation and
context-awareness.

Explainable AI has two main research directions: data-driven XAI (explaining black-
box algorithms) and goal-driven XAI (explainable agency) [ANCEF19]. While data-
driven domains focus on the concept of interpretability (i.e., their operation can be
understood by a human), explainable agency reflects autonomous agents explain-
ing their actions and the reasons leading to their decisions. In our work, we have
used goal-driven XAI to make suggestions and support decisions from experts.

Authors believe that automatically generated explanations have a fundamental mech-
anism to increase user trust in systems [Y]J95]l. The explanations can also help users
make better decisions or persuade them to make one particular choice [IM11].
In [Mil19]], the author describes that while there are many ways to increase trust
and transparency of intelligent agents, two complementary approaches are consid-
ered the most relevant: (i) generating decisions in which one of the criteria taken
into account during the computation is how well a human could understand the de-
cisions in the given context, which is often called interpretability or explainability;
and (ii) explicitly explaining decisions to people, i.e., explanation. Also, explana-
tions can be partial or complete. Partial models reveal the important parts of their
reasoning. In contrast, the complete models provide complete and transparent ex-
planations [GSC™19al].

Regarding evaluating and measuring whether an XAI system is more understandable
by the user than another XAI system, it is an open challenge [GSC™19al]. Usually,
subjective measures are used, such as user satisfaction when using the system. It
also includes evaluation frameworks and argumentation [GSC*19a]. For instance,
in [WYAL19]], they proposed a theory-driven, user-centric XAl framework to provide
pathways to mitigate reasoning failures due to cognitive biases.

Regarding Hybrid Intelligence, it is defined by Akata et al. [ABAR"20] as "the combi-
nation of human and machine intelligence, augmenting human intellect and capabil-
ities instead of replacing them and achieving goals that were unreachable by either
humans or machines." The HI is underlined by the interaction between AI agents
and humans, considering human intentions and expertise, as well as ethical, legal,
and societal issues. The capability to explain motivations, actions, and results is an
essential element in this interaction. And we must keep in mind that humans are
used to an environment where norms and values (often implicitly) trace which goals
and actions are permitted or even desirable.

11

2.3 Argumentation Theory

For reasoning with inconsistent information based on the construction and com-
parison of arguments, we have argumentation as a promising approach [RAO0G].
Argument-based techniques are used to facilitate interaction between rational agents
and to specify the reasoning of autonomous agents. We might see argumentation as
the interaction based on principles of different arguments which are potentially con-
flicting and have the objective of reaching a consistent conclusion [MPROG6].

The ultimate aim of argumentation is to resolve a potentially conflicting point of view
that may be subject to both justification or refutation depending on the available
information, arriving at a consistent conclusion. Argumentation can also be used
for theoretical reasoning, which refers to what to believe, and practical reasoning,
which refers to what to do. This second requires capturing arguments about non-
propositional attitudes such as goals and desires [MPRO6, RAOG].

In [MPROG6]], the authors show two main research lines of argumentation in multi-
agent systems. First, autonomous agent reasoning, such as decision making un-
der uncertainty and belief revision. Second, since argumentation naturally provides
tools for designing, implementing and analysing advanced forms of interaction be-
tween rational agents, it might be seen as a vehicle for facilitating multi-agent inter-
action. Thus, there are two main types of problems encountered in the multi-agent
systems addressed by argumentation [MPRO6]:

* Formation and revision of beliefs and decisions: based on incomplete, conflict-
ing or uncertain information, argumentation provides a systematic means to
resolve conflicts between arguments and to form beliefs and decisions.

» Rational interaction: Argumentation provides a framework to ensure that dia-
logue between participants, which have conflicting points of view, adheres to
certain principles.

The argumentation process can be considered as a kind of reasoning about argu-
ments made to determine the most acceptable of them. It is necessary to be able to
evaluate the reasons why a fact is valid by combining and comparing arguments to
arrive at a conclusion [[RA06]. All forms of reasoning with incomplete information
assume that a defeasible statement can be believed only if there is no evidence to
the contrary [Dun95a].

Argumentation-based reasoning determines when an assertion can be believed, pro-
vided that the arguments supporting this assertion are successfully defended against

12

the counter-arguments of attack. Hence, we can affirm that an agent’s internal argu-
ments that support its beliefs and the external arguments that support contradictory
beliefs characterise the beliefs of a rational agent [Dun95al].

In [PB16]], an argument structure developed based on an agent-oriented program-
ming language is formally defined and implemented. In addition, it describes an
argument-based reasoning mechanism that allows agents to construct and define
the acceptability of arguments, where conclusions are drawn on a provisional basis,
and it is possible to invalidate them when new information comes. This structure
presented in [PB16] allows the development of multi-agent applications that use
argumentative techniques for making decisions, as well as allows richer dialogues
through the exchange of arguments.

2.3.1 Abstract Argumentation

An essential component of human intelligence is argumentation. The human being’s
ability to engage in arguments is essential for understanding new problems, carry-
ing out scientific reasoning, and defending opinions in everyday life [Dun95a]. In
order to understand how human beings, even illiterate, carry out their reasoning,
the abstract argumentation approach was proposed. Following the proposal by Ba-
roni et al. [BTV20], we observe that, in addition to being a formalism to capture
various approaches to common sense reasoning, abstract argumentation is also “a
methodology for providing abstractions of problems along three dimensions: argu-
ments, attacks and acceptability, the latter amounting to what agents have to accept
given what they know (i.e. the arguments and associated attacks).”

Building arguments is something that human beings learn from childhood. The
structure of arguments can be problematic in general, and different models of argu-
ment use different representations of the structure of arguments. They use reasons,
rules, assumptions, and logical deductions in various combinations.

Without disagreement, there is no arguing. Because of that, the notion of attack is
essential in abstract argumentation. Depending on the model of argument used, the
types of attacks included may vary.Taking into account only the attack relationship,
we can assess the acceptance of an argument. Evaluating acceptance without con-
sidering any other underlying details, we guarantee uniform applicability to a wide
variety of situations. Intuitively, we can accept arguments if they can be defended
against attacks. A set that does not contain arguments that attack other arguments
in the set or even themselves and that manages to counter all attacks of arguments
in the set is said to be an admissible set of arguments.

There are several special types of admissible sets in abstract argumentation. Some

13

of the main ones are: (1) Stable extensions in which the arguments in that set do not
attack each other but attack arguments outside the set - there are not always stable
extensions, but sometimes there are several possible ones; (2) Preferred extensions
(credulous semantics) in which the maximum admissible set is sought - there is al-
ways at least one preferred extension, and there may also be several; (3) Grounded
extensions (skeptical semantics) in which the set has acceptable and unambiguous
arguments - there is always precisely one [Dun95al.

2.3.2 Monological and Dialogical Argumentation

In the 1980s, argumentation emerges in the area of Al as a powerful method to
represent a diverse range of knowledge and to support various types of reason-
ing [Ton14]. A meaningful way to explore argumentation in systems is to use di-
alogues, i.e., dialogical argumentation, especially between agents. For agents to
engage in dialogue, there must be some protocol that both parties will follow to
make sense of the information exchanges [BCDO7].

In addition, a single agent can also use argumentation techniques to execute their
individual reasoning because they need to make decisions about complex preference
policies in a highly dynamic environment. According to [BHOS8], this type of argu-
ment is called monological because it involves a single agent or entity that classifies
knowledge to build arguments for and against a given conclusion. When an agent
has the ability to argue, he increases his autonomy and provides him with more
intelligent behaviour [Prull].

Monological and dialogical argumentation are closely related, because a rational
agent will execute monological argumentation to build and evaluate the acceptabil-
ity of its arguments, and later also consider other arguments communicated during
a dialogue, to understand which arguments have won and what is the result of the
dialogue. Such understanding might depend on the type of dialogue the agent is
participating, for example, the seven basic types of dialogues described by Wal-
ton [Wall0].

In that paper, Walton defines each dialogue model by its initial situation, the partic-
ipants’ individual goals, and the aim of the dialogue as a whole. He defines the six
basic types of dialogue as [WK95]: inquiry, negotiation, information-seeking, delib-
eration, and eristic dialogue. And more Discovery dialogue as [MPOlal]. Table [2.7]
shows the definition of these seven basic types of dialogue.

The goal of each party in the persuasion dialogue is to win over the other side. To
this end, both parties seek to find arguments that defeat the other’s thesis or put
it in doubt. It is essential in a persuasive dialogue that participants agree with the

14

Table 2.1: Seven basic types of dialogue [Wall0]

Type of Dialogue Initial Situation Participant’s Goal Goal of Dialogue

Persuasion Conflict of Opinions Persuade Other Party Resolve or Clarify Issue

Inquiry Need to Have Proof Find and Verify Evidence Prove (Disprove) Hypothesis

Discovery Need to Find an Explanation Find and Defend a Choose Best Hypothesis for
of Facts Suitable Hypothesis Testing

Reasonable Settlement Both

Negotiation Conflict of Interests Get What You Most Want Can Live With
Acquire or Give

Information-Seeking Need Information Exchange Information

Information
Deliberation Dilemma or Practical Choice Co-grdlnate Goals and Decide Best Ayaﬂable
Actions Course of Action
Eristic Personal Conflict Verbally Hit Out at Revee.ll Deeper Basis of
Opponent Conflict

issue to be discussed in the opening phase [WallQ]. This type of dialogue always
arises from a conflict of opinions and aims to resolve that conflict so that, in the
end, a stable agreement is reached [WK95]. While persuasion dialogue is highly
adversarial, the inquiry is cooperative in nature. Its goal is to prove that a statement
is true or false, or, if none of these options can be proved, to prove that there is not
enough evidence to prove the truth or falsity of the statement. This type of dialogue
seeks to draw conclusions only based on premises that can be firmly accepted as
true or false [WallO]. “Inquire, as a type of dialogue, is like persuasion dialogue
(and unlike deliberation) in that it aims at a stable agreement. However, it resembles
deliberation (and differs from persuasion dialogue) in that it arises from a problem
rather than conflict: something is not known definitely to be true or false” [WK95].

In a discovery dialogue, we want to discover something not previously known [MPO1al].
The question of whether the truth should be determined only arises during the
course of the dialogue itself, unlike the inquire dialogue, for example, in which the
proposition that must be proven true is designated before the course of argument
in the dialogue [WallQ]. Discovery dialogues, then, have a similar feature to delib-
eration dialogues, since the course of action adopted by the participants can also
emerge in the course of the dialogue itself. However, these two types of dialogue
differ since, in a deliberation dialogue, the participants’ preferences or emotions
can play an essential role in selecting an ideal course of action, while in a discovery
dialogue, the participants are also seeking truth, but, there may be many possible
truths and they might filter the truths they discover by what is interesting, novel or
important [MPO1a].

Despite arising from a conflict as occurs in the persuasion dialogues, negotiation,
like deliberation, has the objective of reaching a decision as the basis for action,
“both deliberation and negotiation are inherently practical types of dialogue, geared

15

to action to enable practical affairs of life and human commerce to go ahead” [WK95].
Walton [Wall0] states that deliberation is a type of collaborative dialogue. In this
type of dialogue, the parties’ actions are collectively directed towards a common
goal. The parties agree on a proposal that can solve a problem that affects them
all, taking all of their interests into account. On the other hand, unlike negotiation
and deliberation, the information-seeking type of dialogue aims to correct or elimi-
nate an asymmetric distribution of information between the parties. In the case of
information-seeking, knowledge already exists. It only needs to be communicated
from one party to the other. Finally, the eristic dialogue starts from a conflict as
the initial situation but is more modest in its aspirations than any other of the main
types [WK95]. In eristic dialogues, the parties attack each other’s arguments, with-
out necessarily seeking the truth.

2.3.3 Argumentation Schemes

Argumentation schemes are argument/reasoning patterns found in daily conversa-
tion, and in specific argumentation, such as scientific argumentation (scientific re-
ports, discourses, etc.) [WRMO08]. Argumentation schemes provide an elegant way
to represent and analyse these typical argument patterns that are naturally found in
the reasoning construction.

According to Panisson [Panl9], “Argumentation schemes are considered deductive
and inductive forms of argument, added the so-called defeasible, presumption or
abductive part”. An argument that is considered defeasible can be strong enough
to provide evidence to guarantee its rational acceptance of its conclusion, even if it
is not strong in itself. This happens when its premises are acceptable [Tou58]. We
can provisionally accept the conclusion of a revocable argument concerning known
evidence, but it may be necessary to retract it as new evidence emerges.

Argumentation schemes can also be considered an attempt to reach a conclusion
when there is a situation of uncertainty or lack of knowledge. The most important
types of schemes are revocable by nature [WRMO8]. As new evidence comes into
consideration, arguments that had previously been accepted can be defeated. This
is what we call the revocability factor, and it brings us to the problem of how the
schemes are linked rationally.

Revocability is usually linked to a dialogue, where a proponent, based on an argu-
mentation scheme, asserts some conclusion and the opponent, also based on the
argumentation scheme, can ask a critical question that needs to be answered suc-
cessfully by the proponent [WRMO08]. The results of possible critical questions can
have problematic conclusions in several aspects. To evaluate a given argument in a

16

particular case concerning a context of dialogue in which that argument occurred,
the argumentation scheme critical questions are used together. The critical ques-
tions aim to raise doubts about the structural link between the premise and the con-
clusion. Associated critical questions are used to judge the strength or weakness of
an argument based on an argumentation scheme. In this way, we can judge whether
the argument is good or fallacious. During a dialogue, when an opponent receives
an argument, he/she can: (1) ask a critical question related to that argument; (2)
provide an argument against the claim of the received argument; (3) challenge one
of the premises of this argument; or (4) accept the conclusion of this argument as a
commitment [Pan19]].

For example, the Argument from role to know in MAS (role to know for short)
from [PMB21) [PB20] is represented as follows:

“Agent ag is currently playing a role R (its position) that implies knowing things
in a certain subject domain S containing proposition A (Major Premise). ag
asserts that A (in domain S) is true (or false) (Minor Premise). A is true (or
false) (Conclusion)”.

The associated critical questions are:

CQ1 Does playing role R imply knowing whether A holds?

* CQ2 Is ag an honest (trustworthy, reliable) source?

CQ3 Did ag assert that A is true (or false)?

* CQ4 Is ag playing role R?

To allow agents to instantiate arguments from argumentation schemes, Panisson
and colleagues [PB16, [PB17c, PMB21, [PB20] have proposed a framework to repre-
sent argumentation schemes in Jason multi-agent platform using defeasible infer-
ence rules. For example, the argumentation scheme role to know is represented in
Jason as follows}

defeasible_rule(Conclusion, [role(Agent,Role), role_to_know(Role,Domain),
asserts(Agent,Conclusion),about(Conclusion,Domain)])[as(role_to_know)].

!Note that argumentation schemes are modelled as agents beliefs, and the annotation
[as(as_name)] is used to distinguish argumentation schemes from other beliefs.

17

where the agents can instantiate such argumentation schemes with the information
available to them and evaluate the acceptability of the conclusion based on the in-
teractions among such instantiated arguments [PMB21, [PB20].

The critical questions are represented in Jason as beliefs as follows:

CQ1l: role_to_know(Role,Conclusion)[as(role_to_know)]
CQ2: reliable(Agent)[as(role_to_know)]

CQ3: asserts(Agent,Conclusion)[as(role_to_know)]
CQ4: role(Agent,Role)[as(role_to_know)]

The argumentation-based reasoning mechanism links the critical question and the
inference rule for a particular argumentation scheme using the annotation [as(as_name)],
with as name the name of the argumentation scheme. Note that there will be no crit-
ical questions for many argumentation schemes.

For example, imagine that an agent ag knows that john (another agent in the system)

is playing the role of doctor — role(john,doctor). Further, ag knows that doctors
know about cancer — role to know(doctor, cancer). Therefore, if john asserts that
“smoking causes cancer” — asserts(john, causes(smoking, cancer)), and given that
causes of cancer are a subject matter related to cancer — about(causes(smoking, cancer),
cancer)}, ag is able to instantiate the argumentation scheme role to know, which al-
lows ag to conclude that smoking causes cancer — causes(smoking, cancer), based on

the unification function {Agent +— john,Role — doctor,Domain — cancer, Conclusion —
causes(smoking, cancer)}.

Further, argumentation schemes combined with natural language templates can be
used for translating arguments from a computational representation to a natural lan-
guage representation [PEB21], FPE"22]. For example, the natural language template
for the argumentation scheme role to know is as follows:

(“<Agent>is a <Role>, and <Role>s know about <Domain>. <Agent> asserts
<Conclusion>, therefore we should believe that <Conc1usion>".>[as(roleitofknow)]

using the same unification function {Agent — john, Role + doctor, Domain
cancer, Conclusion — causes(smoking, cancer)}, it is possible to build the follow-
ing natural language argument:

(“john is a doctor, and doctors know about cancer. john asserts smoking causes
cancer, therefore we should believe that smoking causes cance ""-)[as(ro1e to_know)]

18

A variety of problems in artificial intelligence can be addressed using argumentation
schemes. Even if we disregard the physical aspects of interaction with the world
and consider only artificial agents’ reasoning capacities, there are still significant
challenges for these agents, such as uncertainty and incompleteness, that we can
consider as two fundamental problems to be addressed [WRMO08]]. And in general,
in addition to interacting with the world, these systems of reasoning also need to
interact with humans, which needs to be understood dialectically.

2.4 Dialogue Systems

A dialogue system is a computer program capable of communicating with a user
using natural language [ABS13]]. This communication is carried out through text
or voice. Dialogue systems can be categorised into two types: (I) goal-driven dia-
logue systems (or task-oriented systems), and (II) non-goal-driven systems [[CLYT17,
WY16]]. A typical goal-driven dialogue system extracts the necessary information
from the user’s utterances to achieve a goal, for example, flight booking. While the
non-driven dialogue system, user input is answered without any specific goal [WY16].
A Chatbot, also known as chatterbot [T]20], is a non-goal-driven dialogue system
example. Virtual assistants, such as Cortana, Google Assistant, and Siri, have em-
bedded chatbots.

A good dialogue system should mix the two categories [WY16]. For instance, a virtual
assistant chats with the user in a non-goal-driven way, but there are also dialogues
that are goal-driven such as writing an email. In recent years, famous companies
such as Google (Dialogﬂo, IBM (Watso, Microsoft (Lui have invested in cre-
ating platform for the development of chatbots. These Platforms have mechanisms
for natural language processing (NLP) and dialogue management. In addition, they
also have integration with services and applications.

Intents are the main component used by these platforms. According to the user’s
input (what the user says), the corresponding intent is mapped to provide the ap-
propriate response (or action). In other words, it has the ability to understand what
the user says, and it can choose or generate a response which can be based on the
current input and the context of the conversations [RAMI17]. The developer is re-
sponsible for registering each intention, and it can call external services that were
developed. An intention can have a large set of user inputs; this is because a human
can speak the same thing in many ways. Thus, each intention must have alterna-

2https://dialogflow.com/
Shttps://www.ibm.com/watson/br-pt/
“https://www.luis.ai/home

19

https://dialogflow.com/
https://www.luis.ai/home

tive syntactic forms to express the same semantics. In DialogFlow, for instance,
it is possible to use a prebuild agent with some intentions, and the developer can
complement it according to the domain chosen.

Due to advances in NLP, we have seen a growing demand for integrating speech
and text recognition capabilities with interactive software applications [VGBM17].
This integration can minimise one of the most important challenges in the field of
human-computer interaction, which is maintaining and enhancing the willingness of
the user to interact with the technical system [NM17]. Just as people use natural lan-
guage for human communication, people want to use their language to communicate
with computers [SAQ7].

2.5 The JaCaMo Framework

JaCaMo is a framework that allows the multi-agent-oriented programming. This
framework consists of the integration of three existing platforms: Jason - for pro-
gramming autonomous agents, CArtAgO - for programming environmental artefacts
and Moise - for programming multi-agent organisations [BBH"13]. A multi-agent
system programmed in JaCaMo has Jason agents that are organised and follow roles
according to a hierarchical structure programmed in Moise. These agents work in
environments based on distributed artefacts programmed using CArtAgO. Figure
shows the JaCaMo dimensions overview.

Jason (Agent dimension) is an agent-oriented programming language that is an in-
terpreter for the AgentSpeak [BHWO7b]] language. Agents programmed in Jason use
the BDI model. The main idea of this model is to model the process of deciding which
action to take to achieve certain objectives [RGT95].

Moise is related to the organisation dimension, where agents can be part of groups
and follow specific roles [HSB07, BBH"13]. Also, with Moise, the schemes are de-
fined, that is, the structure of goals of the organisation that is decomposed into
sub-goals, which are grouped into missions. This organisation is programmed in an
XML file.

CArtAgO, the last dimension, is related to a simulation of the environment where
is defined the artefacts [RPVOO09]]. These artefacts define the environment’s struc-
ture and behaviour, representing all resources that agents need in the simulation.
Agents can discover, create, and use artefacts at runtime [BBH"13]]. Artefacts are
programmed in Java language.

The combination of these dimensions provides us with a complete framework for

20

—
- T | .’::—__::J .t miss:iqukn_"‘x
I S T R SR I ORGANISATION
B e S L e DIMENSION
O agent | ;
O i, AGENT
! i DIMENSION

ENVIRONMENT
DIMENSION

EXTERNAL
ENVIRONMENT

network node

Figure 2.1: Overview of the three dimensions of JaCaMo [BBH"13]]

developing multi-agent systems with agents, organisations, and environments. Al-
though this framework is relatively recent, several researchers have already ex-
plored its potential such as in [CR20, AH19]. In [CR20], the authors describe the
JaCa-Android approach, a framework based on the JaCaMo that allows for designing
and programming smart mobile apps. While [AH19]] presents jacamo-web, an inter-
active programming IDE for developing Multi-Agent Systems. Also, JaCaMo’s full po-
tential was used in a worldwide multi-agent programming contest (MAPC) that took
place in 2018. Our team used the framework and came in second place [KCD*18].
There was no first place that year.

2.6 Ontology

The term “Ontology” was born on Philosophy and refers to the study of existence,
taking into account “what” and “how” things exist in the world following a hierarchi-
cal classification [Gru95]. For Al, it describes a domain knowledge that follows basic

21

principles, such as identifying domain classes, the hierarchy of classes, properties,
and their relationships to reflect reality [VASS05]. Ontology is also a framework
that supports the process of modelling a domain to provide a collection of terms
and their semantic interpretation [BHHKO3]. Also, it can have rules that are called
Axioms that constrain the interpretation and well-formed use of these terms [Gru95].

Several formal languages have been created over the years to represent ontolo-
gies. The most popular ontology languages are KIF, OWL, RDF + RDF(S), and
DAML+OIL [KV11]. These languages have web-based standards, which means that
they process web information. However, the standard language, for representing
ontologies, that is widely used both in academia and industry is the OWL (Ontology
Web Language), based on formal logic. OWL is based on description logic and has
an inference mechanism based on this logic developed in the context of the global
Semantic Web project and graphical editors for the creation of ontologies [VASS05].

Some tools help in the construction of ontologies; one of the most popular is Pro-
tégé [GMFT03]. Protég allows the use of plugins for ontology graphic visualisation
and semantic reasoning. It also has formats available for ontology upload and down-
load, such as RDF/XML, Turtle, OWL/XML, and OBO. When developing an ontology,
Semantic Web Rule Language (SWRL) [OMDO09]] can be used to model more sophisti-
cated inferences. They are specified in the following format: prey,...,pre,— > conc,
with prey, ..., pre, the n premises of the rule, and conc the conclusion of the rule.

In this work, we are interested in using Ontology together with MAS. This is mo-
tivated because Ontologies can help in agent knowledge modelling and reasoning,
task representation, and inference [TL08|, ISBMV15]. We found some approaches
that integrated ontology information with agent-oriented programming languages.
For example, in [MVBHO0b54a], they created AgentSpeak-DL that extends agents’ be-
lief base with description logic where agents can share knowledge by using ontology
languages such as OWL. In [KBO8al], the authors used AgentSpeak-DL to develop
JASDL (Jason AgentSpeak-DescriptionLogic), which provides agents’ ontology ma-
nipulation capabilities using the OWL API. JASDL allows plan trigger generalisation
based on ontological knowledge and using such knowledge in querying the belief
base.

Also, in [MABR11], the authors created CooL-AgentSpeak, an extension of AgentSpeak-
DL with plan exchange and ontology services. CooL-AgentSpeak uses a CArtAgO
artefact as an ontology repository tool to store a set of ontologies and provides on-
tology matching/alignment. Another approach is presented in [FPH"15], whose au-
thors developed a CArtAgO artefact to give access to ontological information. The
artefact uses OWL API to create, manipulate, query, and serialise ontologies coded

Shttps://protege.stanford.edu/

22

in OWL. Thus, agents can use operations such as loading the ontology, adding in-
stances, and adding concepts.

2.7 Runtime Verification and Runtime Monitoring
Language

Runtime Verification (RV) [BEFR18] is a kind of formal verification technique that fo-
cuses on checking the behaviour of software and hardware systems. It dynamically
checks whether the event traces generated by single runs of a system under scrutiny
comply with the formal specification of its expected correct behaviour [LS09]. Con-
cerning other formal verification techniques, such as Theorem Provers [Lov78] and
Model Checking [Cla97], RV is considered more dynamic and lightweight. This is
mainly due to its focus on checking how the system behaves while it is currently
running, which is important from a complexity perspective. Furthermore, RV analy-
ses what the system produces (i.e., everything that can be observed in the system);
in other words, it does not need to simulate the system to check all possible execu-
tion scenarios.

The system under scrutiny and the specification of the properties to be verified are
used as the inputs of the RV process (Figure [2.2)). The specification denotes sets of
event traces where a trace is called valid according to the specification if and only
if it belongs to such a set. This specification is usually defined in either a Domain-
Specific Language (DSL) or a programming language.

A monitor synthesised from the specification is responsible for consuming the ob-
served events generated by the system, emitting verdicts and, sometimes, some
feedbacks [AFFM21]. The system can use these feedbacks for error recovery when
monitoring continues after deployment. In turn, a formal property is a formal repre-
sentation of how we expect the system should behave. The monitor’s job is to verify
whether such a property holds at runtime.

The monitor uses a 4-valued logic [BLS07] where the two conclusive verdicts False
and True are combined with the two inconclusive ones MaybeFalse and MaybeTrue.
This is needed because the verdicts emitted after each observed event may be in-
conclusive [[LS09] as the monitor only inspects a finite prefix of the possibly infinite
trace generated by the system execution.

Monitors are suitable for checking properties that need continuous monitoring since
they are usually deployed in conjunction with the system under analysis. This is es-
pecially true in critical security scenarios, where a system failure can cause injury,

23

verdict

monitor —>

observed feedback
events

instrumentation

system

Figure 2.2: Overview of the RV process [AFEM21]]

loss of money, and even death. The protocols involved in the communication be-
tween agents and human beings can be very complex and hard to track. Moreover,
agents are usually mainly focused on the reasoning and reactive aspects, while the
consistency of the protocols is given for granted. However, above all, in the case
of human beings in the loop, such an assumption cannot be made. Therefore, RV
is a suitable candidate to keep track of the protocols to check whether the current
agents’ enactment is consistent (or not) with the expected protocol. Furthermore,
such consistency checking is crucial in safety-critical scenarios, such as healthcare,
where a protocol violation can be costly.

Runtime Monitoring Languageﬁ (RML [AFEMZ21]]), in turn, is a Domain-Specific Lan-
guage (DSL) for specifying highly expressive properties in RV (such as non-context-
free ones). We use RML in this paper for its support of parametric specifications
and its native use for defining interaction protocols. In fact, the low-level lan-
guage, on which RML is based upon, was born for specifying communication pro-
tocols [AFM16|, AFM17].

Since RML is just a means for our purposes in this thesis, we only provide a simplified
and abstract view of its syntax and semantics. However, the complete presentation
can be found in [AFFM21].

Shttps://rmlatdibris.github.io/

24

https://rmlatdibris.github.io/

In RML, a property is expressed as a tuple (¢, ETs), with ¢t a term and ETs =
{ET\y,...,ET,} a set of event types. An event type ET is represented as a set of
pairs {k; : v1,...,k, : v,}, where each pair identifies a specific piece of information
(k;) and its value (v;). An event Ev is denoted as a set of pairs {k} : v,..., k. : v }.
Given an event type ET, an event Fv matches ET if ET C Ev, which means V(k; :
v;) € ET-3(k;j : vj) € Ev-k; = k; Av; = v;. In other words, an event type E7T specifies
the requirements that an event Ev has to satisfy to be considered valid.

An RML term ¢, with ¢;, ¢, and ¢’ as other RML terms, can be:

» E'T, denoting a set of singleton traces containing the events Fv s.t. ET C Ev;
* t; t9, denoting the sequential composition of two sets of traces;

* t; | t5, denoting the unordered composition of two sets of traces (also called
shuffle or interleaving);

* t1 Aty, denoting the intersection of two sets of traces;
* t1 V 1y, denoting the union of two sets of traces;

* {let z; t'}, denoting the set of traces ¢ where the variable x can be used (i.e.,
the variable = can appear in event types in ¢/, and can be unified with values).

» t'x, denoting the set of chains of concatenations of traces in ¢’

Given an event type ET, the term —ET denotes its negation. Specifically, Vg,.ET C
Ev < -ET ¢ FEv. Other RML terms can also be negated. For example, if the
term is ET7 N\ E'T5, its negation is = ET; V = ET5; the same reasoning can be applied
to the remaining operators.

Event types can contain variables. For example, ET(agl, ag2) = {sender : agl, receiver :
ag2}, where we do not force any specific value for the sender (resp., receiver) of a
message (in this case, the events of interest would be messages). This event type
matches all events containing the sender and receiver. When an event matches an
event type with variables, such as in this case, the variables get the values from the
event. For instance, if the event observed would be Fv = {sender : “Alice”, receiver :
“Bob”}, it would match ET by unifying its variables as follows: agl = “Alice”, and
ag?2 = “Bob”. This aspect is important because we can use variables in RML terms to
enforce a specific order of messages. For instance, in this very high-level example,
we could say that when a message from agl to ag2 is observed, the only possible
consequent message can be a message from ag2 to agl. Since the first event has
unified the two variables, the second event will have to be a message from Bob to
Alice (otherwise, this would be considered a violation). Naturally, this is only the

25

intuition behind it, but it should help to grasp the expressiveness of RML and how
variables can be exploited at the protocol level to enforce specific orders amongst
the messages.

2.8 Hospital Bed Allocation Domain

Resource management in hospitals aims to maximise resource usage and avoid hos-
pital overcrowding. In the last decades, healthcare systems have been facing a
massive increase in demand, which has led to an ongoing need to improve and
optimise operational processes and quality control methods [EW22]. In addition,
hospital managers have studied ways to improve the use of hospital resources and
maintain high occupancy rates without creating chaos in the emergency room or
long queues [GACR"™18b]. The demands on hospitals and the growing financial con-
straints make planning and efficient allocation of hospital beds increasingly diffi-
cult [MR11]].

Brazil had the second highest burden of coronavirus disease 2019 (COVID-19) world-
wide. More than 36.55 cases and 0.93 deaths per thousand inhabitants as of Decem-
ber 31, 2020. In addition, as of October 1, 2021, the country has recorded the
highest number in the world (402,220) of deaths caused by COVID-19 [BMT"22].
With a considerable number of COVID-19 patients worldwide during the pandemic,
the hospitals faced massive shortages of isolation beds with an appropriate envi-
ronment to prevent airborne microorganisms from entering corridors, which could
result in secondary infections. On the other hand, they still had to consider the needs
of non-COVID-19 patients. Even during the pandemic, many non-COVID-19 patients,
mainly those in emergency cases, still require hospitalisation. Therefore a critical
management problem faced was how to optimally allocate the limited amount of
hospital beds between COVID-19 and non-COVID-19 patients [MZG22]].

Hospital beds are scarce, and therefore, allocating them optimally plays an essen-
tial role in the overall planning of hospital resources [TEDF"12]. Availability of
beds in specialised wards for each patient’s medical condition can reduce errors
and improve the quality of patient care [ZEJ"22]]. However, when performing an
efficient bed allocation, it is necessary to consider many variables that make it dif-
ficult for a human to work out the best solutions without any assistance. Also, this
is a complex task computationally, so artificial intelligence incorporated into multi-
agent systems can be helpful in this context. Effective management of such re-
sources has always been a challenge for managers, given that hospital settings are
highly dynamic and uncertain. Uncertainty in this domain comes from the fact that
hospitals need to accommodate patients undergoing elective (scheduled) and emer-

26

gencies requiring multiple specialities in a wide range of departments with varying
constraints [GACR™18b] as well as handling emergency cases that are impossible to
predict. This makes bed management an essential part of planning and controlling
operational capacity and an activity involving the efficient use of resources [PGB03].
Thus, it would be interesting to have a system that assists in suggesting better bed
allocations for the professional responsible for this task.

27

Chapter 3

Conversational Agents Using
Structured Dialogues

3.1 Overview of the Approach

This approach supports the development of dialogue systems based on BDI agents
to assist humans in decision making. The use of dialogues in natural language facili-
tates the interaction and adaptation of human users. Also, the use of argumentation
theory and ontology can make dialogues more useful for them. The argumentation
ability provides more autonomy and smarter behaviour to agents. Ontology, on the
other hand, helps agents to organise domain knowledge, as it contains all relevant
entities and their relationships, providing the possibility of ontological reasoning
about the domain. We have made our approach adaptable enough to be applied
across multiple domains.

We have created a framework for developing dialogue systems built on top of Ja-
son.In that framework, agents have three separate components of their belief base:
(i) argumentation schemes for the application domain that the dialogue system is
aimed for, following a structured (rather than abstract) argumentation approach;
(ii) an OWL ontology about that same domain; and (iii) a theory of mind compo-
nent storing presumed mental attitudes of other agents. With that multi-part belief
base setting, our framework provides support for agents having a structured dia-
logue where the main line of argumentation is based on the argumentation schemes
knowledge component. Still, it can lead to subdialogues when ontological or ToM
issues must be resolved. We have focused on the expressiveness of dialogue systems
where agents have such a multi-part belief base and the ability to engage in such
structured dialogues.

28

The idea of subdialogues is in line with general ideas on nested dialogues (see,
e.g., [BHO7]), but we give a practical protocol limiting such “digressions”, thus
avoiding unnecessary computational burden. In fact, the multi-part belief base ac-
companied by the dialogue structure with subdialogues has a clear impact on ef-
ficiency, given that commitment stores of subdialogues can be deleted when they
are completed. Importantly, because this is all in the context of an agent-oriented
programming language that is formally based on the BDI architecture, we have pre-
cise and computationally-grounded [Wo000] semantics for the mental attitudes that
agents have and ascribe to others.

Although all the knowledge of the multi-part belief base, if suitably translated from
the various sources, could be merged and used by argumentation systems as a sin-
gle knowledge base, there are two main advantages of the modular approach we
propose here: (i) it allows us to reuse existing ontologies on top of the more expres-
sive (argumentation-based) reasoning that we may want to program for particular
systems (i.e., encouraging reusability of existing ontologies in agent development);
and (ii) it allows the agent strategy to “consciously” decide when to move on to an
ontological argumentationE] or argumentation about other agents’ mental attitudes
before returning to the main line of argumentation.

3.2 A Multi-Part Belief Base

In our system, agents have a belief base with at least three main components. Each
of these is based on work appearing in the literature, in particular: (i) defeasible
and strict rules based on an AgentSpeak implementation of d-Prolog [Nut93]; (ii)
the CooL-AgentSpeak language which allows for the use of ontologies and ontol-
ogy alignment; and (iii) recent work on the theory of mind for AgentSpeak agents.
The subsections below describe each of these separate bases forming our multi-part
belief base.

3.2.1 The Cool-AgentSpeak Language

CooL-AgentSpeak stands for “Cooperative description-Logic AgentSpeak” [MAB™14]].
It resulted from various strands of past work on combining AgentSpeak with onto-

11t should be noted that the ontological argumentation term we introduce here bears no relation to
what in Philosophy is known as “ontological argument”. We use this expression to refer specifically
to multi-agent dialogues based on argumentation theory, where the content of the arguments being
exchanged make explicit reference to a formal ontology.

29

logical reasoning [MVBHO5b, KB08b, AMHBO04], and has the following features:

* it extends the AgentSpeak programming language with ontological knowledge,
formally through a description logic and in practical implementation through
the use of OWL ontologies;

* it has an explicit cooperation strategy to be used when agents exchange plans;

* it takes advantage of ontology matching functions so that agents using differ-
ent ontologies can communicate, in practice using available ontology matching

services.

Because it has all these features that are, in practice, important in multi-agent set-
tings, we take that programming language as the basis for this component of the
belief base that we require for our structured dialogue approach with ontological

argumentation.

However, for this purpose, we only need the belief base component of that language
(Ont), so we do not show the other components of a CooL-AgentSpeak agent (ag);
the excerpt of the syntax that is of interest here is summarised in Figure

ag

Ont
ABox
TBox

C,D
R, S
at
bsrc
oid
aid

Ont ps cs ms

ABox TBox

at; ...atp, (n>0)
Ci1=D;...Ch=Dy, (n>0)]
ClEDl'uCnEDn (1’120)|
RiI=S;..Ry=S, (n>0)]
ngsl RnESn (HZO)
A|-C|CnD|CUD]|VR.C|3R.C
PIRMOS|RUS

C(t)[o(oid), src(bsrc)] |

R(t;, t2)lo(o0id), src(bsrc)]

self |aidy, ..., aidy, |percept

a string identifying an ontology |self
a string identifying an agent

Figure 3.1: Excerpt of the CooL-AgentSpeak Syntax

Following [MVBHO5b], CooL-AgentSpeak used ALC' as the underlying description
logic [BNO3]. The definition of classes and properties belonging to the ABox of the
ontology assumes the existence of identifiers for primitive (i.e., not defined) classes
and properties (metavariables A and P, respectively). New classes and properties can
be defined using constructs such as ' and LI that represent the intersection and the

30

union of two entities, respectively. The TBox is a set of axioms establishing equiv-
alence and subsumption relations between classes and between properties. With
respect to [BNO3] and [MVBHO5b], the syntax was extended to allow annotations
(as available in Jason) of concepts and properties. Furthermore, in practice, we use
OWL ontologies, so OWL inference rules [HPSB™04] can also be used.

An agent belief is an atom belonging to the ABox annotated with o(oid), where oid
is the identifier of the ontology. We use oid=self for “naive beliefs” [KB0O8b], i.e.,
a normal AgentSpeak belief that does not relate to an ontology. Along the lines
of [VMWBAO07], beliefs are also annotated with sources src(bsrc), where bsrc can be
either an agent identifier aid specifying the agent which previously communicated
that information or self to denote beliefs created by the agent itself, or percept to
indicate that the belief was acquired through the perception of the environment.

3.2.2 Argumentation-based Reasoning in Agent Programming

Our agents have an internal rule-based argumentation mechanism capable of gen-
erating (evolving) arguments. Rule-based argumentation frameworks can be found
in the literature, for example, in [Prall]], which extends well-known work by Dung
[Dun95b], with structures to arguments based on strict and defeasible rules, and the
work of Berariu [Ber14] and [PMVB14] which extend Jason agents with such argu-
mentative reasoning capabilities. In this work, we use specifically the approach and
implementation by Panisson et al. [PMVB14], which has been extended to consider
the representation of argumentation schemes (i.e., reasoning patterns) for various
applications domains [PB17bl].

Agents in our framework should use an argumentation semantics that allows a
unique set of acceptable arguments such as grounded semantics defined in [Dun95b]
and used in [Berl4, [Pralll]l, or the defeasible semantics defined in [GMABO4] and
used in [PMVB14]]. Furthermore, agents only accept propositions/claims which they
do not have an acceptable argument against (i.e., the cautious attitude), and agents
only assert propositions/claims for which they have an acceptable argument (i.e., the
thoughtful attitude) [PMO03| PWAO2].

In our dialogue approach, we need to determine the acceptability of an argument
from the agent’s perspective (i.e., whether the agent does or does not have an argu-
ment for a given claim). That implementation referred to above and upon which we
have built this component of our belief base provides that for us.

31

3.2.3 Theory of Mind in Agent Programming

For an agent to interact successfully, effectively achieving its goals in a multi-agent
environment, it is essential for it to be able to model and reason about other agents’
minds. The term theory of mind is used to refer to such an ability. ToM has
been much discussed in the context of multi-agent systems, as it can be noted
in [dWVV12, DWV11], which investigated the advantages of using different levels
of ToM in games played by agents, and [BA11, HDM™12, HSM™13| [ONQ9| RTO13]],
which investigated the advantages of modelling the opponent when considering
strategies in argumentation-based dialogues.

More recently, works have been published on how ToM can be modelled in Agent-
Oriented Programming Languages (AOPL) [PSM™18a,/SPB"18]. The authors discuss
how AOPLs are suitable as a basis for analysing social interaction, including, for ex-
ample, when intelligent agents can be dishonest [PSM™18b]]. Pioneering work relat-
ing ToM to AOPLs appeared in [KC04], building on seminal work on the semantics
of speech-acts [CP79].

In this work, we take advantage of existing approaches to ToM in agent program-
ming in order to model and reason about other agents’ mental attitudes. Similar to
ontological inquiries, in our approach, agents’ ToM may also be the target of subdia-
logues, in which agents will argue about their own or other agents’ mental attitudes.
In fact, ToM subdialogues may be more often required than ontological ones, given
how susceptible ToM is to be incorrect or incomplete. Even with probabilistic mod-
els, such as in [SPB" 18], when an agent builds a model of other agents’ minds, this
model is often different from reality, given that many factors can mislead the per-
ception of the mental attitudes of others, and given that agents change their mental
attitudes constantly, particularly in highly-dynamic multi-agent systems.

3.3 The Basis for Argumentation-Based Dialogues

In our mechanism, agents argue using a subset of the speech acts found in the litera-
ture of argumentation-based dialogue [AMPO0O, PM03, PWAOQZ2]]. This work builds on
an existing approach by Panisson et al. [PMVB15a]. It will be summarised in this sec-
tion to make the full operation of our approach clearer. The particular performative
verbs used here and their informal meaning are as follows:

assert: an agent that performs an assert utterance declares, to all participants of
the dialogue, that it is committed to defending this claim — the receivers of the
message become aware of this commitment;

32

accept: an agent that performs an accept utterance declares, to all participants of
the dialogue, that it accepts the previous claim (assert) of another agent — the
receivers of the message become aware of this acceptance;

question: an agent that performs a question utterance desires to know the reasons
for a previous claim of another agent or, in case of an information-seeking
dialogue, desires to know if the receiver can provide the information requested
in the content of a question message.

challenge: the receiver of the message, who previously committed to defend a
claim, should now provide the support set for that claim;

justify: the justify message is similar to the assert message but is used as a response
to a challenge message previously received, whereby the agent provides the
support to its previous claim.

We adopt the formal definition of the semantics of these speech acts from the work
by Panisson et al. [PMF™14, PMVB15b] which specify precisely the effect of the
speech acts in the agent’s mental state, as well as in the multi-agent dialogue as
a whole. The formal semantics allows for direct implementation of the effects of
receiving and sending the speech-act in a BDI-based agent-oriented programming
language based on the mental attitudes used in that specification. From that work,
we use the stated effects of each speech act on an agent’s commitment store (CS)
for the specification of our protocol, as described below.

The CS consists of one or more structures, accessible to all agents in a dialogue,
containing commitments made by the agents during the dialogueE]. The CS is simply
a subset of the knowledge base, and the union of the CSs can be viewed as the global
state of the dialogue at a given time [PWAO2].

In the course of the dialogue, the agents use rules that define how the CS is updated.
Such rules are part of the semantics used in this work and are summarised as follows
(making reference to the agent that uttered the speech act):

* assert: the agent’s CS is updated with the asserted content p: C'S < CS U {p};
 accept: the agent’s CS is updated with the accepted content p: C'S <— CSU{p};
* question: no effect on the CS;

» challenge: no effect on the CS; and

20ther names are used for CS, such as dialogue obligation store in [MPO5[] and dialogue store
in [STTO1].

33

 justify: the agent’s CS is updated with the justified content contained in the set
of rules and facts S (the support for a challenged claim p): C'S < CSU S;

Note that in our implementation, we support multi-agent interaction, so messages
can be directed to a particular agent or to ‘x’, which is used to denote all agents tak-
ing part in a particular dialogue. A message has the format performative(sender,
receiver, content). Besides the performative verbs used in individual messages,
a dialogue game protocol restricts the moves allowed to agents. The dialogue game
restricts the moves but, as usual in such mechanisms, it also determines the alter-
native moves available to agents at any point in the multi-agent interaction. In fact,
an interesting approach to determine an agent’s individual strategy to participate in
such interaction is through planning, as done, for example, in [BCH17, PFF™14].

The particular dialogue game approach we use in this work is built upon fundamental
ideas that appeared in [PWAO2, PMO03]. That work formalises the preconditions
(called “rationality rules”) for an agent to make each type of dialogue move and
what commitment store updates ensue. Furthermore, that work shows how those
moves can be used to build dialogues for various purposes among those mentioned
in Section [2.3.2] depending on the agent’s intention. Our case study in Chapter
shows in practice the sort of dialogue that the implementation of such rationality
rules supports. Note that they provide the means for agents to engage in a dialogue,
but our case study further shows when an agent chooses to move to an ontological
subdialogue, following the rules we formally introduce in the next section.

3.4 Multi-Agent Dialogues with Underlying Ontolog-
ical and ToM Arguments

We present the structure of subdialogues, which can be seen in Figure [3.2] Agents
engage in a dialogue about some subject (a claim put forward by the agent initiating
the main dialogue). The dialogue proceeds normally following a particular protocol
and using the knowledge base §. In the case study reported here, for example, we
use a multi-agent version of the dialogue protocol referred to in Section [3.3|for both
the main dialogue and each of the two types of subdialogues. What we formalise
later in this section is precisely when an agent may digress from the mainline of
argumentation and move on to an ontological or ToM subdialogue. As seen in Fig-
ure [3.2] after some moves in either type of subdialogue, the agents involved in the
dialogue must go back to discussing the main subject; that is, the main line of argu-
mentation is suspended when a subdialogue starts, and it is only resumed when that
subdialogue finishes.

34

Dialogue on the
main subject (5)

Ontological
Argumentation (o)

Argumentation about
ToM (1)

Figure 3.2: Dialogue structure

The move towards a subdialogue is best explained by an example. Suppose we have
P(c) as a strict fact, P(c) A D(c¢) — Q(c) as a defeasible rule, C(c) in the ABox, and
C C D in the TBox of the o belief-base component. If, after asserting)(c) the agent
is questioned about D(c), the justification involves the ontological assertions. When
presented with them, the other agent might disagree that C(c) or disagree with
the TBox statement if the ontologies are not correctly aligned. After that dialogue
phase (i.e., a subdialogue) is finished, the main dialogue flow resumes. The result
of the subdialogue, of course, will affect the main line of discussion (the dialogue
about a particular subject of interest in the domain following the available defeasible
knowledge). The agents may conclude the subdialogue by unanimously agreeing
that D(c), that =D(c), or finishing the subdialogue inconclusively. In the latter case,
the main dialogue will continue so that agents try to reach an agreement on the main
subject despite being unable to agree on the ontological issue.

Similarly, we might have a subdialogue to further inquire about ToM assumptions,
in which case the subdialogue uses knowledge from the ToM component. Support
for ToM in our framework is done by incorporating the work on ToM for agent pro-
gramming languages discussed in Section [3.2.3] Yet, those beliefs are particularly
susceptible to being incorrect and incomplete. This is partly because of the intrinsic
benevolence assumption in the rules for generating ToM, but also because, in a dy-
namic environment, the agent’s mental attitudes can change rapidly without further
communication exchange that would have allowed the ToM to be updated. Again,
after a ToM subdialogue, the result will affect the main dialogue in the same ways
mentioned above.

Our work includes the formalisation of a novel dialogue-subdialogue structure, and
we use an existing protocol for the (sub)dialogues. Besides implementing the rules
that support the dialogue protocol, our framework requires derivation of conclu-
sions to be obtained for each of the 3 belief-base components when the agent needs

35

to respond to a challenge message. For the defeasible component, the existing
argumentation-scheme-based implementation already produces an AgentSpeak list
with the sequence of rules used to derive a particular conclusion. For the ontology
component, we automatically translate the semantic rules presented in the ontolo-
gies to a computational representation of argumentation schemes (defeasible rules),
allowing the agents to reason using the defeasible component. Finally, for the ToM
component, the justification directly references the rules of the operational seman-
tics that govern how ToM is updated in an agent language [PSM™18a] that we incor-
porated into our system.

3.4.1 Formalisation of Participating Agents

As seen in the previous section, our work builds on two other separate pieces of
work in the literature: domain-specific strict and defeasible rules and facts, and one
or more ontologies (without lack of generality, we use only one in the formalisation),
and a ToM (i.e., the information about other agents’ state of mind that is kept up-
dated through communication); note that the all messages exchanged by agents may
contribute to ToM updating, including the messages exchanged following the overall
dialogue protocol we present in this section and the associated protocol governing
(sub)dialogues. An agent participating in dialogues created with our framework is
formalised as follows.

Definition 1 (Agent) An agent that takes part in our structured-dialogue argumen-
tation protocol is defined as a tuple (0,0,7,7,¢,1), where ¢ is a set of defeasible
and strict rules and facts (in the AgentSpeak style based on d-Prolog); o is a CooL-
AgentSpeak style ontology-based belief base; T is an AgentSpeak representation for
ToM following the approach described in the previous section; m is the set of plans
to achieve goals forming the agent’s know-how (i.e., its plan library); ¢ is a set of
AgentSpeak events which include, for example, recent goal adoptions (i.e., goals
that are not yet intentions); and ¢ is the agent’s current set of intentions (partially
executed, partially instantiated plans to achieve goals).

Note that (4, 0) are two now separate components replacing what would normally be
simply one set of beliefs representing the agent’s current belief base. We use C; to
refer to component C of agent ¢. Introducing further notation, we say that an agent
can build an acceptable argument S that supports a claim p (denoted as S = p) from
one of its knowledge bases and the commitment store of the other participants. For
example, agent ¢ can build an acceptable argument S, which supports a conclusion p,
from its defeasible knowledge base (9;) and the commitment store of j (CS;) (denoted
(0, U CS;) E9).

36

3.4.2 Subdialogue Rules

We now introduce the rules governing the high-level dialogue structure; that is,
the rules that allow agents to initiate the subdialogue we would like them to have
in our framework. They should be interpreted in the context of normal dialogue
rules [MP02, MP0O1b] determining a protocol that governs the interactions between
the agents, given their strategies whereby each agent moves by performing one
of the utterances allowed by the protocol. Such rules, effectively determining a
dialogue game [MPO02]], are often expressed as if-then rules, which are then easy to
implement.

The dialogue rules specify the moves that each player can make, and so specify
the protocol under which the dialogue takes place [AMPOO]. As mentioned before,
the permitted moves in each (sub)dialogue follow the existing protocol discussed
in Section [3.3] Instead of the usual if-then rules, we use a different style, similar
to operational semantic rules, to formalise new performatives that are required to
support the dialogue structure. In order to do so formally, we first define the overall
dialogue setting.

Definition 2 (Subdialogue Game) A subdialogue game is formally represented as
a tuple

(MD, SDy,...,SD,, MS, DR), where MD is the main dialogue, SD; (1 < i < n) are
n possible subdialogues, MS is a finite set of allowed moves between any of the
dialogues, and DR a set of dialogue rules governing the moves between the various
(sub)dialogues. Our model assumes that digressing to a subdialogue suspends the
dialogue on the main subject, which is only resumed when the subdialogue finishes.

We propose one particular subdialogue game as follows.

Definition 3 (Ontological-ToM Subdialogue Game) An Ontological-ToM subdia-
logue game, denoted by SDG°?, is formally defined by (MD°T SD? SDT MS°T DROT).

Arguments can be formed from the commitment store of the main dialogue and the
knowledge in § of each agent. The SD? subdialogue uses o plus its commitment
store and SD 7 uses 7 and another particular commitment store as well as ¢ and ¢ (so
that the agent may refer to its own desires and intentions, as well as belief. The
formalisation of the two other components is given below in this section. First, we
formalise a particular running instance of dialogue following our Ontological-ToM
Subdialogue Game.

3For a formalisation of the BDI modalities for AgentSpeak agents, see [BFVWO06].

37

Definition 4 (Dialogue Instance) A particular dialogue instance following our
Ontological-ToM Subdialogue Game is defined as (dID, A, SDG°T) where dID is a
unique dialogue instance ID, A is the set of agents (in this paper we assume the
same set of agents participates in the main as well as all subdialogues), and SDG°7
is as per Definition|[3.

Definition 5 (Dialogue Moves) We denote a move in MS°T as v(i,j,), where v
is the performative verb used for that move, made by agent i, addressed to agent
j, regarding content ¢. We consider the following set of performatives, denoted by
P (see Section [3.3): assert, accept, question, challenge, justify, closedialogue,
ontoargsubdlg, tomsubdlg, closesubdlg, and failsubdlg. The content of a move (¢)
can be an argument (a set of formulee) or just a formula (e.g., in an assert move, the
content is a formula and in a justify move, the content will be a support set for a
claim made in a previous assert move).

The dialogue rules in DRT indicate the possible moves that an agent can make
following a previous move by another agent. They are presented here in the form
of an inference rule in a similar presentation style as used in operational semantics
of programming languages, except that here the conclusion part of the rule state
which dialogue move (or transition) is allowed when the premises of the rule hold.
A dialogue transition [— r means making the » move in response to a previously
received message [. When necessary to make that clear, a move » may be written
rym, To, or rp depending on whether it took place in the main, ontological, or ToM
(sub)dialogue. In the premises, existential quantification is assumed, and horizontal
space between formulee denotes conjunction. When multiple rules can fire, those
are precisely the points where an individual agent strategy will determine how the
dialogue unfolds (and as mentioned before, planning is one possible technique to
help determine optimal dialogue strategies). We use * to denote messages that are
not directed towards a particular agent but to all agents taking part in the dialogue.
The specific rules DR®T that govern our subdialogue structure are as follows.

fed Cit)yef okFC()
challenge(i,j, f);y — ontoargsubdlg(j,*, C(t))o

(OAsdlg1)

fe 5]' R(tl,tg) ef ok R(tl,tz)

— . (OAsdlg2)
challenge(i,j, f); — ontoargsubdlg(j, *, R(t1,t2))0

Rule OAsdlgl says that if an agent challenges, in the main dialogue M, a formula
in which C(t) appears, and C' is related to an ontology class, we can enter a sub-
dialogue to discuss whether ¢ indeed is an instance of class C. Rule OAsdlg2 is

38

exactly like OAsdlgl but for an ontology relation R(;,t;) rather than a class. Note
that it is assumed in the formalisation, without loss of generality, that the partic-
ipating agents have only one ontology, which they have individually aligned using
CooL-AgentSpeak. In practice, a ontoargsubdlg message could include a parameter
for the URI of the particular OWL ontology referred to by the agent starting the sub-
dialogue. When agents receive an ontoargsubdlg message, they know they have to
switch their moves to a fresh instance of the subdialogue protocol.

Va € Ao, = ¢
. - (CloseOAsdlgl)
closedialogue(i, *,), —> closesubdlg(i,*,¥),,
Va € A.oq = -
: a7 : (CloseOAsdlg2)
closedialogue(i, *, 7¢p), — closesubdlg(s,*, —p),,
acA o.FE¢
be A o -
i (FailAOsdlg)

closedialogue(i, *,), —> failsubdlg(i, *, ¢),,

Rule CloseOAsdlgl states that when the closedialogue performative is used by one of the
agents to finish a dialogue which was an ontological subdialogue, that leads to the closing of
the subdialogue with success (closesubdlg), in case all agents agreed on ¢, and thereafter
to the resuming of the main dialogue. Note that although we specify the condition from the
point of view of the belief base of the participating agents, that can also be checked from
the commitment stores of the subdialogue. Rule CloseOAsdlg?2 is exactly like CloseOAsdlg1l
except that it applies when all agents accept —¢ instead.

It should also be noted that following a closesubdlg(i, %, ¢) message, the commitment store
of the main dialogue is updated with the fact that now all agents accept ¢ (i.e., they reach an
agreement about whether that ontological issue holds or not). When instead rule FailAOsdlg
applies, the main dialogue is resumed with no alteration in the commitment stores. The
dialogue will have to continue despite the disagreement on .

The closing rules for ToM subdialogues are very similar, so for our purposes here, we only
need to formalise the rules for starting a ToM subdialogue.

f€6; Modacalp) € f 7jF Modaca(e)
challenge(i,j, f)u — tomsubdlg(j,*, Modaea(yp))r

(OTsdlg)

where Mod € {Bel, Des, Int}. Rule OTsdlg says that if a formula f is challenged by an agent
and that formula involves a subformula which is associated with the ToM component of the
belief base, we may start a subdialogue to discuss specifically whether the mental attitude
of a particular agent does in fact hold, i.e., there is a divergence between their ToMs.

39

Definition 6 (Divergence between agents’ ToM) Considering two agents i,j € A, there
is divergence between their ToM about some mental attitude Mody (), for some agent k € A,
when 7; |= Mody () and 7; = Mody ().

We assume that agents have a consistent ToM about their own mental attitudes (they have
perfect introspection about their own mental attitudes), i.e., Vo € {6; U;} then Mod;(¢) € 7.
Also, they have a consistent ToM about other agents, i.e., Mod;(¢) and Mod;(—¢) does not
hold in 7; simultaneously. Thus, we have the following scenarios for ToM subdialogues: (i)
When j = k, i.e., agent ¢ has a divergent model about j’s mental attitude Mod;(y), agent
j can inform its current mental attitude Mod;(y) to i. (ii) When ¢ = k, i.e., agent j has a
divergent model about i’'s mental attitude Mod;(¢), agent i can inform its current mental
attitude Mod;(¢) to j. (iii) When j # k and ¢ # k, i.e., agents ¢ and j have a divergence about
another agent k’s mental attitude Mody(p), agents i and j may argue about the current
mental attitude Mody () of k.

When the mental attitude causing a divergence between two agents’ ToM refers to a belief
(i.e., Mod;(¢) = Bel;(¢)), ToM subdialogues will be characterised as an information-seeking
(sub)dialogue for cases (i) and (ii) above and an inquiry (sub)dialogue for case (iii). When
the mental attitude causing such divergence refers to a desire or intention, (e.g., Mod;(¢) =
Des;(¢)), those ToM subdialogues may result in more complex interactions, possibly involving
persuasion in case (iii). Such subdialogues about agents’ desires/intentions are supported
by carefully designed argumentation schemes introduced by D.Walton [Wal19].

FINAL REMARKS

This chapter presented an overview of our approach. We show the components used in our
approach to assisting users in decision making. Also, it presents the definitions and rules
used in our dialogue protocol. We have idealised our approach in a way that allows us to
explain to the user how our agents arrived at certain conclusions. We worked with a more se-
mantic representation and representations of the mental state of the dialogue participants,
allowing the formulation of coherent justifications expressed in natural language, therefore,
easy for human participants to understand. This fact has revealed the potential of our ap-
proach to be used in the practical development of explainable intelligent systems as well as
systems supporting hybrid intelligence. The contents of this chapter have been published
in [EPV™].

40

Chapter 4

Multi-Agent Intentional Dialogue
System

4.1 Overall Architecture

The architecture of the Multi-Agent Intentional Dialogue System (MAIDS) framework we
developed in this work is shown in Figure[4.I] As it is shown, our framework relies on the use
of Dial4JaCa (see Section as an interface to dialogue platforms such as Dialogflow]]] or
Ras The Human users can interact with the chatbot through voice or text. This interaction
is classified into intents by Dialogflow or Rasa and sent to Dial4JaCa, which makes the
request available to the Communication agent assigned to that specific user.

One or more Communication agents can be instantiated, each one responsible for repre-
senting a Human user. This allows us to customise the responses given to the user based on
a previously defined (or learned) profile. With this profile, the application avoids giving too
many explanatory answers to a user with a specialist background and avoids giving very su-
perficial answers to users without a specialist background since it translates the responses
of the Assistant (the result of the MAS reasoning) into natural language messages, us-
ing templates as described in [PEB21], [FPE™22], to be sent to its corresponding Human user.
Furthermore, the ability to instantiate multiple communication agents, one for each system’s
user, also allows an Assistant agent to engage in multiparty conversations, helping a team
or a group of users make joint decisions.

The Assistant agent is responsible for communicating with other agents in search of infor-
mation and performing argumentation reasoning. Besides multiple communication agents,

Lhttps://cloud.google.com/dialogflow/es/docs
2https://rasa.com/docs/

41

; 9, S
Domain specific Pellet” | ~M9umentation |
Artefacts : e 9.
' T Onto4JaCa ; 6%6
' 5 = .

Domain specific Ontology
agents agents

Monitor
: @“% .
> N . Argumentatlon : _‘1[_ Dial4JaCa [——>
@ Rv4JaCa : o Dialogflow
Assistant Communication ,”
AN agents
1 —— - OEEEE | [TO

N
a

/ Multi-Agent System \

Ontologies

<
<

-
=

O —1=|
'n ‘ i Agent <—>» Communication =+« «-- Sniffing o O o
Formal Monitor Human users

Figure 4.1: MAIDS Architecture

several Ontology agents can be instantiated in MAIDS, allowing the MAS to consult several
ontologies simultaneously through Onto4JaCa (see Section [4.3). These agents can also per-
form ontological reasoning using the Pellet reasoner [SPGT07] and its open-source continua-
tion effort Openllelﬂ In addition, these agents can translate OWL inference rules [HPSB™04]]
automatically to defeasible rules (representing argumentation schemes) and use them dur-
ing the reasoning process.

In order to address the specificity of different application domains, Domain specific agents
are added to the system, and they can query different Domain specific Artefacts depend-
ing on the system’s needs. Also, MAIDS uses the RV4JaCa (see Section [£.4) to perform
runtime verification. It observes all messages exchanged between agents and sends them
through a REST (Representational State Transfer) request to a Formal Monitor where the
properties that need to be checked are defined. The Formal Monitor processes the received
information, checking whether any property has been violated. In case of violation, RV4]JaCa
adds information about the failure in the Monitor agent’s belief base that warns the agents
involved in the exchange of messages that there has been a violation. This makes it possible
for our agents to take action to recover from the failure that the breach caused.

Note that MAIDS is a modular framework, which means that its components can be used

3https://github.com/Galigator/openllet

42

Dialogflow

JAVA 4% JaCaMoREST | s |
a,: 1 3 r Adapted 5

Figure 4.2: Dial4]JaCa Architecture

together or separately, depending on the needs of the multi-agent system. The following
sections explain each of the modules in more detail.

4.2 Dial4JaCa

Dial4]aCdE| [EDK"21b, [EDK"21a] integrates the JaCaMo framework with Dialogflow and,
therefore, allows us to implement intelligent agents that can communicate with humans
through natural-language interaction. We have made this integration sufficiently adaptive
to be applied to different applications and domains. To do so, we use modular components
which can be imported into any multi-agent system developed in JaCaMo. Figure [£.2]depicts
an overview of the Dial4JaCa architecture.

To develop the bridge that links a MAS application, developed using JaCaMo, to a natural lan-
guage processing platform, e.g., Dialogflow, we use part of the open-source project JaCaMo
RESTE| [AHK20]]. JaCaMo REST allows a MAS to interact with services or applications on the
web and to be managed and updated by other applications. In our approach, Dial4JaCa
receives requests from Dialogflow through JaCaMo REST. It conveys the received informa-
tion to a CArtAg0 Artefact responsible for making the requests available to the agents.
The data are received in JSON (JavaScript Object Notation) format and immediately trans-
formed into a Java object, which becomes available in a CArtAg0 Integration Artefact.

“https://github.com/smart-pucrs/Dial4JaCa
Shttps://github.com/jacamo-lang/jacamo- rest

43

https://github.com/smart-pucrs/Dial4JaCa
https://github.com/jacamo-lang/jacamo-rest

1 +request(Responseld, IntentName, Params, Contexts) :true
2 <- .print("Request received ",IntentName," of Dialog");
3 I'reply(Responseld, IntentName, Params, Contexts).

Listing 1: An example of how an agent perceives a request.

This Interface allows the integration artefact to perceive whenever a request is received.
Upon realising the arrival of a requisition, the artefact performs a belief addition in the belief
base of all agents who are observing it (i.e., the observable properties). That belief contains
all relevant information about the request. Doing so, the agents that focus on that artefact
are able to decide whether they are going to react to such requests or not.

Regarding Dialogflow, it uses the fulfillmentﬁ service to communicate to external APIs.
We use this service to integrate Dialogflow with the MAS, passing requests through the
resource-oriented abstraction layer from JaCaMo REST. With the resulting communication
interface, intelligent agents developed in JaCaMo perceive not only information about an
intent triggered by the user’s speech, but also parameters and contexts that Dialogflow has
collected in each interaction.

Context are another important concept in Dialogflow. They are similar to contexts in nat-
ural language conversations. That is, it is a relationship between the text and the situation
in which it occurs. To process a user’s expression in natural language, Dialogflow can use
the context to correctly match it with an intent. By doing so, it is possible to control the flow
of a conversation. In addition, intents can also have parameter that are values extracted
from the user’s expression.

Listing[I]shows an example of a plan in Jason that agents can use to react to a belief addition
(+request). It informs the agent that a new request from the user has arrived. In this
simple example, the agent creates a new goal to !reply (), which will result in a sequence
of instructions to be carried out.

In addition to the intention’s name, Dial4JaCa also allows the agent to have access to
contexts and parameters, which are captured by Dialogflow. This information is recorded
in its belief base and might be used during its reasoning cycle. Contexts is a list, as
shown in the Listing [2] where for each element of this list: Name corresponds to the con-
text name; LifeSpanCount corresponds to the context lifespan; and [param(Key, Value),
param(Keyl, Valuel)] matches the context parameter list. Even if there is no context, re-
ceiving a list of parameters is possible. That list has the same structure as the parameter
list in the context, where Key corresponds to the parameter’s key, and Value corresponds to

Shttps://cloud.google.com/dialogflow/es/docs/fulfillment-overview
’https://cloud.google.com/dialogflow/es/docs/contexts-overview?hl=en
8https://cloud.google.com/dialogflow/es/docs/intents-overview?hl=en

44

https://cloud.google.com/dialogflow/es/docs/fulfillment-overview
https://cloud.google.com/dialogflow/es/docs/contexts-overview?hl=en
https://cloud.google.com/dialogflow/es/docs/intents-overview?hl=en

1 context(Name,LifeSpanCount, [param(Key,Value),h param(Keyl,Valuel)])

Listing 2: An example of context.

1 +!reply(Responseld, IntentName, Params, Contexts)

2 : (IntentName == "Reply With Context")

3 <- .print("The context will be created next.");

4 contextBuilder(Responseld, "test context", "1", Context);

5 .print("Context created: ", Context);

6 replyWithContext("Hello, I am your Jason agent, and I am

7 responding with context", Context).

Listing 3: An example of a plan to reply to a request with a context.

the value recorded by Dialogflow.

Dial4JaCa also allows an agent to send new contexts to Dialogflow along with the response
to a request. An operation named contextBuilder is available for this purpose. This oper-
ation receives as a parameter the response id (responseld), the name of the context to be
created (contextName), and the lifespan of the context (LifespanCount). It returns a context
formatted according to the Dial4JaCa specification. To reply with a context, the agent calls
the operation replyWithContext, which takes as a parameter a string with the text that the
chatbot must tell the user and the context created by the contextBuilder. We exemplify
this process in Listing

Dial4JaCa also provides the reply operation in case an agent does not need to send out a
context and the replyWithEvent operation that allows an agent to send events to Dialogflow.

One should be particularly careful when dealing with timeouts in Dialogflow. They indicate
that the conversation flow should continue, and a reply from the MAS is no longer expected.
This behaviour can be triggered, for instance, when an agent calls upon external services
to reason about an appropriate response. Upon realising that an agent takes too long to
respond, Dial4JaCa automatically fires an event in Dialogflow, containing the same name
as the current remote intent (getting rid of the blank spaces). Doing so allows the agent
more time to finish its reasoning. This process is perceived by neither the user nor the
agent. Dialogflow allows these sorts of events to be fired up to three times in a row. In our
tests, this mechanism has provided sufficient time for an agent to deliver a response with no
endless waiting time on the user side.

In our implementation, we have approached only the Dialogflow platform. However, pre-
liminary investigations have shown that with small changes in our code, we can also use
other natural language processing platforms such as Watson, or Luis. It was confirmed by

45

a project called Rasa4JaCa [Cus22], which has extended our approach to be able to use
JaCaMo agents with the open-source natural language processing platform Rasﬂ

In addition, some works have used Dial4JaCa to integrate chatbots and multi-agent systems
in different domains. In [dSCVMBZ21], the authors developed a Chatbot using a multi-agent
organisation to support collaborative learning. In [OEK™22] a multi-agent architecture used
as a basis for an ambient assisted living system to assist visually-impaired and elderly peo-
ple was presented. Furthermore, in [GMZ22], it was introduced VEsNA, a framework for
managing virtual environments via natural language agents.

Also, in [Esf23[], they propose a tool called Onto2Conv, which is responsible for reading a
customised domain-specific ontology and generating the files to feed the information for the
chatbot and the MAS. It feeds them with their acceptable skeleton and format to make these
chatbots robust and their development faster and less error-prone when using Dial4JaCa.
Furthermore, they have implemented donnaMAMi, a motivational agent in the mirror in the
domain of psychology and domestic violence against women, which also uses Dial4JaCa as a
bridge between Dialogflow and the multi-agent system developed using JaCaMo. In addition,
donnaMAM.i also uses Onto4JaCa for querying in ontologies.

4.3 Onto4JaCa

Onto4JaCam seeks to give intelligent agents, developed using the JaCaMo platform, the
ability to use and manage the information contained in ontologies during their reasoning
processes. It allows agents to access concepts, relationships and even semantic rules in OWL
ontologies and reason using this information. It also allows agents to use the Pellet reasoner,
a semantic reasoner, to make inferences about ontology information, understanding and
communicating the explanations that came from the reasoner.

We have extended the approach presented by [FPH"17] to process the traces of compu-
tational steps (including the application of inference rules) used by semantics reasoners
during queries to OWL ontologies. Then, using Onto4]JaCa to translate those traces into
an agent-oriented programming representation, agents can understand and manipulate that
information, building explanations from external semantic reasoning. In addition, it is also
possible for them to translate all the semantic rules contained in the ontology into argu-
mentation schemes, in the format of defeasible rules, like those presented in Section [2.3.3]
which are stored in their belief base and processed by agents using the framework presented
in [PMB21], [PB20].

Figure presents an overview of the Onto4JaCa architecture. We implemented our ap-

9https://rasa.com/docs/
Ohttps://github.com/DeboraEngelmann/0Onto4JaCa

46

https://github.com/DeboraEngelmann/Onto4JaCa

o
7

Multi-Agent System

~

N

Argumentation
schemes O? Onto4JaCa @@ Axiom
3 Artefact EJ Translatorj
A
Ontology N
y | i &E'bj
N .
<>
o0 OWL API Ontologies
D —
J ‘ - ’
Pellet

Figure 4.3: Onto4JaCa Architecture

proach using a CArtAgO artefact (named Onto4JaCa Artefact), which provides several in-
ternal operations to the agents. Among these internal operations, there are operations to
extract concepts, relationships, data properties, individuals and SWRL rules from ontologies,
as well as operations to add, delete or update this information in the ontology, and operations
to seek inferences and explanations in semantic reasoners. When the agent triggers any of
these internal operations in Onto4JaCa Artefact, we use the OWL APIE-] (a Java API for cre-
ating, manipulating and serialising OWL Ontologies) as a basis for querying ontologies in
conjunction with Openllet (an open-source OWL DL reasoner for Java based on Pellet) to
extract the information from the ontology, as well as the explanations and inferences made
by the semantic reasoner. OWL API returns this information in java object format. These
objects are then translated into beliefs or defeasible rules by our Axiom Translator class
and forwarded to Onto4JaCa Artefact, which makes them available to the agents.

When agents query semantic reasoners, they obtain the answer for the queries in the format
of traces of computational steps (including concepts, classes and inference rules) used by
the semantic reasoner to infer that particular query. Through the Onto4JaCa Artefact, we
provide agents with an operation called getExplanation that receives, as a parameter, the
string corresponding to the objectProperty (e.g. "is-unsuitable-for") that relates the
individuals, and the predicate corresponding to the query (e.g. is_unsuitable_for("101b",
"patient2")). Then, the artefact executes the query to the semantic reasoner and provides
the answer to agents in the following format:

explanationTerms(rules(RulesList),assertions(AList),classInfo(CInfolList))

To build this internal representation based on the data returned for OWL API and Openllet,

Uhttps://github.com/owlcs/owlapi

47

https://github.com/owlcs/owlapi

Table 4.1: Correspondence between Answers from Semantic Reasoners and an AOPL
Representation [FPET22].

Answer from the Semantic Reasoner Representation in AOPL

101b is-in 101 is_in("101b","101")

isDifferentFrom("Intensive-Care","Minimal-Care")
isDifferentFrom("Intensive-Care","Semi-Intensive-Care")
isDifferentFrom("Minimal-Care","Semi-Intensive-Care")

DifferentIndividuals: Intensive-Care,
Minimal-Care, Semi-Intensive-Care

101a is-in 101 is_in("101la","101")

Patient2 is-care Minimal-Care is_care("Patient2","Minimal-Care")

101b Type Hospital Bed hospital_Bed("101b")

Hospital Bed(?B1r), Bedroom(?Br), defeasible_rule(bedroom_is_care(Br,Clr),
is-in(?B1r,?Br), bed-is-care(?B1r,?Clr) -> [hospital_Bed(B1lr),bedroom(Br),is_in(B1lr,Br),
bedroom-is-care (?Br,?C1r) bed_is_care(Blr,Clr)])[as(<schemeName>)]

101a Type Hospital Bed hospital _Bed("101la")

Patient(?P2r), Hospital Bed(?B2r),
is-care(?P2r,?C2r), bed-is-care(?B2r,?C1r),
DifferentFrom(?C1r,?C2r) ->
is-unsuitable-for(?B2r,?P2r)

defeasible_rule(is_unsuitable_for(B2r,P2r)[patient(P2r),
hospital_Bed(B2r),is_care(P2r,C2r),bed_is_care(B2r,Clr),
differentFrom(Clr,C2r)])[as(<schemeName>)]

101 Type Bedroom bedroom("101")

Hospital Bed(?B2r), Bedroom(?Br), defeasible_rule(bed_is_care(B2r,Clr),
is-in(?B2r,?Br), bedroom-is-care(?Br,?C1r) -> [hospital_Bed(B2r),bedroom(Br),is_in(B2r,Br),
bed-is-care(?B2r,?C1r) bedroom_is_care(Br,Clr)])[as(<schemeName>)]
Patientl occupy-one 101a occupy_one("Patientl","101la")

Patientl is-care Semi-Intensive-Care is_care("Patientl","Semi-Intensive-Care")
Patient2 Type Patient patient("Patient2")

Patient(?P1r), is-care(?P1r,?Clr), defeasible_rule(bed_is_care(B1lr,Clr),

Hospital Bed(?B1r), occupy-one(?P1r,?BIr) -> | [patient(P1lr),is_care(P1lr,Clr),hospital_Bed(B1r),
bed-is-care(?BIr,?C1r) occupy_one(P1lr,Blr)]) [as(<schemeName>)]
Patientl Type Patient patient("Patientl")

the class Axiom Translator has the method translateAxioms that takes a set of objects of
type OWLAxiom as a parameter, and, according to the type of that, converts each axiom
to an AOPL representation. An example of this process is shown in Table 4.1} Also, our
approach translates the inference rules returned into an answer to the format of argumen-
tation schemes. This representation allows agents to build arguments from the reasoning
patterns extracted from the answers, being able to reason, understand and communicate
arguments instantiated from these argumentation schemes using the argumentation-based
framework showed in Section

We also created an internal action named unifyRule that receives as parameters the rule
list and the assertion list that we identified with the logical variables RulesList and AList,
respectively, in the explanationTerms internal representation introduced above. It allows
agents to unify terms in argumentation schemes based on the assertions received in the an-
swer provided by our interface. That is, the unification function is obtained from RulesList,
AList, and CInfoList. This process provides agents with the set of arguments extracted
from the answer, which we call here an argumentation-based explanation. With an in-

48

ternal representation of those reasoning patterns, agents can build and communicate ex-
planations represented in a computational representation for arguments. This is useful
when the system requires agents to explain to other software agents. In order to pro-
vide explanations to human users, agents use natural language templates for argumentation
schemes [PEB21] [FPET22] to translate those arguments to natural language arguments,
then use those arguments to build and provide natural language explanations to human
users.

Argumentation Scheme for Unsuitable Beds (AS4UB): “Patient P is of care C1 (premise).
Bed B is of care care C2 (premise). Care Cl is different of care C2 (premise). Bed B is
unsuitable for patient P (conclusion)”.

This argumentation scheme is extracted from the SWRL rule below, which is available in the
ontology used in a multi-agent application.

Patient(?P), Hospital_Bed(?B), is-care(?P,?Cl), bed-is-care(?B,?C2),
DifferentFrom(?Cl1l,?C2) -> is-unsuitable-for(?B,?P)

When the assistant agent queries the semantic reasoner, asking if a particular bed 101b
is unsuitable for the patient patient2 — is_unsuitable_for(101lb,patient2) - looking for
validating the operator allocation, the semantic reasoner will answer that query with the
trace of computational steps used to make the inference. From the answer provided by
the semantic reasoner, our approach automatically translates the inference rules contained
in that answer to argumentation schemes, according to the representation required by the
argumentation-based framework from [PMB21], i.e., using defeasible inference rules rep-
resented by the predicate defeasible_rule(Conclusion,Premises), in which Conclusion
represents the conclusion of the rule, and Premises the set of premises used in the body of
that particular rule. That means, after querying the ontology, the domain-specific rules used
to answer that particular query are processed and translated to argumentation schemes and
then stored into the agents’ belief base.

For example, the argumentation scheme presented in this section is internally represented
by agents as follows:

defeasible_rule(is_unsuitable_for(B,P), [patient(P), hospital_Bed(B),
is_care(P,Cl), bed_is_care(B,C2), differentFrom(C1,C2)])[as(as4ub)]

Thus, when agents need to communicate an explanation to another software agent, for ex-
ample, to explain why bed 101b is unsuitable for patient patient2, according to our running
scenario, they are going to build an explanation using the computational representation for
arguments introduced before.

49

explanation(is_unsuitable_for(101lb,patient2),
[defeasible_rule(bed_is_care(10la,semi-intensive-care),[...])[as(as4bcl)],
defeasible_rule(bedroom_is_care(101,semi-intensive-care),[...])[as(as4br)],
defeasible_rule(bed_is_care(101b,semi-intensive-care),[...])[as(as4bc2)],
defeasible_rule(is_unsuitable_for(101lb,patient2), [patient(patient2),
hospital_Bed(101b), is_care(patient2,minimal-care),
bed_is_care(101b,semi-intensive-care),
differentFrom(minimal-care,semi-intensive-care)])[as(as4ub)]])

To build the explanation presented aboveFZ], agents query their belief base for the predi-
cate they are interested in providing an explanation for, using argument(Q, Arg) with Q the
queried predicate, and Arg a free variable that will unify with the argument supporting Q. In
this query, the argumentation-based framework looks for argumentation schemes that infer
that particular queried information, using the information available to the agent to instan-
tiate argumentation schemes, building an argument that supports the queried information.
In our scenario, Arg unifies with the set of arguments (or chained/complex argument) pre-
sented above, supporting is_unsuitable_for(101lb,patient2).

Thus, for example, using the Jason plan presented in Listing [4] agents are able to explain a
query to another software agent Ag.

1 +!buildExplanation(Query,Aqg)
2 :- argument(Query,Arg)
3 <- .send(Ag,explain,explanation(Query,Arg)).

Listing 4: Jason plan to explain a query

In this plan, an agent reacts to the triggering event +!buildExplanation(Query,Ag), for
example, when an agent creates the goal !buildExplanation(ag,p), i.e., the agent has the
goal of building an explanation of p for an agent ag. As a precondition to executing that plan,
the agent must have an argument supporting that query, i.e., argument (Query,Arg), so that
the agent can proceed with the execution of the plan, sending the explanation to the target
agent Ag, i.e., .send(Ag,explain, explanation(Query,Arg)).

Furthermore, an argument containing the answer for that particular query also is provided
to the agent towards the interface developed. Consequently, agents become able to reason
by themselves using the reasoning patterns extracted from the ontology (the inference rules

12We omitted the premises of argumentation schemes we did not present here.
All argumentation schemes are available athttps://github.com/DeboraEngelmann/
explaining-ontological- reasoning/blob/main/base_rules.md

50

https://github.com/DeboraEngelmann/explaining-ontological-reasoning/blob/main/base_rules.md
https://github.com/DeboraEngelmann/explaining-ontological-reasoning/blob/main/base_rules.md

translated to argumentation schemes), obtained from previous queries, as well as, they can
interpret, understand and communicate those answers as explanations.

When it is necessary to communicate with human users, agents can build natural language
explanations, translating the computational representation of arguments to natural language
arguments using natural language templates for argumentation schemes, as described in
[FPET22].

4.4 RV4JaCa

Communications between agents play a key role in the functioning of a multi-agent system
since, in practice, agents rarely act alone; they usually inhabit an environment that contains
other agents. Therefore, an extra layer of security that allows us to verify key aspects of this
message exchange adds great value and great possibilities for improvement since certain
aspects do not need to be considered when developing each agent. Using this type of for-
mal verification at runtime allows us to standardise the interaction between agents through
previously defined protocols that all agents must follow and, if they do not, react in a way
that the execution is not negatively affected by the effects that were caused by this protocol
deviation.

On the other hand, the verification done with RV is not limited to protocol validation. More
specific properties of each application domain can also be verified once the monitor has
access to the content of the exchanged messages. Even the execution of certain routines
or functions can be executed according to the direction in which the agents’ conversations
go. For example, recording the results obtained during the agents’ reasoning in a database
without agents having the responsibility to carry out the registrations themselves. Or even
sending an automatic email to a supervisor if any property identified by an agent and com-
municated to another is outside certain parameters. Therefore, depending on the MAS’s
domain, there is a range of possibilities in which RV can be used.

Based on that, we proposed RV4JaCaEIEFP+22], a framework to integrate multi-agent sys-
tems and runtime verification. RV4JaCa allows performing runtime verification in multi-
agent systems developed using the JaCaMo platform. In Figure 4.4} we present an overview
of the approach. RV4JaCa is composed of the following: (i) a Sniffer class, developed in
Java language, responsible for observing all communication between agents in the MAS;
(ii) a CArtAgO Artefact named RV4JaCa Artefact responsible for analysing the messages
perceived by the Sniffer, transforming them into a JSON object and sending it by a REST
request to the RML Monitor. Note that RV4]JaCa is not in any way limited to a specific kind
of monitor; we used RML simply because it was the most suitable candidate for specifying
the protocols of our interest. Nonetheless, a different monitor could be as easily integrated

Bhttps://github.com/DeboraEngelmann/RV4JaCa

51

https://github.com/DeboraEngelmann/RV4JaCa

;% RV4JaCa Artefact

A\ 4

"msgld"; "

| JAVA
isReply": ",

RV4JaCa 4 "performative™; ™| RML Monitor
___ "sender":

L, : N "receiver": ",
‘ * Belief Y "content": ™"
.send(Sender,Receiver,Performative,Content) Addition }
JSON

Y

YitT

15t Agent n™ agent Monitor

JaCaMo platform

Figure 4.4: RV4]JaCa Architecture

instead of the RML one. In addition, when the RV4JaCa Artefact receives the response of
the request made to the RML Monitor saying that there was a violation, it can add a belief
in the Monitor agent belief base; (iii) the RML Monitor responsible for analysing the events
sent by Rv4JaCa Artefact and verifying the satisfaction or violation of a formal property of
interest; and (iv) a Monitor agent, which can be added to the system if it is necessary to
interfere with agents’ behaviour at runtime. In this case, if there is a violation, the RvV4JaCa
Artefact adds a belief to the Monitor’s belief base. When the agent perceives this addition,
it can react by sending a message to the interested agents warning about the violation. This
may trigger some consequent recovery mechanism, which usually is fully domain-dependent.
On the other hand, the Monitor agent can also perform different activities depending on the
system’s needs.

In Section [5.4] we present a case study developed considering the bed allocation scenario to
clarify how RV4JaCa works.

52

FINAL REMARKS

This chapter presented the overall architecture of the MAIDS framework we have developed.
It is a modular framework to support the development of explainable multi-agent systems
that can be used entirely, or it is also possible to use only the modules that fit the needs
of each system under development. After presenting the overall architecture, each module
is described in more detail, including some works that already use some of the modules
we have developed. We have some publications related to this part of the work ([Eng20,
EDK'21b| [EDK"21al [EDP* 22| [PEB21, [FPE" 22, EFP"22, OEK™22]).

53

Chapter 5

Case Study

As a case study, we chose to implement a system using the MAIDS framework to assist in
decision support in allocating hospital beds. We created some specific tools for this domain,
as described below. We also conducted two evaluations with the professionals responsible
for the allocation of beds at Hospital Sao Lucas da PUCRS in Brazil.

5.1 Bed Allocation Ontology

We use the inspiring approach [H]02]] to develop an ontology [ECG™19] containing 95 classes,
85 object properties, 78 individuals, and 32 SWRL Rules (Semantic Web Rule Language). Af-
ter the publication in [ECGT19], we improve some details in our ontology. Now it contains
95 classes, 89 object properties, 81 individuals, and 40 SWRL Rules. We created the original
version in Portuguese, aiming to use it in applications for Brazilian hospitals. We translated
the terms here for consistency with the study report. Next, we explain its components (about
the improved version) and present the rules we created based on the hospital bed manage-
ment context. This ontology is available in a repository at GitHubﬂ Both versions of our
ontology can be found in this repository: the published and improved versions.

'https://github.com/smart-pucrs/hospital-bed-allocation-ontology

54

https://github.com/smart-pucrs/hospital-bed-allocation-ontology

Table 5.1: Bed allocation ontology object properties

Domain Object Property Range Inverse of
Companion accompanies Patient is-accompanied-by
Attendance happens-in Temporal concept

Nurse allocates Hospital Bed is-allocated-by
Health Professional analyses Document is-analysed-by
Patient presents Symptom is-presented-by
Patient presents-one Disease

Employee attend Patient is-attended-by
Health Professional evaluates Patient is-evaluated-by
Patient consumes Medication is-consumed-by
Patient have-appointment Doctor

Patient needs-assistance-like Attendance

Doctor discharges Patient is-discharged-from
Patient vacates-one Hospital Bed is-vacated-by
Doctor diagnoses-one Patient is-diagnosed-by
Attendance is-associated-to Risk Classification

State is-assigned-to Patient

Hospitalisation is-made-in-one Hospital Bed

Patient is-medicated-by Nursing Technician

Patient is-moved by Health Professional

Patient is-observed-by Health Professional

Patient is-classified-as Risk Classification

Doctor is-responsible-by Patient

Hospital Bed is-in Bedroom

Hospital Bed is-suitable-for Patient

Hospital Bed is-unsuitable-for Patient

Furniture is-in-a Local

Bedroom is-in-one Hospitalisation Unit

Pharmacy make-dispensation-of Medication

Cleaner sanitises-one Local is-sanitised-by
Doctor indicates-one Treatment

Patient occupy-one Hospital Bed is-occupied-for
Hospital Bed bed-may-have Restriction

Patient may-have Restriction

Hospital Bed own-one Situation

Employee fill-one Document is-filled-by
Doctor prescribes Medication is-prescribed-by
Patient has-one-attendance Attendance

Hospital Bed has-a Bed

Symptom characterises-a °° Disease is-characterised-by

Our ontology is composed of 15 main classes, with 80 related sub-classes, containing 95
classes in total. Note that all the concepts described here refer to the scenario created by
the researchers, and they can have different meanings in different contexts.

Attendance: The term attendance refers to the whole period the patient attended any ac-
tivity in a hospital, either ambulatorial or hospitalisation. Ambulatorial is the assistance that
occurs via prior scheduling or by emergency need. It has Elective (when it is scheduled) and
Emergency sub-classes (when it occurs without scheduling because of an urgent need of the
patient). Hospitalisation occurs when the patient needs to stay in hospital for more than one
day, occupying a Hospital Bed.

Risk Classification: A risk category assigned to patients when they start being cared for is
widely used in the emergency sector to prioritise patients in the worst health conditions. We
describe it based on Manchester protocol, defined by Mackway-Jones, Marsden, and Windle
[MJMW13]]. Sub-classes range from immediate to non-urgent. A patient at risk of death is
classified as Immediate. Patients with immediate risk of limb loss or loss of organ function
are classified as Very urgent. Patients with conditions that can worsen if not helped soon
are Urgent. Patients with low risk of health damage are Standard, and those without any
immediate risk of health damage are Non urgent.

Temporal_concept: Concepts related to the timing of events. It includes the following
sub-classes: Now, Year, Date, Day, Today, Hour, Time interval, Month, and Week.

Document: It refers to the documents generated during or after a patient’s attendance. It
includes diagnosis, report, prescription, and medical records. (1) Diagnosis: made by a doc-
tor, it determines the disease’s nature and causes, based on the patient history, symptoms,
examination, etc. (2) Report: made by a specialist doctor, it usually contains the analysis
of exams, such as radiology, laboratory, etc. (3) Prescription: made by a doctor, it includes
drugs and treatments recommended to the patient. 4) Medical records: it includes all the
data related to the patient that can be accessed and stored by the hospital.

Disease: Biological alteration of a person’s health state, manifested by a set of symptoms.

Speciality: Represents the medical specialisation or expertise that the doctor possesses or
that the patient needs.

State: it represents patient conditions and has five sub-classes: Coma, In treatment, Stable,
Severe, and Vegetative.

Situation: it represents hospital bed conditions and has five sub-classes: Blocked, Clean,
Free, Occupied, and Dirty.

Local: places inside a hospital. Sub-classes are Corridor, Pharmacy, Hospital Bed, Bedroom,
Reception, Room and Hospitalisation Unit. The Hospitalisation Unit also has sub-classes
named: Speciality Unit, Nursery, Pediatrics, Intensive Care Unit, and Special Care Unit.

56

Medication: the drugs stored in the Pharmacy, which are meant to treat the patients.

Furniture: All the furniture that belongs to the hospital. For this study, we describe just
two sub-classes: Bed and Stretcher.

Person: People who belong to the hospital ecosystem. Sub-classes are Companion, Man,
Woman, Patient, and Employee. The employee has the following sub-classes: Administration,
Cleaner, Receptionist, Security Guard, and Health Professional. The last one comprehends
Nurse, Nursing Technician, and Doctor. Doctor also have sub-classes named: Generalist,
Resident, and Specialist. Specialist has the following sub-classes: Cardiologist, Dermatolo-
gist, Neurologist, Oncologist, Pediatrician, Pneumologist, Radiologist, and Traumatologist.

Restriction: rules to restrict bed allocation. (1) Routing: Origin of the patient, for example,
if he came from the emergency or is an elective patient. (2) Age: person’s age group, which
can be adult, teenager, or child. (3) Gender: male or female. (4) Isolation: Refers to the
cases where the patient cannot be in a room with other patients. (5) Puerperal: Women
who just gave birth. (6) Length Of Stay: Predicted time of patient stay in the hospital,
can be turn-fast or long-stay. (7) Hospital Care: Hospital care the patient needs, can be
surgical or clinical. (8) Type Of Care: The type of care the patient needs, can be minimal,
semi-intensive or intensive.

Symptom: Signs to which the patient refers when talking about his illness (pain, fever, etc.).

Treatment: Set of instructions of procedures that the doctor recommends for the patient
undergo.

We also created 89 relationships between the classes, and we present them in Table
We have not included all possible relationships between classes, only those we consider
interesting for this domain, so we could see clearly how the classes relate to each other, to
help us test the rules presented in Table

We instantiated 81 individuals, so we could use the reasoner to test our rules. Individuals
we created include Patient, Room, Hospital Bed, Symptoms, and so on. To create them, we
used names such as Patient1, 100, 100A, Headache, and so forth.

Our ontology aims to help in decision making about the beds where patients can be allocated
according to the bed allocation constraints. Thus, we establish rules that propagate infor-
mation about registered individuals’ restrictions, and we can use these rules for ontological
reasoning with Pellet reasoner. We are aware that many rules can be created to help in
decision making related to bed allocation in hospitals. We present the ones we created for
our ontology in Table

57

Table 5.2: Rules of the bed allocation ontology

Rules
1. {Patient(?X), Man(?X) — is — of — the — gender(?X, Male)}
2. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z), bed — is — isolation(?Y, ?I) — bedroom — is — isolation(?Z,71)}
3. {Patient(?X), has — one — attendance(?X,?A) — is — routing(?X,?A)}
4 {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — the — attendance(?Z,7A)
’ — bed — is — the — attendance(?Y,7A)}

5. {Patient(?X),is — routing(?X, 7E), Hospital_Bed(?Y), occupy — one(?X,?Y) — bed — is — routing(?Y,7E)}
6. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z), bed — is — stay(?Y,?P) — bedroom — is — stay(?Z,?P)}
7. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z), bed — is — puerperal(?Y,?Q) — bedroom — is — puerperal(?Z,7Q)}
8. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — speciality(?Z,?S) — bed — is — speciality(?Y,?5)}
9. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z), bed — is — speciality(?Y,?S) — bedroom — is — speciality(?Z,?5)}
10. {Patient(?X), Woman(?X) — is — of — the — gender(?X, Female)}
11. {Patient(?X),is — care(?X,?C), Hospital_Bed(?Y'), occupy — one(?X,?Y) — bed — is — care(?Y,7C)}
12. {Patient(?X),is — puerperal(?X,?Q), Hospital_Bed(?Y'), occupy — one(?X,?Y) — bed — is — puerperal(?Y,?Q)}
13. {Patient(?X),is — the — attendance(?X,?A), Hospital_Bed(?Y"), occupy — one(?X,?Y) — bed — is — the — attendance(?Y,7A)}
14. {Patient(?X),is — stay(?X,?P), Hospital_Bed(?Y), occupy — one(?X,?Y) — bed — is — stay(?Y,?P)}
15. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z), bed — is — routing(?Y, ?E) — bedroom — is — routing(?Z,?7E)}
16 {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z),bed — is — of — the — age — group(?Y,?G)

© L bedroom —is — of — the — age — group(?Z,?G)}
17. {Patient(?X),is — classified — as(?X,Urgent) — needs — assistance — like(? X, Hospitalisation)}
18 {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z), bedroom — is — of — the — age — group(?Z,?G)

© bed —is— of — the — age — group(?Y,?G)}
19. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — of — the — gender(?Z,7H) — bed — is — of — the — gender(?Y,7H)}
20. {Patient(?X),is — isolation(?X,?I), Hospital_Bed(?Y), occupy — one(?X,?Y) — bed — is — isolation(?Y,?I)}
21. {Patient(?X),is — speciality(?X,?S), Hospital_Bed(?Y), occupy — one(?X,?Y) — bed — is — speciality(?Y,?5)}
22. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — routing(?Z,?E) — bed — is — routing(?Y,?E)}
23. {Patient(?X),is — of — the — gender(?X,?H), Hospital_Bed(?Y"), occupy — one(?X,?Y) — bed — is — of — the — gender(?Y,?H)}
24. {Patient(?X),is — of — the — age — group(?X,?G), Hospital_Bed(?Y), occupy — one(?X,?Y) — bed — is — of — the — age — group(?Y,?G)}
25. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z), bed — is — the — attendance(?Y, 7A) — bedroom — is — the — attendance(?Z,?7A)}
26. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — care(?Z,?C) — bed — is — care(?Y,?C)}
27. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — isolation(?Z,?I) — bed — is — isolation(?Y,?1)}
28. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — puerperal(?Z,?Q) — bed — is — puerperal(?Y,?Q)}
29. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y,?Z),bed — is — of — the — gender(?Y,?H) — bedroom — is — of — the — gender(?Z,7H)}
30. {Hospital_Bed(?Y), Bedroom(?Z),is — in(?Y, ?Z), bedroom — is — stay(?Z,?P) — bed — is — stay(?Y,?P)}
31. {Hospital_Bed(?Y'), Bedroom(?Z),is — in(?Y,?Z),bed — is — care(?Y,?C) — bedroom — is — care(?Z,?C)}
32. {Patient(?X),is — years — old(?X,?Y),lessThan(?Y,12) — is — of — the — age — group(?X, Child)}
33 {Patient(?X), Hospital_Bed(?Y),is — of — the — gender(?X,?Gp), bed — is — of — the — gender(?Y,?Gb),

’ Dif ferentFrom(?Gp, ?Gb) — is — unsuitable — for(?Y,?X)}
34. {Patient(?X),is — discharged — from(?X,?Y’), occupy — one(?X,?Z) — vacates — one(?X,?Z),is — vacated — by(?Z,7X)}
35 {Patient(?X), Hospital_Bed(?Y),is — speciality(?X,?Sp), bed — is — speciality(?Y, 75b),

’ Dif ferentFrom(?Sp,?5b) — is — unsuitable — for(?Y,?X)}
36. {Patient(?X),is — years — old(? X, ?A), greaterThan(?A,17) — is — of — the — age — group(?X, Adult)}
37 {Patient(?X), Hospital_Bed(?Y),is — of — the — age — group(?X, 7Ap), bed — is — of — the — age — group(?Y,?Ab),

" DifferentFrom(?Ap,?Ab) — is — unsuitable — for(?Y,?X)}

{Patient(?X), Hospital_Bed(?Y),is — of — the — gender(?X,?G),bed — is — of — the — gender(?Y,?G),
38. is—of — the — age — group(?X,7A), bed — is — of — the — age — group(?Y,?A), is — speciality(?X, ?5), bed — is — speciality(?Y,?S),
is — care(?X,?7C), bed — is — care(?Y,?C) — is — suitable — for(?Y,7X)}

39. {Patient(?X),is — years — old(?X,?A), greaterThan(?A, 11), lcgﬁhan(?fl, 18) — is — of — the — age — group(?X, Teenager)}
40 {Patient(?X), Hospital_Bed(?Y),is — care(?X, ?Cp), bed — is — care(?Y,?Cl), Dif ferentFrom(?Cp, 7Cl)

— is — unsuitable — for(?Y,?X)}

5.2 Bed Allocation Optimisation

In our previous work [Engl19]], one of the improvements suggested by the professionals re-
sponsible for bed allocation who evaluated our application was that our agent could help
optimise bed allocation, suggesting beds for patients to be allocated. In order to meet this
request, we created an optimiser for bed allocatiorﬂ For this purpose, we chose to use the
simplex method since it is a popular method of solving linear programming systems.

The bed allocation optimisation program takes the database’s restrictions and converts them
into three types of linear restrictions, equality, relative equality, and negation.

(2%Q112[p])+(abs(gender[p]-2)/2) <= 2;

The equality constraint requires that every patient allocated to the bedroom has a specific
characteristic. In this case, we want the patient to have gender 2. Q112[p] is a Boolean
value equal to 1 if patient p is in the bedroom; gender|[p] is an integer value referring to the
patient’s gender. The left side of the sum results in 2 if the patient has been allocated to that
bedroom; otherwise, it results in 0. The right side results in 0 if the patient’s gender is 2;
otherwise, it results in some number greater than zero. The result of the sum must be less
than or equal to two, being the only case in which this does not happen when the patient is
allocated to the bedroom, but the gender is not two.

(Q112[p1]1+Q112[p2])+(abs(gender[pl] -gender[p2]1)/2) <= 2;

Relative equality requires that if two patients are allocated to the same bedroom, they must
have the same characteristic; in this case, the same gender. The sum'’s left side has a max-
imum value of 2 when the two patients are in room 112. The right side results in a value
greater than zero when the two patients’ genders differ. The restriction is not obeyed only
when the two patients are in the same bedroom, but the genders are different.

(Q112[p]) - abs(gender[pl-2) <= 0;

Negation requires that every patient allocated to the bedroom does not have a specific char-
acteristic. If the patient is in the bedroom, but the gender is 2, this will result in 1-0 = 1,
which does not comply with the restriction. If the patient is not allocated to the room or the
gender is not 2, the result is less than or equal to zero, following the bed’s rules.

2This application was developed jointly with the student of scientific initiation Lucca Dornelles
Cezar in the project "Selecao e integragdo de técnicas de Teoria da Argumentagdo para o contexto
hospitalar", Edital FAPERGS 03/2020 - PROBIC/PROBITI.

59

For this developmenﬂ we are using GLPSo]E] (Gnu Linear Programming Solver). It is a free,
open-source program for solving linear programming problems. One of the implemented
algorithms is the simplex method. GLPSol allows the user to set certain limits, such as a
time limit. When the limit is reached, the process returns the best result found. This allows
the program to generate some possibly useful allocation suggestions without arriving at the
optimal result, which can be an extremely time-consuming process in some instances.

We have integrated the optimiser with our multi-agent system. Figure presents a result
of an allocation made using the optimise

5.3 Plan Validator

When real-world problems can be modelled in a planning language, it is possible to use a plan
validator to tell the human operator whether the plan is feasible or not [HLF04]]. Behnke et
al. [BHB17]] define plan verification as “the task of determining whether a plan is a solution
to a given planning problem”. A plan validator can be used in a wide range of applications.
The application that interests us is the validation of bed allocation plans prepared by the
user.

In our previous work [Engl9], we use a plan validation tool for PDDL (Planning Domain
Definition Language) called VAL [HLFO04] to check if any bed allocation rule has been broken
in the user allocation. However, in this work, to achieve better performance, we developed
a new plan validator using]avalﬂ Like VAL, our plan validator also receives three PDDL files
as input: a file containing the domain, a file containing the problem and a file containing the
plan to be validated.

The domain file establishes some basic rules, such as the types of objects and possible ac-
tions. The actions are generally divided into three parts, the parameters, the preconditions,
and the effects. In this case, the action of allocating a patient to a bed requires that the
patient is not allocated to another bed and that the bed is empty. The effects generated
by applying this action are that the patient is now allocated, the room is occupied, and the
patient is allocated in that room. Problem files use domain rules to complete a problem,
making all objects (e.g. patients and beds) and objectives explicit (e.g., all patients must be
allocated).

For validators, a plan file is also necessary, which is simply a set of actions to be applied

3https://github.com/smart-pucrs/explainable_agents/tree/glpsol

4http://winglpk.sourceforge.net/

SAll patient data in our tests are fictitious

6This application was developed jointly with the student of scientific initiation Lucca Dornelles
Cezar in the project “Selecdo e integracao de técnicas de Teoria da Argumentacdo para o contexto
hospitalar”, Edital FAPERGS 03/2020 - PROBIC/PROBITI.

60

https://github.com/smart-pucrs/explainable_agents/tree/glpsol

| £| MAS Console - explainable_agents

common Agente comunicado: {responseld™ "ed883253-479d-4e84-90d3-a85bbedfd29d-7fe75e93" "queryResult™{"que
Errors Definindo propriedade observavel
NetworkListener EST))
HitpServer _laloc_agem] Recebido request Aloc do Dialog
jasonResponse Alocacao em progresso
Cartago oroc
ComputeEngineCredentials |ioptimal result
OntologyArtifact print
aloc_agent 100
Leito 1004 : Jodo da Silva
Leito 100c : Paulo dos Santos
Leito 100b : Fulano de Tal Junior
112
Leito 112a: Joana Maria de Paula
Leito 112d : Helena dos Santos
Leito 112c: —
Leito 112b: —
113
Leito 113b : Marcelo Amaral
Leito 113a: —
114
Leito 114a : Antonio de Melo
Leito 114b : —
115
Leito 1150 : Janaina Borges de Medeiros
Leito 115¢: —
Leito 115a: —
116
Leito 116b : Juliana Maria da Silva
Leito 116c: —
Leito 116a: —
117
Leito 117e : Maria Carolina Albuguerque
Leito 117a: —
Leito 117¢c: —
Leito 117b: —
Leito 117d: —
111 (Exc)
Leito 111b : Maria da Silva
Leito 111c: Jodo Sousa da Silva
Leito 111a: —
< I |
| /7 Clean ‘ | ! stop | ‘ I Pause | ‘ &% Debug | ‘ 4] New agent | ‘ ¥ Kill agent

Figure 5.1: Optimiser output

sequentially, which lead to the objective of the problem. Given these files, the validation
process is straightforward, check if each action is applicable and then apply its effects. An
action is only applicable if the types of parameters are correct (e.g., patientl bed3) and if the
preconditions have been met. If any action is not applicable, the plan is considered flawed.
If all actions are applicable, but the problem’s objective is not satisfied, then the plan is also
considered to be flawed. The plan only satisfies the problem if all actions are applicable

61

and the objective is satisfied after applying the last action. A characteristic of the hospital
domain is that the actions are not ordered. It is possible to generate several changes in the
order of execution of the actions since they are actions independent of each other, which, in
general, would not be possible in other domains.

In our plan validator, the user can print the plan and the validation result in the termi-
nal through the planTest function as shown in Figure [5.2] The user still has the possibil-
ity, through the valOut("filename") function, to obtain a LaTeX file that generates a PDF
with the validation report according to Appendix [Al These results presented in Figure
and Appendix [A] are based on domain, problem and plan files adapted from our previous
work [[Eng19].

As the program was designed thinking about a specific type of problem, we have considered
certain restrictions to facilitate the implementation of this version. In this version, we have
some limitations that do not negatively affect the results of the tasks for which we are using
the validator but that need to be resolved to make our validator available to the research
community to use it. Although the PDDL language is modular, specific options are practically
universally accepted. However, not all have been implemented in our validator. In total, the
program supports three types of requirements:

» “STRIPS”, which is necessary to use the program;

* “typing”, which allows the use of types and sub-types, but sub-types have not been
implemented; and

* “equality”, which allows the use of equality comparisons.

Another actual limitation is that the planner was made to be used in automatically generated
problems. The plan validator considers that the PDDL files are semantically and syntactically
correct. Because of that, we have not implemented any pre-processing to look for errors.
The current version of our plan validator is available on GitHulﬂ

"https://github.com/smart-pucrs/PDDL-plan-validator

62

irhamento

Figure 5.2: Validation report

63

5.4 Runtime Verification in Bed Allocation

We developed a case study considering the bed allocation scenario to clarify how the RvV4JaCa
works. This case study includes the following agents:

assistant: the internal representation in MAS for a chatbot that assists hospital staff in
carrying out bed allocation in a hospital;

operator: the internal representation in MAS for the hospital staff member who operates
the system for allocating beds;

database: an agent responsible for querying and updating the bed allocation system database.

validator: an agent responsible for validating bed allocation plans using a PDDL plan val-
idator.

optimiser: an agent responsible for making suggestions for optimised allocations using the
GLPSol solver of GLPK.

monitor: an agent responsible for warning the agents involved in the exchange of messages
when there has been a violation in a property.

In this case study, RV4JaCa is responsible for collecting information about all messages
exchanged between agents and sending them through a REST request to the RML monitor.
After processing the received message, the monitor returns a result that identifies whether
the message sent from one agent to the other violates any of the properties being checked
by it. If a property is violated, RV4JaCa adds this information to the Monitor agent’s belief
base, which in turn warns the agents involved in the exchange of messages that there has
been a violation. This makes it possible for our agents to take action to recover from the
failure that the breach caused.

The ability to monitor the messages exchanged between the agents in this case study is used
for two different purposes. The first one is, according to the performative and content of each
move, to verify whether the agents are following the predefined communication protocol.
This aspect may be crucial for safety-critical and privacy-preserving aspects. For instance,
in a healthcare domain, such as the bed allocation one, the agents might be expected to
follow specific medical guidelines for communicating personal information (even amongst
themselves). Moreover, when in the presence of multiple agents, each with its own goals, it
is common to specify the ideal expected outcome at a more abstract level, where it is more
natural to reason upon.

The second one is to check if the human changed the topic of the conversation without
the proper conclusion of the previous topic. When we add humans to the agent-to-agent

64

communication loop, the developer has limited control over the human interactions in the
dialogue. For example, in some cases, when the MAS is performing some specific task, it is
important to be able to finish it before starting a new one. But when completing this task
depends on some human interaction, we have no guarantee that the human will complete
the necessary exchange. Naturally, it would be possible to do this check within each agent.
However, when we have agents specialised in specific tasks, it is preferable to assume the
messages handled by the agents are all related to the current topic; so to focus on the actual
agents’ implementation.

In the following, we report two example properties, written in RML, that have been checked
for the bed allocation case study using RV4JaCa.

5.4.1 First RML Property for the Bed Allocation Domain

The first property, which is presented in Listing concerns checking the user does not
change the topic before completing the one currently processed by the agents. In particular,
the reported property cares about the 'getvalidationResult' topic. Such topic relates to the
user asking the assistant agent to validate a suggested bed allocation (the corresponding
event type is expressed in lines 1-5). When the assistant receives this message, the protocol
goes on, causing a sequence of messages exchanged amongst the assistant, the optimiser
and the validator agents. Note that this part is not reported because it is not of interest for
checking the property. After this step, the assistant agent sends back an answer to the user
(the event type is in lines 6-11). Suppose this answer is not empty (i.e., the event contains
argl, and arg2 fields). In that case, the user is expected to conclude the communication with a
certain content (listed in lines 12-17). For instance, the user could reply with an additional
message containing ‘'allocvalpatients', meaning that the user wants to allocate all patients
according to the plan, even if there are failures because the reported failures correspond to
rules he is aware of breaking. Naturally, the user might decide not to complete any of the
plan allocations that have been validated, as some have flaws. In that scenario, the message
would have content 'dontAllocvalPatients'. Another possibility is the message has the content
'allocvalidvalPatients', meaning that the user wants to allocate only those patients where the
allocation does not break any rules. And the last one is when the user asks for an optimised
bed allocation suggestion. In this case, the message would be content 'getoptimisedAllocation'.

Once the events corresponding to previously mentioned messages have been specified (lines
1-26), the actual property can be expressed following the RML syntax (lines 27-30). In more
detail, in line 27, we may find the definition of the main term denoting the property to check
(which in RML is always called main). In this scenario, the principal term corresponds to
a sequence of subterms, named question. Such term is defined in line 28 and starts with a
question (as defined in lines 1-5). This means that to comply with the protocol, the first
event has to be a message containing a 'question' of the 'operator' for the 'assistant' (in this

65

case regarding the validation of a bed allocation). After that, the property goes on with the
Answer term (line 29). Inside it, we find a disjunction between two possible alternatives in the
protocol. On the left, we may observe a answer_with_constraint event, which means, according
to lines 6-11, that the 'assistant’ replied to the 'operator’ with a suggested result that the
latter has to decide upon. On the right, we may observe an event corresponding to any other
answer, which in this specific case denotes the case where the result is empty, meaning that
no result is available to be suggested to 'operator'. In the latter case (the right branch), the
property ends this cycle, since the communication between the two agents is concluded,
and new messages concerning new topics can be exchanged in the future. Instead, in the
former case (the left branch), the current cycle is not ended, because the ‘'assistant' is still
waiting for an answer from the 'operator' regarding the suggested result. This last aspect is
handled in the term in line 30, where not any question is admissible from the 'operator', but
only one amongst the ones listed in lines 12-17. Upon the reception of the event matching
one such listed event type, the property cycle ends, and as it happened for the right branch,
the protocol can move on.

Now, before presenting another property of interest that we have analysed through RV4JaCa,
it is important to detail how a property can be violated. As we mentioned before, we pre-
sented the events that are accepted in certain points of the property and why. An RML
property is violated whenever, given the current term denoting the current state of the prop-
erty, and a new event, the property does not accept the such event. For instance, in the
property presented in Listing an event which is different from an answer, after having
observed a question, is not acceptable. This can be seen in line 29, where after consuming
an event denoting a question, the only possible following events can be an answer requiring
additional info (left branch), or a general answer (right branch). Thus, if the observed event
is neither of the two, the term is stuck and cannot move on. In RML, this translates into a
violation of the property, which is then reported back to the monitor agent, that in turn, will
trigger all mechanisms for the agents involved to react properly.

5.4.2 Second RML Property for the Bed Allocation Domain

The second RML property we tested in the bed allocation domain is reported in Listing
Differently from the property reported in Listing here, we do not check the consistency
amongst topics. Instead, we care about checking that an agent always replies to a question,
before posing a new one. As before, the first part of Listing [5.2] concerns the definition of
which events are of interest for the property (lines 1-10). In this specific case, we have
questions (lines 1-5), and answers (lines 6-10). Note that, differently from the previous
RML property, here we exploit parameters inside the specification. Indeed, the event types
reported in lines 1-10 are all parametric w.r.t. the agents involved in the communication.
This means that such event types do not focus on specific messages exchanged between
predefined agents, as it was before, but are free (through RML parameters, we have late

66

OO U B WN -

15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

question matches {
performative: 'question’,
sender: 'operator', receiver:'assistant',
content:{name: 'getValidationResult'}

};
answer_with_constraint matches
{
performative: 'assert’,
sender: 'assistant', receiver:'operator’,
content:{name: 'answer', name:'result', argl:_, arg2:_}
+

constrained_question matches
{performative: 'question', sender:'operator', receiver:'assistant', content:{name:'allocValPatients'}}
|
{performative: 'question', sender:'operator', receiver:'assistant',
content:{name: 'getOptimisedAllocation'}} |
{performative: 'question', sender:'operator', receiver:'assistant',
content:{name: 'dontAllocValPatients'}} |
{performative: 'question', sender:'operator', receiver:'assistant',
content:{name: 'allocValidValPatients'}};
a_question matches

{

performative: 'question’,

sender: 'operator', receiver:'assistant'
};
an_answer matches
{

performative: 'assert’,

sender: 'assistant', receiver:'operator'
+

Main = Questionx;

Question = (question Answer);

Answer = (answer_with_constraint ConstrainedQuestion) \/ (an_answer);
ConstrainedQuestion = constrained_question Answer;

Listing 5.1: The RML specification for checking that no change of topic is observed
after the user has requested a validation result.

binding on the agents involved in the interaction). This makes the definition of the RML
property in line 11 highly parametric, without updating the property for each new agent
added to the system. The property is defined in line 11, through the standard main term
in RML. Since the property is parametric, it starts with the tet operator, which defines the
variables used in the term. In this case, the variables used are ag1, and ag2 (naturally, any
other name would have sufficed). After that, the property goes on, expecting a question,
followed by a corresponding answer. Here, note that in the first event (i.e., the question),
the variables are bound to the agents involved in the communication, while in the second
event (i.e., the answer), such variables are ground to the previously initialised values. In this
way, a question is free to be sent by any possible agent ag1, to any possible agent ag2 in the
system (where ag1 and ag2 are bound to the observed agents involved in the communication);
instead, an answer is constrained to be sent by agent ag2 to agent ag1 (with both variables
already bound to the respective values through the previously observed question).

67

=

R O WOWWOTO U WNR

question(agl, ag2) matches
{
performative: 'question’,
sender:agl, receiver:ag2
};
answer(agl, ag2) matches
{
performative: 'assert’,
sender:agl, receiver:ag2
};
Main = {let agl, ag2; question(agl, ag2) answer(ag2, agl)}*;

Listing 5.2: The RML specification for checking that an agent always replies before
starting messaging about something else.

As before, also with this property, we can ponder on which events can cause a violation. In
particular, the property expressed in Listing is violated when after a question between
two agents (agi—ag2), the following event is not the corresponding answer (ag2—rag1), but
another message (for instance another question).

5.5 Evaluation

Hospital Sdo Lucas da PUCRS in Brazil has kindly agreed to support us in evaluating our
system. We divided the evaluation of our system into two parts. The first one focused on
system functionality. The aim was to verify if the functionalities that the decision support
system developed using the MAIDS framework were adequate to the needs of the profes-
sionals responsible for allocating beds in the hospital. The second one was intended to
verify the expressiveness of our framework when using real data in a real-world domain. In
both evaluations, this case study included the following agents:

assistant (a): the internal representation in MAS for a chatbot that assists hospital staff in
carrying out bed allocation in a hospital;

ontology (1): an agent with access to ontologies responsible for semantic reasoning using
argumentation schemes as defeasible rules generated automatically from the semantic
rules contained in the ontology.

operator (0): the internal representation in MAS for the hospital staff member who oper-
ates the system for allocating beds;

nurse (n): the internal representation in MAS for a nurse who in that hospital serves as
domain expert for bed allocation and whom the operator needs to consult in case of
doubt;

68

database (d): an agent with access to the hospital’s general information system for check-
ing details of past and current patients, bed allocations, etc.

validator (v): an agent responsible for validating bed allocation plans using the PDDL plan
validator presented in Section[5.3

optimiser (p): an agent responsible for making suggestions for optimised allocations using
the optimiser presented in Section [5.2

Furthermore, in both evaluations, were used the modules Dial4JaCa (4.2) for communication
between the multi-agent system and Dialogflow; Onto4JaCa (4.3) to access ontology informa-
tion and rules; and RV4JaCa to observe all conversations between agents and generate
logs of these conversations so that we can later test using the RV4JaCa module in its entirety.
Below, both evaluations performed with hospital staff are described in more detail.

5.5.1 Evaluation of System Functionalities for Hospital Bed Al-
location

In this evaluation, we seek to assess whether changes will be necessary to adapt the dialogue
system instance created from the MAIDS framework to be used with real data from that hos-
pital and whether the functionalities already developed were in accordance with their needs.
We fed the web interface with fictitious data about beds and patients. Based on the data in
the system, we asked that professionals use the simulator to check out the fictitious hospital
situation and ask the chatbot to validate the bed allocation they created, give suggestions,
evaluate the availability of a bed related to a specific patient, and explain the statements put
forward. Afterwards, we asked the professionals to evaluate the chatbot’s answers. Also,
we performed an online questionnaire to collect the opinion of these professionals about the
use of the system. All professionals signed a consent form for participation.

5.5.1.1 Evaluation Procedure

We created fictitious data based on our previous research that contained patients with their
characteristics, beds with their status, bed requests, and exceptions. During testing, we
used 40 beds, 35 inpatients, and 6 bed requests. Of the 40 beds, there were vacant and
occupied statuses. We create an ontology with the following settings: Classes (95), Object
Properties (51), Data Properties (3), Individuals (8), Datatypes (2), and SWRL Rules (5).

Two hospital staff responded to our questionnaire. The first one has been a bed management
administrator for nine years. Moreover, the second one has been the medical coordinator in

69

this hospital for one year and is one of the doctors who assisted in the construction of a man-
ual for the implantation and implementation of the internal regulation committee (including
bed-allocation rules) for general and specialised hospitals [dS17]] used by many hospitals in
the country. Table [5.3| presents the specialists’ demography.

Table 5.3: Specialists demography

Id | Gender Job occupation How long in this job?
S1 M Bed management administrator 9 year
S2 M Medical coordinator 1 year

The evaluation was performed online and asynchronously with the two specialists. We sent
them a video showing the system’s functionalities and explaining the intention of this eval-
uation. They could access the system online and perform the tests by themselves. After the
test, the experts answered an online questionnaire. We created a questionnaire with eight
closed questions following the 5-point Likert scale to evaluate the functionalities (Table
and an open question to suggestions. Also, we generate a system log with all requests made
as presented in Appendix[B]

Table 5.4: Questions to evaluate the functionalities

Id Question
01 Are the bed allocation rules considered in the development of the software consistent with those

practised in the hospital?
Q2 | Are the answers given by the chatbot easily understandable?
Q3 | Are the chatbot’s allocation suggestions adequate according to the patients’ needs?
04 Do the suggestions for optimised allocations contemplate the allocation rules, and are they
considered adequate to be used?
Is the chatbot able to validate a bed allocation and still explain which allocation rules are being
broken when the allocation is not valid?
When asked if a bed is suitable for a patient, is the chatbot able to respond and still explain in
an easily understandable way how it reached that?
Is the option to request an optimised allocation by moving a maximum number of patients from
the beds where they are currently allocated useful daily?
Is the option of registering exceptions so that the system considers them when making
suggestions useful daily?

Q5

Q6

Q7

Q8

5.5.1.2 Results

As we can see in Figure the questionnaire results indicated that some rules would need
to be added or changed. The evaluators asked us to add rules related to patients with
infection, information about health insurance plans or health plans, and information sent

70

Strongly disagree Disagree Neutral Agree W Strongly agree

Q1 - Are the bed allocation rules considered in the development of the software
consistent with those practised in the hospital?

Q2 - Are the answers given by the chatbot easily understandable?

Q3 - Are the chatbot's allocation suggestions adequate according to the patients'
needs?

Q4 - Do the suggestions for optimised allocations contemplate the allocation rules, and
are they considered adequate to be used?

Questions

Q5 - Is the chatbot able to validate a bed allocation and still explain which allocation
rules are being broken when the allocation is not valid?

Q6 - When asked if a bed is suitable for a patient, is the chatbot able to respond and
still explain in an easily understandable way how it reached that?

Q7 - Is the option to request an optimised allocation by moving a maximum number of
patients from the beds where they are currently allocated useful daily?

Q8 - Is the option of registering exceptions so that the system considers them when
making suggestions useful daily?

Ll

Q
=

25% 50% 75% 100%

Figure 5.3: Evaluation result

by the bed requesting unit. Due to inconsistencies between the rules used by the agents
and those used in the hospital, the interaction with the chatbot was also compromised since
the explanations it gave sometimes did not match the reasons used in real life. Because
of that, one evaluator strongly disagrees that the answers given by the chatbot are easily
understandable. On the other hand, both professionals agree that the chatbot is able to
validate the bed allocation and explain which allocation rules are being broken when that is
the case. In addition, one of the professionals agrees that when asked if a bed is suitable
for a patient, the chatbot can answer and also explain how it reached that conclusion in an
easily understandable way, while the other one disagrees.

As a consequence of this evaluation, the local (university) hospital managers have asked us
to help deploy our multi-agent system to be used in their daily bed management activities as
soon as we can interface it with the information systems currently used in the hospital.

5.5.2 Evaluation of Expressiveness of the Framework

Some desiderata for task-oriented dialogue systems have been recently formulated [Coh19].
We summarise that desiderata below and give in parenthesis the lines of an example dialogue

71

using our framework where each of the features of the desiderata is demonstrated. The
example also illustrates the ontological subdialogues supported by our framework.

1. The system should allow the explicit representation of the user’s desires that are im-
plicit in requests such as in (1).

2. The system should be able to represent the meaning of users’ utterances in logical
forms, including constraints having two superlative expressions, one embedded within
the other as exemplified in (8 and 27).

3. In the case of multiparty dialogues, it should keep track of the mental attitudes of all
the involved participants as in (9 and 19).

4. It is important to reason about plans and intentions, as it allows the system to be
helpful by reasoning about what the user is trying to do, as in (18-25).

5. It should reason about the meaning of mental attitudes as in (1 and 22).

6. It should also represent other agents’ beliefs without having precise information about
what those beliefs are (9).

The idea behind such desiderata is to have a system that is fully explainable because every-
thing it says has an explicitly represented plan being referred to by the system.

We now reproduce an example dialogue involving both humans and agents, including a ver-
sion of the dialogue system that supports natural language interaction through the use of
Dialogflow and has been developed and evaluated with the support of medical staff from
Hospital Sdo Lucas da PUCRS in Brazil.

These excerpts exemplify the type of dialogues that can take place in systems developed
with the approach put forward in this thesis. They demonstrate the ontological discussions
(in lines 17-17p) and the desired features discussed above.

The dialogue starts with the operator trying to allocate a bed to a particular patient and pro-
ceeds as follows. We show each (numbered) dialogue game move, but before it we provide
an English equivalent for readability. We enclose in curly brackets the changing beliefs of
some of the agents which underlie the dialogue move. Note that our approach only allows
for atomic formulee in argument conclusions, but it allows for constraints on a particular
conclusion to be specified using Jason annotations, so if a dialogue move contains a formula
p(X)[q(X)], it means that in Jason we will find an instantiation for X such that p(X) & qg(X)
holds.

operator to assistant: check if any female surgical bed is free;
1. question(o,a,free(B)[female(B), surgical(B)])

72

{assistant: des(o,allocate(P,B)[female(B),surgical(B)]), bel(d,free(B))}
(desiderata (1] and [5))

assistant to database: check if any female surgical bed is free;

2. question(a,d,free(B)[female(B),surgical(B)])

database to assistant: bed 203b is free and satisfies those constraints;

3. assert(d,a,free(203b)[female(203b),surgical(203b)])

assistant to operator: bed 203b has the characteristics you requested;

4. assert(a,o0,answer(free(203b)[female(203b),surgical(203b)])
operator to nurse: I'm allocating Patient8 to 203b;

5. assert(o,n,allocate(patient8,203b))

{assistant: des(o,allocate(patient8,B)[female(B),surgical(B)])}

nurse to operator: we cannot allocate patient8 to 203b;

6. assert(n,o,~allocate(patient8,203b))

operator to nurse: why?

7. challenge(o,n,~allocate(patient8,203b))

nurse to all: this bed is in a room that has many beds, for Patient8 we need the smallest
room with the fewest occupied beds;

8. justify(n,x*,[defeasible_rule(~allocate(patient8,203b),[large(203),
in_room(203b,203) 1) [as(nurse_statement)],
defeasible_rule(allocate(patient8,B),[in_room(B,R),smallest(R)
[fewest_occupants(R)]]) [as(nurse_restriction)]])(desiderata (2)
{assistant: des(n,allocate(patient8,B)[female(B),surgical(B),in_room(B,R),
smallest(R) [fewest_occupants(R)]]),
defeasible_rule(allocate(patient8,B),[in_room(B,R),smallest(R)
[fewest_occupants(R)]])[as(nurse_restriction)]

operator to assistant: how about allocating Patient8 to the bed that was freed yesterday
by Patient6;

9. assert(o,a,allocate(patient8,B)[allocated(patient6,B,TI,TF),
within_time(yesterday,TI,TF)])

{assistant: des(n,allocate(patient8,B)[female(B),surgical(B),
in_room(B,R),smallest(R)[fewest_occupants(R)]]),
defeasible_rule(allocate(patient8,B),[in_room(B,R),
smallest(R)[fewest_occupants(R)]])[as(nurse_restriction)],
des(o,allocate(patient8,B)[allocated(patient6,B,TI,TF),
within_time(yesterday,TI,TF)]), bel(d,allocated(P,B,TI,TF))} (desiderata (3]
and [6))

assistant to database: which bed did Patient6 free yesterday?

10. question(a,d,allocated(patient6,B,TI,TF)
[within_time(yesterday,TI,TF)])

database to assistant: Patient6 was allocated to bed 202b;

11. assert(d,a,allocated(patient6,202b,tl,t2))

73

assistant to ontology: Is bed 202b suitable to Patient8?

12. question(a,l,question(suitable(202b,patient8)))

ontology to assistant: No, it is not.

13. assert(l,a,~suitable(202b,patient8))

assistant to operator: the bed freed by patient Patient6 is 202b; it is not suitable for
patient Patient8;

14. assert(a,o0,answer(allocated(patient6,202b,tl,t2)

15. assert(a,o,answer(~suitable(202b,patient8))

operator to assistant: why not?

16. challenge(o,a,~suitable(202b,patient8))

entering an ontological subdialogue using OAsdlg?2

17. ontoargsubdlg(a,*,~suitable(202b,patient8))

assistant to ontology: Explain why bed 202b is not suitable to Patient8.

17a. question(a,l,explain(~suitable(202b,patient8)))

ontology to assistant: Patient Patient8 is of the age group Adult, and bed 202b is of the
age group Adolescent, which is different from Adult. So bed 202b is unsuitable for patient
Patient8.

17b. assert(l,a,defeasible_rule(

~suitable(202b,patient8), [patient(patient8),
hospital_bed(202b),is_of_the_age_group(patient8,adult),
bed_is_of_the_age_group(202b,adolescent),
differentFrom(adult,adolescent)])[as(nSbyAG)])

assistant to all: Patient Patient8 is of the age group Adult, and bed 202b is of the age
group Adolescent, which is different from Adult. So bed 202b is unsuitable for patient
Patient8. 17c. assert(a,*,answer(defeasible_rule(

~suitable(202b,patient8), [patient(patient8),
hospital_bed(202b),is_of_the_age_group(patients,
adult),bed_is_of_the_age_group(202b,adolescent),
differentFrom(adult,adolescent)])[as(nSbyAG)])

operator to all: Why do you think bed 202b is of the age group Adolescent?

17d. challenge(o, *,

bed_is_of_the_age_group(202b,adolescent))

assistant to ontology: Explain why bed 202b is of the age group Adolescent.

17e. question(a,l,explain(bed_is_of_the_age_group(

202b,adolescent)))

ontology to assistant: Patient Patient5 is of the age group Adolescent and is in the same
room as the bed 202b

17f. assert(l,a,defeasible_rule(

bed_is_of_the_age_group(202b,adolescent),
[patient(patient5),is_of_the_age_group(patient5,

adolescent) ,hospital_bed(202a),

74

occupy_one(patient5,202a),is_in(202a,202),
hospital_bed(202b),is_in(202b,202)]) [as(aGbyPinRoom)])

assistant to all: Patient Patient5 is of the age group Adolescent and is in the same room as
the bed 202b

17g. justify(a,*,answer(defeasible_rule(
bed_is_of_the_age_group(202b,adolescent),

[patient (patient5),is_of_the_age_group(patient5,

adolescent) ,hospital_bed(202a),
occupy_one(patient5,202a),is_in(202a,202),
hospital_bed(202b),is_in(202b,202)])[as(aGbyPinRoom)])

nurse to all: we can make an exception in this case, they can stay in the same room
provided they are of the same gender and same type of care;

17h. assert(n,*,defeasible_rule(suitable(B,patient8),

[patient (patient8),bed(B),is_of_the_gender(patient8,G),
bed_is_of_gender(B,G),is_of_care(patient8,(),
bed_is_of_care(B,C)])[as(nurse_exception)])

{assistant: des(n,defeasible_rule(suitable(B,patient8),

[patient (patient8),bed(B),is_of_the_gender(patient8,G),
bed_is_of_gender(B,G),is_of_care(patient8, (),
bed_is_of_care(B,C)])[as(nurse_exception)])}

assistant to ontology: Nurse made an exception; Is bed 202b suitable to Patient8 now?
17i. assert(a,l,defeasible_rule(suitable(B,patient8),

[patient (patient8),bed(B),is_of_the_gender(patient8,G),
bed_is_of_gender(B,G),is_of_care(patient8, (),
bed_is_of_care(B,C)])[as(nurse_exception)])

22a. question(a,l,question(suitable(202b,patient8)))

ontology to assistant: No, it is not.

17j. assert(l,a,~suitable(202b,patient8))

assistant to all: that room is still not suitable;

17k. assert(a,*,~suitable(202b,patient8))

operator to all: why not?

171. challenge(o,*,~suitable(202b,patient8))

assistant to ontology: Explain why bed 202b is still not suitable for patient Patient8
17m. question(a,l,explain(~suitable(202b,patient8)))

ontology to assistant: Patient Patient8 is in Intensive care, and bed 202b is for Minimal
care, which is different from Intensive care. So bed 202b is unsuitable for patient Patient8
17n. assert(l,a,defeasible_rule(
is_unsuitable_for(202b,patient8),[patient(patient8),
hospital_bed(202b),is_care(patient8,intensive),
bed_is_care(202b,minimal),

differentFrom(intensive,minimal)]) [as(nSbyCare)]

75

assistant to all: Patient Patient8 is in Intensive care, and bed 202b is for Minimal care,
which is different from Intensive care. so bed 202b is unsuitable for patient Patient8
170. justify(a,*,defeasible_rule(
is_unsuitable_for(202b,patient8),[patient(patient8),
hospital_bed(202b),is_care(patient8,intensive),

bed_is_care(202b,minimal),

differentFrom(intensive,minimal)])[as(nSbyCare)]

... NB: We suppressed messages from all agents accepting; ~suitable(202b, patient8).
closing ontological subdialogue in agreement that ~suitable(202b,patient8) using
rule CloseOAsdlg1 as all agree with that content, the one used to open the subdialogue;
17p. closesubdlg(a,*,~suitable(202b,patient8))

{assistant: des(o,allocate(patient8,B)[female(B),surgical(B)])}

assistant to operator: Would you like me to try to suggest another bed for Patient8?
18. question(a,o,des(o,suggestion(B,patient8)
[suitable(B,patient8)]))(desiderata (4))

operator to assistant: yes, please!

19. assert(o,a,des(o,suggestion(B,patient8)

[suitable(B,patient8)]))

{assistant: des(n,defeasible_rule(allocate(patient8,B),
[in_room(B,R),smallest(R)[fewest_occupants(R)]1]1]) [as(nurse_restriction)]),
des(o,suggestion(B,patient8) [suitable(B,patient8)]) (desiderata (3))

assistant to optimiser: generate an allocation suggestion to patient Patient8 considering
the nurse restriction.

20. question(a,p,suggestion(B,patient8)[suitable(B,

patient8) ,defeasible_rule(c,R)ﬁ[as(nu rse_restriction)]])

optimiser to assistant: I can not generate a suggestion to patient Patient8 considering
this restriction.

21. assert(p,a,~suggestion(B,patient8)
[defeasible_rule(C,R]])[as(nurse_restriction)]]])

{assistant:des (n,defeasible_rule(suitable(B,patient8),

[patient (patient8),bed(B),is_of_the_gender(patient8,G),
bed_is_of_gender(B,G),is_of_care(patient8,(),
bed_is_of_care(B,C)])[as(nurse_exception)])}

assistant to all: can I use the exception made by nurse?

22. question(a,*,des(o,suggestion(B,patient8)
[suitable(B,patient8),

defeasible_rule(Ce,Re) [as(nurse_exception)]]))(desiderata (5))
nurse to all: yes, you can.

8We use the abbreviation C to represent the rule’s conclusion and R to represent the body of the
rule described just before.

76

23. assert(n,x*,des(o0,suggestion(B,patient8)

[suitable(B,patient8),

defeasible_rule(Ce,Re)[as(nurse_exception)]]))

assistant to optimiser: Generate a suggestion considering the nurse restriction and the
nurse exception.

24. question(a,p,suggestion(B,patient8)[suitable(B,
patient8),defeasible_rule(Ce,Re)[as(nurse_exception)],
defeasible_rule(Cr,Rr)[as(nurse_restriction)]])

optimiser to assistant: Considering this restrictions and exceptions I recommend bed
201a for Patient8

25. assert(p,a,suggestion(20la,patient8)

[suitable(201la,patient8)])

{assistant: suitable(202a,patient8)}

assistant to all: Considering the exception made by nurse I suggest allocating Patient8 to
bed 201a

26. assert(a,*,suggestion(20la,patient8)

[suitable(201la,patient8),

[defeasible_rule(Ce,Re)[as(nurse_exception)]])

operator to assistant: ok, please book bed 201a for Patient8 who will leave the operation
room, not before 19:00 nor after 20:30;

27. assert(o,a,booked(201la, patient8, 19:00h, 20:30h))(desiderata (2))
{assistant: des(o,booked(201a, patient8, 19:00h, 20:30h))}

assistant to database: book bed 201a to patient Patient8 from 19:00H and keep the
booking until 20:30H;

28. assert(a,d, booked(20la, patient8, 19:00h, 20:30h))

database to assistant: Ok, bed 201a is now booked;

29. accept(d,a,booked(201la,patient8,19:00h,20:30h))

{assistant: booked(201a, patient8, 19:00h, 20:30h)}

assistant to operator: booking done!

30. assert(a,o,booked(201la,patient8,19:00h,20:30h))

operator to assistant: Ok!

31. accept(o,a,booked(201la,patient8,19:00h,20:30h))

Based on Cohen’s desiderata for task-oriented dialogue systems and seeking to offer hospital
professionals a dialogue as presented above, we loaded our system with real data from the
hospital. Then we asked two bed-allocation specialists, who work at that hospital, to evaluate
it. Our main objective was to verify if the chatbot’s performance matches the points raised
by Cohen’s desiderata. Next, we describe the test setup and the results obtained.

77

5.5.2.1 Evaluation Procedure

We received a data load from the hospital that contained patients, beds with their status,
bed requests, infections, type of request, type of insurance, coverage, and speciality. During
testing, we used 80 beds, 45 inpatients, 42 bed requests, and 65 infections (possibly more
than one per patient). Of the 80 beds, there were vacant, occupied by a patient, blocked by
infection, maintenance, and cleaning status. We create an ontology with the following set-
tings: Classes (20), Object Properties (29), Data Properties (2), Individuals (22), Datatypes
(1), and SWRL Rules (12).

We intentionally invited two bed allocation specialists who work at the hospital. They were
selected due to their experience in bed allocation and their knowledge of hospital data.
Table [5.5]| presents the specialists’ demography.

Table 5.5: Specialists demography

Id | Gender Job occupation How long in this job? | Experience in bed allocation
S1 M Research center coordinator 1 year 6 years
S2 F Access management coordinator 6 months 22 years

The evaluation was performed in person at the hospital and simultaneously with the two
specialists. After the test, the experts answered an online questionnaire. We created a ques-
tionnaire with eight closed questions following the 5-point Likert scale to evaluate Cohen’s
desiderata (Table and an open question to suggestions. During the test, we took notes
on what the specialists said. Also, we generate a system log with all requests made, as
shown in Apendix

Table 5.6: Questions to evaluate Cohen’s desiderata

Id Question
Q1 | Are the bed allocation rules consistent with those practised in the hospital?
Q2 | Are the answers given by the chatbot easily understandable?
Can the chatbot understand the meaning of user statements, including restrictions with two
Q3 | superlative expressions, one embedded in the other? For example, what is the smallest room
with the fewest patients allocated?
Q4 | Is the chatbot able to understand the user’s intent even if this is not explicitly informed?
Q5 When asked if a bed is suitable for a patient, is the chatbot able to respond and still

explain in an easily understandable way how it reached that conclusion?
Is the chatbot capable of chatting with more than one user at the same time, taking into
Q6 | account the requests and restrictions
of all users?
Q7 | Does the chatbot reason about what the user is trying to do?
08 Can the chatbot understand that another person may have the necessary information/authorization
to resolve a situation and is able to request that this person be asked?

78

We started the test by explaining the system and the objective of the evaluation. Then, we
show the interface (Figure[5.4) where they could see the patients’ and beds’ data and provide
users with examples of questions they could ask the chatbot. After signing the consent form,
the specialists started the test.

@ () Home (3 Pedidosdeleos] Laudos o Leitos
Pedidos Leitos 2
P — e Ta— [—— EE——— cosearuaa Lemooaen Lo suceR0 coLtemo sesee SUROS
Pedido troca de leito 2205060 2044429 Idoso FEMINING NEUROLOGIA CLINICA CONVENIOS ~ ENFERMARIA 2782 N
Pedido troca de leita 2199392 2021607 Idoso MASCULINO ~ ONCOLOGIA CLINICA CLINICA sus ENFERMARIA _
Pedido roca de leito 2208240 1873368 Idoso Senior FEMINING CARDIOLOGIA CLINICA CONVENIOS ~ UTIADULTO GERAL &
Pedido troca de leito 2202145 1318550 Idoso MASCULINO CARDIOLOGIA CLINICA CONVENIOS ~ UTICORONARIANA 3
Reserva de leito efetuada 2202991 1192609 Idoso MASCULINO NEFROLOGIA CLINICA CONVENIOS ~ ENFERMARIA H
Peclido troca de leito 20747 1123328 ldoso FEMINING CIRURGIA DO APARELHO DIGESTIVO CIRURGICA CONVENIOS ~ APARTAMENTO %
Peddotocadelst 219887 102691 ldoso MASCULING CARDIOLOGIA cunica CONVENIOS UTIADULTOGERAL 3
Reserva de leilo efetuada 2208345 1020136 Idoso Senior FEMINING CARDIOLOGIA CLINICA CONVENIOS UTIADULTO GERAL H
Pedido troca de leito 2194488 991251 Adutto FEMINING (ONCOLOGIA CLINICA CLUINICA CONVENIOS ~ UTIADULTOGERAL &
Pedido troca de leito 2207926 963306 Idoso Senior MASCULINO ~ ORTOPEDIA E TRAUMATOLOGIA CIRURGICA CONVENIOS ~ ENFERMARIA

014, eu sou seu agente Jason, em que
99550 Ihe ajudar?

Desoulpe-me, o agente parece ndo
estar disponivel no momento

Ask semething

Figure 5.4: MAIDS testing interface

One of the evaluators performed the test remotely via video call and the other in person.
Both evaluators requested that questions be asked to the chatbot, and the questions were
typed in by us. After viewing the response provided by the chatbot, the evaluators decided
together what would be the next question to be asked and informed us so that it could be
typed into the chatbot. After a series of questions and answers, the evaluators declared
themselves satisfied and started answering the questionnaire.

5.5.2.2 Results

Regarding the evaluation of the chatbot by the specialists, Figure [5.5]shows an excerpt from
the conversation log where the operator asks if he can put a patient in a room, which is not
possible, but the operator wants it anyway. Then, the nurse in charge is asked to make an ex-
ception, so after that, it is possible to carry out the allocation. This shows that simultaneous
conversations with the chatbot are possible and that it considers requests from both users.
After that, we can see in Figure [5.6]that the chatbot can handle superlative expressions; the

79

operator asked which is the smallest room with fewer patients and which is the biggest room
with more patients allocated. Room 118] and 759 were answered, respectively.

Agent operator asks to allocate patient 2044429 to bed 3132

Answering to chatbot: First | need to check if this bed is suitable for this patient, is that ok?

Answering to chatbot: No, this bed is not suitable.

Chatbot of operator is requesting explanation about suitability of 3132 bed to 2044429

Answering to chatbot: Bed 3132 is not suitable for patient 2044429 as patient coverage is WARD and this bed is
GENERAL ADULT ICU.

Chatbot of operator is requesting to allocate anyway.

Answering to chatbot: Sorry, you are not authorized to make this allocation, but you can ask the manager to make
an exception

Chatbot of nurse is requesting to register an exception: patient: 2044429, bed: 3132

Agent nurse asks to register exception on patient 2044429 and bed 3132

Answering to chatbot: Ok | am logging the requested exception

Chatbot of operator is requesting to verify suitability: patient: 2044429, bed: 3132

Answering to chatbot: Yes, this bed is suitable.

Chatbot of operator is requesting explanation about suitability of 3132 bed to 2044429

Answering to chatbot: Bed 3132 is suitable for patient 2044429 as the manager made an exception for this case.

Figure 5.5: Simultaneous conversation and restriction

Chatbot of operator is asking about the smallest room with fewer patients allocated.
Answering to chatbot: The smallest room with the fewest occupants is 118J

Chatbot of operator is asking about the biggest room with most patients allocated.
Answering to chatbot: The biggest room with most occupants is 759

Figure 5.6: Superlative expressions

Strongly disagree Disagree Neutral Agree M Strongly agree

Q1 - Are the bed allocation rules consistent with those practiced in the hospital?

Q2 - Are the answers given by the chatbot easily understandable?

Q3 - Can the chatbot understand the meaning of user statements including restrictions
with two superlative expressions, one embedded in the other? For example, what is the
smallest room with the fewest patients allocated?

Q4 - Is the chatbot able to understand the user's intent even if this is not explicitly
informed?

Questions

Q5 - When asked if a bed is suitable for a patient, is the chatbot able to respond and
still explain in an easily understandable way how it reached that conclusion?

Q6 - Is the chatbot capable of chatting with more than one user at the same time taking
into account the requests and restrictions of all users?

Q7 - Does the chatbot reason about what the user is trying to do?

Q8 - Can the chatbot understand that another person may have the necessary
information/authorization to resolve a situation and is able to request that this person be
asked?

Figure 5.7: Evaluation result

80

The results of the questionnaire indicated that specialists strongly agree or agree that the
system respect Cohen’s desiderata, according to Figure[5.7] During the test, they suggested
it would be very helpful if the system had voice input. Also, it would be useful if, when asking
the chatbot about free beds for women, for example, the MAIDS brings a list of free beds
that can be used. Today MAIDS brings one.

FINAL REMARKS

This chapter presented some tools developed specifically for the bed allocation domain we
use as a case study, such as a domain ontology, a Java-based PDDL plan validator, an opti-
miser using the GLPSol solver of GLPK, and two RML properties to perform runtime verifi-
cation. In addition, we describe the evaluations made with professionals responsible for the
bed allocation at Hospital Sao Lucas da PUCRS in Brazil, where the functionalities offered
by the system developed using the MAIDS framework and the expressiveness of this system
based on Cohen’s desiderata were evaluated separately. The contents of this chapter have
been published in [ECGT19, [ECPB21].

81

Chapter 6

Related Work

The only work that supports agents arguing about OWL ontologies specifically, to the best of
our knowledge, appeared in [MBO8]. However, that work was not formalised in the context
of an agent programming language, and did not support ToM, nor the structured dialogue
approach we introduced in this thesis. Furthermore, that framework does not seem to have
been further developed and does not seem to be available for download, so it does not
support the development of practical dialogue systems like ours. In fact, we are unaware of
any practical agent framework that supports all the features of dialogue systems supported
by our framework.

There is much work on allowing for defeasibility in description logic and OWL [GG19, [AWO03]],
but this is also distant from our work in that it does not provide practical support for agent
programming with argumentation-based dialogues. Although there is work on nested dia-
logues [[BHO7], the possibility to digress about ontological and ToM issues in subdialogues
as put forward in this thesis is completely original.

Another strand of work in argumentation to mention here is on using automated planning
techniques to support an agent’s strategy in taking part in dialogue games [BCH17]. In
the context of XAI, as described in [ANCF19], there is little work addressing the issues of
multi-agent explainability, personalisation of explanation, and context awareness. Also in
the explainable AI context, Arg2P, for example, is a logic-based argumentation framework
for defeasible reasoning and agent conversation based on a modular architecture allowing
for system transparency and ease of extension. Unlike MAIDS, which is implemented in
AOPL, the Arg2P is an ASPIC"-like implementation for structured argumentation.

Regarding works that seek to use argumentation to make dialogue systems more explainable
to the user, we present some works in Table

82

Table 6.1: Related work summary

Natural
. . XAI Multiple @
Author Argumentation Techniques . . Language
Techniques domains .
Interaction
F C itive Map based
(TYZ12] {zzy Loghiive Hap base Not cited No No
on argumentation model
ASPI 1 d i
[GMBET13] SPIC rules and argumentation Argumentation graph No No
schemes
[KO15] Naive theory of reasoning Not cited No Yes
Graphical representation of
ts struct) .
[TPWT16] argumernts structure Not cited No No

argumentation-based reasoning,

and argumentation schemes
ICQTF17] Pragmatic argumentation Not cited No No
Argumentation scheme

[BJGT17] Not cited No No
and ontology

[DB17] Argumentation theory Not cited No No

[ERST18] Argumentation-based Not cited No No
dialogue

[RWPT 18] Argument game Not cited No No

[SIHT18] Argumentation scheme Not cited No Yes
Regression, agglomerative

[RBR™19]] clustering, similarity Not cited No No
algorithm (UMBC STS score)

[KCBT19] Argumentation scheme Not cited No Yes
and attack schemes

[PT20] Crowd sourced argument graph Not cited No Yes
Argument annotation scheme

[WJRT20] and bipolar weighted argument Not cited No No
graphs (BWAGS)

MAIDS Argumentation scheme Argumentation scheme

and argumentation-based Yes Yes

(our approach) dialogues and ontological reasoning

Tao et al. [TYZ12] used a Fuzzy Cognitive Map based on argumentation model to construct
an intelligent tutoring system, with an intelligent agent to conduct argumentative dialogues
helping children learn ecosystems and adults to gain knowledge on diabetes risk factors.
The user interacts with the chatbot using pre-defined buttons. The system has not yet been
evaluated.

Grando et al. [GMBE™13]] introduce an argument-based system for enhancing human-computer
dialogues in the medical domain, more specifically, in medical training. The user interacts
with the chatbot using buttons. The system has not yet been evaluated.

83

Koit and Oim [KO15] used the naive theory of reasoning to model argumentation in agree-
ment negotiation processes. They created an experimental dialogue system implemented
in Java where the user can both choose their sentences from a menu or put them in free
text, which will be interpreted by the computer using keywords or phrases to classify the
user texts semantically. In both, the computer uses a list of ready-made sentences about
business trips and vegetarianism in Estonian [KO15]. Six voluntary users have carried out
some experiments with the dialogue system. However, the generated dialogues are not quite
coherent because the computer uses predefined sentences.

Toniolo et al. [TPW™16] developed Moira (Mobile Intelligence Reporting Agent), a Con-
trolled Natural Language (CNL) conversational agent, that uses a conversational model
based on the syntax and semantics of the ITA Controlled English [PBPP14]]. They used the
CISpaces (Collaborative Intelligence Spaces) toolkit based on a graphical representation of
structured arguments. They analysed through argumentation-based reasoning and argu-
mentation schemes to support the identification of plausible hypotheses. CISpaces structure
and share analyses of conflicting information through argumentation techniques and main-
tains records of the provenance information. While Moira captures sensed information by
supporting queries and intelligence provision from a wide set of different sources, such as
physical sensors and information systems, social media and human sources. They demon-
strated a scenario showing the support offered by Moira and CISpaces to an intelligence
coalition while gathering information about and responding to the attack on Kish.

Cheng et al. [CQTF17]] created a recommendation system using pragmatic argumentation to
check if this has the potential to affect the decision making of the elderly and help him/her
pursue a healthier life. The system has only recommendations, it did not have free conver-
sation. The system was evaluated by 21 volunteers who interacted with the robot.

Baskar et al. [BJG™17] developed a coaching to improve health and well-being using multi-
agent system and argumentation. The user interacts with the chatbot using pre-defined
buttons. The system has not yet been evaluated.

Dignum and Floris [DB17] discussed an approach to dialogue management using chatbots in
combination with social practices and argumentation theory. Their future system provides
for the use of an avatar that expresses emotions and the user will be able to utterances with
natural language. The system has not yet been evaluated.

Essers et al. [ERS™18] created a prototype called POSTURE (Pressure Offloading Support
Technologies for Ulcer REduction). This prototype help patients suffering from Diabetic
Foot Ulcer (DFU) self-manage their treatment. This system receives data from commercial
wellness sensors. The sensor data is fed into a data-backed decision support tool that in-
teracts with users via an intelligent agent, using a chatbot style interface, underpinned by
computational argumentation-based dialogue. The user is not able to chat freely with the
chatbot. Regarding evaluation, 10 users interacted with the prototype via tablet interface
and fictitious data, then answer a questionnaire about the idea of such a system.

84

Rach et al. [RWPT 18] used Charamel too][|to create the avatar EVA, a multimodal argumen-
tative dialogue system that uses Nuance text-to-speech and all Amazon Polly Voices. They
use an argument game based on the formalism of Prakken [Pra00] to model the interaction
between the user and the system. The avatar uses a pre-defined template of mimics and
gestures that will be replaced by customized signals in the future. It presents arguments
about marriage and supports them. The system has not yet been evaluated.

Sakai et al. [SIH™18] present a chat interface that generated dialogue text based on argu-
mentation structures. They created a model with a graph structure in which nodes represent
premises and edges represent the relationship between nodes. Each node has a natural lan-
guage statement representing the content of its premise. If the logical connection is based
on an argumentation scheme, the scheme name is represented on the arcs. More than 30
annotators were recruited to create the argumentation structures. Since they created the ar-
gument structures manually, it is quite costly to expand and create new structures for other
topics. They evaluated the dialogue system with 19 participants who read ten dialogue texts
that were randomly ordered and answered a questionnaire.

Rakshit et al. [RBR™19] created a chatbot called Debbie that uses retrieval from existing con-
versations to argue with users. In Debbie, the user picks a button with three topics - death
penalty, gay marriage, and gun control and inform about their position (for or against). Then,
Debbie generate arguments against that position using a similarity algorithm (UMBC STS
score) to retrieve a ranked list of the most appropriate counter-arguments, i.e., arguments
opposing the user’s stance. They evaluated the average response times for each retrieval
method and the quality of the responses testing three sentences per stance per topic.

Kokciyan et al. [KCBT19] developed a system called CONSULT, which is a collaborative
decision-support tool to help patients suffering from chronic diseases to self-manage their
treatment plans. The system has a conversation interface with the user, in which the user
can make utterances in natural language. The system has not yet been evaluated.

Prakken et al. [P"20] developed a chatbot that was deployed on Facebook via the Messen-
ger Send/Receive API to engage and persuade the user to accept university fees should be
kept. They evaluated the chatbot with 50 participants. The participants interacted with the
chatbot. Before using the chatbot, participants answered a questionnaire on google forms
indicating whether they strongly disagreed, disagreed, neutral, agreed or strongly agreed
that university fees should be kept. After using the chatbot, users answered another ques-
tionnaire on google forms informing about the experience and “How much do you agree that
fees in the UK should be kept as they are? (Strongly disagree - strongly agree)”.

Weber et al. [WJR™20] presented Gloria avatar, which can perform lip-sync speech output
using the Nuance text-to-speech along with the Amazon Polly voices. They used an argu-
ment structure based on the argument annotation scheme. Their study includes three types

Thttps://www.charamel.com/competence/avatare

85

https://www.charamel.com/competence/avatare

of argument components (Major Claim, Claim, and Premise) and two different directed re-
lations (support and attack) between them. They infer the argumentation structure using
a hotel reviews dataset annotated through an argument mining approach. The annotated
sentences serve as a template for the system’s natural language generation. They deter-
mined the polarity of each review by making a comparison between positive and negative
phrases annotated. The prediction model computes the user’s preferences based on bipolar
weighted argument graphs (BWAGS) using linear Euler-based restricted semantics. Gloria
talks about a topic by giving arguments either for or against the topic. The agent can try to
influence the user using appropriate emotions (angry, happy, and sad). After each argument
from the agent, the user has three button options to give their feedback on the argument
(convincing, neutral, not convincing).

Comparing those works with MAIDS (Table we can see we did not find research which
can be applied to multiple domains. None of the research on bed allocation with decision-
support characteristics and explainability based on argumentation theory was found. Also,
only in [KO15, ISIH"18, KCB'19, [IP™20] is allowed free user interaction with the chatbot,
i.e., where the user can interact in natural language with the agent.

86

Chapter 7

Conclusions

Our main objective in this thesis was to investigate how argumentation theory and ontology
techniques can be used together with reasoning about intentions to build complex natural
language dialogues to support humans in decision making. The thesis puts forward a frame-
work for developing explainable multi-agent systems. Its potential is demonstrated by a case
study on human-agent dialogues on hospital bed allocation. We achieved that goal through
the following specific objectives:

* Design and formalise an approach to argumentation-based dialogues and ontological
reasoning. In Chapter [3] we presented and formalised an approach that supports the
development of dialogue systems based on BDI agents to assist humans in decision
making. Using this approach, agents have a multi-part belief base and support for
having a structured dialogue where the main line of argumentation is based on the
argumentation schemes knowledge component. Further, it can lead to subdialogues
when ontological or ToM issues must be resolved [EPV™]].

* Construct an architecture/framework for developing explainable systems and imple-
ment all the necessary components of the architecture. In Chapter |4} we present our
framework for developing multi-agent intentional dialogue systems. We emphasize
that the MAIDS framework can be used in its entirety, or it is also possible to use only
the modules (Dial4]JaCa, Onto4JaCa, RV4JaCa) that match the requirements of each
system under development. We have some publications related to this part of the work
([Eng20|, [EDK"21b, EDK"21a, EDP"22, PEB21], [FPET22, EFP"22|, (OEK™22]).

* Apply the proposed formal model to a real-world domain and problem, such as health-
care, and fully implement a dialogue system based on that formalisation using the
framework. In Chapter[5] a case study in the hospital bed allocation domain is shown.
We implemented some tools related to the bed allocation domain, such as a domain on-

87

tology published in [ECGT19], a Java-based PDDL plan validator, and an optimiser us-
ing the linear programming solver of GLPK [ECPB21]. Furthermore, using our frame-
work, we built an explainable dialogue system to support decision making for hospital
bed allocation, which used real data from a hospital.

* Evaluate the approach with domain experts based on Cohen’s desiderata for task-
oriented dialogue systems. As shown in Section [5.5| staff from PUCRS’s Hospital Sao
Lucas, in Porto Alegre, Brazil, supported us in evaluating our system. We performed
two evaluations with professionals responsible for bed allocation in that hospital. The
first one was to evaluate the system functionalities for hospital bed allocation, while
the second one was to evaluate the expressiveness of our framework based on Cohen’s
desiderata for task-oriented dialogue systems.

7.1 Summary of Results and Discussion

The use of artificial intelligence systems in our daily lives is becoming mature and ubiqui-
tous, resulting in the growing availability of systems where agents and humans work to-
gether [RR19], from which emerge new concepts such as Hybrid Intelligence [ABAR™20].
However, there are many challenges related to how humans and agents will interact in those
systems and how agents will explain their decisions and internal mental states so that they
become more transparent and trustworthy [Gunl7, [IGSC™19b].

In this thesis, we contribute in this direction by providing tools for the practical development
of explainable intelligent systems as well as systems supporting hybrid intelligence. Aiming
at communication between humans and software agents, we built Dial4JaCa, which acts as a
bridge between multi-agent systems developed with JaCaMo and natural language process-
ing platforms such as Dialogflow and Rasa. This way, we endow intelligent agents to commu-
nicate in natural language with human users. Onto4]JaCa, in turn, was developed to enable
agents to use, during their reasoning process, the information contained in ontologies as
well as inferred by semantic reasoners. In addition, we built RV4JaCa, capable of observing
all messages exchanged by agents during runtime and forwarding them to a formal monitor
in order to verify properties of interest and, if necessary, interfere with the execution of the
system to recover from or prevent failures. These three modules form the basis of MAIDS,
our framework for developing multi-agent intentional dialogue systems, which can be used,
together with domain-specific agents, in different domains. As our framework is modular, it
can be used in its entirety or just the modules that fulfil the requirements of each system
to be developed. Our work also includes the formalisation of a novel dialogue-subdialogue
structure with which we can address ontological or theory-of-mind issues and later return to
the main subject of the dialogue.

In order to evaluate the practical applicability of our framework, we have developed a multi-

88

agent system that supports hospital bed allocation. In addition to the modules of the MAIDS
framework, some specific tools for this domain were also developed, such as a domain on-
tology, a PDDL plan validator, an optimiser, and two RML properties to be verified during
runtime. The developed system was evaluated by professionals specialised in bed allocation
at Hospital Sao Lucas — PUCRS, who agreed to support us in evaluating our approach. Two
separate evaluations were carried out, the first one, with synthetic data, in order to check
whether the functionalities offered by our system fulfilled the hospital’s needs. The second
one, using real data from the hospital, aimed to evaluate the expressiveness of a system de-
veloped with the MAIDS framework based on Cohen’s desiderata for task-oriented dialogue
systems. As a result of the evaluations, we were able to conclude that, according to the
evaluators, our system addresses all the elements of the desiderata.

Although much work remains to be done, as discussed in Section[7.3] in its current state, our
framework already contributes towards increased sophistication in explainable Al, hybrid
intelligence, and human-agent dialogue systems.

7.2 Thesis publications

We have published the following papers related to the research presented in this thesis, in
particular the results described above:

« “Towards an ontology to support decision making in hospital bed allocation” [ECG™19];

» “Conversational Agents Based on Argumentation Theory and Ontologies” [Eng20];

« “Dial4JaCa - A Communication Interface Between Multi-agent Systems and Chatbots” [EDK™21b];
« “Dial4JaCa — A Demonstration” [EDK"21al;

* “A Conversational Agent to Support Hospital Bed Allocation” [ECPB21];

« “Argumentation as a Method for Explainable Al: A Systematic Literature Review” [EDP™22];

» “Engineering Explainable Agents: An Argumentation-Based Approach” [PEB21];

« “Explaining Semantic Reasoning using Argumentation” [FPE"22];

« “RV4JaCa - Runtime Verification for Multi-Agent Systems” [EFP™22];

« “Multi-Agent Interaction to Assist Visually-Impaired and Elderly People” [OEK™22];

* “MAIDS — a Framework for the Development of Multi-Agent Intentional Dialogue Sys-
tems” [EPV™].

89

7.3 Future Work

During the development of this thesis, it was possible to identify future directions arising
from the results and their limitations, which may allow future work to increase knowledge
and its application on this topic. For example, one of the directions to follow would be the
use of more complex ontological subdialogues than those presented in this thesis, in addition
to the practical use of ToM subdialogues, since although we formalise them here, we do not
use subdialogues based on the theory of mind in practice in our case study.

In addition, there is a lack of argumentation schemes aimed at reasoning patterns to discuss
theory of mind. So, efforts should be made to identify schemes that justify or attempt to
invalidate an inference from a mental attitude. Possibly there are general schemes, but new
argumentation schemes may be necessary depending on the application domain. Another
venue for future work is related to the complexity of arguments over time. It is necessary to
consider that information can be true at a given moment but cease to be true over time.

We also aim to apply automated planning techniques to support an agent’s strategy in taking
part in dialogue games [BCH17] to decide when to move to subdialogues (currently, we used
a simple strategy for the case study, one that moves to subdialogues as soon as possible).
Future work also includes allowing a subset of the agents entering a subdialogue as well
as other agents that are not involved in the main dialogue but may have some information
needed to reach a subdialogue conclusion. Further developing the applications so they also
use the ToM subdialogues, and experimenting with our framework to develop dialogue sys-
tems in other hospital management domains besides bed allocation, are also possible future
work.

Finally, it is also possible to use the MAIDS framework or some of its modules in building
explainable multi-agent systems in other domains, such as Law and IoT (Internet of Things),
to help people in decision making, bringing more areas of application to the direction of
hybrid intelligence.

90

91

Appendix A

Bed-Allocation Plan Validation
Report

92

PDDL Plan Validator
Validation Report

1 Domain

Domain: hospital
Problem: aloc

1.1 Files

Domain file: test\domain.pddl
Problem file: test\problem.pddl
Plan file: test\plan.pddl

2

ot

10.

- W

© 0 N o

Plan

aloc-Oncologia 34345454354 100a genero—Masculino genero—Masculino)
aloc-Oncologia 93092302930 100c genero—Masculino genero—Masculino)

aloc-Oncologia 09090909091 100b genero—Masculino genero-Masculino)

aloc-Neurologia 23266656502 113b genero—Masculino genero—Masculino)
aloc-Cardiologia 32323233232 114a genero-Masculino genero-Masculino)
aloc-Neurologia 32135131355 115b genero—Feminino genero—Feminino)
aloc-Cardiologia 23102103133 116b genero—Feminino genero—Feminino)

(
(
(
(
(
(
(
(
(
(

aloc-Oncologia 54532513216 117e genero-Feminino genero—Feminino)

Validation

. (aloc-Oncologia 34345454354 100a genero—Masculino genero—Masculino)

alocado 34345454354)

o +(
e +(ocupado 100a)

o +(in 34345454354 100a)

. (aloc-Oncologia 93092302930 100c genero—Masculino genero—Masculino)

e +(alocado 93092302930)
e +(ocupado 100c)
e +(in 93092302930 100c)

. (aloc-Oncologia 09090909091 100b genero—Masculino genero-Masculino)

o +(alocado 09090909091)

aloc-Medicina-Interna 23433454353 112a genero—Feminino genero—Feminino)

aloc-Medicina-Interna 34343434324 112d genero—Feminino genero—Feminino)

e +(ocupado 100Db)
e +(in 09090909091 100b)

4. (aloc-Medicina-Interna 23433454353 112a genero-Feminino genero-Feminino)

e +(alocado 23433454353)
e +(ocupado 112a)
e +(in 23433454353 112a)

5. (aloc-Medicina-Interna 34343434324 112d genero—Feminino genero—Feminino)
o +(alocado 34343434324)
e +(ocupado 112d)
o +(in 34343434324 112d)
6. (aloc-Neurologia 23266656502 113b genero-Masculino genero—Masculino)
e +(alocado 23266656502)
e +(ocupado 113b)
o +(in 23266656502 113b)

7. (aloc-Cardiologia 32323233232 114a genero-Masculino genero—-Masculino)

o +(alocado 32323233232)
o +(ocupado 114a)
o +(in 32323233232 114a)

8. (aloc-Neurologia 32135131355 115b genero—Feminino genero—Feminino)
o +(alocado 32135131355)
e +(ocupado 115b)
e +(in 32135131355 115b)

9. (aloc-Cardiologia 23102103133 116b genero—Feminino genero—Feminino)
e +(alocado 23102103133)
e +(ocupado 116b)
e +(in 23102103133 116b)

10. (aloc-Oncologia 54532513216 117e genero—Feminino genero—Feminino)

e +(alocado 54532513216)
e +(ocupado 117e)
e +(in 54532513216 117e)

Goal achieved

Appendix B

Evaluation of System Functionalities
- Logs

95

MAS log from specialist S1

[NetworkListener] Started listener bound to [{0}]

[HttpServer] [{0}] Started.

[Cartago] Workspace wp created.

[Cartago] getJoinedWorkspaces: [main]

[Cartago] artifact dialé4jaca:
br.pucrs.smart.Diald4JaCa.Diald4JaCaArtifact () at wp created.

[Cartago] artifact rv4jaca: br.pucrs.smart.rv4JaCa.RV4JaCaArtifact () at
wp created.

[Cartago] artifact pddl: br.pucrs.smart.validator.ValidatorArtifact () at
wp created.

[Cartago] artifact optimiser:
br.pucrs.smart.optimiser.OptimiserArtifact () at wp created.

[Cartago] artifact postgres: br.pucrs.smart.postgresqgl.PostgresArtifact ()
at wp created.

[OntologyArtifact] Importing ontology from
src/resources/HospitalBedAllocationNoIndividualsand5rules-pt.owl
[OntologyArtifact] Ontology ready!

[Cartago] artifact onto:

br.pucrs.smart.ontology.mas.OntologyArtifact ("src/resources/HospitalBedAl
locationNoIndividualsandbSrules-pt.owl") at wp created.

[assistant] Assistant agent enabled.

optimiser] joinned workspace wp

operator] joinned workspace wp

validator] joinned workspace wp

database] joinned workspace wp

[validator] focusing on artifact pddl (at workspace wp) using namespace
default

[operator] focusing on artifact dial4jaca (at workspace wp) using
namespace default

[ontology specialist] Jjoinned workspace wp

[database] focusing on artifact postgres (at workspace wp) using
namespace default

[optimiser] focusing on artifact optimiser (at workspace wp) using
namespace default

[ontology specialist] focusing on artifact onto (at workspace wp) using
namespace default

[database] Database specialist agent enabled.

[operator] Communication specialist agent enabled.

[optimiser] Optimiser agent enabled.

[ontology specialist] focusing on artifact postgres (at workspace wp)
using namespace default

[validator] Validator agent enabled.

[ontology specialist] Agent ontology specialist enabled.

[operator] Request received - Get Suggestion from Dialog

[operator] Chatbot of operator suggestions to allocate: ["Marisa da
Costa"]

[assistant] Agent operator requesting suggestion.

[optimiser] Agent assistant requesting optmised suggestion.

[assistant] Result received from agent optimiser

[database] Agent optimiser wants to save the optimiser result
[operator] Answering to chatbot: Eu posso sugerir colocar o/a paciente
Marisa da Costa no leito 402b. Vocé gostaria que eu confirmasse essa
alocacdao?

[optimiser] Resultado da otimizacdo salvo no banco de dados

[operator] Request received - Get Suggestion - no from Dialog

— — — —

Chatbot of operator is requesting the cancellation of the

[operator]

suggested allocation.

[assistant] Agent operator requesting cancellation of the optmised
allocation.

[optimiser] Agent assistant requesting cancellation of the last optmised
allocation.

[database] Agent optimiser wants to cancel the last optmised allocation
[optimiser] Agent database is returning about the cancellation of the

last optmised allocation.
[assistant] Agent optimiser is answering about the cancellation of the

optmised allocation.
[operator] Answering to chatbot: 0Ok,

nenhum paciente.

solicitacdo concluida sem alocar

RV4JaCa log from specialist S1

{"msgId":"midl","isReply":"nirt", "performative":"question", "sender":"oper
ator","receiver":"assistant", "content":{"name":"getSuggestionByPatient","
propl":{"posl":"\"Marisa da Costa\""},"isNegated":false}}
{"msgId":"mid2","isReply":"nirt", "performative":"question", "sender":"assi
stant", "receiver":"optimiser", "content":{"name":"getSuggestionByPatient",
"propl":{"posl":"\"Marisa da Costa\""},"isNegated":false}}
{"msgId":"mid3","isReply":"nirt", "performative":"assert", "sender":"optimi
ser","receiver":"assistant", "content": {"name":"suggestionByPatient", "prop
1":{"prop2":{"name":"notAlloc", "isNegated":false}, "propl":"\"true\"", "nam
e":"optimiserResult","isNegated":false, "prop3": {"propl":{"propl": {"prop2"
:"\"402b\"", "propl":"\"Marisa da

Costa\"","name":"alloc", "isNegated":false}}, "name":"sugestedAllocation","
isNegated":false}},"isNegated":false}}

{"msgId":"mid4","isReply":"nirt", "performative":"question", "sender":"opti
miser", "receiver":"database", "content":{"name":"saveOptimiserResult", "isN
egated":false}}

{"msgId":"mid5","isReply":"nirt", "performative":"assert", "sender":"assist
ant", "receiver":"operator", "content": {"prop2":"\"Eu posso sugerir colocar

o/a paciente Marisa da Costa no leito 402b. Vocé gostaria que eu
confirmasse essa

alocacdo?\"", "name":"answer", "propl": {"propl": {"prop2":{"name" :"notAlloc"
,"isNegated":false}, "propl":"\"true\"", "name" :"optimiserResult", "isNegate
d":false, "prop3": {"propl": {"propl": {"prop2":"\"402b\"", "propl":"\"Marisa
da

Costa\"","name":"alloc", "isNegated":false}}, "name":"sugestedAllocation","
isNegated":false}}, "name" :"suggestionByPatient", "isNegated":false}, "isNeg
ated":false}}

{"msgId":"mid6é", "isReply":"nirt", "performative" :"assert", "sender":"databa
se","receiver":"optimiser", "content": {"name" :"savedOptimiserResult", "prop
1":"\"Success\"","isNegated":false}}
{"msgId":"mid7","isReply":"nirt", "performative" :"question", "sender" :"oper
ator","receiver":"assistant", "content":{"name":"cancelAllocByOptimization
","isNegated":false}}

{"msgId":"mid8", "isReply":"nirt", "performative":"question", "sender":"assi
stant", "receiver":"optimiser", "content":{"name":"cancelOpAlloc", "isNegate
d":false}}

{"msgId":"mid9", "isReply":"nirt", "performative":"question", "sender":"opti
miser", "receiver":"database", "content":{"name":"cancelOpAlloc", "isNegated
":false}}

{"msgId":"mid1l0", "isReply":"nirt", "performative" :"assert", "sender":"datab
ase","receiver":"optimiser", "content":{"name":"cancelOpAllocation", "propl
":"\"Success\"","isNegated":false}}
{"msgId":"mid1l1l","isReply":"nirt", "performative" :"assert", "sender":"optim

iser","receiver":"assistant","content":{"name":"cancelOpAllocation", "prop
1":"\"Success\"","isNegated":false}}

{"msgId":"mid1l2","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"Ok, solicitacéo
concluida sem alocar nenhum

paciente.\"", "name" :"answer", "propl": {"propl":"\"Success\"", "name" : "cance

10OpAllocation", "isNegated":false}, "isNegated":false}}

MAS log from specialist S2

[NetworkListener] Started listener bound to [{0}]

[HttpServer] [{0}] Started.

[Cartago] Workspace wp created.

[Cartago] getJoinedWorkspaces: [main]

[Cartago] artifact dialédjaca:
br.pucrs.smart.Diald4JaCa.Diald4JaCaArtifact () at wp created.

[Cartago] artifact rv4jaca: br.pucrs.smart.rv4JaCa.RV4JaCaArtifact () at
wp created.

[Cartago] artifact pddl: br.pucrs.smart.validator.ValidatorArtifact () at
wp created.

[Cartago] artifact optimiser:
br.pucrs.smart.optimiser.OptimiserArtifact () at wp created.

[Cartago] artifact postgres: br.pucrs.smart.postgresqgl.PostgresArtifact ()
at wp created.

[OntologyArtifact] Importing ontology from
src/resources/HospitalBedAllocationNoIndividualsand5rules-pt.owl
[OntologyArtifact] Ontology ready!

[Cartago] artifact onto:

br.pucrs.smart.ontology.mas.OntologyArtifact ("src/resources/HospitalBedAl
locationNoIndividualsandSrules-pt.owl") at wp created.

[assistant] Assistant agent enabled.

[optimiser] joinned workspace wp

[optimiser] focusing on artifact optimiser (at workspace wp) using
namespace default

[validator] joinned workspace wp

[validator] focusing on artifact pddl (at workspace wp) using namespace
default

[database] joinned workspace wp

[database] focusing on artifact postgres (at workspace wp) using
namespace default

[operator] joinned workspace wp

[ontology specialist] Jjoinned workspace wp

[database] Database specialist agent enabled.

[validator] Validator agent enabled.

[optimiser] Optimiser agent enabled.

[operator] focusing on artifact dial4d4jaca (at workspace wp) using
namespace default

[ontology specialist] focusing on artifact onto (at workspace wp) using
namespace default

[operator] Communication specialist agent enabled.

[ontology specialist] focusing on artifact postgres (at workspace wp)
using namespace default

[ontology specialist] Agent ontology specialist enabled.

[operator] Request received - Get Suggestion from Dialog

[operator] Chatbot of operator suggestions to allocate: ["Maria da
Silva"]

[assistant] Agent operator requesting suggestion.

[optimiser] Agent assistant requesting optmised suggestion.

[assistant] Result received from agent optimiser

[database] Agent optimiser wants to save the optimiser result

[operator] Answering to chatbot: Eu posso sugerir colocar o/a paciente
Maria da Silva no leito 103a. Vocé gostaria que eu confirmasse essa
alocacdao?

[optimiser] Resultado da otimizacdo salvo no banco de dados

[operator] Request received - Get Suggestion - no from Dialog

[operator] Chatbot of operator is requesting the cancellation of the
suggested allocation.

[assistant] Agent operator requesting cancellation of the optmised

allocation.

[optimiser] Agent assistant requesting cancellation of the last optmised

allocation.

[database] Agent optimiser wants to cancel the last optmised allocation
[optimiser] Agent database is returning about the cancellation of the
last optmised allocation.

[assistant] Agent optimiser is answering about the cancellation of the

optmised allocation.

[operator] Answering to chatbot: 0Ok, solicitac&o concluida sem alocar

nenhum paciente.

[operator] Request received - Get Suggestion from Dialog

[operator] Chatbot of operator suggestions to allocate: ["Maria da
Silva"]

[assistant] Agent operator requesting suggestion.

[optimiser] Agent assistant requesting optmised suggestion.

[assistant] Result received from agent optimiser

[database] Agent optimiser wants to save the optimiser result
[operator] Answering to chatbot: Eu posso sugerir colocar o/a paciente

Maria da Silva no leito 103a. Vocé gostaria que eu confirmasse essa
alocacdo?

[optimiser] Resultado da otimizacdo salvo no banco de dados

operator] Request received - Get Optimised Allocation from Dialog

operator] Chatbot of operator is requesting an optimised allocation.

assistant] Agent operator requesting an optmised allocation.

optimiser] Agent assistant requesting an optmised allocation.

optimiser] Calling Optimiser.

database] Agent optimiser wants to save the optimiser result

assistant] Result received from agent optimiser

operator] Answering to chatbot: Gerei uma alocacdo otimizada, porém néo

conseguirei alocar todos os pacientes pois ndo localizei leitos adequados

para os pacientes Vitor Almeida, e Daniel Souza. Vocé pode ver minha
sugestdo no menu 'Alocacdo otimizada' aqui ao lado. Vocé quer que eu

confirme essa alocacgédo?

[optimiser] Resultado da otimizacdo salvo no banco de dados

[operator] Request received - Get Optimised Allocation - yes from Dialog
[operator] Chatbot of operator is requesting the confirmation of the

optimised allocation.

[assistant] Agent operator requesting confirmation of the optmised

allocation.

[optimiser] Agent assistant requesting confirmation of the optmised
allocation.

[database] Agent optimiser wants to allocate patients using optimizer
result

[assistant] Communication error -- no_applicable: Found a goal for which
there is no applicable plan:

+!kgml received(optimiser,assert,allocatedOpPatients ("Erro"),mid29)
[operator] Request received - Get Validation Result from Dialog
operator] Chatbot of operator is requesting plan validation.

[
[
[
[
[
[
[
[

[

[assistant] Agent operator requesting validation result.

[validator] Agent assistant requesting validation result.

[assistant] Response received from agent validador

[validator] Agent assistant requesting to save result in validation.
[database] Agent validator wants to update the validation result
[operator] Answering to chatbot: O seu plano de alocacédo de leitos possui
falhas. Houve um erro ao alocar o0s seguintes pacientes: Vitor Almeida no

2

leito 301b - Pois o leito 301b nd&o é de Tipo de Encaminhamento Agudo,
e Especialidade Gastro como é o caso do paciente. Devo confirmar a
alocacdo mesmo assim ou prefere gque eu sugira uma alocacdo otimizada?
[validator] Agent database is answering about the update.

[assistant] Retorno da validacdo salvo no banco de dados

[operator] Request received - Get Validation Result - optimize from
Dialog

[operator] Chatbot of operator is requesting an optimised allocation.
assistant] Agent operator requesting an optmised allocation.

optimiser] Agent assistant requesting an optmised allocation.
optimiser] Calling Optimiser.

database] Agent optimiser wants to save the optimiser result

assistant] Result received from agent optimiser

operator] Answering to chatbot: Desculpe-me, mas com os dados
disponiveis atualmente, ndo foi possivel gerar uma alocacdo otimizada.
optimiser] Resultado da otimizacdo salvo no banco de dados

operator] Request received - Get Validation Result from Dialog
operator] Chatbot of operator is requesting plan validation.

assistant] Agent operator requesting validation result.

validator] Agent assistant requesting validation result.

assistant] Response received from agent validador

[operator] Answering to chatbot: Desculpe, ndo recebi o seu plano de
alocacdo para validar. Por favor, envie novamente.

[assistant] Communication error -- no_applicable: Found a goal for which
there is no applicable plan: +!saveResult (result ("NULL"), "Desculpe, néo
recebi o seu plano de alocagdo para validar. Por favor, envie
novamente.") [source (self)]

[operator] Request received - Get Validation Result from Dialog
[operator] Chatbot of operator is requesting plan validation.

[assistant] Agent operator requesting validation result.
[
[

[
[
[
[
[
[

[
[
[
[
[
[

validator] Agent assistant requesting validation result.

assistant] Response received from agent validador

[operator] Answering to chatbot: Desculpe, ndo recebi o seu plano de
alocacdo para validar. Por favor, envie novamente.

[assistant] Communication error -- no_applicable: Found a goal for which
there is no applicable plan: +!saveResult (result ("NULL"), "Desculpe, néo
recebi o seu plano de alocagdo para validar. Por favor, envie
novamente.") [source (self)]

[operator] Request received - Get Validation Result from Dialog
[operator] Chatbot of operator is requesting plan validation.

[assistant] Agent operator requesting validation result.

[validator] Agent assistant requesting validation result.

[assistant] Response received from agent validador

[operator] Answering to chatbot: O seu plano de alocacédo de leitos possui
falhas. Houve um erro ao alocar o0s seguintes pacientes: Vitor Almeida no
leito 301b - Pois o leito 301b ndo é de Tipo de Encaminhamento Agudo,
e Especialidade Gastro como é o caso do paciente. Devo confirmar a
alocacdo mesmo assim ou prefere gque eu sugira uma alocacdo otimizada?
[validator] Agent assistant requesting to save result in validation.
database] Agent validator wants to update the validation result
validator] Agent database is answering about the update.

assistant] Retorno da validacdo salvo no banco de dados

operator] Request received - Get Validation Result - confirm from Dialog
[operator] Chatbot of operator is requesting the confirmation of the
allocation.

[assistant] Agent operator requesting allocation based on the last
validation result.

[validator] Agent assistant requesting allocation.

[
[
[
[

Agent validator wants to allocate patients using validation

[database]
result

[validator] Agent database is answering about the allocation.
[operator] Answering to chatbot: 0Ok, pacientes alocados conforme

solicitado

RV4JaCa log from specialist S2

{"msgId":"midl","isReply":"nirt", "performative":"question", "sender":"oper
ator","receiver":"assistant", "content":{"name":"getSuggestionByPatient","
propl":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}
{"msgId":"mid2","isReply":"nirt", "performative":"question", "sender":"assi
stant", "receiver":"optimiser", "content":{"name":"getSuggestionByPatient",
"propl":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}
{"msgId":"mid3","isReply":"nirt", "performative":"assert", "sender":"optimi
ser","receiver":"assistant","content": {"name":"suggestionByPatient", "prop
1": {"prop2":{"propl":{"length":0}, "name" :"notAlloc", "isNegated":false},"p
ropl":"\"true\"", "name":"optimiserResult", "isNegated":false, "prop3": {"pro
pl":{"arr": [{"prop2":"\"103a\"", "propl":"\"Maria da
Silva\"","name":"alloc", "isNegated":false}],"length":1}, "name":"sugestedA
llocation™, "isNegated":false}},"isNegated":false}}
{"msgId":"mid4","isReply":"nirt", "performative":"question", "sender":"opti
miser", "receiver":"database", "content":{"name":"saveOptimiserResult", "isN
egated":false}}

{"msgId":"mid5","isReply":"nirt", "performative":"assert", "sender":"assist
ant", "receiver":"operator", "content": {"prop2":"\"Eu posso sugerir colocar
o/a paciente Maria da Silva no leito 103a. Vocé gostaria que eu
confirmasse essa

alocacdo?\"", "name":"answer", "propl": {"propl": {"prop2": {"propl": {"length"
:0}, "name" :"notAlloc","isNegated":false}, "propl":"\"true\"", "name" :"optim
iserResult", "isNegated":false, "prop3":{"propl":{"arr": [{"prop2":"\"103a\"
", "propl":"\"Maria da
Silva\"","name":"alloc","isNegated":false}],"length":1}, "name":"sugestedA
llocation™, "isNegated":false}}, "name":"suggestionByPatient", "isNegated":f
alse},"isNegated":false}}

{"msgId":"mid6é", "isReply":"nirt", "performative" :"assert", "sender":"databa
se","receiver":"optimiser", "content": {"name" :"savedOptimiserResult", "prop
1":"\"Success\"","isNegated":false}}
{"msgId":"mid7","isReply":"nirt", "performative" :"question", "sender" :"oper
ator","receiver":"assistant", "content":{"name":"cancelAllocByOptimization
","isNegated":false}}

{"msgId":"mid8", "isReply":"nirt", "performative":"question", "sender":"assi
stant", "receiver":"optimiser", "content":{"name":"cancelOpAlloc", "isNegate
d":false}}

{"msgId":"mid9", "isReply":"nirt", "performative":"question", "sender":"opti
miser", "receiver":"database", "content":{"name":"cancelOpAlloc", "isNegated
":false}}

{"msgId":"mid1l0", "isReply":"nirt", "performative":"assert", "sender":"datab
ase","receiver":"optimiser", "content":{"name":"cancelOpAllocation", "propl
":"\"Success\"","isNegated":false}}
{"msgId":"mid1ll","isReply":"nirt", "performative" :"assert", "sender":"optim

iser","receiver":"assistant","content":{"name":"cancelOpAllocation", "prop
1":"\"Success\"","isNegated":false}}

{"msgId":"mid1l2","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"Ok, solicitacéo
concluida sem alocar nenhum

paciente.\"", "name" :"answer", "propl": {"propl":"\"Success\"", "name" : "cance
10OpAllocation", "isNegated":false}, "isNegated":false}}
{"msgId":"mid13","isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"getSuggestionByPatient",
"propl":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}
{"msgId":"mid1l4","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"optimiser", "content": {"name" :"getSuggestionByPatient"

,"propl":{"arr":["\"Maria da Silva\""],"length":1},"isNegated":false}}

{"msgId":"mid15","isReply":"nirt", "performative":"assert", "sender":"optim

iser","receiver":"assistant", "content":{"name":"suggestionByPatient", "pro
pl":{"prop2":{"propl":{"length":0}, "name":"notAlloc", "isNegated":false},"
propl":"\"true\"", "name" :"optimiserResult", "isNegated":false, "prop3": {"pr
opl":{"arr": [{"prop2":"\"103a\"", "propl":"\"Maria da
Silva\"","name":"alloc","isNegated":false}],"length":1}, "name":"sugestedA
llocation™, "isNegated":false}},"isNegated":false}}
{"msgId":"midl6","isReply":"nirt", "performative":"question", "sender":"opt
imiser", "receiver":"database", "content":{"name":"saveOptimiserResult", "is
Negated":false}}

{"msgId":"midl7","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"Eu posSso sugerir

colocar o/a paciente Maria da Silva no leito 103a. Vocé gostaria que eu
confirmasse essa

alocacdo?\"", "name":"answer", "propl": {"propl": {"prop2": {"propl": {"length"
:0}, "name" : "notAlloc", "isNegated":false}, "propl":"\"true\"", "name" : "optim
iserResult","isNegated":false, "prop3": {"propl":{"arr": [{"prop2":"\"103a\"
", "propl":"\"Maria da

Silva\"","name":"alloc", "isNegated":false}],"length":1}, "name":"sugestedA
llocation™, "isNegated":false}}, "name":"suggestionByPatient", "isNegated":f
alse},"isNegated":false}}

{"msgId":"mid1l8","isReply":"nirt", "performative":"assert", "sender":"datab
ase","receiver":"optimiser", "content":{"name":"savedOptimiserResult", "pro
pl":"\"Success\"","isNegated":false}}

{"msgId":"mid1l9", "isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"getOptimisedAllocation",
"isNegated":false}}

{"msgId":"mid20", "isReply":"nirt", "performative" :"question", "sender":"ass
istant", "receiver":"optimiser", "content":{"name":"getOptimisedAllocation"
, "isNegated":false}}

{"msgId":"mid21","isReply":"nirt", "performative":"question", "sender":"opt
imiser", "receiver":"database", "content": {"name":"saveOptimiserResult", "is
Negated":false}}
{"msgId":"mid22","isReply":"nirt", "performative" :"assert", "sender":"optim
iser","receiver":"assistant","content": {"prop2":{"propl": {"arr": ["\"Vitor
Almeida\"", "\"Daniel
Souza\""],"length":2}, "name" :"notAlloc","isNegated":false}, "name":"optimi
serResult", "propl":"\"false\"","isNegated":false, "prop3":{"propl":{"arr":
[{"prop2":"\"205b\"", "propl":"\"Janaina de

Vargas\"", "name":"alloc", "isNegated":false}, {"prop2":"\"205a\"", "propl":"
\"Maria da

Silva\"","name":"alloc","isNegated":false}, {"prop2":"\"402a\"", "propl":"\
"Felipe

Pinto\"", "name":"alloc","isNegated":false}, {"prop2":"\"402b\"", "propl": "\
"Antdnio

Marques\"", "name":"alloc", "isNegated":false}, {"prop2":"\"301c\"", "propl":
"\"Vicente

Nunes\"", "name":"alloc","isNegated":false}, {"prop2":"\"103a\"", "propl":"\
"Marisa da

Costa\"","name":"alloc", "isNegated":false}],"length":6}, "name":"sugestedA
llocation™, "isNegated":false}}}

{"msgId":"mid23","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"Gerei uma alocacdo
otimizada, porém ndo conseguirei alocar todos os pacientes pois néo
localizei leitos adequados para os pacientes Vitor Almeida, e Daniel
Souza. Vocé pode ver minha sugestdo no menu \uOO027Alocacdo
otimizada\u0027 agqui ao lado. Vocé quer que eu confirme essa
alocacdo?\"", "name":"answer", "propl": {"prop2": {"propl":{"arr": ["\"Vitor

Almeida\"","\"Daniel
Souza\""],"length":2}, "name" :"notAlloc", "isNegated":false}, "propl":"\"fal
se\"","name":"optimiserResult", "isNegated":false, "prop3": {"propl":{"arr":
[{"prop2":"\"205b\"", "propl":"\"Janaina de

Vargas\"", "name":"alloc", "isNegated":false}, {"prop2":"\"205a\"", "propl":"
\"Maria da

Silva\"", "name":"alloc","isNegated":false}, {"prop2":"\"402a\"", "propl":"\
"Felipe

Pinto\"", "name":"alloc", "isNegated":false}, {"prop2":"\"402b\"", "propl":"\
"Antdnio

Marques\"", "name":"alloc", "isNegated":false}, {"prop2":"\"301lc\"", "propl":
"\"Vicente

Nunes\"", "name":"alloc", "isNegated":false}, {"prop2":"\"103a\"", "propl": "\
"Marisa da

Costa\"","name":"alloc", "isNegated":false}],"length":6}, "name":"sugestedA
llocation™, "isNegated":false}},"isNegated":false}}
{"msgId":"mid24","isReply":"nirt", "performative”:"assert", "sender":"datab
ase","receiver":"optimiser", "content":{"name":"savedOptimiserResult", "pro
pl":"\"Success\"", "isNegated":false}}

{"msgId":"mid26","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"optimiser", "content":{"name":"allocOpPatients", "isNeg

ated":false}}

{"msgId":"mid27","isReply":"nirt", "performative":"question", "sender":"opt
imiser", "receiver":"database", "content":{"name":"allocOpPatients", "isNega
ted":false}}

{"msgId":"mid25", "isReply":"nirt", "performative" :"question", "sender":"ope
rator","receiver":"assistant","content":{"name":"confirmAllocByOptimizati
on","isNegated":false}}
{"msgId":"mid29","isReply":"nirt", "performative" :"assert", "sender":"optim
iser","receiver":"assistant","content":{"name":"allocatedOpPatients", "pro
pl":"\"Erro\"","isNegated":false}}

{"msgId":"mid30","isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"getValidationResult", "is
Negated":false}}

{"msgId":"mid31","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"validator", "content":{"name":"getValidationResult","i
sNegated":false}}

{"msgId":"mid32","isReply":"nirt", "performative":"assert", "sender":"valid
ator","receiver":"assistant", "content": {"prop2":"\"false\"", "name":"resul
t", "propl":"\"cl0473aa-426b-4eb3-b0bd-

ffdlc9cdeeda\"", "isNegated":false, "prop3":{"arr": [{"prop2":"\"301b\"", "pr
opl":"\"Vitor

Almeida\"", "name":"err", "isNegated":false, "prop3": {"arr": [{"prop2":"\"Tip
o de Encaminhamento

\"","propl":"\"missingPositive\"", "name":"mot", "isNegated":false, "prop3":
"\"Agudo\""}, {"prop2":"\"Especialidade
\"", "propl":"\"missingPositive\"", "name":"mot", "isNegated":false, "prop3":

"\"Gastro\""}],"length":2}}],"length":1}}}
{"msgId":"mid33","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"O seu plano de alocacéo
de leitos possui falhas. Houve um erro ao alocar os seguintes pacientes:
Vitor Almeida no leito 301b - Pois o leito 301b ndo é de Tipo de
Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocacdo mesmo assim ou prefere gque eu sugira
uma alocacao

otimizada?\"", "name":"answer", "propl": {"prop2":"\"false\"", "propl":"\"cl0
473aa-426b-4eb3-b0bd-

ffdlc9cdeeda\"", "name" : "result", "isNegated":false, "prop3":{"arr": [{"prop2

n

n . "\"30lb\" ", Ilpropl" : ll\"vitor
Almeida\"", "name":"err", "isNegated":false, "prop3":{"arr": [{"prop2":"\"Tip
o de Encaminhamento

\"", "propl":"\"missingPositive\"", "name" :"mot", "isNegated":false, "prop3":
"\"Agudo\""}, {"prop2":"\"Especialidade

\"", "propl":"\"missingPositive\"", "name" :"mot", "isNegated":false, "prop3":
"\"Gastro\""}],"length":2}}],"length":1}},"isNegated":false}}
{"msgId":"mid34","isReply":"nirt", "performative":"question", "sender":"ass
istant","receiver":"validator", "content": {"prop2":"\"O seu plano de
alocacdo de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b ndo é de Tipo

de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocacdo mesmo assim ou prefere que eu sugira
uma alocacdo otimizada?\"","name":"updateValidation", "propl":"\"cl0473aa-
426b-4eb3-b0bd-ffdlc9cdeeda\"", "isNegated":false}}
{"msgId":"mid35","isReply":"nirt", "performative":"question", "sender":"val
idator", "receiver":"database", "content": {"prop2":"\"O seu plano de
alocacdo de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b ndo é de Tipo
de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocacdo mesmo assim ou prefere gque eu sugira
uma alocacdo otimizada?\"","name":"updateValidation", "propl":"\"cl0473aa-
426b-4eb3-b0bd-ffdlc9cdeeda\"", "isNegated":false}}
{"msgId":"mid36","isReply":"nirt", "performative":"assert", "sender":"datab
ase","receiver":"validator","content":{"name" :"updatedvValidation", "propl"
:"\"Success\"","isNegated":false}}

{"msgId":"mid37","isReply":"nirt", "performative":"assert", "sender":"valid
ator","receiver":"assistant", "content":{"name":"updatedvalidation", "propl
":"\"Success\"","isNegated":false}}
{"msgId":"mid38","isReply":"nirt", "performative" :"question", "sender":"ope
rator","receiver":"assistant","content":{"name":"getOptimisedAllocation",
"isNegated":false}}

{"msgId":"mid39","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"optimiser", "content":{"name":"getOptimisedAllocation"
,"isNegated":false}}
{"msgId":"mid40","isReply":"nirt", "performative" :"question", "sender":"opt
imiser", "receiver":"database", "content":{"name":"saveOptimiserResult", "is
Negated":false}}

{"msgId":"mid41l","isReply":"nirt", "performative":"assert", "sender":"optim
iser","receiver":"assistant","content": {"prop2":{"propl": {"arr": ["\"Vitor
Almeida\"", "\"Daniel
Souza\""],"length":2}, "name" :"notAlloc", "isNegated":false}, "name":"optimi
serResult", "propl":"\"false\"","isNegated":false, "prop3":{"propl":{"lengt
h":0}, "name" :"sugestedAllocation", "isNegated":false}}}
{"msgId":"mid42","isReply":"nirt", "performative":"assert", "sender":"assis

tant", "receiver":"operator", "content": {"prop2":"\"Desculpe-me, mas com OS
dados disponiveis atualmente, ndo foi possivel gerar uma alocacéo
otimizada.\"", "name":"answer", "propl": {"prop2": {"propl":{"arr":["\"Vitor

Almeida\"","\"Daniel

Souza\""],"length":2}, "name" :"notAlloc", "isNegated":false}, "propl":"\"fal
se\"", "name" :"optimiserResult", "isNegated":false, "prop3": {"propl":{"lengt
h":0}, "name" :"sugestedAllocation", "isNegated":false}}, "isNegated":false}}

{"msgId":"mid43","isReply":"nirt", "performative" :"assert", "sender":"datab
ase","receiver":"optimiser", "content": {"name":"savedOptimiserResult", "pro
pl":"\"Success\"", "isNegated":false}}

{"msgId":"mid44","isReply":"nirt", "performative" :"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"getValidationResult", "is

Negated":false}}

{"msgId":"mid45","isReply":"nirt", "performative":"question", "sender":"ass

istant", "receiver":"validator", "content":{"name":"getValidationResult","1i
sNegated":false}}

{"msgId":"mid46","isReply":"nirt", "performative":"assert", "sender":"valid
ator","receiver":"assistant", "content": {"name":"result", "propl" :"\"NULL\"
","isNegated":false}}

{"msgId":"mid47","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"Desculpe, ndo recebi o
seu plano de alocacdo para validar. Por favor, envie
novamente.\"", "name" : "answer", "propl": {"propl":"\"NULL\"", "name" : "result"
, "isNegated":false}, "isNegated":false}}
{"msgId":"mid48","isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"getValidationResult", "is
Negated":false}}

{"msgId":"mid49","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"validator", "content":{"name":"getValidationResult","1i
sNegated":false}}

{"msgId":"mid50", "isReply":"nirt", "performative":"assert", "sender":"valid
ator","receiver":"assistant", "content":{"name":"result", "propl" :"\"NULL\"
","isNegated":false}}

4

{"msgId":"mid51","isReply":"nirt", "performative":"assert", "sender":"assis
tant","receiver":"operator", "content": {"prop2":"\"Desculpe, ndo recebi o
seu plano de alocacdo para validar. Por favor, envie
novamente.\"", "name": "answer", "propl": {"propl" :"\"NULL\"", "name" :"result"

, "isNegated":false}, "isNegated":false}}

{"msgId":"mid52", "isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"getValidationResult", "is
Negated":false}}

{"msgId":"mid53", "isReply" :"nirt", "performative" :"question", "sender":"ass
istant", "receiver":"validator", "content":{"name":"getValidationResult","i
sNegated":false}}
{"msgId":"mid54","isReply":"nirt", "performative" :"assert", "sender":"valid
ator","receiver":"assistant", "content": {"prop2":"\"false\"", "name":"resul
t", "propl":"\"3df9%af07-55fb-4580-bad2-

e2abb6f45e9d\"", "isNegated": false, "prop3": {"arr": [{"prop2":"\"301b\"", "pr
opl":"\"Vitor

Almeida\"", "name":"err", "isNegated":false, "prop3": {"arr": [{"prop2":"\"Tip
o de Encaminhamento

\"","propl":"\"missingPositive\"", "name":"mot", "isNegated":false, "prop3":
"\"Agudo\""}, {"prop2":"\"Especialidade
\"","propl":"\"missingPositive\"", "name":"mot", "isNegated":false, "prop3":

"\"Gastro\""}],"length":2}}],"length":1}}}

{"msgId" :"mid55", "isReply" :"nirt", "performative" :"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"O seu plano de alocacéo
de leitos possui falhas. Houve um erro ao alocar os seguintes pacientes:
Vitor Almeida no leito 301b - Pois o leito 301b ndo é de Tipo de
Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocagdo mesmo assim ou prefere que eu sugira
uma alocacao

otimizada?\"", "name" :"answer", "propl": {"prop2":"\"false\"", "propl":"\"3df
9af07-55fb-4580-bad2-

e2a6b6£f45e9d\"", "name" : "result", "isNegated":false, "prop3": {"arr": [{"prop2
"M\"301b\"", "propl":"\"Vitor

Almeida\"", "name":"err", "isNegated":false, "prop3": {"arr": [{"prop2":"\"Tip
o de Encaminhamento
\"","propl":"\"missingPositive\"", "name":"mot", "isNegated":false, "prop3":
"\"Agudo\""}, {"prop2":"\"Especialidade

\"", "propl":"\"missingPositive\"", "name" :"mot", "isNegated":false, "prop3":
"\"Gastro\""}],"length":2}}],"length":1}},"isNegated":false}}
{"msgId":"mid56","isReply":"nirt", "performative":"question", "sender":"ass
istant","receiver":"validator", "content": {"prop2":"\"O seu plano de
alocacdo de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b ndo é de Tipo
de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocacdo mesmo assim ou prefere que eu sugira
uma alocacdo otimizada?\"","name":"updateValidation", "propl":"\"3df9%af07-
55fb-4580-bad42-e2a6b6f45e9d\"", "isNegated":false}}
{"msgId":"mid57","isReply":"nirt", "performative":"question", "sender":"val
idator", "receiver":"database", "content": {"prop2":"\"0O seu plano de
alocacdo de leitos possui falhas. Houve um erro ao alocar os seguintes
pacientes: Vitor Almeida no leito 301b - Pois o leito 301b ndo é de Tipo
de Encaminhamento Agudo, e Especialidade Gastro como é o caso do
paciente. Devo confirmar a alocacdo mesmo assim ou prefere gque eu sugira

uma alocacdo otimizada?\"","name":"updateValidation", "propl":"\"3df%af07-
55fb-4580-bad42-e2a6b6f45e9d\"", "isNegated":false}}
{"msgId":"mid58","isReply":"nirt", "performative”:"assert", "sender":"datab

ase","receiver":"validator", "content": {"name" :"updatedvalidation", "propl"
" " mn " "
:"\"Success\"","isNegated":false}}
{"msgId":"mid59", "isReply":"nirt", "performative":"assert", "sender":"valid
ator","receiver":"assistant", "content":{"name":"updatedvalidation", "propl
" " " mwn " "

:"\"Success\"","isNegated":false}}
{"msgId":"mid60", "isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"allocValPatients", "isNeg
ated":false}}
{"msgId":"mid6l","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"validator", "content":{"name":"allocByValidation", "isN
egated":false}}
{"msgId":"mid62","isReply":"nirt", "performative" :"question", "sender":"val
idator", "receiver":"database", "content":{"name":"allocByValidation", "isNe
gated":false}}
{"msgId":"mid63","isReply":"nirt", "performative":"assert", "sender":"datab
ase","receiver":"validator", "content":{"name":"allocByValidation", "propl"
:"\"Success\"","isNegated":false}}
{"msgId":"mid64","isReply":"nirt", "performative" :"assert", "sender":"valid
ator","receiver":"assistant", "content":{"name":"allocByValidation", "propl
":"\"Success\"","isNegated":false}}
{"msgId":"mid65", "isReply" :"nirt", "performative":"assert", "sender":"assis

tant", "receiver":"operator", "content": {"prop2":"\"Ok, pacientes alocados
conforme
solicitado\"", "name":"answer", "propl": {"propl":"\"Success\"", "name":"allo

cByValidation", "isNegated":false}, "isNegated":false}}

Appendix C

Evaluation of Expressivity of the
Framework - Logs

109

MAS log

[NetworkListener] Started listener bound to [{0}]

[HttpServer] [{0}] Started.

[Cartago] Workspace wp created.

[Cartago] getJoinedWorkspaces: [main]

[Cartago] artifact dialé4jaca:
br.pucrs.smart.Diald4JaCa.Diald4JaCaArtifact () at wp created.

[Cartago] artifact rv4jaca: br.pucrs.smart.RV4JaCa.RV4JaCaArtifact () at
wp created.

[Onto4JaCaArtifact] Importing ontology from src/resources/hsl-
ontology.owl

[Onto4JaCaArtifact] Ontology ready!

[Cartago] artifact ontoédjaca:
br.pucrs.smart.Onto4JaCa.mas.Onto4JaCaArtifact ("src/resources/hsl-
ontology.owl") at wp created.

[Cartago] artifact pddl: br.pucrs.smart.validator.ValidatorArtifact () at
wp created.

[Cartago] artifact postgres: br.pucrs.smart.postgresqgl.PostgresArtifact ()
at wp created.

[ontology specialist] Jjoinned workspace wp

[ontology specialist] focusing on artifact onto4jaca (at workspace wp)
using namespace default

[ontology specialist] focusing on artifact postgres (at workspace wp)
using namespace default

[database] joinned workspace wp

[database] focusing on artifact postgres (at workspace wp) using
namespace default

[assistant] Assistant agent enabled.
validator] joinned workspace wp

optimiser] Optimiser agent enabled.

operator] joinned workspace wp

operator] focusing on artifact dial4jaca (at workspace wp) using
namespace default

[validator] focusing on artifact pddl (at workspace wp) using namespace
default

[validator] Validator agent enabled.

[operator] Communication specialist agent enabled.

[nurse] Jjoinned workspace wp

[database] Database specialist agent enabled.

[nurse] focusing on artifact dial4jaca (at workspace wp) using namespace
default

nurse] Communication specialist agent enabled.

ontology specialist] Iniciando busca no banco de dados

ontology specialist] Busca no banco de dados finalizada

ontology specialist] Agent ontology specialist enabled.

nurse] Request received - Default Welcome Intent from Dialog

nurse] Params: []

operator] Request received - Default Welcome Intent from Dialog

[
[
[
[
[
[
[
[operator
[
[
[
[
[
[
[
[

[
[
[
[

] Params: []
operator] Request received - Default Welcome Intent from Dialog
operator] Params: []
operator] Request received - Default Welcome Intent from Dialog

operator] Params: []

nurse] Request received - Default Welcome Intent from Dialog
nurse] Params: []

operator] Request received - Default Welcome Intent from Dialog
operator] Params: []

[operator] Request received - Allocate Patient from Dialog

[operator] Params: [param("paciente","2044429"),param("leito","3132")]
[operator] Chatbot of operator is requesting an allocation.

[assistant] Agent operator asks to allocate patient 2044429 to bed 3132
[operator] Answering to chatbot: Antes eu preciso verificar se esse leito
é adequado para esse paciente, pode ser?

[operator] Request received - Allocate Patient - verify suitability from
Dialog

[operator] Params: []

[operator] Chatbot of operator is requesting to verify suitability:
paciente: 2044429, leito: 3132

[ontology specialist] Verifying if adequado ("3132","2044429").

[ontology specialist] Verifying if inadequado ("3132","2044429").
[operator] Answering to chatbot: Ndo, esse leito ndo é adequado.
[operator] Request received - Allocate Patient - verify suitability - why
from Dialog

[operator] Params: []

[operator] Chatbot of operator is requesting explanation about
suitability of 3132 leito to 2044429

[ontology specialist] Received explain request for explaning the
predicate: inadequado ("3132","2044429")

[ontology specialist] !getAnswer

[ontology specialist] Explanation for adequado ("3132","2044429") not
found.

[ontology specialist] Found argument for: inadequado ("3132","2044429")
[operator] Answering to chatbot: O leito 3132 n&o é adequado para o(a)
paciente 2044429 pois a cobertura do(a) paciente é ENFERMARIA e esse
leito é UTI ADULTO GERAL.

[operator] Request received - Allocate Patient - verify suitability - why
- allocate anyway from Dialog

[operator] Params: []

[operator] Chatbot of operator is requesting to allocate anyway.
[assistant] Agent operator asks to allocate a patient to a bed anyway
[operator] Answering to chatbot: Desculpe, vocé ndo tem autorizacdo para
efetuar essa alocacdo, mas vocé pode pedir para a gestora abrir uma
excecao

[nurse] Request received - Default Welcome Intent from Dialog

nurse] Params: []

nurse] Request received - Register Exception from Dialog

nurse] Params: [param("paciente","2044429"),param("leito","3132")]
nurse] Chatbot of nurse is requesting to register an exception:
paciente: 2044429, leito: 3132

[assistant] Agent nurse asks to register exception on patient 2044429 and
bed 3132

[ontology specialist] Registering exception for bed 3132 and patient
2044429

[assistant] Agent ontology specialist informs that the exception on
patient 2044429 and bed 3132 was registered.

[nurse] Answering to chatbot: Ok, estou registrando a excecdo solicitada
[operator] Request received - Verify Suitability from Dialog

[operator] Params: [param("paciente"™,"2044429"),param("leito™,"3132")]
[operator] Chatbot of operator is requesting to verify suitability:
paciente: 2044429, leito: 3132

[ontology specialist] Verifying if adequado ("3132","2044429").

[operator] Answering to chatbot: Sim, esse leito é adequado.

[operator] Request received - Verify Suitability - why from Dialog
[operator] Params: []

[
[
[
[

[operator] Chatbot of operator is requesting explanation about
suitability of 3132 leito to 2044429

[ontology specialist] Received explain request for explaning the
predicate: inadequado ("3132","2044429")

[ontology specialist] !getAnswer

[ontology specialist] Found argument for: adequado ("3132","2044429")
[operator] Answering to chatbot: O leito 3132 é adequado para o (a)
paciente 2044429 pois o(a) gestor(a) abriu uma excecdo para esse caso.
[operator] Request received - getSuperlativelInfol from Dialog
[operator] Params: []

[operator] Chatbot of operator is asking about the smallest room with
fewer patients allocated.

[assistant] Agent operator asks about the smallest room with fewest
occupants.

[database] Agent assistant wants get the smallest room with fewest
occupants.

[assistant] Agent database answer about the smallest room with fewest
occupants.

[operator] Answering to chatbot: O menor quarto com o menor numero de
ocupantes é o 118J

[operator] Request received - getSuperlativelInfo3 from Dialog
[operator] Params: []

[operator] Chatbot of operator is asking about the smallest room with
most patients allocated.

[assistant] Agent operator asks about the biggest room with most

occupants.

[database] Agent assistant wants get the biggest room with most
occupants.

[assistant] Agent database answer about the biggest room with most
occupants.

[operator] Answering to chatbot: O maior quarto com o maior numero de
ocupantes é o 759

[operator] Request received - Get Information About Beds from Dialog
[operator] Params:

[param("status leito","Vago"),param("genero", "FEMININO") ,param("tipo espe
cialidade",""),param("acomodacao",""),param("faixa etaria","")]

[operator] Chatbot of operator is asking for information about beds.
[assistant] Agent operator asks about a bed

leito e do genero (Bed, "FEMININO") leito e da faixa etaria(Bed,"")leito e d
O tipo especialidade(Bed,"")e de acomodacao (Bed,"")possui status (Bed, "Vag
o")

[database] Agent assistant wants a bed.

[assistant] Agent database answered about the bed.

[operator] Answering to chatbot: Localizei o leito 3132 que se encaixa na
sua solicitacdo. Vocé gostaria de alocar um paciente nele?

[operator] Request received - Default Welcome Intent from Dialog
[operator] Params: []

RV4JaCa log

{"msgId":"midl","isReply":"nirt", "performative":"question", "sender":"oper
ator","receiver":"assistant", "content":{"prop2":"\"2044429\"", "name":"alo
car","propl":"\"3132\"", "isNegated":false}}
{"msgId":"mid2","isReply":"nirt", "performative":"assert", "sender":"assist
ant","receiver":"operator", "content": {"prop2":"\"Antes eu preciso

verificar se esse leito é adequado para esse paciente, pode
Ser?\" n, unamen . "answer", "propl " . { npropz " : ll\"2044429\" n, uproplu . u\u3132\u "
, "name" :"verifySuitability","isNegated":false},"isNegated":false}}

{"msgId":"mid3","isReply":"nirt", "performative":"question", "sender":"oper
ator","receiver":"assistant", "content": {"prop2":"\"2044429\"", "name" : "ade
quado", "propl":"\"3132\"", "isNegated":false}}

{"msgId":"mid4","isReply":"nirt", "performative":"question", "sender":"assi

stant","receiver":"ontology specialist","content":{"prop2":"\"2044429\"",
"name":"adequado", "propl":"\"3132\"", "isNegated":false}}
{"msgId":"mid6","isReply":"nirt", "performative":"assert", "sender":"assist
ant", "receiver":"operator", "content": {"prop2":"\"Ndo, esse leito ndo é
adequado.\"", "name" :"answer", "propl": {"prop2":"\"2044429\"", "propl":"\"31
32\"", "name" :"adequado", "isNegated":false}, "isNegated":false}}
{"msgId":"mid5","isReply":"nirt", "performative":"assert", "sender":"ontolo
gy specialist","receiver":"assistant","content":{"prop2":"\"2044429\"","n
ame" : "adequado", "propl":"\"3132\"", "isNegated":false}}

{"msgId":"mid7", "isReply":"nirt", "performative" :"question", "sender" :"oper
ator","receiver":"assistant", "content":{"name":"explain", "propl": {"prop2"
:"\"2044429\"", "propl":"\"3132\"", "name" : "inadequado", "isNegated":false},
"isNegated":false}}

{"msgId":"mid8", "isReply":"nirt", "performative":"question", "sender":"assi
stant", "receiver":"ontology specialist","content":{"name":"explain", "prop
1": {"prop2":"\"2044429\"", "propl":"\"3132\"", "name" : "inadequado", "isNegat
ed":false},"isNegated":false}}

{"msgId":"mid1l0", "isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"0O leito 3132 nd&do é
adequado para o(a) paciente 2044429 pois a cobertura do(a) paciente é
ENFERMARIA e esse leito é UTI ADULTO GERAL.

\"", "name" : "answer", "propl": {"prop2": {"arr": [{"prop2":{"arr": [{"propl":"\
"2044429\"", "name" : "paciente", "isNegated":false}, {"propl":"\"3132\"", "nam
e":"leito","isNegated":false}, {"prop2":"\"ENFERMARIA\"", "propl":"\"204442
9\"", "name" :"possui cobertura","isNegated":false}, {"prop2":"\"UTI ADULTO
GERALA"", "propl":"\"3132\"", "name":"e de acomodacao","isNegated":false}, {
"prop2":"\"UTI ADULTO

GERAL\"", "propl":"\"ENFERMARIA\"", "name":"differentFrom", "isNegated":fals
e}, {"prop2" :"\"NONE\"", "propl":"\"UTI ADULTO

GERAL\"", "name":"differentFrom", "isNegated":false}, {"prop2" :"\"NONE\"", "p
ropl":"\"ENFERMARIA\"", "name":"differentFrom", "isNegated":false}], "length
"7}, "propl": {"prop2":"\"2044429\"", "propl":"\"3132\"", "name" : "inadequado
", "isNegated":false}, "name":"defeasible rule", "isNegated":false}], "length
"1}, "propl": {"prop2":"\"2044429\"", "propl":"\"3132\"", "name" : "inadequado

","isNegated":false}, "name" :"explaining", "isNegated":false}, "isNegated": f
alse}}

{"msgId":"mid9", "isReply":"nirt", "performative" :"assert", "sender":"ontolo
gy specialist","receiver":"assistant","content":{"name":"explain", "propl"

{"prop2™:"\"2044429\"", "propl":"\"3132\"", "name" : "inadequado", "isNegated
":false},"isNegated":false}}

{"msgId":"mid1l1l","isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content": {"prop2":"Patient", "name":"alocar
", "propl":"B","isNegated":false}}

{"msgId":"mid12","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"Desculpe, vocé& ndo tem
autorizacdo para efetuar essa alocacdo, mas vocé pode pedir para a
gestora abrir uma

excecdo\"", "name" :"answer", "propl": {"propl": {"prop2":"Patient", "propl":"B
", "name" :"alocar", "isNegated":false}, "name":"askPermission", "isNegated": f
alse},"isNegated":false}}

{"msgId":"mid13","isReply":"nirt", "performative”:"question", "sender":"nur
se","receiver":"assistant", "content": {"prop2":"\"2044429\"", "name" : "excep
tion", "propl":"\"3132\"","isNegated":false}}
{"msgId":"mid1l4","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"ontology specialist","content":{"prop2":"\"2044429\""
,"name":"nurse_exception","pEopl":"\"3l32\"","isNegated":false}}
{"msgId":"mid15","isReply":"nirt", "performative":"assert", "sender":"ontol
ogy specialist","receiver":"assistant","content":{"prop2":"\"2044429\"", "
name":"nurse exception","propl":"\"3132\"","isNegated":false}}
{"msgId":"midl6","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"nurse", "content": {"prop2":"\"0k, estou registrando a
excecdo

solicitada\"", "name":"answer", "propl": {"prop2":"\"2044429\"", "propl":"\"3
132\"", "name" :"nurse exception","isNegated":false},"isNegated":false}}
{"msgId":"midl7","isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content": {"prop2":"\"2044429\"", "name" : "ad

equado", "propl":"\"3132\"", "isNegated":false}}
{"msgId":"mid18","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"ontology specialist","content": {"prop2":"\"2044429\""
, "name" : "adequado", "propl":"\"3132\"", "isNegated":false}}
{"msgId":"mid1l9", "isReply":"nirt", "performative":"assert", "sender":"ontol
ogy specialist","receiver":"assistant","content":{"prop2":"\"2044429\"", "
name" : "adequado", "propl":"\"3132\"", "isNegated":false}}

{"msgId":"mid20", "isReply" :"nirt", "performative" :"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"Sim, esse leito é
adequado.\"", "name" :"answer", "propl": {"prop2":"\"2044429\"", "propl":"\"31
32\"", "name" :"adequado", "isNegated":false}, "isNegated":false}}
{"msgId":"mid21","isReply":"nirt", "performative" :"question", "sender":"ope
rator","receiver":"assistant","content":{"name":"explain", "propl":{"prop2
"M\"20444290\"", "propl":"\"3132\"", "name" : "inadequado", "isNegated":false}
,"isNegated":false}}

{"msgId":"mid22","isReply":"nirt", "performative":"question", "sender":"ass
istant","receiver":"ontology specialist","content":{"name":"explain", "pro
pl":{"prop2":"\"2044429\"", "propl":"\"3132\"", "name" : "inadequado", "isNega
ted":false}, "isNegated":false}}

{"msgId":"mid23","isReply":"nirt", "performative":"assert", "sender":"ontol
ogy_specialist","receiver":"assistant","content":{"name":"explain", "propl
" {"prop2":"\"2044420\"", "propl":"\"3132\"", "name" : "inadequado", "isNegate
d":false},"isNegated":false}}

{"msgId":"mid24","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"0O leito 3132 é adequado
para o(a) paciente 2044429 pois o(a) gestor(a) abriu uma excecdo para
esse caso.

\"", "name" :"answer", "propl": {"prop2": {"arr": [{"prop2" :"\"2044429\"", "prop
1":"\"3132\"", "name" : "adequado", "isNegated":false}],"length":1}, "propl":{
"prop2":"\"2044429\"", "propl":"\"3132\"", "name" : "inadequado", "isNegated":

false}, "name":"explaining", "isNegated":false}, "isNegated":false}}
{"msgId":"mid25", "isReply":"nirt", "performative" :"question", "sender":"ope
rator","receiver":"assistant", "content":{"name":"smallestRoom", "isNegated

":false}}

{"msgId":"mid26","isReply" :"nirt", "performative":"question", "sender":"ass

istant", "receiver":"database", "content":{"name":"smallestRoom", "isNegated
":false}}

{"msgId":"mid27","isReply":"nirt", "performative”:"assert", "sender":"datab
ase","receiver":"assistant", "content":{"name":"smallestRoom", "propl":"\"1
18J\"", "isNegated":false}}

{"msgId":"mid28","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"O menor quarto com O

menor numero de ocupantes é o

118J\"", "name" : "answer", "propl": {"propl":"\"118J\"", "name" : "smallestRoom"
, "isNegated":false}, "isNegated":false}}
{"msgId":"mid29","isReply":"nirt", "performative":"question", "sender":"ope
rator","receiver":"assistant", "content”: {"name" :"biggestRoom", "isNegated"
:falsel}}

{"msgId":"mid30","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"database", "content":{"name":"biggestRoom", "isNegated"
:falsel}}

{"msgId":"mid31","isReply":"nirt", "performative”:"assert", "sender":"datab
ase","receiver":"assistant", "content":{"name":"biggestRoom", "propl":"\"75
9\"","isNegated":false}}

{"msgId":"mid32","isReply":"nirt", "performative":"assert", "sender":"assis
tant", "receiver":"operator", "content": {"prop2":"\"O maior quarto com o

maior numero de ocupantes é o

759\"", "name" : "answer", "propl": {"propl":"\"759\"", "name" : "biggestRoom", "i
sNegated":false}, "isNegated":false}}
{"msgId":"mid33","isReply":"nirt", "performative" :"question", "sender":"ope
rator","receiver":"assistant","content":{"name":"getBed", "isNegated":fals
et}

{"msgId":"mid34","isReply":"nirt", "performative":"question", "sender":"ass
istant", "receiver":"database", "content": {"name":"getBed", "isNegated":fals
et}

{"msgId":"mid35", "isReply":"nirt", "performative" :"assert", "sender":"datab
ase","receiver":"assistant", "content":{"name":"getBed", "propl":"\"3132\""
,"isNegated":false}}

{"msgId":"mid36","isReply":"nirt", "performative":"assert", "sender":"assis

tant", "receiver":"operator", "content": {"prop2":"\"Localizei o leito 3132
que se encaixa na sua solicitacdo. Vocé gostaria de alocar um paciente
nele?\"", "name" :"answer", "propl": {"propl":"\"3132\"", "name" : "getBed", "isN

egated":false},"isNegated":false}}

Bibliography

[AB18]

[ABAR"20]

[ABS13]

[AFFM21]

[AFM16]

[AFM17]

[AH19]

[AHK20]

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey
on explainable artificial intelligence (xai). IEEE Access, 6:52138-52160, 2018.

Zeynep Akata, Dan Balliet, Maarten de Rijke, Frank Dignum, Virginia Dignum,
Guszti Eiben, Antske Fokkens, Davide Grossi, Koen Hindriks, Holger Hoos,
et al. A research agenda for hybrid intelligence: Augmenting human intel-
lect with collaborative, adaptive, responsible, and explainable artificial intelli-
gence. Computer, 53(8):18-28, 2020.

Suket Arora, Kamaljeet Batra, and Sarabjit Singh. Dialogue system: A brief
review. arXiv preprint arXiv:1306.4134, abs/1306.4134, 2013.

Davide Ancona, Luca Franceschini, Angelo Ferrando, and Viviana Mascardi.
RML: Theory and Practice of a Domain Specific Language for Runtime Verifi-
cation. Science of Computer Programming, 205:102610, 2021.

Davide Ancona, Angelo Ferrando, and Viviana Mascardi. Comparing trace ex-
pressions and linear temporal logic for runtime verification. In Erika Abraham,
Marcello M. Bonsangue, and Einar Broch Johnsen, editors, Theory and Prac-
tice of Formal Methods - Essays Dedicated to Frank de Boer on the Occasion of
His 60th Birthday, volume 9660 of Lecture Notes in Computer Science, pages
47-64. Springer, 2016.

Davide Ancona, Angelo Ferrando, and Viviana Mascardi. Parametric runtime
verification of multiagent systems. In Kate Larson, Michael Winikoff, Sanmay
Das, and Edmund H. Durfee, editors, Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017, Sao Paulo, Brazil,
May 8-12, 2017, pages 1457-1459. ACM, 2017.

Cleber Jorge Amaral and Jomi Fred Hubner. Jacamo-web is on the fly: An
interactive multi-agent system ide. Proceedings of the EMAS, 2019.

Cleber Jorge Amaral, Jomi Fred Hibner, and Timotheus Kampik. Towards

116

[AJSS17]

[AMHBO04]

[AMPOO]

[ANCF19]

[AWO03]

[BA11]

[BBH"13]

[BBHR20]

[BCDO7]

[BCH17]

jacamo-rest: A resource-oriented abstraction for managing multi-agent sys-
tems, 2020.

Amir Ahmadi-Javid, Pardis Seyedi, and Siddhartha S Syam. A survey of health-
care facility location. Computers & Operations Research, 79:223-263, 2017.

Davide Ancona, Viviana Mascardi, Jomi Fred Hibner, and Rafael H. Bordini.
Coo-agentspeak: Cooperation in agentspeak through plan exchange. In 3rd In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems,
New York, USA, pages 696-705. IEEE Computer Society, 2004.

Leila Amgoud, Nicolas Maudet, and Simon Parsons. Modeling dialogues using
argumentation. In ICMAS, pages 31-38. IEEE Computer Society, 2000.

Sule Anjomshoae, Amro Najjar, Davide Calvaresi, and Kary Framling. Explain-
able agents and robots: Results from a systematic literature review. In 18th
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2019), Montreal, Canada, May 13-17, 2019, pages 1078-1088. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2019.

Grigoris Antoniou and Gerd Wagner. Rules and defeasible reasoning on the
semantic web. In Rules and Rule Markup Languages for the Semantic Web,
Second International Workshop, RuleML 2003, Sanibel Island, FL, USA, Octo-
ber 20, 2003, Proceedings, pages 111-120, 2003.

Elizabeth Black and Katie Atkinson. Choosing persuasive arguments for action.
In The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 3, pages 905-912. International Foundation for Autonomous
Agents and Multiagent Systems, 2011.

Olivier Boissier, Rafael H Bordini, Jomi F Hiibner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with jacamo. Science of Computer
Programming, 78(6):747-761, October 2013.

Olivier Boissier, Rafael H Bordini, Jomi Hubner, and Alessandro Ricci. Multi-
agent oriented programming: programming multi-agent systems using]Ja-
CaMo. MIT Press, 2020.

T. J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelli-
gence. Artif. Intell.,, 171(10-15):619-641, July 2007.

Elizabeth Black, Amanda Jane Coles, and Christopher Hampson. Planning for
persuasion. In Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2017, Sao Paulo, Brazil, May 8-12, 2017, pages
933-942, 2017.

117

[Ber14]

[BFFR18]

[BFVWO06]

[BHO7]

[BHO8]

[BHB17]

[BHHKO3]

[BHWO07al

[BHWO07b]

[BJG+17]

[BLS07]

Tudor Berariu. An argumentation framework for bdi agents. In Intelligent
Distributed Computing VII, pages 343-354. Springer, 2014.

Ezio Bartocci, Yliés Falcone, Adrian Francalanza, and Giles Reger. Introduction
to runtime verification. In Ezio Bartocci and Yliés Falcone, editors, Lectures
on Runtime Verification - Introductory and Advanced Topics, volume 10457 of
Lecture Notes in Computer Science, pages 1-33. Springer, 2018.

Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael J. Wooldridge.
Verifying multi-agent programs by model checking. Autonomous Agents and
Multi-Agent Systems, 12(2):239-256, 2006.

Elizabeth Black and Anthony Hunter. A generative inquiry dialogue system. In
Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, page 241. ACM, 2007.

Philippe Besnard and Anthony Hunter. Elements of Argumentation. The MIT
Press, 2008.

Gregor Behnke, Daniel Holler, and Susanne Biundo. This is a solution! (...
But is it though?) - verifying solutions of hierarchical planning problems. In
27th International Conference on Automated Planning and Scheduling, pages
20-28, 2017.

M. Becker, C. Heine, Rainer Herrler, and K.-H. Krempels. OntHoS - an Ontol-
ogy for Hospital Scenarios., chapter 7, pages 87-103. Birkhauser Verlag, 2003.
In: Moreno, A.; Nealon,]J. (Eds.): Applications of Software Agent Technology
in the Health Care Domain. Whitestein Series in Software Agent Technologies
(WSSAT).

R. H. Bordini, J. F. Hibner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak using Jason. John Wiley & Sons, October 2007.

Rafael H Bordini, Jomi Fred Hitbner, and Michael Wooldridge. Programming
multi-agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

Jayalakshmi Baskar, Rebecka Janols, Esteban Guerrero, Juan Carlos Nieves,
and Helena Lindgren. A multipurpose goal model for personalised digital
coaching. In Agents and Multi-Agent Systems for Health Care, pages 94-116.
Springer, 2017.

Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad,
and the ugly, but how ugly is ugly? In Oleg Sokolsky and Serdar Tasiran, edi-
tors, Runtime Verification, pages 126-138, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

118

[BMT"22]

[BNO3]

[BTV20]

[Cla97]

[CLYT17]

[Coh19]

[CP79]

[CQTF17]

[CR20]

[Cus22]

Alessandro Bigoni, Ana Maria Malik, Renato Tasca, Mariana Baleeiro Mar-
tins Carrera, Laura Maria Cesar Schiesari, Dante Dianezi Gambardella, and
Adriano Massuda. Brazil’s health system functionality amidst of the covid-19
pandemic: An analysis of resilience. The Lancet Regional Health-Americas,
10:100222, 2022.

Franz Baader and Werner Nutt. Basic description logics. In The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, pages 43-95.
Cambridge University Press, 2003.

Pietro Baroni, Francesca Toni, and Bart Verheij. On the acceptability of argu-
ments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games: 25 years later. Argument & Computation, (Preprint):1-
14, 2020.

Edmund M Clarke. Model checking. In International Conference on Founda-
tions of Software Technology and Theoretical Computer Science, pages 54-56.
Springer, 1997.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A survey on dia-
logue systems: Recent advances and new frontiers. Acm Sigkdd Explorations
Newsletter, 19(2):25-35, 2017.

Philip Cohen. Foundations of collaborative task-oriented dialogue: What’s in
a slot? In Proceedings of the 20th Annual SIGdial Meeting on Discourse and
Dialogue, pages 198-209, Stockholm, Sweden, September 2019. Association
for Computational Linguistics.

Philip R. Cohen and C. Raymond Perrault. Elements of a plan-based theory of
speech acts. Cognitive Science, 3(3):177-212, 1979.

Ching-Ying Cheng, Xiaobei Qian, Shih-Huan Tseng, and Li-Chen Fu. Recom-
mendation dialogue system through pragmatic argumentation. In 2017 26th
IEEE International Symposium on Robot and Human Interactive Communica-
tion (RO-MAN), pages 335-340. IEEE, 2017.

Angelo Croatti and Alessandro Ricci. Mobile apps as personal assistant agents:
the jaca-android framework for programming agents-based applications on
mobile devices. Autonomous Agents and Multi-Agent Systems, 34(2):1-27,
2020.

Marcelo da S Custédio. Rasa4jaca: Uma interface entre sistemas multiagentes
e tecnologias chatbots open source, 2022.

119

[DB17]

[DDE20]

[dOGPB*20]

[dS17]

[dSCVMB21]

[Dun95a]

[Dun95b]

[DWV11]

[dWVV12]

[ECGT19]

Frank Dignum and Floris Bex. Creating dialogues using argumentation and
social practices. In International Conference on Internet Science, pages 223-
235. Springer, 2017.

Ivan Donadello, Mauro Dragoni, and Claudio Eccher. Explaining reasoning
algorithms with persuasiveness: a case study for a behavioural change system.
In Proceedings of the 35th Annual ACM Symposium on Applied Computing,
pages 646-653, 2020.

Vagner de Oliveira Gabriel, Alison R. Panisson, Rafael H. Bordini, Diana Fran-
cisca Adamatti, and Cléo Zanella Billa. Reasoning in BDI agents using toul-
min’s argumentation model. Theor. Comput. Sci., 805:76-91, 2020.

Ministério da Saude. Manual de implantacdo e implementagdo : niicleo in-
terno de regulacédo para Hospitais Gerais e Especializados [recurso eletrénico]
/ Ministério da Satde, Secretaria de Atencdo a Saude, Departamento de
Atencdo Hospitalar e de Urgéncia. Ministério da Saude, Brasilia, 2017.
<http://portalarquivos2.saude.gov.br/images/PDF/2018/marco/28/Manual-
NIR—Versao-digital-RGB.PDF>.

Mateus da Silveira Colissi, Renata Vieira, Viviana Mascardi, and Rafael H. Bor-
dini. A chatbot that uses a multi-agent organization to support collaborative
learning. In Constantine Stephanidis, Margherita Antona, and Stavroula Ntoa,
editors, HCI International 2021 - Posters, pages 31-38, Cham, 2021. Springer
International Publishing.

P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming, and n-person games. Artificial
Intelligence, 77(2):321-357, 1995.

Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321-357, 1995.

Harmen De Weerd and Bart Verheij. The advantage of higher-order theory
of mind in the game of limited bidding. In Proceedings of the Workshop on
Reasoning about Other Minds, volume 751, pages 149-164, 2011.

Harmen de Weerd, Rineke Verbrugge, and Bart Verheij. Higher-order social
cognition in rock-paper-scissors: A simulation study. In Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Sys-
tems, pages 1195-1196, 2012.

Debora Engelmann, Julia Couto, Vagner Gabriel, Renata Vieira, and Rafael
Bordini. Towards an ontology to support decision-making in hospital bed allo-

120

[ECPB21]

[EDK"21a]

[EDK*21b]

[EDP'22]

[EFP*22]

[Eng19]

[Eng20]

[eOdVAP20]

[EPVT]

cation. In Proceedings of 31st International Conference on Software Engineer-
ing & Knowledge Engineering, pages 71-74, 2019.

Débora C Engelmann, Lucca Dornelles Cezar, Alison R Panisson, and Rafael H
Bordini. A conversational agent to support hospital bed allocation. In Brazilian
Conference on Intelligent Systems, pages 3-17. Springer, 2021.

Débora Engelmann, Juliana Damasio, Tabajara Krausburg, Olimar Borges,
Lucca Dornelles Cezar, Alison R Panisson, and Rafael H Bordini. Dial4jaca-a
demonstration. In International Conference on Practical Applications of Agents
and Multi-Agent Systems, pages 346-350. Springer, 2021.

Débora Engelmann, Juliana Damasio, Tabajara Krausburg, Olimar Borges, Ma-
teus Colissi, Alison R Panisson, and Rafael H Bordini. Dial4jaca—a communica-
tion interface between multi-agent systems and chatbots. In International Con-
ference on Practical Applications of Agents and Multi-Agent Systems, pages
77-88. Springer, 2021.

Débora Engelmann, Juliana Damasio, Alison R Panisson, Viviana Mascardi, and
Rafael H Bordini. Argumentation as a method for explainable ai: A systematic
literature review. In 2022 17th Iberian Conference on Information Systems
and Technologies (CISTI), pages 1-6. IEEE, 2022.

Debora C Engelmann, Angelo Ferrando, Alison R Panisson, Davide Ancona,
Rafael H Bordini, and Viviana Mascardi. Rv4jaca - runtime verification for
multi-agent systems. In Proceedings of the Second Workshop on Agents and
Robots for reliable Engineered Autonomy (AREA-2022), Austria, 2022.

Débora Cristina Engelmann. An interactive agent to support hospital bed allo-
cation based on plan validation. dissertation, Pontificia Universidade Catdlica
do Rio Grande do Sul, 2019.

Debora C. Engelmann. Conversational agents based on argumentation theory
and ontologies. In Proceedings of the Fourth Summer School on Argumen-
tation: Computational and Linguistic Perspectives (SSA 2020), pages 10-12,
2020.

BRP e Oliveira, JA de Vasconcelos, JFF Almeida, and LR Pinto. A simulation-
optimisation approach for hospital beds allocation. International Journal of
Medical Informatics, 141:104174, 2020.

Débora C Engelmann, Alison R Panisson, Renata Vieira, Jomi F Hiibner, Viviana
Mascardi, and Rafael H Bordini. Maids — a framework for the development
of multi-agent intentional dialogue systems. (unpublished - under review for
AAMAS 2023).

121

[ERS'18]

[Esf23]

[EW22]

[FGMO03]

[FPE*T22]

[FPHT15]

[FPH*17]

[FRS18]

[GT12]

[GACR"18a]

Kai Essers, Rebecca Rogers, Jackie Sturt, Elizabeth I Sklar, and Elizabeth
Black. Assessing the posture prototype: A late-breaking report on patient
views. In Proceedings of the 6th International Conference on Human-Agent
Interaction, pages 344-346, 2018.

Zeinab Namakizadeh Esfahani. Onto2Conv: An application for boosting cogni-
tive conversational agents. Master thesis (unpublished), University of Genoa,
2023.

Amir Elalouf and Guy Wachtel. Queueing problems in emergency departments:
A review of practical approaches and research methodologies. In Operations
Research Forum, volume 3, pages 1-46. Springer, 2022.

Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to orga-
nizations: An organizational view of multi-agent systems. In Paolo Giorgini,
Jorg P. Miller, and James Odell, editors, AOSE, volume 2935 of Lecture Notes
in Computer Science, pages 214-230. Springer, 2003.

Carlos Eduardo A Ferreira, Alison R Panisson, Débora C Engelmann, Renata
Vieira, Viviana Mascardi, and Rafael H Bordini. Explaining semantic reasoning
using argumentation. In International Conference on Practical Applications of
Agents and Multi-Agent Systems, pages 153-165. Springer, 2022.

A. Freitas, A. R. Panisson, L. Hilgert, F. Meneguzzi, R. Vieira, and R. H. Bordini.
Integrating ontologies with multi-agent systems through cartago artifacts. In
2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intel-
ligent Agent Technology (WI-IAT), volume 2, pages 143-150, Dec 2015.

Artur Freitas, Alison R Panisson, Lucas Hilgert, Felipe Meneguzzi, Renata
Vieira, and Rafael H Bordini. Applying ontologies to the development and
execution of multi-agent systems. In Web Intelligence, volume 15(4), pages
291-302. IOS Press, 2017.

Amal El Fallah-Seghrouchni, Alessandro Ricci, and Tran Cao Son, editors. En-
gineering Multi-Agent Systems - 5th International Workshop, EMAS 2017, Sao
Paulo, Brazil, May 8-9, 2017, Revised Selected Papers, volume 10738 of Lec-
ture Notes in Computer Science. Springer, 2018.

Alvin I Goldman et al. Theory of mind. The Oxford handbook of philosophy of
cognitive science, 1:1-25, 2012.

M. da S. Griibler, C. A. da Costa, R. Righi, S. Rigo, and L. Chiwiacowsky. A
hospital bed allocation hybrid model based on situation awareness. CIN: Com-
puters, Informatics, Nursing, 36(5):249-255, May 2018.

122

[GACR™18b] M. da S. Griibler, C. A. da Costa, R. Righi, S. Rigo, and L. Chiwiacowsky. A hos-

[GG19]

[GM22]

[GMABO04]

[GMBE"13]

[GMF103]

[Gru95]

[GSC'19a]

[GSCT19b]

[Gunl7]

[HDM*12]

pital bed allocation hybrid model based on situation awareness. Computers,
Informatics, Nursing, 36:249-255, May 2018.

Laura Giordano and Valentina Gliozzi. Strengthening the rational closure
for description logics: An overview. In Alberto Casagrande and Eugenio G.
Omodeo, editors, Proceedings of the 34th Italian Conference on Computational
Logic, Trieste, Italy, June 19-21, 2019, volume 2396 of CEUR Workshop Pro-
ceedings, pages 68-81. CEUR-WS.org, 2019.

Andrea Gatti and Viviana Mascardi. Towards VEsSNA, a framework for manag-
ing virtual environments via natural language agents. Electronic Proceedings
in Theoretical Computer Science, 362:65-80, jul 2022.

Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David Billington.
Argumentation semantics for defeasible logic. J. Log. Comput., 14(5):675-702,
2004.

Adela Grando, Laura Moss, Gemma Bel-Enguix, M Dolores Jiménez-Lépez, and
John Kinsella. Argumentation-based dialogue systems for medical training. In
Where Humans Meet Machines, pages 213-232. Springer, 2013.

John H Gennari, Mark A Musen, Ray W Fergerson, William E Grosso, Monica
Crubézy, Henrik Eriksson, Natalya F Noy, and Samson W Tu. The evolution of
protégé: an environment for knowledge-based systems development. Interna-
tional Journal of Human-computer studies, 58(1):89-123, 2003.

Thomas R Gruber. Toward principles for the design of ontologies used for
knowledge sharing? International journal of human-computer studies, 43(5-
6):907-928, 1995.

David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and
Guang-Zhong Yang. Xai—explainable artificial intelligence. Science Robotics,
4(37), 2019.

David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and
Guang-Zhong Yang. Xai—explainable artificial intelligence. Science robotics,
4(37):eaay7120, 2019.

David Gunning. Explainable artificial intelligence (xai). Defense advanced re-
search projects agency (DARPA), nd Web, 2(2):1, 2017.

Nabila Hadidi, Yannis Dimopoulos, Pavlos Moraitis, et al. Tactics and conces-
sions for argumentation-based negotiation. In COMMA, pages 285-296, 2012.

123

[H]J02]

[HLO4]

[HLFO04]

[HPSBT04]

[HSBO7]

[HSM*13]

[HTFJ19]

[KB08a]

[KB0O8b]

[KC04]

C. W. Holsapple and K. D. Joshi. A collaborative approach to ontology design.
Commun. ACM, 45(2):42-47, Feb 2002.

Bryan Horling and Victor R. Lesser. A survey of multi-agent organizational
paradigms. Knowledge Eng. Review, 19(4):281-316, 2004.

Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation,
continuous effects and mixed initiative planning using pddl. In ICTAI, pages
294-301. IEEE Computer Society, 2004.

Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, Mike Dean, et al. Swrl: A semantic web rule language combining owl
and ruleml. W3C Member submission, 21(79):1-31, 2004.

Jomi F Hubner, Jaime S Sichman, and Olivier Boissier. Developing organised
multiagent systems using the moise+ model: programming issues at the sys-
tem and agent levels. International Journal of Agent-Oriented Software Engi-
neering, 1(3-4):370-395, 2007.

Christos Hadjinikolis, Yiannis Siantos, Sanjay Modgil, Elizabeth Black, and Pe-
ter McBurney. Opponent modelling in persuasion dialogues. In IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelli-
gence, Beijing, China, August 3-9, 2013, pages 164-170, 2013.

Joana Hois, Dimitra Theofanou-Fuelbier, and Alischa Janine Junk. How to
achieve explainability and transparency in human ai interaction. In Interna-
tional Conference on Human-Computer Interaction, pages 177-183. Springer,
20109.

Thomas Klapiscak and Rafael H Bordini. Jasdl: A practical programming
approach combining agent and semantic web technologies. In International
Workshop on Declarative Agent Languages and Technologies, pages 91-110.
Springer, 2008.

Thomas Klapiscak and Rafael H. Bordini. JASDL: A practical programming ap-
proach combining agent and semantic web technologies. In Declarative Agent
Languages and Technologies VI, 6th International Workshop, DALT 2008, Es-
toril, Portugal, May 12, 2008, Revised Selected and Invited Papers, pages 91-
110, 2008.

Sanjeev Kumar and Philip R. Cohen. STAPLE: an agent programming language
based on the joint intention theory. In 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2004), 19-23 August 2004,
New York, NY, USA, pages 1390-1391, 2004.

124

[KCB'19]

[KCD'18]

[KO15]

[KV11]

[Lov78]

[LS09]

[MAB'14]

[MABR11]

[MBO08]

[Mil19]

[MJMW13]

Nadin Kokciyan, Martin Chapman, Panagiotis Balatsoukas, Isabel Sassoon, Kai
Essers, Mark Ashworth, Vasa Curcin, Sanjay Modgil, Simon Parsons, and Eliz-
abeth I Sklar. A collaborative decision support tool for managing chronic con-
ditions. In MedInfo, pages 644-648, 2019.

Tabajara Krausburg, Rafael Caué Cardoso, Juliana Damasio, Vitor Peres, Gio-
vani P Farias, Débora Cristina Engelmann, Jomi Fred Hiibner, and Rafael H
Bordini. Smart-jacamo: An organisation-based team for the multi-agent
programming contest. In Multi-Agent Progamming Contest, pages 72-100.
Springer, 2018.

Mare Koit and Haldur Oim. A computational model of argumentation in agree-
ment negotiation processes. Argument & Computation, 6(2):101-129, 2015.

Diana Kalibatiene and Olegas Vasilecas. Survey on ontology languages. In
International Conference on Business Informatics Research, pages 124-141.
Springer, 2011.

Donald W. Loveland. Automated theorem proving: a logical basis, volume 6 of
Fundamental studies in computer science. North-Holland, 1978.

Martin Leucker and Christian Schallhart. A brief account of runtime verifica-
tion. The Journal of Logic and Algebraic Programming, 78(5):293-303, 2009.

Viviana Mascardi, Davide Ancona, Matteo Barbieri, Rafael H Bordini, and
Alessandro Ricci. Cool-agentspeak: Endowing agentspeak-dl agents with plan
exchange and ontology services. Web Intelligence and Agent Systems: An In-
ternational Journal, 12(1):83-107, 2014.

Viviana Mascardi, Davide Ancona, Rafael H Bordini, and Alessandro Ricci.
Cool-agentspeak: Enhancing agentspeak-dl agents with plan exchange and on-
tology services. In 2011 IEEE/WIC/ACM International Conferences on Web In-
telligence and Intelligent Agent Technology, volume 2, pages 109-116. IEEE,
2011.

Andrés Mufioz and Juan A. Botia. ASBO: argumentation system based on
ontologies. In Cooperative Information Agents XII, 12th International Work-
shop, CIA 2008, Prague, Czech Republic, September 10-12, 2008. Proceed-
ings, pages 191-205, 2008.

Tim Miller. Explanation in artificial intelligence: Insights from the social sci-
ences. Artificial Intelligence, 267:1-38, 2019.

Kevin Mackway-Jones, Janet Marsden, and Jill Windle. Emergency triage:
Manchester triage group. John Wiley & Sons, 2013.

125

[MPO1a]

[MPO1b]

[MPO02]

[MPO5]

[MPRO6]

[MR11]

[MVBHO05a]

[MVBHO05Db]

[MZG22]

[NM17]

[Nut93]

Peter McBurney and Simon Parsons. Chance discovery using dialectical argu-
mentation. In Annual Conference of the Japanese Society for Artificial Intelli-
gence, pages 414-424. Springer, 2001.

Peter McBurney and Simon Parsons. Games that agents play: A formal frame-
work for dialogues between autonomous agents. Journal of Logic, Language
and Information, 11:2002, 2001.

Peter McBurney and Simon Parsons. Dialogue games in multi-agent systems.
Informal Logic, 22:2002, 2002.

Peter McBurney and Simon Parsons. Locutions for argumentation in agent in-
teraction protocols. In Agent Communication, pages 209-225. Springer, 2005.

Nicolas Maudet, Simon Parsons, and Iyad Rahwan. Argumentation in multi-
agent systems: Context and recent developments. In Nicolas Maudet, Simon
Parsons, and Iyad Rahwan, editors, ArgMAS, volume 4766 of Lecture Notes in
Computer Science, pages 1-16. Springer, 2006.

Joaquim Matos and Pedro Pereira Rodrigues. Modeling decisions for hospital
bed management - a review. In 4th International Conference on Health Infor-
matics, pages 504-507, 2011.

Alvaro F Moreira, Renata Vieira, Rafael H Bordini, and Jomi F Hibner. Agent-
oriented programming with underlying ontological reasoning. In International
Workshop on Declarative Agent Languages and Technologies, pages 155-170.
Springer, 2005.

Alvaro F. Moreira, Renata Vieira, Rafael H. Bordini, and Jomi Fred Hiibner.
Agent-oriented programming with underlying ontological reasoning. In Declar-
ative Agent Languages and Technologies III, Third International Workshop,
DALT 2005, Utrecht, The Netherlands, July 25, 2005, Selected and Revised
Papers, pages 155-170, 2005.

Xin Ma, Xue Zhao, and Pengfei Guo. Cope with the covid-19 pandemic: Dy-
namic bed allocation and patient subsidization in a public healthcare system.
International Journal of Production Economics, 243:108320, 2022.

Florian Nielsen and Wolfgang Minker. Assistive and Adaptive Dialog Manage-
ment, chapter 9, pages 167-186. Springer International Publishing, Cham,
2017.

Donald Nute. Defeasible prolog. Artificial Intelligence Programs, University of
Georgia, 1993.

126

[OEK'22]

[OMDO09]

[ONO09]

[PT20]

[Pan19]

[PB16]

[PB17a]

[PB17Db]

[PB17c]

[PB20]

Juliana Damasio Oliveira, Debora C. Engelmann, Davi Kniest, Renata Vieira,
and Rafael H. Bordini. Multi-agent interaction to assist visually-impaired and
elderly people. International Journal of Environmental Research and Public
Health, 19(15), 2022.

Martin O’Connor, Mark Musen, and Amar Das. Using the semantic web rule
language in the development of ontology-driven applications. In Handbook of
Research on Emerging Rule-Based Languages and Technologies: Open Solu-
tions and Approaches, pages 525-539. IGI Global, 2009.

Nir Oren and Timothy J Norman. Arguing using opponent models. In Inter-
national Workshop on Argumentation in Multi-Agent Systems, pages 160-174.
Springer, 2009.

H Prakken et al. A persuasive chatbot using a crowd-sourced argument graph
and concerns. Computational Models of Argument: Proceedings of COMMA
2020, 326:9, 2020.

Alison Roberto Panisson. A Framework for Reasoning and Dialogue in Multi-
Agent Systems Using Argumentation Schemes. Phd thesis, Pontificia Univer-
sidade Catolica do Rio Grande do Sul, 2019.

Alison R Panisson and Rafael H Bordini. Knowledge representation for argu-
mentation in agent-oriented programming languages. In 2016 5th Brazilian
Conference on Intelligent Systems (BRACIS), pages 13-18. IEEE, 2016.

Alison R. Panisson and Rafael H. Bordini. Argumentation schemes in multi-
agent systems: A social perspective. In Fallah-Seghrouchni et al. [FRS18]],
pages 92-108.

Alison R Panisson and Rafael H Bordini. Argumentation schemes in multi-
agent systems: A social perspective. In International Workshop on Engineering
Multi-Agent Systems, pages 92-108. Springer, 2017.

Alison R Panisson and Rafael Heitor Bordini. Uttering only what is needed:
Enthymemes in multi-agent systems. In Proceedings of the 16th International
Conference on Autonomous Agents & Multiagent Systems (AAMAS-2017),
2017, Brasil., 2017.

Alison R. Panisson and Rafael H. Bordini. Towards a computational model
of argumentation schemes in agent-oriented programming languages. In
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intel-
ligent Agent Technology (WI-IAT), 2020.

127

[PBPP14]

[PEB21]

[PFFT14]

[PGBO03]

[PMO3]

[PMB21]

[PMF*+14]

[PMVB14]

[PMVB15a]

[PMVB15b]

[Pra00]

Alun Preece, Dave Braines, Diego Pizzocaro, and Christos Parizas. Human-
machine conversations to support multi-agency missions. ACM SIGMOBILE
Mobile Computing and Communications Review, 18(1):75-84, 2014.

Alison R Panisson, Débora C Engelmann, and Rafael H Bordini. Engineering
explainable agents: an argumentation-based approach. In International Work-
shop on Engineering Multi-Agent Systems, pages 273-291. Springer, 2021.

Alison R Panisson, Giovani Farias, Artur Freitas, Felipe Meneguzzi, Re-
nata Vieira, and Rafael H Bordini. Planning interactions for agents in
argumentation-based negotiation. In Proc. of 11th Int. Workshop on Argumen-
tation in Multi-Agent Systems, pages 1-15, 2014.

N. C. Proudlove, K. Gordon, and R. Boaden. Can good bed management
solve the overcrowding in accident and emergency departments? Emergency
Medicine Journal, 20(2):149-155, 2003.

Simon Parsons and Peter McBurney. Argumentation-based dialogues for agent
co-ordination. Group Decision and Negotiation, 12(5):415-439, 2003.

Alison R Panisson, Peter McBurney, and Rafael H Bordini. A computational
model of argumentation schemes for multi-agent systems. Argument & Com-
putation, (Preprint):1-39, 2021.

Alison R. Panisson, Felipe Meneguzzi, Moser Silva Fagundes, Renata Vieira,
and Rafael H. Bordini. Formal semantics of speech acts for argumentative
dialogues. In International conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’14, Paris, France, May 5-9, 2014, pages 1437-1438, 2014.

Alison R Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H Bordini. An
approach for argumentation-based reasoning using defeasible logic in multi-
agent programming languages. In 11th International Workshop on Argumen-
tation in Multiagent Systems, pages 1-15, 2014.

Alison R Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H Bordini.
Towards practical argumentation-based dialogues in multi-agent systems. In
2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intel-
ligent Agent Technology (WI-IAT), volume 2, pages 151-158. IEEE, 2015.

Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini.
Towards practical argumentation in multi-agent systems. In 2015 Brazilian
Conference on Intelligent Systems, BRACIS 2015, pages 98-103, 2015.

Henry Prakken. On dialogue systems with speech acts, arguments, and coun-
terarguments. In European Workshop on Logics in Artificial Intelligence, pages
224-238. Springer, 2000.

128

[Prall]

[Prull]

[PSM*18a]

[PSM*18b]

[PWAO2]

[RAO6]

[RAMI17]

[RBRT19]

[RG195]

[RPVOO09]

[RR19]

[RTO13]

Henry Prakken. An abstract framework for argumentation with structured
arguments. Argument and Computation, 1(2):93-124, 2011.

Jaume Jordan Prunera. Case-based argumentation infrastructure for agent
societies. Master’s thesis, Universitat Politecnica de Valéncia, Espanha, Sep
2011.

Alison R. Panisson, Stefan Sarkadi, Peter McBurney, Simon Parsons, and
Rafael H. Bordini. On the formal semantics of theory of mind in agent commu-
nication. In Agreement Technologies - 6th International Conference, AT 2018,
Bergen, Norway, December 6-7, 2018, Revised Selected Papers, pages 18-32,
2018.

Alison R Panisson, Stefan Sarkadi, Peter McBurney, Simon Parsons, Rafael H
Bordini, et al. Lies, bullshit, and deception in agent-oriented programming
languages. In CEUR Workshop Proceedings, volume 2154, pages 50-61, 2018.

Simon Parsons, Michael Wooldridge, and Leila Amgoud. An analysis of for-
mal inter-agent dialogues. In In Ist International Conference on Autonomous
Agents and Multi-Agent Systems, pages 394-401. ACM Press, 2002.

Iyad Rahwan and Leila Amgoud. An argumentation-based approach for prac-
tical reasoning. In Nicolas Maudet, Simon Parsons, and Iyad Rahwan, editors,
ArgMAS, volume 4766 of Lecture Notes in Computer Science, pages 74-90.
Springer, 2006.

AM Rahman, Abdullah Al Mamun, and Alma Islam. Programming challenges
of chatbot: Current and future prospective. In Humanitarian Technology Con-
ference (R10-HTC), 2017 IEEE Region 10, pages 75-78. IEEE, 2017.

Geetanjali Rakshit, Kevin K Bowden, Lena Reed, Amita Misra, and Marilyn
Walker. Debbie, the debate bot of the future. In Advanced Social Interaction
with Agents, pages 45-52. Springer, 2019.

Anand S Rao, Michael P Georgeff, et al. Bdi agents: from theory to practice.
In Icmas, volume 95, pages 312-319, 1995.

Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini. Environ-
ment programming in cartago. In Multi-agent programming, pages 259-288.
Springer, 2009.

Avi Rosenfeld and Ariella Richardson. Explainability in human-agent systems.
Autonomous Agents and Multi-Agent Systems, 33(6):673-705, 2019.

Tjitze Rienstra, Matthias Thimm, and Nir Oren. Opponent models with un-
certainty for strategic argumentation. In IJCAI 2013, Proceedings of the 23rd

129

[RWP'18]

[SA07]

[SBMV15]

[SIHT18]

[SPB'18]

[SPGT07]

[STTO1]

[TEDF*12]

[TJ20]

[TLO8]

International Joint Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013, pages 332-338, 2013.

Niklas Rach, Klaus Weber, Louisa Pragst, Elisabeth André, Wolfgang Minker,
and Stefan Ultes. Eva: a multimodal argumentative dialogue system. In Pro-
ceedings of the 20th ACM International Conference on Multimodal Interaction,
pages 551-552, 2018.

Bayan Abu Shawar and Eric Atwell. Chatbots: are they really useful? In LDV
Forum, volume 22, pages 29-49, 2007.

Daniela Schmidt, Rafael H Bordini, Felipe Meneguzzi, and Renata Vieira. An
ontology for collaborative tasks in multi-agent systems. In Ontobras, volume
1442, 09 2015.

Kazuki Sakai, Akari Inago, Ryuichiro Higashinaka, Yuichiro Yoshikawa, Hiroshi
Ishiguro, and Junji Tomita. Creating large-scale argumentation structures for
dialogue systems. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

Stefan Sarkadi, Alison R Panisson, Rafael H Bordini, Peter McBurney, and Si-
mon Parsons. Towards an approach for modelling uncertain theory of mind in
multi-agent systems. In International Conference on Agreement Technologies,
pages 3-17. Springer, 2018.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical owl-dl reasoner. Journal of Web Semantics,
5(2):51 - 53, 2007. Software Engineering and the Semantic Web.

Fariba Sadri, Francesca Toni, and Paolo Torroni. Logic agents, dialogues and
negotiation: An abductive approach. In Proceedings of the AISB 2001 Sympo-
sium on Information Agents for E-Commerce, pages 1-8. AISB, 2001.

K. L. Teow, E. El-Darzi, C. Foo, X. Jin, and J. Sim. Intelligent analysis of acute
bed overflow in a tertiary hospital in singapore. Journal of Medical Systems,
36:1873-1882, June 2012.

Sandeep A Thorat and Vishakha Jadhav. A review on implementation issues of
rule-based chatbot systems. Available at SSRN 3567047, 2020.

Quynh-Nhu Numi Tran and Graham Low. Mobmas: A methodology for
ontology-based multi-agent systems development. Information and Software
Technology, 50(7):697 - 722, 2008.

130

[TM11]

[Ton14]

[Toub8]

[TPWT16]

[TYZ12]

[VASSO05]

[VGBM17]

[VMWBO07]

[Wall0]

[Wal19]

[WJR+20]

[WK95]

Nava Tintarev and Judith Masthoff. Designing and evaluating explanations for
recommender systems. In Recommender systems handbook, pages 479-510.
Springer, 2011.

Francesca Toni. A tutorial on assumption-based argumentation. Argument and
Computation, 5-1:89-117, 2014.

St Toulmin. The uses of argument cambridge university press. Cambridge, UK,
34, 1958.

Alice Toniolo, Alun D Preece, Will Webberley, Timothy] Norman, Paul Sullivan,
and Timothy Dropps. Conversational intelligence analysis. In Proceedings of
the 17th International Conference on Distributed Computing and Networking,
pages 1-6, 2016.

Xuehong Tao, Nicola Yelland, and Yanchun Zhang. Fuzzy cognitive modeling
for argumentative agent. In 2012 IEEE International Conference on Fuzzy
Systems, pages 1-8. IEEE, 2012.

R. Vieira, D. S. Abdalla, D. M. Silva, and M. R. Santana. Web Semaéntica: On-
tologias, Logica de Descrigao e Inferéncia, volume 1, pages 127-167. SBC,
2005.

Mitchell Vibbert, Jacques-Olivier Goussard, Richard] Beaufort, and Ben-
jamin P Monnahan. Dialog flow management in hierarchical task dialogs,
September 19 2017. US Patent 9,767,794.

Renata Vieira, Alvaro F. Moreira, Michael J. Wooldridge, and Rafael H. Bor-
dini. On the formal semantics of speech-act based communication in an agent-
oriented programming language. J. Artif. Intell. Res., 29:221-267, 2007.

Douglas Walton. Types of dialogue and burdens of proof. volume 216, pages
13-24, 01 2010.

Douglas Walton. Using argumentation schemes to find motives and intentions
of a rational agent. Argument & Computation, (Preprint):1-43, 2019.

Klaus Weber, Kathrin Janowski, Niklas Rach, Katharina Weitz, Wolfgang
Minker, Stefan Ultes, and Elisabeth André. Predicting persuasive effectiveness
for multimodal behavior adaptation using bipolar weighted argument graphs.
In International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 19, Auckland, New Zealand, May, 2020, page 1476-1484, 2020.

Douglas Walton and Erik CW Krabbe. Commitment in dialogue: Basic concepts
of interpersonal reasoning. SUNY press, 1995.

131

[Wo000]

[Wo009]

[WRMO08]

[WY16]

[WYAL19]

[YJ95]

[ZEJ+22]

Michael J. Wooldridge. Computationally grounded theories of agency. In 4th
International Conference on Multi-Agent Systems, ICMAS 2000, Boston, MA,
USA, July 10-12, 2000, pages 13-22. IEEE Computer Society, 2000.

Michael Wooldridge. An introduction to multiagent systems. John Wiley &
Sons, 2009.

Douglas Walton, Christopher Reed, and Fabrizio Macagno. Argumentation
schemes. Cambridge University Press, 2008.

Xiaojie Wang and Caixia Yuan. Recent advances on human-computer dialogue.
CAAI Transactions on Intelligence Technology, 1(4):303 - 312, 2016.

Danding Wang, Qian Yang, Ashraf Abdul, and Brian Y Lim. Designing theory-
driven user-centric explainable ai. In Proceedings of the 2019 CHI conference
on human factors in computing systems, pages 1-15, 2019.

L Richard Ye and Paul E Johnson. The impact of explanation facilities on user
acceptance of expert systems advice. Mis Quarterly, pages 157-172, 1995.

Chi Zhang, Torsten Eken, Silje Bakken Jorgensen, Magne Thoresen, and Signe
Sgvik. Effects of patient-level risk factors, departmental allocation and season-
ality on intrahospital patient transfer patterns: network analysis applied on a
norwegian single-centre data set. BM]J open, 12(3):e054545, 2022.

132

	Chapter Introduction
	Motivation
	Objectives
	Main Contributions
	Thesis Outline

	Chapter Background
	Multi-agent Systems
	Explainable Artificial Intelligence and Hybrid Intelligence
	Argumentation Theory
	Abstract Argumentation
	Monological and Dialogical Argumentation
	Argumentation Schemes

	Dialogue Systems
	The JaCaMo Framework
	Ontology
	Runtime Verification and Runtime Monitoring Language
	Hospital Bed Allocation Domain

	Chapter Conversational Agents Using Structured Dialogues
	Overview of the Approach
	A Multi-Part Belief Base
	The CooL-AgentSpeak Language
	Argumentation-based Reasoning in Agent Programming
	Theory of Mind in Agent Programming

	The Basis for Argumentation-Based Dialogues
	Multi-Agent Dialogues with Underlying Ontological and ToM Arguments
	Formalisation of Participating Agents
	Subdialogue Rules

	Chapter Multi-Agent Intentional Dialogue System
	Overall Architecture
	Dial4JaCa
	Onto4JaCa
	RV4JaCa

	Chapter Case Study
	Bed Allocation Ontology
	Bed Allocation Optimisation
	Plan Validator
	 Runtime Verification in Bed Allocation
	First RML Property for the Bed Allocation Domain
	Second RML Property for the Bed Allocation Domain

	Evaluation
	Evaluation of System Functionalities for Hospital Bed Allocation
	Evaluation of Expressiveness of the Framework

	Chapter Related Work
	Chapter Conclusions
	Summary of Results and Discussion
	Thesis publications
	Future Work

	Appendix Bed-Allocation Plan Validation Report
	Appendix Evaluation of System Functionalities – Logs
	Appendix Evaluation of Expressivity of the Framework – Logs
	Bibliography

