
ORIGINAL ARTICLE

An approximate randomization-based neural network with dedicated
digital architecture for energy-constrained devices

Edoardo Ragusa1 • Christian Gianoglio1 • Rodolfo Zunino1 • Paolo Gastaldo1

Received: 27 April 2022 / Accepted: 4 November 2022
� The Author(s) 2022

Abstract
Variable energy constraints affect the implementations of neural networks on battery-operated embedded systems. This

paper describes a learning algorithm for randomization-based neural networks with hard-limit activation functions. The

approach adopts a novel cost function that balances accuracy and network complexity during training. From an energy-

specific perspective, the new learning strategy allows to adjust, dynamically and in real time, the number of operations

during the network’s forward phase. The proposed learning scheme leads to efficient predictors supported by digital

architectures. The resulting digital architecture can switch to approximate computing at run time, in compliance with the

available energy budget. Experiments on 10 real-world prediction testbeds confirmed the effectiveness of the learning

scheme. Additional tests on limited-resource devices supported the implementation efficiency of the overall design

approach.

Keywords Randomization-based neural networks � Threshold function � Low-power � Digital architectures �
FPGA � Extreme learning machine � Random vector functional link networks

1 Introduction

The paper presents a design strategy for the digital

implementation of randomization-based networks (RBNs)

on energy-constrained edge devices. The applications

include implantable devices [1, 2], smart sensors operating

in hostile or remote areas [3], and devices relying on

energy-harvesting techniques [4]. The latter case represents

a critical scenario, as it often requires careful budgeting of

the collected energy in real time. In general, the method is

suitable for all the applications where a small and non-

constant power source is available. This setup is becoming

always more popular with the development of harvesting

methods and battery-less paradigms.

Energy constraints may limit severely the integration of

machine learning (ML) models into edge devices; the basic

implementation of the (forward) inference function might

by itself exhaust the available energy budget [5, 6]. RBNs

with threshold activation functions are hardware-friendly

solutions for the digital implementations of single layer

feedforward neural networks (SLFNs) [7, 8]. The associate

digital architectures can support the inference step without

any multiplier and with negligible memory requirements;

at the same time, those approaches may suffer from

reduced classification accuracy.

As compared with those approaches, this paper

describes a novel end-to-end design strategy for a digital

architecture that includes adjustable neurons to regulate

energy consumption dynamically.

In the seven-dimensional example shown in Fig. 1, the

n-th neuron can work out its own activation function in

either the complete version, /nðxÞ, which includes all input
terms, or an approximate formulation, ~/nðxÞ, that only

& Edoardo Ragusa

edoardo.ragusa@edu.unige.it

Christian Gianoglio

christian.gianoglio@edu.unige.it

Rodolfo Zunino

rodolfo.zunino@unige.it

Paolo Gastaldo

paolo.gastaldo@unige.it

1 Department of Electrical Electronic, Telecommunications

Engineering and Naval Architecture DITEN, University of

Genoa, Genova, Italy

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-022-08034-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5527-6325
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-08034-2&amp;domain=pdf
https://doi.org/10.1007/s00521-022-08034-2


involves a subset to reduce the computation cost. The

choice depends on the available energy budget.

A specific scheme supports the overall strategy. At run

time, the inference function of the eventual RBN embeds

both the complete and approximate version of the activa-

tion function. The pair of configurations share the same

network parameters; hence, the supporting hardware device

needs not store separate models. The overall operation

relies on a criterion to turn off—within each neuron—the

input connections that have a marginal impact on the net-

work behavior. That mechanism sets the approximate

activation within each neuron. The associate learning

strategy includes a specific cost function that takes into

account the perturbations brought about by approximate

neurons. That formulation leads to a) a shared set of net-

work parameters that maintain competitive accuracy in

both configurations, and b) an inference function that

embeds a performance trade-off between the two alterna-

tive operating modes. The switch between either modality

takes place without any reprogramming of the hardware.

From an application viewpoint, the paper describes the

digital architecture that can support the RBNs trained

according to the proposed strategy. The experimental ver-

ification1 involved a CMOD S7-25 board.2 The evaluation

session pointed out some relevant features. A comparison

with state-of-the-art training procedures on ten datasets

proved that the loss function empowering the above strat-

egy could preserve generalization ability even in the

presence of approximate activation functions. Furthermore,

when considering energy consumption, the digital imple-

mentations of the trained RBNs compared favorably with

state-of-the-art design approaches for ultra-low-power

devices. The tests showed that the hardware RBN set-ups

hosting approximate neurons could almost halve the energy

consumption per prediction. Those networks yet featured

the same energy consumption as conventional RBNs, not

including approximate neurons. Finally, the static power

introduced by the additional circuitry turned out to be

negligible.

1.1 Contribution

The main contributions of the paper are:

• an end-to-end design strategy for the digital implemen-

tation of RBNs on edge devices that can regulate energy

consumption in real-time.

• A cost function supporting the training of RBNs with

online-reconfigurable units, i.e., neurons that may

switch to an approximate activation function to reduce

the computation cost dynamically, without reloading

the network weights. The cost function makes the

network robust against approximate computations

within the neurons and ensures a satisfactory trade-off

between energy consumption and generalization

performance.

• A digital architecture for the implementation of the

trained RBNs with reconfigurable neurons, tested on a

commercial FPGA.

In the following, Sect. 2 summarizes the theoretical back-

ground of RBNs and reviews state-of-the-art works dealing

with the digital implementations of those networks on

embedded devices. Section 3 introduces the end-to-end

design approach for the digital implementation of RBNs

under energy budget constraints. Section 4 presents the

digital architecture to support the trained RBNs. Section 5

reports on the experimental sessions, and some concluding

remarks are made in Sect. 6.

Fig. 1 Example of the proposed

computing modes: the complete

activation involves all the seven

input terms, while the

approximate activation involves

only a subset of the input terms

to reduce the computation cost

1 Code available on the authors’ web site: https://github.com/

SEAlab-unige.
2 https://reference.digilentinc.com/reference/programmable-logic/

cmod-s7/start.

Neural Computing and Applications

123

https://github.com/SEAlab-unige
https://github.com/SEAlab-unige
https://reference.digilentinc.com/reference/programmable-logic/cmod-s7/start
https://reference.digilentinc.com/reference/programmable-logic/cmod-s7/start


2 Digital implementation of randomization-
based neural networks: background

2.1 Randomization-based neural networks

The literature shows that RBNs provide a valuable tool for

machine learning because they feature a simple training

phase and prove effective. Random radial basis functions

[9], random vector functional-link (RVFLs) [10], extreme

learning machines (ELMs) [11, 12], and weighted sum of

random kitchen sinks [13] are nowadays largely employed

in practical applications [14–19], mostly thanks to their

ability to trade-off computational cost and generalization

performance.

The hypothesis space spanned by RBNs can be for-

malized as a weighted sum of nonlinear functions:

yðxÞ ¼
XN

n¼1

bn/nðxÞ ¼
XN

n¼1

bn/ðwnxþ bnÞ ð1Þ

where x 2 RD is the input pattern, wn 2 ½�1; 1�D and bn 2
R are the parameters that characterize a neuron, / is a

general nonlinear activation function RD ! R, and b 2 RN

is the vector of adjustable weights that combine the neu-

rons’ activation functions.

RBNs use a simplified training procedure that sets a-

priori random values for the parameters of the hidden

neurons, wn and bn. Given a set of labeled data

T ¼ fðxi; yiÞ; i ¼ 1; . . .; Z; xi 2 ½0; 1�D; yi 2 ½�1; 1�g, the

training of an RBN consists in tuning the free parameters,

bn, to minimize some loss function. The regularized mean

square error is usually adopted for that purpose:

min
b
fky�Hbk2 þ kkbk2g ð2Þ

When Z �N, one has:

b ¼ HTðkI þHHTÞ�1y ð3Þ

conversely, when Z[N one has:

b ¼ ðkI þHTHÞ�1HTy ð4Þ

where H denote a Z � N matrix with hin ¼ /nðxi;wn; bnÞ.
The quantity k is a regularization term that rules the trade-

off between the quality of data fitting and the smoothness

of the solution. It is worth noting that efficient algorithms

for the solution of linear systems can solve (3) and (4), thus

avoiding explicit matrix inversions.

The size, N, of the mapping layer plays a crucial role, as

it affects a) the generalization performance of the overall

inference function, and b) the computational cost of both

training and run-time inference. The latter aspect proves

critical when targeting hardware implementations on

embedded systems. Several approaches in the literature

aimed to set up the mapping layer to trade off those issues.

Regularization techniques favored sparse solutions and

removed ineffective neurons [20, 21]. Biologically inspired

optimization stimulated several strategies [22, 23] to

enhance the generalization ability of the trained models.

The method described in [24, 25] used the theory of

learning with similarity functions to set the hidden layer,

and connected randomization-based solutions with kernel-

based learning theory [26]. Otherwise, constructive

approaches aimed to induce well distributed hidden

parameters [27–29], or combined with other algorithms to

speed-up learning procedures [30].

2.2 Implementation of randomization-based
networks on resource-constrained devices

RBNs provide a valuable option for on-device training

[31–38], as the training procedure can be easily imple-

mented. Several works in the literature focused on the

efficient support of the inference function on resource-

constrained devices. In the case of RBNs, that function

complies with the constraints of low-power devices, as it

can attain satisfactory generalization performances even

the size, N, of the mapping layer is limited.

Neuromorphic realizations of the hidden layer were

implemented using massively parallel and energy-efficient

circuits [39, 40]. Those approaches stemmed from the

analogy between biological neurons and the behavior of

transistors operating under the threshold and yielded

extremely efficient implementations. Each circuit was

characterized by a specific set of parameter settings wn and

bn. As a result, the training procedure had to be executed

for every single chip. This also held for mixed-signal

realizations, which featured a dispersion of parameters,

thus providing high performances [41] and supporting

ultra-low-power implementations of the RBN inference

step [31, 42, 43]

Purely digital implementations for resource-constrained

devices were presented in [7, 8, 21, 44]. Those works

explored design strategies that removed the need for mul-

tipliers in digital architectures. In [8], the memory storage

of random parameters, wn and bn, was bypassed altogether

thanks to the adoption of a pseudo-random generator; by

forcing a fixed seed in the generator, the device could

replicate at run time the exact sequence of parameters that

had been used in the (offline) training phase.

The above hardware implementations mostly relied on

the ability to generate the sequence of random parameters

at run time, especially to fit resource-constrained devices.

Those approaches, however, seem incompatible with the

training strategies discussed in Sect. 2.1. In the latter case,

the distribution from which parameters wn and bn are

drawn is not fixed a priori but is adapted to trade off

Neural Computing and Applications

123



generalization ability and the network size. This in turn

means that a hardware implementation of the eventual

inference function should store the set of parameters, wn

and bn, adjusted during training.

This paper introduces a design strategy that bridges the

gap between those approaches. The digital architecture

actually stores the parameters in memory, thus supporting a

flexible sampling distribution; at the same time, the digital

architecture can limit the computation cost and adapt run-

time operation to the available energy budget.

Noise and fault events affect the behavior of low-power

digital and analog implementations of RBNs. Solutions

based on an explicit model of noise distribution and error

probability offer a viable solution to reduce the impact of

these phenomena on the generalization performances of the

networks [45, 46]. The effectiveness of those approaches,

however, depends on the quality of the noise/fault proba-

bility model, which in fact can be unknown a-priori.

Regularization techniques can limit the degradation of

generalization [47] without prior knowledge of noise/error

probability distribution. The well-known L2 regularization,

for example, usually yields robust networks because it

inherently penalizes inference functions that depend on a

small subset of neurons. Dropout regularization achieves

the same goal by removing a random subset of neurons

during the training procedure [48, 49].

Approximate computing techniques have been largely

explored for deep neural networks (DNNs) [50]. However,

DNNs techniques tackle a different scenario that makes

unfeasible the straightforward application of the same

principles to RBNs. Conventional pruning approaches

[51, 52] to reduce the number of active neurons might

affect the generalization ability of RBNs, especially when

the goal is to shrink the hidden layer considerably. Binary

neural networks [53–55] represent a viable approach for

the deployment of Deep Neural Networks (DNNs) on

resource-constrained devices. When addressing shallow

networks, however, the coarse quantization of the weights

brought about by binarization might severely compromise

generalization ability.

3 Randomization-based neural networks
with adjustable power consumption

The implementation of (1) on low-power resource-con-

strained digital devices brings about some design issues.

The inference function includes N multiplications bn/n,

and each term /n requires in turn D products. Threshold

activation functions facilitate the development of hard-

ware-aware architectures. State-of-the-art approaches [7],

moreover, constrain the distributions of hidden weights to

replace products with binary-shift operations or to avoid

parameter storing [8, 31, 43].

Apparently, the threshold function limits the general

applicability of the presented solution. However, a detailed

discussion of the relationship between threshold and other

activation functions [8, 25] highlights that in the context of

RBNs a threshold activation can be considered as a suffi-

cient approximation of the most common activation func-

tions, like radial basis function and sigmoid. Instead,

weight constraints significantly limit the pool of learning

paradigms supported.

The novel design strategy proposed in this paper avoids

weights constraint and can reduce adaptively the number of

products (and therefore power consumption) required to

compute /n. To comply with the available energy budget,

the digital architecture switches between two operating

modes (as per Fig. 1). In Complete-mode, the inference

function /n is computed by accumulating all the D con-

tributions. Conversely, the Approximate-mode relies on an

approximate activation, ~/n, which accumulates a limited

number of products, D0
n (D0

n\D). In the latter case, the

main challenge is to manage the trade-off between power

consumption and the loss in accuracy brought about by the

use of ~/n. In addition, the additional circuitry that imple-

ments the run-time switching capability should not affect

power consumption significantly.

Figure 2 schematizes the structure of the envisioned

digital implementation, which inherits a state-of-the-art

design strategy for low-power implementation of RBNs

[8]. In such a design, the Input block stored the input

datum, the Neuron block computed the activation sequen-

tially, and finally, the Output block supported the weighted

sum of neurons activation. In the proposed scheme, the

Controller sets the mode to be adopted by the Neuron block

based on the available energy budget. Accordingly, the

Neuron block should be able to both implement the com-

plete activation and the approximate activation.

The overall challenge faced by this research is to find a

proper trade-off between the gain in power consumption

achieved with the Approximate-mode, the loss in accuracy

caused by the use of ~/n, and the impact on the digital

implementation in terms of area consumption without

compromising the benefits of RBNs, i.e., fast training

procedure and light-weight forward phase.

3.1 Approximate activation function

Let assume, without loss in generality, that x 2 ½0; 1�D.
Accordingly, the sign of wnj determines the sign of each

addend wnjxj in (1). Thus, one can split that summation into

two sets, i.e., Wþ ¼ fwnjxjjwnj [ 0g and

W� ¼ fwnjxjjwnj\0g. In practice, Wþ and W� aggregate,

Neural Computing and Applications

123



respectively, the positive and the negative addends sepa-

rately. As a result, one rewrites /ðxÞ as

/nðxÞ ¼ sign
X

W�
wn;jxj þ

X

Wþ

wn;jxj þ bn

 !
ð5Þ

For the sake of clarity, it is assumed now that bn ¼ 0; the

extension to the general case will be discussed later. Fig-

ure 3 illustrates an example for a neuron with D ¼ 81; the

x axis marks the index of each j-th addend, whereas the y

axis gives the cumulative value ofP
W� wn;jxj þ

P
Wþ wn;jxj, when the j-th addend has been

included. The terms in W� and Wþ have been sorted in

descending order according to their magnitudes. At first,

the cumulative value decreases and reaches its minimum as

soon as the least significant term in W� is added (in the

example, j=36). Then, the cumulative function increases

progressively as long as the terms in Wþ are added.

Although the sorting operation does not affect the eventual

result (5), it yet highlights the relative contribution of each

term to the overall aggregate. The contribution of the last

six addends in W� (marked in red on the x-axis) is mar-

ginal as compared with the preceding elements; the same

holds true for the last seven positive terms in Wþ. The
extension to the general case bn 6¼ 0 is straightforward, as

bn actually represents an offset.

Overall, one expects that the eventual sign of the acti-

vation might not change even if selected terms are removed

from the summation (5). The idea is to look for those terms

that carry the smallest relative contributions to the overall

aggregate. For the n-th neuron, denote with an;j the

expected value of the j-th term:

an;j ¼ ET ðxjwn;jÞ ¼ ET ðxjÞwn;j ð6Þ

The expectation can be replaced by the optimal estimator,

i.e., the sample mean

an;j ¼ ET ðxjwn;jÞ ’
1

Z

XZ

z¼1

ðxz;jÞwn;j ¼ �xjwn;j ð7Þ

where �xj is the average of the j-th feature on the training set

T . Then, a set Aþ
n grouping all the an;j [ 0 can be derived

from Wþ
n : A

þ ¼ fan;jjwn;j [ 0g. Likewise, the set A�
n cor-

responds toW�
n . The relevance cn;j of the j-th term in the n-

th neuron can be formalized as follows:

cn;j ¼ an;j=maxðAþ
n Þ an;j 2 Aþ

n

cn;j ¼ an;j=minðA�
n Þ an;j 2 A�

n

ð8Þ

In the example, the irrelevant addends according to (8) are

marked in red. The definition of the relevance cn;j allows to

rewrite the approximate activation ~/n:

~/nðxÞ ¼ sign
XD

j¼1

wn;jxjUðcn;j � aÞ þ bn

 !
ð9Þ

where U is the step function and a is a threshold.

The expression (9) highlights the approximation that one

introduces when using ~/n instead of /n. The size, D0
n, of

Fig. 2 Structure of the proposed

digital implementation

0 10 20 30 40 50 60 70 80

Terms

-12

-10

-8

-6

-4

-2

0

2

C
um

ul
at

iv
e

Fig. 3 Example of the

cumulative trend with terms

sorted in descending order

Neural Computing and Applications

123



the subset depends on both the value a and the distribution

of the values {cn;j}. The relevance cn;j is worked out by

averaging the j-th feature over the training set. This allows

one to select, for the n-th neuron, a subset D0
n that does not

affect the neuron’s activation on the training data. At the

same time, one cannot guarantee that ~/nðxÞ ¼ /nðxÞ for

any input sample. This issue calls for a trade-off between

computational cost and accuracy and should be addressed

in the training process.

3.2 Loss function: balancing power consumption
and accuracy

In the digital implementation of the SLFN, the inference

step can be carried out in either Complete- (1) or

Approximate-mode as per (9). In the Complete-mode, the

inference function is computed by involving the activation

function /n. Hence, such configuration represents the

baseline for evaluating the trade-off between loss in

accuracy and saved power consumption that characterizes

the Approximate-mode, which—for every neuron—adopts

the approximate activation ~/n in place of /n.

In principle, one should train independently the two

networks derived from the two configurations, thus

obtaining the vector of weights bðSÞ for the Complete-mode

and the vector of weights bðAÞ for the Approximate-mode,

given a threshold a. However, memory requirements in the

corresponding digital implementation would in turn dou-

ble. A second option is to train a single network that is

robust against perturbations at the neuron level. Thus, a

sign inversion in the activation function /n caused by its

replacement with ~/n is treated as a fault. Recently, Ragusa

et. al. [46] addressed this problem by introducing a suit-

able regularization term in the cost function of a SLFN.

This paper follows an alternative approach, which has

been adopted in similar problems [48, 56]. Let H0 be the

training matrix computed by using ~/n with a given value of

the threshold a; likewise, H is the (complete) training

matrix computed by using /n. The learning strategy sets

the optimization problem by searching a single solution for

both configurations and introduces a regularization term

that forces the approximate solution H0 to stick to H. The

resulting learning problem L is:

min
b

LðbÞ ¼ min
b

1

2
ky�Hbk2 þ 1

2
ky�H0bk2 þ

k
2
kbk2

� �

ð10Þ

The solution b is obtained by imposing the gradient of

Eq. 10 equal to 0; hence:

rbLðbÞ ¼ �HTyþHTHb

�H0
TyþH0

TH0bþ kb ¼ 0
ð11Þ

One can group the terms containing b

ðH þH0ÞTy ¼ þHTHb

þH0
TH0bþ kb

ð12Þ

The closed-form solution of (10) is:

b ¼ ðkI þHTH þHT
0H0Þ�1ðH0

þHÞTy
ð13Þ

The quantity k rules the trade-off between the perfor-

mances of each configuration {H0, H}. In principle, the

loss function (10) might also include a regularization

parameter, k2, for tuning the relative relevance of either

configuration. For the sake of simplicity, in the following,

the two configurations will be treated as equally relevant.

4 Digital implementation: RBN
with adaptable energy consumption

The digital implementation of (1) targets low-power

resource-constrained digital devices, and inherits the digital

architecture described in [7, 8]. Such architecture exploited

three single-cycle modules that operate in the pipeline.

Figure 4 schematizes the processing flow with D ¼ 4 and

N ¼ 3. In phase Ij, the Input module acquires and stores

the j-th feature of an input sample. In phase N
ðnÞ
j , the

Neuron module processes the j-th feature, and incremen-

tally computes the activation /nðxÞ of the n-th neuron by

adding the term wnjxj. In phase OðnÞ, the Output module

incrementally updates the activation (1) by adding the term

bn/n. Accordingly, the Neuron stage needs D clock cycles

to yield the activation of the n-th neuron; the Output stage

updates y as soon as a new activation is available.

In the present work, the internal structure of the Neuron

module (Fig. 5) fits the design strategy outlined in Sect. 3,

and embeds a single multiply-and-accumulate (MAC) cir-

cuit to privilege power consumption over latency. The

Neuron module receives—at the rising edge of a clock

cycle—the j-feature of the input sample and the signal

enj ¼ Uðcn;j � aÞ, which acts as an enable signal to the

three registers involved. When enabled, a pair of registers

store the j-feature and the associate weight wnj, respec-

tively. At the subsequent rising edge, the accumulator is

loaded with the updated value of the function; a flip-flop

ensures the correct synchronization with enj. The accumu-

lator is initialized with the value bn whenever the compu-

tation of a new /n starts. The parameters wnj, bn are all

stored in dedicated memories.

Neural Computing and Applications

123



This energy-efficient architecture allows the Neuron

module to compute either /n or
~/n [57]. Each term wnjxj is

only added if enj ¼ 1; otherwise, when the inputs remain

unchanged, the multiplier circuitry remains inactive and

power consumption only stems from leakage. The Enable

module relies on memory U to control the signal enj; for

each neuron, one has enj ¼ 1 if cn;j [ a, and enj ¼ 0

otherwise. The Control Unit drives the associated MUX: in

Complete-mode, one always has enj ¼ 1; in Approximate-

mode, the MUX status depends on the associated value

stored in U.

As in [7, 8], the Input module just includes a memory for

the serial acquisition of each input sample. In the Output

module, the memory stores the weights bn/n, and an add-

and-accumulate block carries out the sequential computa-

tion of (1). A finite-state machine controls the whole

process.

Data representation affects both rounding errors and the

computation cost [58]. The literature proved that a signed

integer representation is adequate for shallow networks

with threshold activation [8]. In this paper, the input fea-

tures xj and the parameters {wnj, bn, bn} are encoded by

8-bit signed integers, while the MAC unit handles 16-bit

signed integers. Such configuration should preserve

classification accuracy and, at the same time, limit the

energy consumption of the MAC stage.

Overall, the proposed digital architecture minimizes

hardware requirements by involving a single multiplier.

The latency of the inference for the input datum x does not

depend on the configuration adopted (Complete/Approxi-

mate). Conversely, when operating in Approximate-mode

the number of products does decrease; this in turn means

that the circuit saves both energy and power. Obviously,

such an approach penalizes latency for the purpose of

constraining the energy budget.

5 Results

The experimental setup was divided into two parts. First,

the generalization performance is tested using ten real-

world datasets. Later, the implementation results using a

commercial FPGA were tested.

The experiments involved ten bi-class datasets for

assessing the generalization ability of the RBNs with

online adjustable neurons described in Sect. 3. Seven

datasets belonged to the UCI repository [59]; in addition,

MNIST81, ds2os, and fog provided benchmarks for

Fig. 4 Processing flow of SLFN

inference as designed in [7]

Fig. 5 The digital architecture

Neural Computing and Applications

123



significant IoT applications [49]. Table 1 summarizes the

characteristics of the datasets. The first column marks the

dataset. The second column gives the dataset dimension-

ality, D. The third and fourth columns show the number of

patterns available for classes 0 (Z0) and 1 (Z1), respec-

tively. The fifth column gives the number of training

samples Z. The last column shows the number of test

patterns Ztest. The data were normalized in the range [0,1];

the most frequent categories were possibly sub-sampled to

avoid issues deriving from imbalanced distributions. In

each dataset, 70% of the patterns formed a training set,

whereas the remaining patterns composed the test set. The

experiments concerning generalization capability were

executed using Matlab software on a standard desktop

computer.

5.1 Generalization performance

The comparisons involved five different classifiers, i.e.,

five RBNs with as many different loss functions. In addi-

tion, two versions of each classifier were instantiated: the

Complete and the Approximate versions. The first pair of

classifiers adopted the standard L2 loss function (2). The L2
loss is well known for inducing good generalization per-

formance; in addition, it enables a satisfactory robustness

against perturbations of the hidden neurons’ activation

[47]. In the following, L2S will mark the Complete-mode

classifiers using (5); conversely, L2A will refer to the

Approximate-mode classifiers as per (9). The second pair

of classifiers involved a perturbation-sensitive loss function

[45]. In particular, we refer to [46] where the technique

proposed in [45] was tailored to threshold units measuring

the probability of a neuron ’flip’ on the training set. In

practice, one counted how many times the activation

computed with ~/n did not match the same function com-

puted with /n. In the following, FS and FA will refer to the

classifiers tested in Complete- and Approximate-mode,

respectively. The third and fourth classifiers refer to two

different implementations of the dropout mechanism in

RBNs. The third classifier [49], indicated as DE, imple-

ments the technique using an ensemble-based algorithm.

The fourth classifier, indicated as DR, uses a penalization

term inside the loss function [48]. Dropout is expected to

reduce the impact of distortions introduced by the

Approximate-mode. The last pair of classifiers covered

RBNs trained with the novel design-oriented loss function

described in this paper (10): MS and MA will refer to the

Complete- and Approximate-mode classifiers, respectively.

In each experiment, the hyper-parameters {k;N} were

set by applying model selection on the RBN trained with

the L2S loss function. This approach allowed fair com-

parisons among the classifiers, which shared the size of the

hidden layer. It is worth noting that, as a result, the accu-

racy values FS, FA, DRS, DRA, DES, DEA, MS, and MA

actually reflected sub-optimal configurations. Model

selection covered the settings k ¼ f10i; i ¼ �4;�3; . . .; 4g,
N ¼ f50; 100; 200; 500g. Additional hyper-parameter of

single loss functions, like dropout probability, were set

through a grid search procedure as for the case of k and

N. In each experiment, the estimated accuracy stemmed

from an average over twenty runs; in each run, the set of

hidden parameters was drawn at random [60] and the

compared RBNs all shared the same set.

Figure 6 shows the effect of the proposed approximation

technique on the neurons’ activations. Figure 6a reports on

the y-axis the flip probability measured on the hidden layer

0.50.30.2
0

0.05

0.1

0.15

0.2

0.25

F
lip

 p
ro

ba
bi

lit
y 

(%
)

CreditCard
Magic
Occupancy
Biodeg
Pima
HTRU
MNIST81
DetectMalicious
ds2os
fog

0.2 0.3 0.5
0

0.2

0.4

0.6

0.8

A
ct

iv
e 

T
er

m
s 

(%
)

(a)

(b)

Fig. 6 Average effect of the proposed approximation technique on the

activation of the hidden layer for testing data

Table 1 Dataset summary

Dataset D Z0 Z1 Z Ztest

CreditCard 23 23335 6630 9282 3976

Magic 10 12332 6573 9202 3942

Occupancy 5 4747 14372 6644 2846

Biodeg 41 698 354 494 210

Pima 8 268 500 374 158

HTRU 8 1639 16259 2294 982

MNIST81 80 512 488 682 290

DetectMalicious 503 70 301 98 40

ds2os 11 10017 347936 14022 6008

fog 9 6694 114909 9370 4014

Neural Computing and Applications

123



of trained networks when fed with testing data. The x-axis

groups the result based on the value of a. The groups

collect the results for all ten datasets. Figure 6b reports on

the y-axis the average percentage of ’active’ terms, i.e.,

terms that were not pruned in the Approximate-mode. The

x-axis follows the same format of Fig. 6a. When adopting a

mild setting of a (i.e., a ¼ 0:2), the network skips a con-

siderable number of multiplications for each activation

(i.e., from 20% to 40%), as shown in Fig. 6b. The per-

centage of flipped neurons is smaller than 10% except for

two datasets. With a ¼ 0:5 one obtains different outcomes.

The percentage of active terms approaches 40% for most of

the datasets, but the number of flipped neurons remains

smaller than 20% for all datasets except one. The inter-

mediate value a ¼ 0:3 yields flip probability values and

percentages of active terms halfway between the other

configurations. The overall trend highlights the effect of

parameter a on the behavior of the neurons. These out-

comes confirm that the proposed strategy selects connec-

tions with a limited effect on neurons’ behavior.

The impact of the proposed approximation technique on

the generalization performance of the classifiers is shown

in Table 2. The first column marks the dataset. The second

column reports the average size of the hidden layer over the

twenty runs. The third column shows the average per-

centage classification error on the test set when using L2S.

That quantity, highlighted for readability, was independent

of the value of a and provided a reference for each dataset.

Columns from 3 to 10 give, respectively, the average

classification errors scored by L2A, FS, FA, DES, DEA, DRS,

DRA, MS, and MA.

The results refer to the setting a ¼ 0:2. Both classifiers

MS and MA attained performances close to that scored by

L2S; in fact, MA could skip a considerable fraction (20–

40%) of multiplications for each activation (as shown in

Fig. 6). Both the dropout-based methods present a trend

similar to the L2-based classifier. In Complete-mode, the

classification error is similar between the three solutions.

When the networks are fed with approximate activation,

the error increases significantly. The narrow gap between

MS and MA mostly confirmed the effectiveness of the

proposed cost function. It is also worth noting that L2A,MS,

and MA proved less effective than MA. Again, such an

outcome empirically proved that the Approximate-mode

should be supported by a customized cost function.

Table 3 mimics Table 2 showing the results for a ¼ 0:5.

The performance of MS and MA slightly deteriorated when

setting a ¼ 0:5; at the same time, using MA resulted in a

remarkable reduction in multiplications (Fig. 6) for each

activation (more than 50%). As expected, that gap some-

times widened when adopting such a more stringent set-

ting. In practice, the presence of two terms in that loss

function acted as a regularizer [48, 56]. Conversely, the

performance of other networks with Approximate-mode

active deteriorate significantly: in most cases, the error

increment was higher than 30% for L2A and FA. In this case

too, the trend for dropout-based and L2 classifiers was

similar. The large difference with FA proves that the pro-

posed objective function outperforms fault-tolerant regu-

larization techniques [45, 46].

A last experiment involved the implementation of the

classifiers MS and MA by adopting 8-bit signed integers;

such data representation is compliant with the digital

implementation on constrained edge devices. Table 4

reports the outcomes of such an experiment. The first

column marks the dataset. Columns from 2 to 5 refer to the

experiments with a ¼ 0:2. The second and the third column

give, respectively, the classification error scored by MS and

MS � 8, which is the quantized implementation of MS.

Similarly, the fourth and the fifth column give, respec-

tively, the classification error scored by MA and MA � 8.

Columns 6 to 9 refer to the experiments with a ¼ 0:5 and

adopt the same format. Overall, the results of Table 4

proves that the impact of quantization is very limited.

Table 2 Results: generalization

performances a ¼ 0:2
[45,46] [49] [48]

dataset N L2S L2A FS FA DES DEA DRS DRA MS MA

Cred.Card 500 22.8 29.6 27.8 34.8 23.3 26.5 23 27.90 23.3 22.0
Magic 500 16.0 24.3 18.2 18.8 16.9 21.3 16.2 23.5 16.3 15.9
Occup. 435 0.1 2.8 0.3 0.4 0.20 0.60 0.1 5.3 0.2 0.2
Biodeg 425 14.0 23.3 15.1 17.1 16.1 23.5 17.7 25.3 16.1 17.1
Pima 207 18.6 19.5 19.3 19.5 20.9 20.7 20.9 20.1 18.7 19.0
HTRU 485 7.9 10.0 8.4 8.9 8.9 9.7 8.3 11.4 8.1 8.1

MNIST81 435 1.1 2.6 1.6 2.1 2.2 2.8 2.0 3.8 1.4 1.8
DetectMal. 110 0.1 3.4 2.5 5.1 2.6 3.6 3.8 8 0.9 1.6

ds2os 500 0.8 40.0 2.3 8.1 0.9 35.3 0.8 35.8 0.9 1.0
fog 500 20.3 28.8 23.3 25.7 22.0 27.3 20.2 29.0 21.3 22.4

Neural Computing and Applications

123



5.2 Digital implementation

This section provides first an example of functional simu-

lation of the proposed digital architecture; then, the circuit

is characterized and compared in detail with the low-power

digital implementation of SLFNs discussed in [8], which

represents a baseline. A general comparison with state-of-

the-art works is given in the following section.

The proposed digital architecture was tested using

Vivado2020.1 design suite. A low-power FPGA, namely

CMOD-S725, was set as the target for the simulation. The

overall goal was to complete both functional simulation

and timing simulation of the architecture. In fact, the

eventual target should be the ASIC implementation of the

edge device. FPGA implementations would inevitably have

an impact on the overall power consumption, as the

architecture of Fig. 5 would use only a small amount of

resources even on a low-end FPGA.

Figure 7 gives an example of the functional simulation

of the architecture.3 For the sake of clarity, the simulation

involved a basic classifier with x 2 R3 and two hidden

neurons; in this example, x ¼ ½01h; 02h; 03h�,
w1 ¼ ½06h; 05h; 04h�, w2 ¼ ½03h; 02h; 01h�, b1 ¼ b2 ¼ 0.

The waveform pane shows: the clock signal, the enable

signal enj, and the values stored in the three registers within

the Neuron module, namely, xj, wnj, and the accumulator

acc. The simulation illustrates the main operation steps of

the Neuron module; the term to be skipped is w23x3, i.e.,

the third term in w2x.

Table 5 reports on the results of the tests for evaluating

the circuit efficiency values; the experiments were per-

formed in Vivado using Vector (SAIF) Based Power

Estimation based on post-implementation simulation. In

general, the tests confirmed that the architecture can sup-

port clock frequencies up to 120 MHz. In low-power

applications, though, the clock frequency is typically set to

small values to cope with the low energy budget.

Accordingly, all the tests reported in this paper refer to an

implementation where f ¼ 12 MHz.

The simulation fed the network with thirty random

inputs to estimate the switching activity of the circuit. The

analysis compared the implementation of a SLFN proposed

Table 3 Results: generalization

performances a ¼ 0:5
[45,46] [49] [48]

dataset N L2S L2A FS FA DES DEA DRS DRA MS MA

Cred.Card 500 22.8 43.0 29.6 44.9 23.3 38.9 23.0 39.1 23.4 20.1
Magic 500 16.0 43.8 20.1 21.5 16.9 42.1 16.2 43.5 16.7 14.6
Occup. 435 0.1 33.7 0.5 0.7 0.2 29.2 0.1 30.8 0.2 0.2
Biodeg 425 14.0 35.5 19.7 27.1 16.1 35.2 17.7 37.2 17.0 20.0
Pima 207 18.6 23.6 20.1 23.1 20.9 22.8 20.9 26.2 19.6 19.8
HTRU 485 7.9 44.7 10.8 12.7 8.9 42.6 8.3 43.7 8.2 8.9

MNIST81 435 1.1 44.9 3.2 28.3 2.2 45.0 2.0 46.2 2.5 6.5
DetectMal. 110 0.1 35.3 6.6 24.5 2.6 36.6 3.8 45.8 0.1 9.4

ds2os 500 0.8 41.8 4.8 26.5 0.9 39.8 0.8 41.6 0.9 1.0
fog 500 20.3 43.5 27.6 40.3 22.0 46.5 20.2 44.7 21.9 25.8

Table 4 Analysis of the impact

of 8-bit integer representation
Dataset a ¼ 0:2 a ¼ 0:5

MS MS � 8 MA MA � 8 MS MS � 8 MA MA � 8

CreditCard 23.3 23.5 22.0 22.3 23.4 23.6 20.1 20.1

Magic 16.3 16.5 15.9 16.1 16.7 16.9 14.6 14.6

Occupancy 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.3

Biodeg 16.1 16.6 17.1 17.1 17.0 17.1 20.0 20.5

Pima 18.7 19.8 19.0 19.9 19.6 19.7 19.8 20.4

HTRU 8.1 8.0 8.1 8.3 8.2 8.0 8.9 8.8

MNIST81 1.4 2.2 1.8 1.2 2.5 2.3 6.5 6.2

DetectMalicious 0.9 1.1 1.6 1.9 0.1 0.6 9.4 14.4

ds2os 0.9 0.9 1.0 0.9 0.9 0.9 1.0 1.0

fog 21.3 20.9 22.4 22.1 21.9 21.5 25.8 25.9

3 The functional simulation was performed using Deeds simulator

[61].

Neural Computing and Applications

123



in [8] with unconstrained weights and the digital imple-

mentation schematized in Fig. 5. The former case repre-

sented the baseline for each test as it compared favorably in

terms of hardware occupation with recent solutions for

low-power SLFNs.

Table 5 compares the baseline implementation and the

proposed implementation according to energy consumption

per single inference (i.e., inference on a single datum). The

second column gives the circuit implementation, while the

remaining five columns refer to as many configurations of

the pair {D, N}. In the tests with Approximate-mode

classifiers, the experiments involved D0
n ¼ D=2 for every

neuron.

The energy per single inference of the architecture

operating in Complete-mode matched the consumption of

the baseline implementation, which lacked the ability to

switch to Approximate-mode. When operating in Approx-

imate-mode {TP � 50%}, the proposed architecture yiel-

ded a significant reduction of energy consumption. Further

tests confirmed that this gap scaled linearly with TP.

Table 6 compares the baseline implementation and the

proposed implementation in terms of resource usage. The

same five configurations of Table 5 are characterized

according to: the percentage of used LUTs over the total

number of available LUTs, the percentage of used FFs over

the total number of available FFs, and the percentage of

used BRAMs over the total number of available BRAMs.

In terms of resource occupation, flip-flop usage was equal

for the two solutions and kept lower than 1%. The circuitry

always included 1 block of BRAM. The block RAM usage

remains constant in all the settings because the amount of

the required memory is small independently of D and N. In

fact, in this case, memories are typically synthesized using

registers and flip-flops. The configuration of the pair (D, N)

only affected the amount of LUTs, which indeed grew

slower than D� N.

5.3 Comparison with literature

The literature proposes other approaches suitable for the

efficient implementation of neural networks with threshold

activation or RBNs. However, a direct comparison with the

present paper would be unfair due to the fact that the

adopted design targets a scenario where the constraints on

Table 5 Energy performance:

baseline [8] and proposal
Implementation D, N

5100 50,100 100,100 5500 100,500

Dyn. energy Baseline 0.20 2.97 8.41 1,00 46.28

Per inference Prop. (complete) 0.20 2.97 8.41 1,00 46.28

(mJ) Prop (approx.) 0.10 2.12 6.73 0.59 37.87

Table 6 Hardware performance:

baseline [8] and Proposal
Implementation D, N

5100 50,100 100,100 5500 100,500

LUT Baseline 123 (0.84) 821 (5.62) 1562 (10.70) 487 (3.34) 2472 (16.93)

#(%) Proposal 209 (1.43) 846 (5.79) 1621 (11.10) 526 (3.60) 2525 (17.29)

FF Baseline 78 (0.27) 130 (0.44) 84 (0.29) 98 (0.34) 104 (0.36)

#(%) Proposal 92 (0.32) 180 (0.62) 201 (0.69) 137 (0.47) 217 (0.74)

BRAM Baseline 0.5 (1.11) 0.5 (1.11) 0.5 (1.11) 0.5 (1.11) 0.5 (1.11)

#(%) Proposal 0.5 (1.11) 0.5 (1.11) 0.5 (1.11) 0.5 (1.11) 0.5 (1.11)

Fig. 7 Functional simulation in

approximate-mode

(D ¼ 3;N ¼ 2)

Neural Computing and Applications

123



the available resources are very severe. In the following, a

detailed qualitative comparison analyzes the discrepancies

and similarities with state-of-the-art implementations.

In [7], a redesigned ELM based on a constrained dis-

tribution of the hidden weights has been implemented in a

digital architecture without multipliers. The digital archi-

tecture was tested on different devices; the most con-

strained was a CPLD 5M1270Z, where a network with

D=81 and N=18 was implemented with a clock frequency

of 33 MHz. The power consumption reached 48 mW with

an occupation of 73% of the area available in the CPLD. In

our experiments, we implemented a classifier with D=100

and N= 100. In this setup, with a clock frequency of 12

MHz, the power consumption was 67mW on the MOD-

S725, where 61mW was ascribed to static power. In

practice, one should consider that a CPLD has a much

smaller static power consumption. On the other hand,

CPLD cannot support multipliers; this aspect imposes a

constraint on the set of implementable RBNs.

Gao et al. [44] presented an implementation of RBNs

based on a three-stage architecture. The network was

deployed on a Xilinx XC7 with a 50MHz clock frequency.

Power consumption was toward 1.0 W, which is two orders

of magnitude larger than the largest power consumption

measured with our architecture.

Recent implementations of non-random binary networks

on FPGA featured a power consumption above 2.5 W [53].

The implementations presented in [54] and [55] reached a

power consumption close to 2.5W. In the former case, the

network was deployed on a Zynq-8020 with a clock fre-

quency of 100 MHz; in the latter case, the deployment

involved a Zynq-7020 with a clock frequency of 120 MHz.

The proposed architecture when implemented with clock

frequency f ¼ 120 MHz, D ¼ 100, and N ¼ 500 showed a

dynamic power consumption of about 20 mW. This gap

can be ascribed to the difference in terms of the number of

parameters between a DNN and a RBN. This in turn les-

sens hardware requirements for the implementation of a

RBN and makes binary-quantization strategies for deep

learning ineffective.

An important feature of RBNs is the capability of sup-

porting online learning on resource-constrained devices.

Recently, different works proposed efficient digital archi-

tectures implementing both online learning and the infer-

ence phase on FPGA. The recursive least mean p-power

algorithm for training an ELM was proposed in [36]. The

paper reported a power consumption of around 1.5 Watts,

where only 160 mW were ascribed to dynamic power. In

[37] online sequential ELM was deployed on FPGA with

very similar power consumption. Huang et al. [38]

achieved on-chip training of ELM with 1.45 Watts power

consumption. Obviously, the inclusion of online training

contributes to increasing the power consumption of the

final device.

6 Conclusions

The paper presented a design strategy for the efficient,

digital implementation of RBNs with hard-limit activation

functions, under variable and tight energy constraints.

A suitable strategy based on approximated computing

exploits the peculiarities of hard-limit activation to control

the number of operations during the inference phase based

on the available energy budget. Eventually, the complete

and approximated working modes use the same set of

weights trained using a custom loss function proposed in

this paper. A dedicated digital architecture supports the two

operation modes and allows a satisfactory trade-off

between accuracy and energy budget.

Experimental results assessed generalization perfor-

mance and hardware performance. Generalization capa-

bilities were assessed employing ten real-world datasets.

The digital architecture was characterized using Vivado

and a low-cost development board, namely CMOD-S7.

Experiments confirmed that the proposed solution can trade

off generalization performance and hardware requirements

better than the alternative solution. In addition, the exper-

iments confirmed that the design strategy, in Approximate-

mode, attained considerable reductions in energy con-

sumption, while ensuring satisfactory generalization

performances.

Future development concerns the deployment of the

proposed digital architecture on ASIC to fully exploit the

low power features of the present design. In addition, a

possible research direction concerns adapting the method

to more general architecture, also multi-layer, not based on

randomization of the input layer by suitably reformulating

the learning procedure.

Funding Open access funding provided by Università degli Studi di

Genova within the CRUI-CARE Agreement.

Decarations

Conflict of interest The authors declare that they have no conflict of

interest.

Data Availability The datasets analyzed during the current study were

derived from the following public domain resources: https://archive.

ics.uci.edu/ml/datasets.php and https://www.kaggle.com/datasets/

francoisxa/ds2ostraffictraces.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

Neural Computing and Applications

123

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces


long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Mohammed CM, Askar S et al (2021) Machine learning for iot

healthcare applications: a review. Int J Sci Bus 5(3):42

2. Nagarajan V, Vijayaraghavan V et al. (2021) End-to-end opti-

mized arrhythmia detection pipeline using machine learning for

ultra-edge devices. arXiv:2111.11789

3. Krišto M, Ivasic-Kos M, Pobar M (2020) Thermal object detec-

tion in difficult weather conditions using yolo. IEEE Access

8:125459

4. Sezer N, Koç M (2021) A comprehensive review on the state-of-

the-art of piezoelectric energy harvesting. Nano Energy

80:105567

5. Huang K, Chen S, Li B, Claesen L, Yao H, Chen J, Jiang X, Liu

Z, Xiong D (2022) Structured precision skipping: accelerating

convolutional neural networks with budget-aware dynamic pre-

cision selection. J Syst Architect 102403

6. Xia M, Huang Z, Tian L, Wang H, Chang V, Zhu Y, Feng S

(2021) Sparknoc: an energy-efficiency fpga-based accelerator

using optimized lightweight cnn for edge computing. J Syst

Archit 115:101991

7. Ragusa E, Gianoglio C, Gastaldo P, Zunino R (2018) A digital

implementation of extreme learning machines for resource-con-

strained devices. IEEE Trans Circuits Syst II Express Briefs

65(8):1104

8. Ragusa E, Gianoglio C, Zunino R, Gastaldo P(2019) A design

strategy for the efficient implementation of random basis neural

networks on resource-constrained devices. Neural Process Lett

1–19

9. Lowe D (1989) Adaptive radial basis function nonlinearities, and

the problem of generalisation. In Artificial Neural Networks,

1989, First IEE international conference on (Conf. Publ. No. 313)

(IET, 1989), pp. 171–175

10. Pao YH, Park GH, Sobajic DJ (1994) Learning and generalization

characteristics of the random vector functional-link net. Neuro-

computing 6(2):163

11. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine:

a new learning scheme of feedforward neural networks. In neural

networks, 2004. Proceedings. 2004 IEEE international joint

conference on, vol. 2 (IEEE, ), vol. 2, pp 985–990

12. Huang G, Huang GB, Song S, You K (2015) Trends in extreme

learning machines: a review. Neural Netw 61:32

13. Rahimi A, Recht B (2009) Weighted sums of random kitchen

sinks: Replacing minimization with randomization in learning. In

advances in neural information processing systems,

pp 1313–1320

14. Elsheikh AH, Shehabeldeen TA, Zhou J, Showaib E, Abd Elaziz

M (2021) Prediction of laser cutting parameters for polymethyl-

methacrylate sheets using random vector functional link network

integrated with equilibrium optimizer. J Intell Manuf 32(5):1377

15. Abd Elaziz M, Senthilraja S, Zayed ME, Elsheikh AH, Mostafa

RR, Lu S (2021) A new random vector functional link integrated

with mayfly optimization algorithm for performance prediction of

solar photovoltaic thermal collector combined with electrolytic

hydrogen production system. Appl Therm Eng 193:117055

16. Hazarika BB, Gupta D (2022) Random vector functional link

with e-insensitive huber loss function for biomedical data clas-

sification. In: Computer methods and programs in biomedicine,

p 106622

17. Gao Z, Yu J, Zhao A, Hu Q, Yang S (2022) A hybrid method of

cooling load forecasting for large commercial building based on

extreme learning machine. Energy 238:122073

18. Hua L, Zhang C, Peng T, Ji C, Nazir MS (2022) Integrated

framework of extreme learning machine (elm) based on improved

atom search optimization for short-term wind speed prediction.

Energy Convers Manag 252:115102

19. Gianoglio C, Ragusa E, Gastaldo P, Valle M (2021) A novel

learning strategy for the trade-off between accuracy and com-

putational cost: a touch modalities classification case study. IEEE

Sens J 22(1):659

20. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A

(2010) Op-elm: optimally pruned extreme learning machine.

IEEE Trans Neural Netw 21(1):158

21. Decherchi S, Gastaldo P, Leoncini A, Zunino R (2012) Efficient

digital implementation of extreme learning machines for classi-

fication. IEEE Trans Circuits Syst II Express Briefs 59(8):496

22. Wu T, Yao M, Yang J (2017) Dolphin swarm extreme learning

machine. Cogn Comput 9(2):275

23. Tian HY, Li SJ, Wu TQ, Yao M (2017) An extreme learning

machine based on artificial immune system. The 8th international

conference on extreme learning machines (ELM2017), Yantai,

China

24. Gastaldo P, Bisio F, Gianoglio C, Ragusa E, Zunino R (2017)

Learning with similarity functions: a novel design for the extreme

learning machine. Neurocomputing 261:37

25. Ragusa E, Gastaldo P, Zunino R, Cambria E (2020) Balancing

computational complexity and generalization ability: a novel

design for elm. Neurocomputing 401:405

26. Balcan MF, Blum A, Srebro N (2008) A theory of learning with

similarity functions. Mach Learn 72(1–2):89

27. Dudek G (2021) A constructive approach to data-driven ran-

domized learning for feedforward neural networks. Appl Soft

Comput 112:107797

28. Dudek G (2020) 2020 Data-driven randomized learning of

feedforward neural networks. International joint conference on

neural networks (IJCNN). IEEE, pp 1–8

29. Perales-González C, Fernández-Navarro F, Pérez-Rodrı́guez J,

Carbonero-Ruz M (2021) Negative correlation hidden layer for

the extreme learning machine. Appl Soft Comput 109:107482

30. Badr A (2021) Awesome back-propagation machine learning

paradigm. Neural Comput Appl 33(20):13225

31. Yao E, Basu A (2016) Vlsi extreme learning machine: a design

space exploration. IEEE Trans Very Large Scale Integr (VLSI)

Syst 25(1):60

32. Chuang YC, Chen YT, Li HT, Wu AYA (2021) An arbitrarily

reconfigurable extreme learning machine inference engine for

robust ecg anomaly detection. IEEE Open J Circuits Syst 2:196

33. Safaei A, Wu QJ, Akilan T, Yang Y(2018) System-on-a-chip

(soc)-based hardware acceleration for an online sequential

extreme learning machine (os-elm). In: IEEE transactions on

computer-aided design of integrated circuits and systems

34. He Z, Shi C, Wang T, Wang Y, Tian M, Zhou X, Li P, Liu L, Wu

N, Luo G (2021) A low-cost fpga implementation of spiking

extreme learning machine with on-chip reward-modulated stdp

learning. In: Express briefs, IEEE transactions on circuits and

systems II

35. Rosato A, Altilio R, Panella M (2018) On-line learning of rvfl

neural networks on finite precision hardware. In 2018 IEEE

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2111.11789


international symposium on circuits and systems (ISCAS)

(IEEE), pp 1–5

36. Huang H, Yang J, Rong HJ, Du S (2021) A generic fpga-based

hardware architecture for recursive least mean p-power extreme

learning machine. Neurocomputing 456:421

37. Safaei A, Wu QJ, Akilan T, Yang Y (2018) System-on-a-chip

(soc)-based hardware acceleration for an online sequential

extreme learning machine (os-elm). IEEE Trans Comput Aided

Des Integr Circuits Syst 38(11):2127

38. Huang H, Rong HJ, Yang ZX (2022) A task-parallel and recon-

figurable fpgabased hardware implementation of extreme learn-

ing machine. In 2022 3rd Asia service sciences and software

engineering conference, pp 194–202

39. Rasouli M, Chen Y, Basu A, Kukreja SL, Thakor NV (2018) An

extreme learning machine-based neuromorphic tactile sensing

system for texture recognition. IEEE Trans Biomed Circuits Syst

12(2):313

40. Dong Z, Lai CS, Zhang Z, Qi D, Gao M, Duan S (2021) Neu-

romorphic extreme learning machines with bimodal memristive

synapses. Neurocomputing 453:38

41. Chen Y, Yao E, Basu A (2015) A 128-channel extreme learning

machine-based neural decoder for brain machine interfaces. IEEE

Trans Biomed Circuits Syst 10(3):679

42. Chen Y, Wang Z, Patil A, Basu A (2019) A 2.86-tops/w current

mirror cross-bar-based machine-learning and physical unclonable

function engine for internet-of-things applications. IEEE Trans

Circuits Syst I: Regular Pap 66(6):2240

43. Patil A, Shen S, Yao E, Basu A (2017) Hardware architecture for

large parallel array of random feature extractors applied to image

recognition. Neurocomputing 261:193

44. Gao Y, Luan F, Pan J, Li X, He Y (2020) Fpga-based imple-

mentation of stochastic configuration networks for regression

prediction. Sensors 20(15):4191

45. Leung CS, Wan WY, Feng R (2016) A regularizer approach for

rbf networks under the concurrent weight failure situation. IEEE

Trans Neural Netw Learn Syst 28(6):1360

46. Ragusa E, Gianoglio C, Zunino R, Gastaldo P (2020) Improving

the robustness of threshold-based single hidden layer neural

networks via regularization. In 2020 2nd IEEE international

conference on artificial intelligence circuits and systems

(AICAS). IEEE, pp 276–280

47. Wong HT, Leung HC, Leung CS, Wong E (2022) Noise/fault

aware regularization for incremental learning in extreme learning

machines. Neurocomputing 486:200

48. Iosifidis A, Tefas A, Pitas I (2015) Dropelm: fast neural network

regularization with dropout and dropconnect. Neurocomputing

162:57

49. Ragusa E, Gianoglio C, Zunino R, Gastaldo P (2020) Random-

based networks with dropout for embedded systems. Neural

Comput Appl 1–16

50. Ibrahim A, Osta M, Alameh M, Saleh M, Chible H, Valle M

(2018) Approximate computing methods for embedded machine

learning. In 2018 25th IEEE international conference on elec-

tronics, circuits and systems (ICECS). IEEE, pp 845–848

51. Hoefler T, Alistarh D, Ben-Nun T, Dryden N, Peste A (2021)

Sparsity in deep learning: pruning and growth for efficient

inference and training in neural networks. arXiv:2102.00554

52. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A

(2009) Op-elm: optimally pruned extreme learning machine.

IEEE Trans Neural Netw 21(1):158

53. Qin H, Gong R, Liu X, Bai X, Song J, Sebe N (2020) Binary

neural networks: a survey. Pattern Recogn 105:107281

54. Blott M, Preußer TB, Fraser NJ, Gambardella G, O’brien K,

Umuroglu Y, Leeser M, Vissers K, (2018) Finn-r: an end-to-end

deep-learning framework for fast exploration of quantized neural

networks. ACM Trans Reconfig Technol Syst (TRETS) 11(3):1

55. Nakahara H, Fujii T, Sato S (2017) A fully connected layer

elimination for a binarizec convolutional neural network on an

FPGA. In 2017 27th international conference on field pro-

grammable logic and applications (FPL). IEEE, pp 1–4

56. Decherchi S, Cavalli A (2018) Simple learning with a teacher via

biased regularized least squares. In international conference on

machine learning, optimization, and data science. Springer,

pp 14–25

57. Masadeh M, Hasan O, Tahar S (2019) Input-conscious approxi-

mate multiply-accumulate (mac) unit for energy-efficiency. IEEE

Access 7:147129

58. Rosato A, Altilio R, Panella M (2017) 2017 22nd international

conference on digital signal processing (DSP). IEEE, pp 1–5

59. Dua D, Graff C, et al (2017) Uci machine learning repository

60. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine:

theory and applications. Neurocomputing 70(1–3):489

61. Donzellini G, Ponta D (2007) A simulation environment for

e-learning in digital design. IEEE Trans Ind Electron 54(6):3078

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://arxiv.org/abs/2102.00554

	An approximate randomization-based neural network with dedicated digital architecture for energy-constrained devices
	Abstract
	Introduction
	Contribution

	Digital implementation of randomization-based neural networks: background
	Randomization-based neural networks
	Implementation of randomization-based networks on resource-constrained devices

	Randomization-based neural networks with adjustable power consumption
	Approximate activation function
	Loss function: balancing power consumption and accuracy

	Digital implementation: RBN with adaptable energy consumption
	Results
	Generalization performance
	Digital implementation
	Comparison with literature

	Conclusions
	Open Access
	References




