
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021 3469

Functionality-Preserving Black-Box Optimization of
Adversarial Windows Malware

Luca Demetrio , Battista Biggio , Senior Member, IEEE, Giovanni Lagorio,
Fabio Roli, Fellow, IEEE, and Alessandro Armando

Abstract— Windows malware detectors based on machine
learning are vulnerable to adversarial examples, even if the
attacker is only given black-box query access to the model.
The main drawback of these attacks is that: (i) they are
query-inefficient, as they rely on iteratively applying random
transformations to the input malware; and (i i) they may also
require executing the adversarial malware in a sandbox at each
iteration of the optimization process, to ensure that its intrusive
functionality is preserved. In this paper, we overcome these
issues by presenting a novel family of black-box attacks that
are both query-efficient and functionality-preserving, as they
rely on the injection of benign content (which will never be
executed) either at the end of the malicious file, or within
some newly-created sections. Our attacks are formalized as a
constrained minimization problem which also enables optimizing
the trade-off between the probability of evading detection and
the size of the injected payload. We empirically investigate this
trade-off on two popular static Windows malware detectors, and
show that our black-box attacks can bypass them with only few
queries and small payloads, even when they only return the
predicted labels. We also evaluate whether our attacks transfer
to other commercial antivirus solutions, and surprisingly find
that they can evade, on average, more than 12 commercial
antivirus engines. We conclude by discussing the limitations of
our approach, and its possible future extensions to target malware
classifiers based on dynamic analysis.

Index Terms— Adversarial examples, malware detection, eva-
sion attacks, black-box optimization, machine learning.

I. INTRODUCTION

MACHINE learning is becoming ubiquitous in the field
of computer security. Both academia and industry

are investing time, money and human resources to apply
these statistical techniques to solve the daunting task of
malware detection. In particular, Windows malware is still
a threat in the wild, as thousands of malicious programs
are uploaded to VirusTotal every day.1 Modern approaches

Manuscript received February 20, 2020; revised September 29, 2020,
February 17, 2021, and April 30, 2021; accepted May 11, 2021. Date
of publication May 20, 2021; date of current version June 4, 2021. This
work was supported by the Progetti di Rilevante Interesse Nazionale (PRIN)
2017 Project RexLearn through the Italian Ministry of Education, University
and Research, under Grant 2017TWNMH2. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Loukas Lazos. (Corresponding author: Luca Demetrio.)

Luca Demetrio is with the PRA Lab, Department of Electrical and Elec-
tronic Engineering, University of Cagliari, 09124 Cagliari, Italy (e-mail:
luca.demetrio93@unica.it).

Battista Biggio and Fabio Roli are with the PRA Lab, Department of
Electrical and Electronic Engineering, University of Cagliari, 09124 Cagliari,
Italy, and also with Pluribus One, 09128 Cagliari, Italy.

Giovanni Lagorio and Alessandro Armando are with the Computer Security
Laboratory (CSecLab), University of Genoa, 16126 Genoa, Italy.

Digital Object Identifier 10.1109/TIFS.2021.3082330
1https://www.virustotal.com/it/statistics/

use machine learning to detect such threats at scale,
leveraging many different learning algorithms and feature
sets [1]–[7].

While these techniques have shown promising
malware-detection capabilities, they have not been originally
designed to deal with non-stationary, adversarial problems
in which attackers can manipulate the input data to evade
detection. This has been widely shown in the last decade
in the area of adversarial machine learning [8], [9]. This
research field studies the security aspects of machine-learning
algorithms under attacks staged either at training or at test
time. In particular, in the context of learning-based Windows
malware detectors, it has been shown that it is possible to
carefully optimize adversarial malware samples against the
target system to bypass it [10]–[17]. Many of these attacks
have been demonstrated in the black-box setting in which the
attacker has only query access to the target model [14]–[17].
This really questions the security of such systems when
deployed as cloud services, as they can be queried by external
attackers who can in turn optimize their manipulations based
on the feedback provided by the target system, until evasion
is achieved.

These black-box attacks are however still not very efficient
in terms of (i) the number of required queries, (i i) the
complexity of their optimization process, and (i i i) the amount
of manipulations performed on the input sample, as detailed
below. First, query efficiency is hindered by the fact that
these attacks optimize the adversarial malware by iteratively
applying transformations which are not specifically targeted
to evade detection, like injection of random bytes after the
end of the file. Second, the optimization process may be quite
computationally demanding as some attacks require executing
the adversarial malware sample in a sandbox at each iteration
to ensure that its intrusive functionality is preserved. This
verification step is required by attacks that either manipulate
data in feature space (rather than considering realizable input
modifications [18]), or consider input transformations that
may break the functionality of the malware sample [14],
[19]. While executing the malware sample once inside a
sandbox may not significantly slow down the whole process,
the problem becomes relevant when this step has to be repeated
after each iteration of the optimization process, as it requires
restoring the state of the virtual environment at the stage before
infection. In addition, many malware samples can detect if they
are run in a virtual environment and delay their execution to
stay undetected [31]. This makes the problem of verifying that
malware functionality is preserved even more complicated.

1556-6021 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5104-1476
https://orcid.org/0000-0001-7752-509X

3470 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Third, all these attacks achieve evasion by significantly manip-
ulating the content of the input malware, without considering
additional constraints, e.g., on the resulting file size or number
of injected sections. This may result in attack samples that are
easily detected as anomalous by only looking at some trivial
characteristics, like the file size or the number of sections.

In this paper, we aim to overcome the aforementioned
limitations by proposing a novel family of black-box attacks
(Sect. III) that can efficiently optimize adversarial malware
samples. First, our attacks are query-efficient, as they rely upon
injecting content specifically targeted to facilitate evasion,
i.e., extracted from benign samples (instead of being ran-
domly generated). Second, they are functionality-preserving by
design, as they leverage a set of manipulations that only inject
content into the malicious program by exploiting ambiguities
of the file format used to store programs on disk, without
altering its execution traces. While in this work we only focus
on injecting content either at the end of the file (padding)
or within some newly-created sections (section injection),
our approach is general enough to encompass a wider range
of functionality-preserving manipulations (as discussed in
Sect. III-A). Finally, our attacks are stealthier. In particular,
they are formalized as a constrained minimization problem
which does not only optimize the probability of evading
detection, but also penalizes the size of the injected adversarial
payload via a specific regularization term.

We focus on two popular learning-based Windows malware
detectors, built on features extracted from static code analysis
(Sect. II). Our empirical evaluation (Sect. IV) investigates the
trade-off between detection and size empirically, and shows
that our black-box attacks are able to efficiently bypass the
considered detectors after only few iterations and changes.
Moreover, we show that our attacks succeed not only when the
target models output a continuous probability (or confidence)
score, but also when they only provide the predicted labels. We
then evaluate whether our attacks transfer to other commercial
antivirus solutions, and surprisingly find that they can evade,
on average, more than 12 commercial antivirus engines. We
discuss how related work differs from ours in Sect. V, and
acknowledge the limitations of our work in Sect. VI. We
conclude by discussing possible future extensions of this work
(Sect. VII), including how to extend it to target malware
classifiers based on dynamic analysis.

II. PROGRAMS AND MALWARE DETECTION

In this section we first discuss the Windows Portable
Executable (PE) format,2 which describes how programs are
stored on disk, and explains to the operating system (OS) how
to load them in memory before execution. We then introduce
the two popular learning-based Windows malware detectors
used in the remainder of this work.

A. The Windows Portable Executable (PE) File Format

The Windows PE format consists of several components,
as shown in Fig. 1 and described below.

2https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

Fig. 1. The Windows PE file format. Each colored section describes a
particular characteristic of the program.

1) DOS Header (A): It contains metadata for loading the
executable inside a DOS environment, and the DOS stub,
which prints “This program cannot be run in DOS mode”
if executed inside a DOS environment. These two compo-
nents have been kept to maintain compatibility with older
Microsoft’s operating system. From the perspective of a mod-
ern application, the only relevant portions present inside the
DOS Header are: (i) the magic number MZ, a two-byte long
signature for the file, and (ii) the four-byte long integer at
offset $0x3$c, that works as a pointer to the real header.
If one of these two values is scrambled for some reason,
the program is considered corrupted, and it will not be
executed by the OS.

2) PE Header (B): It contains the magic number PE along
with other file characteristics, such as the target architecture,
the header size, and the file attributes.

3) Optional Header (C): It contains the information needed
by the OS to initialize the loading program. It also contains
offsets that point to useful structures, like the Import Address
Table (IAT), needed by the OS for resolving dependencies,
and the Export Table offset, which indicates where to find
functions that can be referenced by other programs.

4) Section Table (D): It is a list of entries that indicates the
characteristics of each core component of the program, and
where the OS loader should find them inside the file.

5) Sections (E): These contiguous chunks of bytes host the
real content of the executable. To list a few: .text contains
the code, .data contains global variables and .rdata contains
read-only constants, and counting.

The structure of an executable program can be useful for
statically inferring information about its behavior. Indeed, most
antivirus vendors apply static analysis to detect threats in the
wild, without executing suspicious programs inside a con-
trolled environment. This approach saves time and resources
since the antivirus programs do not execute the suspicious
software inside the host OS. Static analysis serves as the first
line of defense, and its performance is crucial for opposing
the countless threats in the wild.

B. Learning-Based Windows Malware Detection

We focus on two popular, state-of-the-art machine
learning-based detectors that have been coded, trained, and
publicly released on GitHub by EndGame.3 Both models are
trained on the EMBER dataset built by the same company [6].

3https://www.endgame.com/

DEMETRIO et al.: FUNCTIONALITY-PRESERVING BLACK-BOX OPTIMIZATION OF ADVERSARIAL WINDOWS MALWARE 3471

1) MalConv: The first detector is an end-to-end convolu-
tional neural network (CNN) proposed by Raff et al. [7]. It
takes as input the first 2 MB of an executable and returns the
probability of being malware. If the input executable length
exceeds this threshold, the file is truncated to the specified
size, otherwise, the file is padded with the value 0. Since
the padding value should be unique, all values are shifted by
one to maintain this distinction. Each byte is embedded into
a representation space with eight dimensions, learned directly
from the available data with the goal of defining a meaningful
distance metric between bytes. The convolutional layers are
then used to correlate spatially-distant bytes inside the input
binary, e.g., jumps and function calls.

2) GBDT: The second detector is implemented using Gra-
dient Boosting Decision Trees (GBDT) [6], [20]. Differently
from MalConv, this detector uses a fixed representation con-
sisting of 2,381 features, extracted from: (i) general file
information, including the virtual size of the file, the number
of imported and exported functions, the presence of debug sec-
tions, etc.; (i i) header information, accounting for the charac-
teristics of the executable, the target architecture, the version,
etc.; (i i i) byte histogram, which counts the occurrences of each
byte, divided by the total number of bytes; (iv) byte-entropy
histogram, inspired from [1], which accounts for the entropy
of the byte distribution of the file, applying a sliding window
over the binary; (v) information taken from strings, which
counts the number of occurrences of each string (considered as
a sequence of at least five consecutive printable characters),
and how many special markers they contain, such as C:\,
HKEY, http and https; (vi) section information, which
includes name, length, entropy, and virtual size of each section;
(vi i) imported and exported functions which tracks all the
functions imported from libraries, and all the ones that are
exposed to the other programs. Many of these feature sets
are compressed inside a histogram by applying the hashing
trick [21], to reduce the dimension of the problem to a smaller
and manageable space.

III. BLACK-BOX OPTIMIZATION OF ADVERSARIAL

WINDOWS MALWARE

In this section, we present our novel black-box attack
framework, named GAMMA (Genetic Adversarial Machine
learning Malware Attack). GAMMA can efficiently optimize
adversarial malware samples while only requiring black-box
access to the model, i.e., by only querying the target model and
observing its output, without accessing its internal structure
and parameters. Our attack relies upon a set of functionality-
preserving manipulations that inject content into the malicious
program by exploiting ambiguities of the PE format used to
store programs on disk, without altering its execution traces.
This allow us to get rid of the computationally-demanding val-
idation steps required to ensure that the manipulated malware
preserves its intended functionality. In particular, we consider
here content manipulations specifically targeted to facilitate
evasion, i.e., extracted from benign samples rather than being
generated at random. While this makes our attack much more
query-efficient, it is worth remarking that our framework is

general enough to encompass many other different content
manipulation techniques, as detailed in Sect. III-A. Finally,
to make our attack stealthier, we formalize it as a constrained
optimization problem which does not only minimize the
probability of evading detection but also the size of the injected
content via a specific penalty term.

Notation: In the following, we denote with x ∈ X ⊂
{0, . . . , 255}∗ the (malicious) input program, described as a
string of bytes of arbitrary length. We then define a set of
k distinct functionality-preserving manipulations that can be
applied to the input program x as a vector s ∈ S ⊂ [0, 1]k .
Each element of s corresponds to a different manipulation that
can be applied to the input program. The manipulations are
parameterized in [0, 1], to denote the extent to which they are
applied. For example, if we assume that the i th element si

is associated to the injection of a given section in the input
program, si = 0.4 may represent the fact that only 40% of
the bytes present in that section will be injected. We can
also consider injection of specific API functions, in which
case si will be a binary variable denoting whether the given
API is injected (si = 1) or not (si = 0). The function
⊕ : X × S → X applies the manipulations described by s
to the input program x, preserving functionality, and returns
the manipulated program. We use f : X → R to denote
the output of the classification model on the input program.
Without loss of generality, we consider here f to be the output
of the model on the malicious class, i.e., the higher the value
of f (x) is, the more x is considered malicious. The value of
f (x) is eventually compared against a decision threshold θ to
decide whether the input program is malicious, i.e., f (x) ≥ θ ,
or not.

Attack Formulation: We can now formalize our attack as
the following constrained minimization problem:

minimize
s∈S

F(s) = f (x ⊕ s)+ λ · C(s),

subject to q ≤ T . (1)

The objective function F(s) consists of two conflicting
terms: (i) f (x⊕s), i.e., the classification output on the manip-
ulated program, and (i i) C(s), i.e., a penalty function that
evaluates the number of injected bytes into the input malware.
The hyperparameter λ > 0 tunes the trade-off between these
two terms, i.e., it promotes solutions with smaller number of
injected bytes C(s) at the expense of reducing the probability
that the sample is misclassified as benign (larger f (x ⊕ s)
values). Varying the hyperparameter λ allows us to evaluate
how the attack effectiveness increases as a function of the size
of the injected adversarial payload.

The objective F is minimized w.r.t. the choice of the
applied manipulations s. In this work, we restrict the available
manipulations s = (s1, . . . , sk) to the injection of content
extracted from a predefined set of k benign sections, without
optimizing the content-injection location. This means that si

will represent the fraction of bytes extracted from the i th

benign section, and these bytes will be injected before those
extracted from section s j , for j > i . In this context, we define
the penalty term C(s) as C(s) = cT s, where c ∈ R

k is a
vector whose i th element ci is equal to the overall size of the

3472 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 2. Conceptual schema of GAMMA. The optimizer (i) generates different payload extracted from benign programs, (ii) injects such content inside the
original malware, and (iii) computes the objective function, by combining the response of the detector and the size constraint controlled by λ. The process
ends after T queries, or if it converges earlier, i.e., if the objective function does not significantly decrease after a given number of iterations.

i th benign section. Accordingly, C(s) measures the size of the
injected payload. As the elements of c and s are non-negative,
this term penalizes a weighted version of the �1 norm of s, thus
promoting sparse solutions. This means that many elements of
the optimal solution vector s� will be zero, i.e., only content
from few benign sections will be injected.

As optimizing the objective in a black-box manner requires
querying the target model f repeatedly, we use the constraint
q ≤ T to upper bound the maximum number of queries
q that can be performed by T . The query budget T is
another hyperparameter in our approach, and increasing it
allows our attack to better optimize the trade-off between
misclassification confidence and payload size, at the expense
of an increased computational complexity.

Solution Algorithm: We solve the given minimization prob-
lem using a black-box genetic optimizer, as detailed in Algo-
rithm 1 and Fig. 2. The algorithm is initialized by randomly
generating a matrix S′ = (s1, . . . , sN) ∈ SN ⊂ [0, 1]N×k ,
which represents the initial population of N candidate manip-
ulation vectors (line 2). Then, the genetic algorithm iterates
over three steps that mimic the process of biological evolution:
selection, cross-over, and mutation. The selection step (line 4)
uses the objective function to evaluate the candidates in S′, and
selects the best N candidates between the current population
S′ and the population generated at the previous iteration S.
These are the candidate manipulation vectors associated with
the lowest values of F . The crossover function (line 5) takes
the selected candidates as input and returns a novel set of N
candidates by mixing the values of pairs of randomly-chosen
vector candidates. In particular, given a pair of candidate
vectors from the previous population, a new candidate is
generated by cloning the values s1, . . . , s j from the first
parent and the remaining values s j+1, . . . , sk from the second
parent, being j ∈ {1, . . . , k} an index selected at random. The
mutation function (line 6) changes the elements of each input
vector at random, with low probability. The combination of
both cross-over and mutation ensures that the new population
is sufficiently different from the previous one, allowing the
algorithm to properly explore the space of feasible solutions.

In each iteration, the algorithm performs N new queries
to the target model, to evaluate the objective F on the

Algorithm 1: Genetic Optimization of Adversarial Mal-
ware With GAMMA

Input : x, the initial malware sample; λ,
the regularization parameter; N , the population
size; T , the query budget.

Output: s�, the manipulations which minimize F .
1 q ← 0, S← ∅
2 S′ ← (s1, . . . , sN) ∈ SN

3 while q < T and not converged do
4 S← selection(S ∪ S′, F, x, λ)
5 S′ ← crossover(S)
6 S′ ← mutate(S′)
7 q ← q + N

8 return s�, best candidate from S with minimum F .

new candidates in S′, and then retains the best candidate
population S. When either the maximum number of queries T
or convergence is reached (e.g., if no further improvement in
the value of F is observed across a given number of iterations),
the algorithm returns the best manipulation vector s� from the
current population S. The corresponding optimal adversarial
malware x� can be finally obtained by applying the optimal
manipulation vector s� to the input sample x through the
manipulation operator ⊕ as x� = x ⊕ s�.

Hard-Label Attacks: In some cases, the target model may
only provide the classification label assigned to the input
sample, instead of a continuous confidence value f (x). In this
hard-label scenario, we adapt GAMMA by setting f (x) = 0
if the input sample is classified as benign, and f (x) = ∞
otherwise, to discard perturbed malware samples that do not
evade detection. This basically amounts to performing random
transformations to the input malware until an evasive variant
is found, and reducing the injected payload size C(s) only
afterwards, while trying to preserve misclassification. Notably,
this random exploration does not substantially hinder the
success of our algorithm, as evasive malware variants can
be typically found by injecting a sufficiently-large amount of
benign content into the initial malware.

DEMETRIO et al.: FUNCTIONALITY-PRESERVING BLACK-BOX OPTIMIZATION OF ADVERSARIAL WINDOWS MALWARE 3473

A. Functionality-Preserving Manipulations
We discuss here the set of functionality-preserving manip-

ulations that can be used in our attack framework. In the
context of Windows PE file format, there are only a few
transformations that can be applied without compromising the
execution of the input program. We categorize them either as
structural or behavioral, as detailed below.

1) Structural: This family of manipulations affects only the
structure of the input program, by exploiting ambiguities inside
the file format, without altering its behaviour.

(s.1) Perturb Header Fields [13]–[15]. This technique
includes altering section names, breaking the checksum, and
altering debug information. These are fine-grained manipula-
tions that can be applied to the PE components B, C and D
in Fig. 1.

(s.2) Filling Slack Space [12]–[15], [23]. This technique
manipulates the slack space inserted by the compiler to main-
tain the alignments inside the file. The corresponding slack
bytes (inside E in Fig. 1) are usually set to zero, and they are
never referenced by the code of the executable.

(s.3) Padding [11], [12], [23]. This technique injects addi-
tional bytes at the end of the file (after E in Fig. 1).

(s.4) Manipulating DOS Header and Stub [10], [22]. This
technique modifies some bytes in the DOS Header (A in Fig. 1)
which are not used by modern programs (see Sect. II).

(s.5) Extend the DOS Header [22]. This technique extends
the DOS header by injecting content before the actual header
of the program (between A and B in Fig. 1).

(s.6) Content shifting [22]. This technique creates additional
space before the beginning of a section, by shifting the
content forward, and injects adversarial content in between
(i.e., between D and E in Fig. 1).

(s.7) Import Function Injection [13]–[15]. This technique
injects import functions by adding an appropriate entry to
the Import Address Table, specifying which function from
which library must be included during the loading process
(this affects C and E in Fig. 1).

(s.8) Section Injection [13]–[15]. This technique injects new
sections into the input file by creating an additional entry
inside the section table (thus affecting D and E in Fig. 1).
Each section entry is 40 bytes long, so all the content has
to be shifted by that amount, without compromising file and
section alignments as specified by the header.

2) Behavioral: This family of perturbations can change the
program behavior and execution traces, but still preserving the
intended functionality of the malware program. For example,
these transformations encompass the binary rewriting tech-
niques in [24], as discussed below.

(b.1) Packing [13]–[15]. This technique amounts to encrypt-
ing or encoding the content of the binary inside another binary
and decoding it at run-time. The effect of a packer is invasive
since the whole structure of the input sample is modified.

(b.2) Direct [24]. This approach rewrites specific portions of
the code, like replacing assembly instructions with equivalent
ones (e.g., additions and subtractions with opposed sign).

(b.3) Minimal Invasive [15], [24]. This technique sets the
entry-point to a new executable section that jumps back to the
original code.

Fig. 3. Receiver Operating Characteristic (ROC) curve of both classifiers.

(b.4) Full Translation [24]. This approach lifts all the code
to a higher representation, e.g., LLVM,4 since it simplifies the
application of perturbations, and it then translates the code
back to the assembly language.

(b.5) Dropper [30]. This approach stores the code as a
resource of another binary, which is then loaded at runtime.

3) Padding and Section-Injection Attacks: In this work,
we implement GAMMA using two different structural manipu-
lation techniques, i.e., padding and section injection, and refer
to them respectively as padding and section-injection attacks.
While GAMMA can support most of the aforementioned
manipulations via their open-source implementations in [33],
we only consider padding and section-injection attacks in this
work as they provide two representative examples of injecting
content inside the sample with and without requiring manip-
ulating additional header components (e.g., the section table).
In particular, similarly to s.1−s.6, padding injects content into
the unused space of the executable, without altering any other
header component. Section injection, instead, does not only
allow injecting custom content like the other techniques, but
it also manipulates the structure of the executable by adding
section entries inside the section table.

IV. EXPERIMENTS

In this section, we empirically evaluate the effectiveness of
our attacks against both the GBDT and MalConv malware
detectors. We ran our experiments on a workstation equipped
with an Intel® Xeon® CPU E5-2670, with 48 CPU and
128 GB of RAM. The pre-trained version of MalConv presents
a slightly different architecture w.r.t. the original formulation:
1 MB of input size and padding value of 256 to avoid
the shifting pre-processing part. The network is implemented
using PyTorch [25]. We developed the genetic optimizer of
GAMMA using DEAP [26]. We tested the attack using a popu-
lation size N of 10 elements, varying the query budget T from
10 to 510. If the optimizer stagnates in a local minimum for
more than 5 iterations, we halt the process. We used values for
the regularization parameter λ ∈ {10−i }9i=3. Since the attack
feature space S is parametric over the number of sections the
attacker may add, we randomly extract 75 .rdata sections
from our goodware dataset that will be used for adding content
to the input malware, for a maximum of 2.5 MB, as discussed
in Section III-A. We willingly set this number high, as the
optimizer will find small payloads thanks to the sparsity
imposed by the penalization term that behaves as a �1 norm.

4https://llvm.org/

3474 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 4. Padding and section injection attack performances for λ ∈ {10−i }9i=3, using 500 malware samples as input. The solid lines are computed as a
regression over the point of a particular setting of the experiments.

We implemented and open-sourced the library we used for
computing these attacks, named secml-malware [33].

4) Performance in the Absence of Attack: To evaluate the
performance of both classifiers in the absence of attacks,
we collected a set of 15, 000 benign and 15, 000 malware
samples.

The malware samples were gathered from VirusTotal,5

while the goodware samples were collected by downloading
executable programs from GitHub. The results are shown
in Figure 3. With the suggested classification threshold
of 0.8336 [6], GBDT achieves a False Positive Rate (FPR)
of 3.9% and a True Positive Rate (TPR) of 95%, while the
default threshold of 0.5 suggested for MalConv [6], [7] corre-
sponds to an FPR of 3.5% and a TPR of 69%. The red dots
inside the plot show such values directly on the corresponding
ROC curves. Results are comparable to the description given
by the authors of GBDT [6], as both detectors achieve just
a slightly lower score w.r.t. what reported in the paper. Still,
they can be both used as a baseline for our analysis.

5) Attack Evaluation: We randomly sample 500 from our
collection of 15K malware set to use during the adversar-
ial attacks, and this set includes 5.3% ransomware, 29%
downloaders, 18% viruses, 7% backdoors, 29% grayware, 8%
worms, plus other families with lower percentage. Figure 4
shows how both the detection rate and adversarial payloads
size vary w.r.t. the number of queries and the value of the
regularization parameter. Each curve in the plot has been
produced by computing the mean detection rate and mean size
for each values of λ, repeated for different numbers of queries
sent. As the value of λ decreases, the algorithm finds more
evasive samples with bigger payloads, since the penalty term
is negligible while computing the objective function. On the
other hand, by increasing the value of λ the resulting attack
feature vector become sparse, generating smaller but more
detectable adversarial example. In this case, the penalty term
engulfs the score computed by the classifier, which becomes
irrelevant during the optimization. Another significant effect
is posed by the number of total queries used by the genetic
optimizer: the more are sent, the better the adversarial exam-
ples are in both detection rate and size. Intuitively, by sending
more queries, GAMMA can explore more solutions that are

5https://www.virustotal.com

stealthy and evasive at the same time, but such solutions could
not be found at early stages of the optimization process. To
prove the efficacy of our methodology, we report the results
of the application of random byte sequences of increasing
length. This experiment highlights a slight descending trend,
but the optimized attack with benign content injection is way
more effective than random perturbations. The detection rate of
GBDT is decreased more by the section-injection attack than
by padding. Since the first technique also introduces a section
entry inside the section table, the adversarial payload perturbs
more features than those modified by the padding attack.

6) Hard-Label Attacks: We show aggregate results
in Table I, highlighting the comparisons between the
performances of the soft-label and hard-label attacks.
Each entry presents the mean detection rate and the mean
adversarial payload size for each detector, given a pair
of number of queries/regularization parameter used for
computing the specified attack. We computed 4 different
values of λ in the set {10−(2i+1)}4i=1. Results suggest that,
without the confidence score, once one evasive payload is
found, then its size is optimized iteration after iteration
of the genetic algorithm, regardless of the value of the
regularization parameter λ. This is caused by the settings
we impose for our experiments: we used an infinite value
to discard each detected adversarial example; hence, all the
remaining ones are used for optimizing only the size, acting
as a constraint itself for the optimization. The effectiveness
of our methodology in this setting is caused by the nature of
the injected content, which mimics the benign class, as also
confirmed by Figure 4 (injecting random byte sequences
has no effect against the targets). Moreover, increasing the
number of queries helps reducing the adversarial payload size
while only slightly affecting misclassification confidence.

7) Injected Payload Size: We report here some additional
insights on the size of the injected payload with respect to
the average malware and benign program sizes. In particular,
while the source malware samples have an average size
of 343 KB (with standard deviation of 300 KB), which is
roughly increased by 1-2× after manipulation, they remain
comparable in size to goodware programs, for which the
average size is 240 KB (with standard deviation of 1 MB).

8) Temporal Analysis: From a temporal point of view,
the complexity of GAMMA is dominated by the time spent

DEMETRIO et al.: FUNCTIONALITY-PRESERVING BLACK-BOX OPTIMIZATION OF ADVERSARIAL WINDOWS MALWARE 3475

TABLE I

COMPARISON OF SOFT-LABEL AND HARD-LABEL ATTACKS, WITH DIFFERENT NUMBER OF QUERIES SENT AND VALUES OF λ

TABLE II

MEAN ELAPSED TIME FOR EACH ATTACK AND TARGET

Fig. 5. Effect of UPX packing on GBDT (top) and MalConv (bottom).
Each box-plot shows the distribution of the classifier confidence f (x) on the
malicious class, and the dashed red line is the decision threshold θ .

querying the detector. Table II shows the mean elapsed time
needed to compute one single query, for each attack and
target. Surprisingly, the sum of the time spent by the feature
extraction phase and the prediction of GBDT is less than the
time needed by the neural network to process all the bytes.

9) Packing Effect: Since these classifiers leverage only sta-
tic features, it is reasonable to ask ourselves whether encrypt-
ing the program content is already sufficient to evade detection,
without applying all the techniques we have introduced in
Section III. Packing is a technique used to reduce the size of an
executable, by applying a compression, encryption or encoding
algorithm. As the effect of a packer completely changes the
program representation on disk, it has been extensively used
by malware vendors to hide their product to the analysts,
increasing the difficulty of reverse-engineering analyses. In
this context, we apply one famous technique, called UPX6

to 1000 malware and 1000 goodware programs, and test the
evasion rate for both MalConv and GBDT. The effectiveness of
the UPX packer is shown in Figure 5. Both detectors attribute a
malicious score when the sample is packed, and this is intuitive

6https://upx.github.io

TABLE III

NUMBER OF ANTIVIRUS PROGRAMS FROM VIRUSTOTAL (VT) THAT

DETECT (i) THE INITIAL MALWARE AND ITS MODIFIED VER-
SIONS WITH (ii) RANDOM AND (iii) SECTION-INJECTION

ATTACKS, AVERAGED OVER 200 MALWARE SAMPLES (STAN-
DARD DEVIATION IS ALSO REPORTED). WHILE RAN-

DOM ATTACKS EVADE 5.76 DETECTORS, ON AVER-
AGE, SECTION-INJECTION ATTACKS EVADE UP TO

12.01 DETECTORS

TABLE IV

DETECTION RATE OF 9 ANTIVIRUS PROGRAMS FROM VIRUSTOTAL COM-
PUTED ON (i) THE INITIAL SET OF 200 MALWARE SAMPLES, AND ON

THE SAME SAMPLES MANIPULATED WITH (ii) RANDOM ATTACKS

AND (iii) SECTION-INJECTION ATTACKS

by looking at the box-plot of the packed goodware programs.
Both detectors increase their score towards the malware class,
while there is only a little change in terms of mean and
variance for packed malware.

These results confirm the evidence reported by Aghakhani
et al. [32], i.e., that the application of packing techniques
tends to be learned as a malicious feature by the detector.
This is caused by the potential abundance of packed malware
inside the training set [6], opposed to the scarcity of packed
goodware, along with the fact that packers may leave specific
artifacts embedded into the packed samples. For example,
the UPX packer creates two executable sections called UPX0
and UPX1, which contain the extraction code and the original
compressed program. As a result, models trained on such data
might learn these spurious characteristics and tend to classify
packed programs as malware.

10) Evaluation on Antivirus Programs (VirusTotal): We
evaluate here the impact of our attack on commercial detectors.
In this context, we are not interested in evading detection
by these commercial programs, e.g., by packing the input

3476 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

samples, but rather in assessing whether these methods can
detect our attacks, given that our attacks only minimally
modify the content of the input malware sample. In particular,
the manipulations that we apply to our malware samples
address only the syntactical structure of each program, and we
aim to evaluate here if the application of such transformations
can pose a threat to other antivirus programs. We expect that
most of the commercial solutions should not be affected by
such attacks. We rely on the response retrieved by VirusTotal,7

which is an online interface for many threat detectors. The
service offers an API that can be used for querying the system,
by uploading samples from remote. We test the performance of
our attack by sending 200 malware samples, before and after
injecting the adversarial payload into the sample, optimized
using the section-injection attack against the GBDT classifier.
We also compare our attack against a baseline random attack
that simply adds a random payload of 50 KB to each sample.
Table III shows how many antivirus programs hosted on
VirusTotal (70 in total) detect the submitted malware samples,
on average. While the random attack only slightly decreases
the number of detections per sample, the section-injection
attack is able to bypass an average of more than 12 detectors
per sample. To better evaluate the impact of our attack on
individual antivirus programs, in Table IV we report the
detection rates of 9 different antivirus products that appear
on the 2019 Gartner Magic Quadrant for Endpoint Protection
Platforms,8 including many leading and visionary products,
before and after executing the random and section-injection
attacks. In many cases, our section-injection attack is able
to drastically decrease the detection rate (see, e.g., AV1,
AV3, AV7 and AV9), significantly outperforming the random
attack (see, e.g., AV1 and AV9). The reason may be that
some of these antivirus programs already use static machine
learning-based detectors to implement a first line of defense
when protecting end-point clients from malware, as also
confirmed in their blog or website, and this makes them more
vulnerable to our attacks. To conclude, our analysis highlights
that these commercial products can be evaded with a transfer
attack, and we believe that their detection rate could decrease
even more with an optimized attack against them.

V. RELATED WORK

Previous work is significantly different from GAMMA, as it
considers different settings and solutions. In particular, related
approaches explore the creation of adversarial examples for
information-security detectors, leveraging both gradient-based
and black-box algorithms, as detailed in the following.

A. Reinforcement Learning

Anderson et al. [15] propose a reinforcement learning
approach to decide the best sequence of manipulation that
leads to evasion. To test the effectiveness of the agent, they
also test the application of manipulations picked at random.
The model they used as a baseline is a primordial version of

7https://virustotal.com
8https://www.microsoft.com/security/blog/2019/08/23/gartner-names-

microsoft-a-leader-in-2019-endpoint-protection-platforms-magic-quadrant/

the GBDT classifier we have analyzed in this work, trained
on fewer samples. To train the policy of the learning agent,
they let the model explore the space of adversarial examples,
by fixing a budget for the number of queries that can be used.
The mean number of queries applied for training these policies
is roughly 1600 [15]. The authors do not report the resulting
file size of the adversarial malware: the reinforcement learning
method contains actions that enlarge the representation on
disk, but it is not clear how and how much. Differently, our
approach does not need a training phase, as it can be deployed
as-is against the remote detector. The transformation we use
are functionality-invariant by design, and their application do
not alter the execution flow of the program. Lastly, we take
into account how much content is added to the input malware,
by plugging a regularizer inside the optimization process. In
this way, the amount of inserted noise is controlled, and the
algorithm can find adversarial examples that not only evade
the target classifier, but also they are limited in size.

B. Genetic Strategies

Castro et al. [13], [14] apply both a random and genetic
algorithm to perturb the input malware, and they test the func-
tionality of the samples at each iteration of the optimization
process inside a sandbox. The mutations are the same proposed
by Anderson et al. [15]. The authors of these work state
that they need approximately almost 4 minutes for creating
adversarial malware, using 100 queries. No architecture details
have been unveiled. We do not need to validate the malware
inside a sandbox, as we include domain knowledge inside
the mutation process. For this reason, our methods performs
1,400 queries in the same time span. They also do not
report which are the most influential mutations that lead to
evasion: the latter is crucial, we are dealing with potential
vulnerabilities that lies inside statistical algorithms, whose
presence is less evident compared to other security breaches.

C. Generative Adversarial Networks

Hu and Tan [17] develop a Generative Adversarial Network
(GAN) [27] whose aim is to craft adversarial malware that
bypass a target classifier. The network learns which API
imports should be added to the original sample, but no real
malware is crafted, as that is attack only operates inside the
feature space. In contrast, we create functioning malware,
as real samples are generated each time.

A recap of the black-box attacks against Windows malware
detectors can be found in Table V, where we compare the
techniques we mentioned above with our method.

VI. LIMITATIONS AND OPEN ISSUES

We discuss here which aspects of our work can be improved
in the near future, by highlighting its current limitations.

A. Countermeasures

This work aims to show that learning-based detectors can
be vulnerable to well-crafted attacks, even if they manipulate
only a small fraction of the input program. We have however

DEMETRIO et al.: FUNCTIONALITY-PRESERVING BLACK-BOX OPTIMIZATION OF ADVERSARIAL WINDOWS MALWARE 3477

TABLE V

BLACK-BOX ADVERSARIAL ATTACKS ON WINDOWS MALWARE DETEC-
TORS. FP: FUNCTIONALITY-PRESERVING TRANSFORMATIONS; NS:

NO SANDBOXING REQUIRED; AO: ATTACK OPTIMIZATION; ST:
ATTACK STEALTHINESS (E.G., FILE SIZE OPTIMIZATION)

not investigated any potential mitigation strategy against our
attacks. One first line of defense may be to consider robust
features against our attacks, e.g., features that are not affected
by changes performed either at the byte or section level.
For example, graph-based representations extracted from static
analysis like Abstract Syntax Trees (ASTs) may be used to
this end. However, extracting these features is typically much
more computationally demanding and, at least in principle,
practical transformations that can alter these features may
also be derived and added to our optimization framework.
A second line of defense may be to improve robustness of
the learning algorithm [9], e.g., via adversarial re-training or
by developing specific detection mechanisms for our attacks.
For instance, it would be interesting to see if our attacks can be
detected by identifying specific artifacts (e.g., an excessively
large number of sections). It would also be interesting to study
how a classifier could be hardened by embedding domain
knowledge inside the training pipeline, defining loss functions
that are invariant to the application of adversarial manipula-
tions. Another interesting line of defense may be related to
analyze the sequence of consecutive queries received from the
same source, to detect whether a black-box attack performing
correlated queries is taking place. We believe that all these
defense strategies, especially if exploited in a complementary
manner, may provide an interesting research direction towards
designing more robust malware detectors.

B. Dynamic Classifiers

It is finally worth remarking that our approach is clearly
not effective against systems that use features computed by
dynamically executing the input program, since the manipula-
tions we applied only focus on the structure of an executable
without altering its execution. This issue may however be
overcome by exploiting behavioral manipulations, like binary
rewriting techniques [24], which may also alter the execution
of the program and the corresponding dynamic feature rep-
resentation. Considering techniques that may affect dynamic
analysis thus constitutes another interesting avenue to extend
the impact of our work in the near future.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel family of black-box
attacks on learning-based Windows malware detectors that are
both query-efficient and functionality-preserving, overcoming
the limitations of previous work. Our attacks rely on the
injection of benign content (which will never be executed)
either at the end of the malicious file, or within newly-created

sections, exploiting the ambiguities of the file format used
to store programs on disk, without altering its execution
traces. The proposed attacks are formalized as a constrained
minimization problem which enables optimizing the trade-off
between the probability of evading detection and the size of
the injected payload. Our extensive empirical evaluation on
two popular learning-based Windows malware detectors has
shown that our black-box attacks can bypass them with only
few queries and very small payloads, even when the target
models only output the predicted labels. We have also shown
that our attacks can successfully transfer to other commercial
antivirus solutions, finding that they can evade, on average,
up to 12 commercial antivirus engines available on VirusTotal.
Nevertheless, we believe that a optimizing our attacks directly
against these detectors might be even more effective.

Future Work: An interesting avenue for future work is
related to investigating the applicability of suitable counter-
measures against our attacks, as those discussed in Sect. VI,
including the use of more robust feature representations
(insensitive to byte-based or section-based manipulations) and
learning paradigms (via adversarial re-training, specific attack
detection mechanisms or the use of domain-knowledge con-
straints). Another promising research direction is to extend
our attack beyond manipulations that only inject content
either at the end of the file or within some newly-created
sections. We firmly believe that this can be readily achieved,
as our approach is already general enough to encompass a
wider range of functionality-preserving manipulations, includ-
ing those discussed in Sect. III-A. Extending our work to deal
with manipulations that can also modify the dynamic execution
of malware programs, such as altering their control flow while
preserving their malicious intent, is definitely challenging.
Nevertheless, this would certainly provide an important step
towards improving both the evaluation and the adversarial
robustness of malware detectors trained on features extracted
from dynamic program analysis.

REFERENCES

[1] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11–20.

[2] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning
for classification of malware system call sequences,” in Proc. Aus-
tralas. Joint Conf. Artif. Intell. Cham, Switzerland: Springer, 2016,
pp. 137–149.

[3] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “DL4MD: A deep learning
framework for intelligent malware detection,” in Proc. Int. Conf. Data
Mining (DMIN), 2016, pp. 61–67.

[4] O. E. David and N. S. Netanyahu, “DeepSign: Deep learning for
automatic malware signature generation and classification,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2015, pp. 1–8.

[5] Ì. Ì. Romeo, M. Theodorides, S. Afroz, and D. Wagner, “Adversarially
robust malware detection using monotonic classification,” in Proc. 4th
ACM Int. Workshop Secur. Privacy Anal., Mar. 2018, pp. 54–63.

[6] H. S. Anderson and P. Roth, “EMBER: An open dataset for training
static PE malware machine learning models,” 2018, arXiv:1804.04637.
[Online]. Available: http://arxiv.org/abs/1804.04637

[7] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, “Malware detection by eating a whole EXE,” in Proc.
32nd AAAI Workshops, New Orleans, LA, USA, Feb. 2018, pp. 268–276.

[8] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in Proc. 4th AISec, 2011, pp. 43–58.

3478 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[9] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognit., vol. 84, pp. 317–331,
Dec. 2018.

[10] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando,
“Explaining vulnerabilities of deep learning to adversarial malware
binaries,” in Proc. 3rd Italian Conf. Cyber Secur. (ITASEC), 2019,
pp. 1–13.

[11] B. Kolosnjaji et al., “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in Proc. 26th Eur. Signal
Process. Conf. (EUSIPCO), Sep. 2018, pp. 533–537.

[12] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, “Adversarial examples on discrete sequences for beating
whole-binary malware detection,” 2018, arXiv:1802.04528v1. [Online].
Available: https://arxiv.org/abs/1802.04528v1

[13] R. L. Castro, C. Schmitt, and G. D. Rodosek, “ARMED: How automatic
malware modifications can evade static detection?” in Proc. 5th Int.
Conf. Inf. Manage. (ICIM), Mar. 2019, pp. 20–27.

[14] R. L. Castro, C. Schmitt, and G. D. Rodosek, “Aimed: Evolving malware
with genetic programming to evade detection,” in Proc. 18th Int. Conf.
TrustCom, 2019, pp. 240–247.

[15] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine
learning malware detection,” in Proc. BlackHat, 2017.

[16] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-
box end-to-end attack against state of the art API call based mal-
ware classifiers,” in Proc. RAID. Cham, Switzerland: Springer, 2018,
pp. 490–510.

[17] W. Hu and Y. Tan, “Generating adversarial malware examples for
black-box attacks based on GAN,” 2017, arXiv:1702.05983. [Online].
Available: http://arxiv.org/abs/1702.05983

[18] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik,
“Improving robustness of ML classifiers against realizable evasion
attacks using conserved features,” in Proc. USENIX Secur., 2019,
pp. 285–302.

[19] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in Proc.
NDSS, 2016, pp. 21–24.

[20] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision
tree,” in Proc. NIPS, 2017, pp. 3146–3154.

[21] J. Moody, “Fast learning in multi-resolution hierarchies,” in Proc. NIPS,
1989, pp. 29–39.

[22] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando,
and F. Roli, “Adversarial EXEmples: A survey and experimen-
tal evaluation of practical attacks on machine learning for win-
dows malware detection,” 2020, arXiv:2008.07125. [Online]. Available:
http://arxiv.org/abs/2008.07125

[23] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2019, pp. 8–14.

[24] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl, “From hack
to elaborate technique—A survey on binary rewriting,” ACM Comput.
Surv., vol. 52, no. 3, pp. 1–37, Jul. 2019.

[25] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. NIPS, 2019, pp. 8026–8037.

[26] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” J. Mach. Lang.
Res., vol. 13, pp. 2171–2175, Jul. 2012.

[27] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672–2680.

[28] N. Rndic and P. Laskov, “Practical evasion of a learning-based classi-
fier: A case study,” in Proc. IEEE Symp. Secur. Privacy, May 2014,
pp. 197–211.

[29] C. Smutz and A. Stavrou, “Malicious PDF detection using metadata
and structural features,” in Proc. 28th Annu. Comput. Secur. Appl. Conf.
(ACSAC), 2012, pp. 239–248.

[30] F. Ceschin, M. Botacin, H. M. Gomes, L. Oliveira, and A. Grégio,
“Shallow security: On the creation of adversarial variants to evade
machine learning-based malware detectors,” in Proc. 3rd Reversing
Offensive-Oriented Trends Symp., 2019, pp. 1–9.

[31] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, “Malware
dynamic analysis evasion techniques: A survey,” ACM Comput. Surv.,
vol. 52, no. 6, pp. 1–28, Jan. 2020.

[32] H. Aghakhani et al., “When malware is Packin’ heat; limits of machine
learning classifiers based on static analysis features,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2020, pp. 1–20.

[33] L. Demetrio and B. Biggio, “Secml-malware: A Python library for
adversarial robustness evaluation of windows malware classifiers,” 2021,
arXiv:2104.12848. [Online]. Available: https://arxiv.org/abs/2104.12848
and https://github.com/zangobot/secml_malware

Luca Demetrio received the M.Sc. (Hons.) and
Ph.D. degrees in computer science from the Uni-
versity of Genoa, Italy, in 2017 and 2021, respec-
tively. He is currently studying the weaknesses of
threat detectors implemented with machine learning
techniques and how to exploit such vulnerabilities.
His research interests cover the area of adversarial
machine learning, with strong focus on its applica-
tion in the cyber-security domain.

Battista Biggio (Senior Member, IEEE) received
the M.Sc. degree (Hons.) in electronic engineering
and the Ph.D. degree in electronic engineering and
computer science from the University of Cagliari,
Italy, in 2006 and 2010, respectively. Since 2007,
he has been with the Department of Electrical
and Electronic Engineering, University of Cagliari,
where he is currently an Assistant Professor. In 2011,
he visited the University of Tuebingen, Germany,
and worked on the security of machine learning
to training data poisoning. His research interests

include secure machine learning, multiple classifier systems, kernel methods,
biometrics, and computer security. He is a member of IAPR. He also serves
as a reviewer for several international conferences and journals.

Giovanni Lagorio received the M.Sc. (Hons.) and
Ph.D. degrees in computer science from the Univer-
sity of Genoa, Italy, in 1999 and 2004, respectively.
In 2000, he joined DIBRIS, where he started work-
ing on the design of object-oriented languages and
systems. He is currently an Assistant Professor with
the University of Genoa. His research interests have
shifted more towards the security aspects of pro-
grams and systems, binary analysis and exploitation,
adversarial machine learning, and ethical hacking.

Fabio Roli (Fellow, IEEE) received the Ph.D. degree
in electronic engineering from the University of
Genoa, Italy. He was a Research Group Mem-
ber with the University of Genoa from 1988 to
1994 and an Adjunct Professor with the University
of Trento from 1993 to 1994. In 1995, he joined
the Department of Electrical and Electronic Engi-
neering, University of Cagliari, where he is currently
a Professor of computer engineering and the Head
of the research laboratory on pattern recognition
and applications. He was a very active organizer

of international conferences and workshops and established the popular
workshop series on multiple classifier systems. His research activity is focused
on the design of pattern recognition systems and their applications. He is a
Fellow of IAPR.

Alessandro Armando received the Ph.D. degree in
computer engineering from the University of Genoa.
In 2011, he founded (and led until 2016) the Security
and Trust Research Unit, Bruno Kessler Foundation,
Trento. His appointments include a position as a
Research Fellow at The University of Edinburgh and
INRIA-Lorraine, France. He is currently a Professor
with the University of Genoa, where he teaches
computer security and has founded and coordinated
the master in cybersecurity and data protection.
He is also serving as the Vice Director of the CINI

National Cybersecurity Laboratory. He has been a coordinator and the team
leader in several national and EU research projects, including AVISPA,
AVANTSSAR, SpaCIoS, and SECENTIS. He contributed to the discovery
of an authentication flaw in the SAML 2.0 Web-browser SSO Profile and a
serious man-in-the-middle attack on the SAML-based SSO for Google Apps.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

