
Computers & Security 96 (2020) 101901

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Adversarial Detection of Flash Malware: Limitations and Open Issues

Davide Maiorca

a , 1 , ∗, Ambra Demontis a , 1 , Battista Biggio

a , b , Fabio Roli a , b , Giorgio Giacinto

a

a Department of Electrical and Electronic Engineering, University of Cagliari, Piazza dArmi Cagliari, 09123, Italy
b Pluribus One, Italy

a r t i c l e i n f o

Article history:

Received 17 October 2019

Revised 22 May 2020

Accepted 23 May 2020

Available online 26 May 2020

Keywords:

Adobe Flash

Malware Detection

Secure Machine Learning

Adversarial Training

Computer Security

a b s t r a c t

During the past four years, Flash malware has become one of the most insidious threats to detect, with

almost 600 critical vulnerabilities targeting Adobe Flash Player disclosed in the wild. Research has shown

that machine learning can be successfully used to detect Flash malware by leveraging static analysis to

extract information from the structure of the file or its bytecode. However, the robustness of Flash mal-

ware detectors against well-crafted evasion attempts - also known as adversarial examples - has never

been investigated. In this paper, we propose a security evaluation of a novel, representative Flash detector

that embeds a combination of the prominent, static features employed by state-of-the-art tools. In partic-

ular, we discuss how to craft adversarial Flash malware examples, showing that it suffices to manipulate

the corresponding source malware samples slightly to evade detection. We then empirically demonstrate

that popular defense techniques proposed to mitigate evasion attempts, including re-training on adver-

sarial examples, may not always be sufficient to ensure robustness. We argue that this occurs when the

feature vectors extracted from adversarial examples become indistinguishable from those of benign data,

meaning that the given feature representation is intrinsically vulnerable. In this respect, we are the first

to formally define and quantitatively characterize this vulnerability, highlighting when an attack can be

countered by solely improving the security of the learning algorithm, or when it requires also considering

additional features. We conclude the paper by suggesting alternative research directions to improve the

security of learning-based Flash malware detectors.

© 2020 Elsevier Ltd. All rights reserved.

1

i

r

r

t

c

m

t

e

c

M

b

t

a

r

c

(

S

s

s

t

a

t

2

o

a

t

s

t

s

h

0

. Introduction

Malware detection is still a critical priority for researchers and

ndustry, as countless of polymorphic attacks are continually being

eleased (Symantec, 2019). In particular, a very insidious threat is

epresented by infection vectors , i.e., files that exploit vulnerabili-

ies of third-party applications to drop or execute malicious exe-

utables. Such vectors are typically documents (e.g., PDF, Office) or

ultimedia files (e.g. Flash), and attackers leverage their structure

o conceal scripting codes that exploit the target vulnerabilities. For

xample, pages of PDF documents can hide malicious JavaScript

odes or even additional executables (Maiorca and Biggio, 2019;

aiorca et al., 2019).

To counteract such attacks, researchers proposed solutions

ased on machine-learning algorithms applied to information ex-

racted by employing static or dynamic analysis of the embedded
∗ Corresponding author.

E-mail addresses: davide.maiorca@unica.it (D. Maiorca),

mbra.demontis@unica.it (A. Demontis), battista.biggio@unica.it (B. Biggio),

oli@unica.it (F. Roli).
1 Those authors contributed equally to this manuscript.

a

e

g

b

d

b

ttps://doi.org/10.1016/j.cose.2020.101901

167-4048/© 2020 Elsevier Ltd. All rights reserved.
ode, with excellent results for document-based infection vectors

e.g. Maiorca et al., 2012; Smutz and Stavrou, 2012; Smutz and

tavrou, 2016; Šrndi ́c and Laskov, 2013). However, research also

howed that such detection approaches have several robustness is-

ues against evasion attacks, namely, well-crafted manipulations of

he input samples at test time (Biggio et al., 2013; 2014b; Biggio

nd Roli, 2018) (also recently referred to as adversarial examples in

he context of deep learning (Goodfellow et al., 2015; Grosse et al.,

017; Szegedy et al., 2014)). The efficacy of such attacks depends

n the information that the attacker possesses about the system,

nd on her ability to perform enough changes to the extracted fea-

ures.

The robustness of machine learning approaches against adver-

arial attacks has been assessed in various case studies. In par-

icular, some works employed code obfuscation through off-the-

helf tools or custom techniques (Kapratwar. et al., 2017; Lin

nd Stamp, 2011; Maiorca et al., 2015; Scalas et al., 2019; Singh

t al., 2016) to perform evasion. Other approaches directly tar-

eted the learning algorithms by employing black-box and white-

ox evasion techniques (e.g., by using algorithms such as gradient-

escent). Popular case-studies in which these techniques have

een systematically studied are the detection of malicious PDF files

https://doi.org/10.1016/j.cose.2020.101901
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.101901&domain=pdf
mailto:davide.maiorca@unica.it
mailto:ambra.demontis@unica.it
mailto:battista.biggio@unica.it
mailto:roli@unica.it
https://doi.org/10.1016/j.cose.2020.101901

2 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

t

l

a

m

b

e

e

v

t

p

c

w

v

A

S

s

S

S

s

l

u

S

2

m

a

t

c

v

a

d

m

s

r

S

2

t

f

2

2

2

fi

i

a

i

j

t

c

v

b

t

2 https://github.com/davidemaiorca/flashbuster .
3 https://get.adobe.com/en/flashplayer/ .
(Biggio et al., 2013; Maiorca and Biggio, 2019; Šrndic and Laskov,

2014a; Xu et al., 2016) and the detection of Android mal-

ware Demontis et al. , (Calleja et al., 2018; Yang et al., 2017).

Multimedia malware, in particular in the Flash (also known as

Adobe Small Web Format - SWF) format, has been studied consid-

erably less from the perspective of adversarial attacks (in particu-

lar, against white- and black-box attacks). One of the reasons for

such a lack of study is that, albeit Flash malware caused a mas-

sive uproar starting from 2015 (due to the significant increment

of vulnerabilities for Adobe Flash Player), its technology is going

to be discontinued in 2020. Nevertheless, this technology is still

active from the perspective of malware-based attacks. Flash-based

attacks represent excellent examples of highly obfuscated and eva-

sive infection vectors. Critical vulnerabilities are still released for

the Flash platform, and very dangerous attacks are still possible,

such as the one that targeted North Korea in 2018 (TrendMicro,

2018).

We believe not only that it will take years before Flash com-

pletely stops being used, but also that analyzing Flash attacks con-

stitutes an excellent test-bench for machine learning-based detec-

tion. The main reason for this claim is that most infection vectors

(including the most used ones at the moment - e.g., PDF, Office

documents, etc.) share a similar organization, composed of an ex-

ternal structure and a code-based content . Research on such infec-

tion vectors showed that the analysis of their structure and/or con-

tent led to encouraging results in their detection, and the Flash for-

mat is no exception in this (Maiorca et al., 2019; Šrndi ́c and Laskov,

2016; Wressnegger et al., 2016). Hence, the lessons learned from

the study of adversarial attacks on formats like Flash can provide

precious insights into the robustness of systems to detect other file

formats.

In this paper, we provide an in-depth analysis of Flash-based

learning systems, focusing on their robustness against adversarial

attacks. Our analysis aims to give interesting insights into how to

design more secure systems for detecting infection vectors, and to

point out possible vulnerabilities in the feature representations and

the classification algorithms.

To this end, we first propose a representative system for Flash

malware detection, named FlashBuster. It is a static machine-

learning system that employs information extracted by both the

structure and the content of SWF files. Such an approach allows

for a more comprehensive assessment of the extracted static infor-

mation by representing and combining the contents employed by

previous state-of-the-art systems (Šrndi ́c and Laskov, 2016; Wress-

negger et al., 2016). We show that FlashBuster could detect the

majority of malware samples in the wild, by obtaining compara-

ble performances to other systems at state of the art, and demon-

strate that it can predict previously unseen attacks. We also tested

FlashBuster against popular obfuscation techniques, showing that

our approach could also be employed in the presence of obfuscated

malware.

We then evaluate FlashBuster robustness by simulating evasion

attacks that leverage the knowledge that the attacker may pos-

sess about the targeted learning system (Biggio et al., 2013; 2014b;

Chen et al., 2017; Dang et al., 2017; Papernot et al., 2017; Tramèr

et al., 2016; Xu et al., 2016), against an increasing number of mod-

ifications to the input samples. The corresponding security evalua-

tion curves , depicting how the detection rate decreases against at-

tack samples that are increasingly manipulated, allow us to under-

stand and assess the vulnerabilities of FlashBuster under attack.

We finally discuss the effectiveness of adversarial training

against such evasive attacks. To this end, we re-trained FlashBuster

on the evasion attack samples used against it, and surprisingly

show that this strategy may be ineffective in some cases. We argue

that this is due to an intrinsic vulnerability of the feature represen-

tation, i.e., to the fact that evasion attacks entirely mimic the fea-
ure values of benign data, thus becoming indistinguishable for the

earning algorithm. We define this vulnerability in formal terms,

nd quantitatively evaluate it by defining a specific metric that

easures the extent to which the attack samples converge towards

enign data.

Our findings highlight a crucial problem that must be consid-

red when designing secure machine-learning systems, i.e., that of

valuating in advance the vulnerability of the given features . Indeed,

ulnerable information may compromise the whole system even if

he employed decision function is robust. In this respect, we sketch

ossible research directions that may lead one to design more se-

ure machine learning-based malware detectors.

Finally, we note that we publicly released FlashBuster, together

ith the features employed in the experiments for this paper. 2

The rest of this paper is structured as follows. Section 2 pro-

ides the basics to understand the SWF format and an example of

ctionScript code. Section 3 describes the related work in the field.

ection 4 describes the architecture of FlashBuster. Section 5 de-

cribes the threat model in relation to adversarial environments.

ection 6 describes the evasion attacks employed in this paper.

ection 7 discusses the vulnerabilities that affect learning-based

ystems, and introduces a quantitative measure of feature and

earning vulnerabilities. Section 8 provides the experimental eval-

ation. Section 9 provides a discussion on the attained results.

ection 10 closes the paper by sketching possible future work.

. ShockWave Flash File Format

Small Web Format (SWF) is a file type that efficiently delivers

ultimedia contents, and it is processed by Adobe Software such

s Adobe Flash Player. 3

SWF files are composed of three essential elements: (i) a header

hat describes important file properties such as the presence of

ompression, the version of the SWF format, and the number of

ideo frames; (ii) a list of tags , i.e., data structures that establish

nd control the operations performed by the reader on the file

ata; (iii) a unique tag called End that terminates the file.

Some tags define actions such as pressing a button, moving the

ouse, etc. These actions can be expanded further by employing a

cripting language called ActionScript. ActionScript code (the latest

elease is 3.0) is compiled to a bytecode that is run by the Action-

cript Virtual Machine 2 (ASVM 2). The computation in the ASVM
 is based on the execution of method bodies composed of instruc-

ions . Each method body runs in a specific context that defines in-

ormation such as default parameters. More about SWF and ASVM
 can be found on the official SWF and VM references (Adobe,

007; 2012).

.1. ActionScript in SWF

In order to better understand the role of ActionScript in SWF

les, Listing 1 shows a small snippet of code that is typically found

n an ActionScript-based malware, where ByteArray structures

re accessed. Such structures are employed by malware to store

nformation about encrypted/decrypted URLs and payloads.

The code in the Listing reads an UnsignedByte from the ob-

ect _loc1_ , which belongs to the class IG (which inherits from

he ByteArray class - see the coerce bytecode instruction). The

ode then performs a subtraction and assigns the output to the

ariable isAS3 . This result will then be copied to another array of

ytes (we did not report this action for space reasons). Note how

he reading is performed by following the little endian (using the

https://github.com/davidemaiorca/flashbuster
https://get.adobe.com/en/flashplayer/

D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901 3

Listing 1. An example of ActionScript. This code snippet is represented by its de-

compiled output (lines 2-5) and by its equivalent bytecode output (lines 11-25).

s

p

f

h

a

t

a

t

t

n

p

N

a

w

m

n

3

s

T

s

3

e

l

fi

w

v

F

i

t

i

t

p

S

t

G

t

a

s

a

t

R

o

p

W

w

F

s

o

d

o

P

i

D

v

d

p

i

3

2

w

M

s

e

i

i

p

p

a

e

t

2

t

n

r

e

w

b

i

P

X

a

m

w

2

b

R

4

a

b

c

t

a

r

t
ystem-related flash.utils.Endian package) byte order. We

oint out that system API methods and classes are often essential

or the attacker to build shellcodes or perform buffer overflows and

eap spraying attacks. In fact, official ActionScript APIs allow man-

ging low-level data structures efficiently, so attackers do not need

o implement their memory management routines.

From the bytecode perspective, to resolve correctly the pack-

ge belonging to a specific method or class, the ActionScript Vir-

ual Machine resorts to data structures called Names . Such struc-

ures are composed of one unqualified name (for example, a class

ame) and one or more namespaces that typically represent the

ackages from which classes or methods are resolved. Normally,

ame resolution occurs at compile time by associating one pack-

ge to one class or method (QName). However, there are cases in

hich Names are resolved at runtime, in particular when there are

ultiple namespaces (packages) from which the same unqualified

ame (class) can be obtained.

. Related Work

In the following, we provide a comprehensive review of the

tate-of-the-art approaches employed for Flash malware detection.

hen, we also describe the prominent works in the field of adver-

arial machine learning.

.1. Flash Malware Detection

Even if Flash-based malicious attacks started to grow consid-

rably in 2015, the number of detection approaches is rather

imited. FlashDetect (Overveldt et al., 2012) is one of the

rst approaches to the detection of ActionScript 3-based mal-

are. FlashDetect uses Lightspark , an open-source Flash

iewer, to perform dynamic analysis of malicious Flash files.

lashDetect was employed inside the Wepawet service, which

s not available anymore.

Gordon (Wressnegger et al., 2016) is an approach that resorts

o guided-code execution to detect malicious SWF files, by stat-

cally analyzing their ActionScript bytecode (without considering

he file structure). In particular, the system selects the most sus-

icious security paths from the control flow graph of the code.

uch paths usually have references to security-critical calls, such as

he ones for dynamic code loading. To the best of our knowledge,

ordon is not publicly available.

Hidost (Šrndic, 2016; Šrndi ́c and Laskov, 2016) is a static sys-

em that only focuses on the structure of the SWF file, without
nalyzing its ActionScript bytecode. More specifically, it considers

equences of objects belonging to the structure of the SWF file

s features. The system evaluates the most occurring paths in the

raining dataset and extracts features based on the training data.

elying on such data might be dangerous from the perspective

f targeted attacks, as a malicious test file with entirely different

aths might evade detection.

According to the results in Šrndi ́c and Laskov (2016) ;

ressnegger et al. (2016) , both Gordon and Hidost performed

ell at detecting Flash malware. For this reason, we designed

lashBuster as a simplified extension of the aforementioned static

ystems, where information from both the structure and content

f the file is extracted, and where the extracted features do not

epend on the training distributions.

Besides research-based prototypes, some off-the-shelf tools are

ften used to analyze SWF files, such as JPEXS (Petrik, 2020),

ySWF (Timknip, 2017), SWFReTools (Sporst, 2011) and others. It

s also possible to perform obfuscation of SWF files by employing

oSWF (DoSWF, 2013). In particular, this tool can either conceal

ariable names or introducing modifications to the flow graph that

o not alter the overall semantics of the code. Additionally, it can

erform full encryption of SWF files by dynamically loading them

n memory at runtime.

.2. Adversarial Machine Learning

Several works doubted the security of machine learning since

004 (Biggio and Roli, 2018). The first two works in the field

ere proposed by Dalvi et al. (20 04) in 20 04 and by Lowd and

eek (2005) in 2005. Those works, carried out in the field of

pam filtering, demonstrated that it could be easy for the attack-

rs to deceive classifiers at test time (evasion attacks) by perform-

ng a limited amount of fine-grained changes to emails. Follow-

ng works (Barreno et al., 2010; 2006; Biggio et al., 2014b) pro-

osed attacker models and frameworks that are currently em-

loyed to assess the security of learning-based systems, also

gainst training-time (poisoning) attacks. The first gradient-based

vasion (Biggio et al., 2013) and poisoning (Biggio et al., 2012) at-

acks were proposed by Biggio et al. respectively in the 2013 and

012. In Biggio et al. (2013) , the authors introduced two impor-

ant concepts that are currently adopted in the adversarial field,

amely high-confidence adversarial examples and the use of a sur-

ogate model. The over-mentioned works anticipated the discov-

ry of the so-called adversarial examples against deep neural net-

orks (Goodfellow et al., 2015; Szegedy et al., 2014). The vulnera-

ility to evasion attacks has been then especially studied on learn-

ng systems designed to detect malware samples (for example, on

DF files (Maiorca et al., 2019; 2013; Šrndic and Laskov, 2014b;

u and Kim, 2017; Xu et al., 2016)), thus raising serious concerns

bout their usability under adversarial environments. These assess-

ents have been recently expanded to systems for Android mal-

are detection Demontis et al. , (Calleja et al., 2018; Melis et al.,

018; Scalas et al., 2019; Yang et al., 2017) and to binary executa-

les (with the adoption of deep learning) (Kolosnjaji et al., 2018;

aff et al., 2017).

. FlashBuster Architecture

FlashBuster is a static, machine learning-based system whose

im is to detect malicious SWF files and to distinguish them from

enign ones. Its main goal is reproducing a combination of the

haracteristics of previous state-of-the-art systems (see Section 3)

hat proved to be effective in detecting SWF malware, in order to

ssess the efficacy and robustness of the information extracted to

ecognize these attacks. To this end, FlashBuster leverages informa-

ion provided by the tag structure and the ActionScript bytecode of

4 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

Fig. 1. Graphical architecture of FlashBuster.

4

t

j

i

d

o

b

f

c

u

o

S

D

t

f

b

S

D

o

D

a

D

t

D

t

D

i

D

b

S

D

S

f

(

e

4 The reader can find more information about these tags on the official SWF spec-

ification (Adobe, 2012).
the file. Fig. 1 shows the general architecture of the system, which

can be divided into three modules:

Parser. This module analyzes the SWF file and extracts infor-

mation about its structure and its ActionScript bytecode.

Feature Extractor. This module transforms the information ob-

tained from the parser in a vector of numbers, which characterizes

the whole SWF file.

Classifier. This module decides on the maliciousness of the SWF

file according to the feature vector it receives as input. Such a

module is a mathematical function that tunes its parameters by re-

ceiving various examples taken from a so-called training set . Once

its parameters have been set up, the classifier can recognize mali-

cious files that have not been included in the training examples.

In the following, we provide a more detailed description of each

component of the system.

4.1. Parser

As previously said, this module performs data pre-processing

and selects the information that will be further processed by the

other modules. FlashBuster leverages a modified version of JPEXS ,
a powerful, Java-based Flash disassembler and decompiler (Petrik,

2020). This software is based on RABCDasm (CyberShadow, 2019),

one of the most popular Flash disassemblers, and it adds new fea-

tures such as de-obfuscation, file debugging and preview, etc.

More specifically, the parser featured by FlashBuster executes

the following operations: (i) it performs static de-obfuscation of

ActionScript code. This operation is important, as some malicious

files might use name obfuscation or other popular techniques to

conceal attacks; (ii) it extracts the complete SWF structure in

terms of tags; (iii) it disassembles the ABC bytecode so that it could

be read as a plain-text file. This operation includes automatic de-

obfuscation of the ActionScript code. Both the tag structure and the

ABC bytecode are sent to the feature extractor module for further

analysis.

4.2. Feature Extraction

This module represents the core of the whole system, and it

converts the information extracted by the parser to a vector of

numbers that will be sent to the classifier. Our goal here was not

devising a completely novel feature set, but proposing a compre-

hensive approach that could be comparable, in terms of detection

performances, to other state-of-the-art approaches. For this reason,

we referred to Wressnegger et al. (2016) to implement a conceptu-

ally similar system that would employ information extracted from

the structure and the content of the SWF file. However, differently

to Wressnegger et al. (2016) , we extracted the number of occur-

rences of the extracted information, instead of analyzing their se-

quences. This intuition derives from the experience in PDF mal-

ware detection (Maiorca et al., 2019), where the occurrences of in-

formation extracted from the structure and the content of a PDF

file proved to be greatly effective in performing detection. We now

provide a detailed description of the features extracted in the two

cases.
.2.1. Structural Features (Tags)

These features are related to the information that can be ex-

racted from SWF tags and are crucial to understanding which ob-

ects and actions are executed by the SWF file. The main idea here

s that malware does not contain particularly complex multime-

ia contents, such as video with many frames or audio files. Vari-

us malware samples simply display images such as rectangles or

lank backgrounds. For this reason, we extracted the following 14

eatures from the file structure, corresponding to the number of oc-

urrences of specific SWF tags within the file 4 :

Frames. ShowFrame tags that are used to display frames.

Shapes. DefineShape (in any of all its four variants) tags,

sed to define new shapes that will be plotted on the screen.

Sounds. Sound-related events, extracted by examining any

f the following tags: DefineSound , SoundStreamHead1 ,
oundStreamHead-2 and SoundStreamBlock .

BinaryData. Groups of embedded data, represented by the tag

efineBinaryData .
Scripts. ActionScript codes that are contained in the file. Note

hat a SWF file does not necessarily require scripting code to per-

orm its operations, especially in benign files (ActionScript has

een initially devised as an aid to the execution of SWF files).

cripts are discovered by analyzing the following tags: DoABC ,
oABCDefine , DoInitAction , DoAction .

Fonts. Font-related objects, extracted by detecting any

f the following tags: DefineFont (in all its variants),

efineCompactedFont , DefineFontInfo (in all its vari-

nts), DefineFontName .
Sprites. Sprites extracted by examining the tag

efineSprite .
MorphShapes. Morphed shapes (i.e., shapes that might

ransform into new ones) extracted by examining the tag

efineMorphShape (and its variants).

Texts. Text-related objects, extracted by checking any of

he following tags: DefineText (along with its variants) and

efineEditText .
Images. Images contained in the file, extracted by examin-

ng any of the following tags (and their variants): DefineBits ,
efineBitsJPEG , JPEGTables and DefineBitsLossless .

Videos. The number of embedded videos in the file, extracted

y examining the tags DefineVideoStream and VideoFrame .
Buttons. Buttons with which the user can interact with the

WF content. Such counting can be done by examining the tag

efineButton (along with its variants).

Errors. Errors made by the parser when analyzing specific tags.

uch errors often occur, for example, when the SWF file is mal-

ormed due to errors in its compression.

Unknown. Tags that do not belong to the SWF specifications

probably malformed tags).

It is worth noting that we preferred counting the occurrences of

ach tag (instead of just considering its presence/absence) because

D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901 5

w

t

t

m

s

t

t

4

t

f

b

A

a

n

o

m

a

c

f

s

f

c

A

d

d

m

t

w

f
t

n

m

o

s

s

e

p

n

i

4

f

w

fi

(

f

e

m

o

w

B

5

n

t

i

e

k

H

m

a

t

i

e

5

t

d

t

5

t

o

V

s

fi

g

i

o

s

i

m

t

f

a

m

5

t

2

2

n

t

f

s

w

t

t

a

B

s

X

p

a

5

k

b

s

g

t
e observed that benign objects contain significantly more tags of

he same type in comparison to malicious files. We also observe

hat structural features must be carefully treated, as benign and

alicious files can be similar to each other concerning their tag

tructure. For this reason, structural features alone are not enough

o ensure reliable detection and must be integrated with informa-

ion from the scripted content of the file.

.2.2. Actionscript Bytecode Features (API calls)

As structural features (i.e., tags) might suffer from the limita-

ions mentioned in Sect. 4.2.1 , we employed an additional set of

eatures that focus on the content of the scripting code that might

e included in the files. Although it is not strictly necessary to use

ctionScript for benign operations, its role is essential to execute

ttacks. In particular, as shown in Sect. 2.1 , the attacker usually

eeds to resort to system APIs to perform memory manipulation

r to trigger specific events. Moreover, APIs can be used to com-

unicate with external interfaces or to contact an external URL to
utomatically drop malicious content on the victim’s system.

System APIs belong to the official Adobe ActionScript specifi-

ations (Adobe, 2015). For this reason, we created an additional

eature set that counts the classes and methods belonging to such

pecifications, leading to 4724 new features. More specifically, this

eature set represents the number of specific System methods and

lasses inside the bytecode. We chose to use only system-based

PIs for two reasons: (i) the feature vector does not include user-

efined APIs, so that the feature list is independent of the training

ata that is considered for the analysis; (ii) system-based calls are

ore difficult to obfuscate, as the user does not directly implement

hem.

With respect to the example described in Sect. 2.1 ,

e would therefore consider as valid features the classes

lash.utils.ByteArray and flash.utils.Endian , and

he method readUnsignedByte . On the contrary, we would

ot directly consider the class name IG , as it was directly imple-

ented by the user. The rationale behind counting the occurrences

f system-based methods and classes is that an attacker might

ystematically use functions to manipulate memory or perform

uspicious actions. Alternatively, she might attempt to trigger

vents repeatedly or to access specific interfaces.

Finally, we observe that all features were normalized with the

opular tf-idf strategy (Baeza-Yates and Ribeiro-Neto, 1999). This

ormalization is particularly crucial for SVM classifiers, which typ-

cally perform best with normalized features.

.3. Classification

The features extracted with FlashBuster can be used with dif-

erent classification algorithms. In the experimental evaluation that

e describe in Section 8 , we report the results for different classi-

cation algorithms. In particular, we focused our attention on SVM

linear and non-linear) and Random Forests, as these were success-

ully employed in other works on SWF detection (e.g., Wressnegger

t al., 2016). Although other classifiers (or even their ensembles)

ay be employed, we believe that the chosen set is representative

f the majority of classifiers in the wild and that similar results

ould hold for possible alternatives to classification Maiorca and

iggio (2019) .

. Attack Model

To assess the security of FlashBuster against adversarial ma-

ipulation of the input data (which can be either performed at

raining time or at test time), we leverage an attack model orig-

nally defined in the area of adversarial machine learning (Biggio
t al., 2014a; 2014b; Biggio and Roli, 2018). It builds on the well-

nown taxonomy of Barreno et al. (Barreno et al., 2010; 2006;

uang et al., 2011) which categorizes potential attacks against

achine-learning algorithms along three axes: security violation,

ttack specificity and attack influence . By exploiting this taxonomy,

he attack model enables defining various potential attack scenar-

os, in terms of explicit assumptions on the attacker’s goal, knowl-

dge of the system, and capability of manipulating the input data.

.1. Notation

For the sake of clarity, we report here a table of the symbols

hat will be used during the rest of the paper, along with a brief

escription. Such a table can be employed as a reference during

he reading of the following sections.

.2. Attacker’s Goal

It is defined in terms of two characteristics, i.e., security viola-

ion and attack specificity.

Security violation. In security engineering, a system can be vi-

lated by compromising its integrity, availability , or confidentiality .

iolating the integrity of FlashBuster amounts to having malware

amples undetected; its availability is compromised if it misclassi-

es benign samples as malware, causing a denial of service to le-

itimate users; and confidentiality is violated if it leaks confidential

nformation about its users.

Attack specificity. The specificity of the attack can be targeted

r indiscriminate , based on whether the attacker aims to have only

pecific samples misclassified (e.g., a specific malware sample to

nfect a particular device or user), or if any misclassified sample

eets her goal (e.g., if the goal is to launch an indiscriminate at-

ack campaign).

We formalize the attacker’s goal here in terms of an objective

unction W(A

′ , θ) ∈ R (where θ is the knowledge possessed by the

ttacker about the system), which evaluates to what extent the

anipulated attack samples A

′ meet the attacker’s goal.

.3. Attacker’s Knowledge

The attacker may have different levels of knowledge of the

argeted system (Barreno et al., 2010; 2006; Biggio et al., 2014a;

014b; Biggio and Roli, 2018; Huang et al., 2011; Šrndic and Laskov,

014a). In particular, she may know completely, partially, or do

ot have any information at all about: (i) the training data D; (ii)

he feature set X , i.e., how input data is mapped onto a vector of

eature values; (iii) the learning algorithm L (D, f) , and its deci-

ion function f (x), including its (trained) parameters (e.g., feature

eights and bias in linear classifiers), if any. In some applications,

he attacker may also exploit feedback on the classifier’s decisions

o improve her knowledge of the system, and, more generally, her

ttack strategy (Barreno et al., 2006; Biggio et al., 2014a; 2014b;

iggio and Roli, 2018; Huang et al., 2011).

The attacker’s knowledge can be represented in terms of a

pace � that encodes knowledge of the data D, the feature space

 , the learning algorithm L (D, f) and its decision function f . In

articular, we distinguish between limited- and perfect-knowledge

ttacks.

.3.1. Limited-Knowledge (LK) Black-Box Attacks

Under this scenario, the attacker is typically only assumed to

now the feature representation X and the learning algorithm L ,

ut not the training data D and the trained classifier f . This as-

umption is common under the security-by-design paradigm: the

oal is to show that the system may be reasonably secure even if

he attacker knows how it works but does not know any detail on

6 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

k

t

A

U

n

c

i

2

e

f

(

t

6

t

s

t

w

i

b

z

w

a

s

f

C

a

w

m

s

a

r

t

x

s

w

t

x

v

a

j

c

s

i

a

s

t

i

l

m

m

2

x

the specific deployed instance (Barreno et al., 2006; Biggio et al.,

2013; 2014a; 2014b; Huang et al., 2011), Demontis et al. , (Biggio

and Roli, 2018).

In particular, according to the definition proposed by Biggio

et al., we distinguish the cases in which either the training data or

the trained classifier are unknown (Muñoz González et al., 2017).

In the first case, to which we refer as LK attacks with surrogate

data , it is often assumed that the attacker can collect a surro-

gate dataset ˆ D and that she can learn a surrogate classifier ˆ f on
ˆ D to approximate the true f (Biggio et al., 2013; Papernot et al.,

2017). Note also that the class labels of ˆ D can be modified using

the feedback provided from the targeted classifier f , when avail-

able (e.g., as an online service providing class labels to the input

data). The knowledge-parameter vector can be thus encoded as

θLK−SD = (̂ D , X , L , ˆ f) .

In the second case, to which we refer to as LK attacks with

surrogate learners , we assume that the attacker knows the training

distribution D, but not the learning model. Hence, she trains a sur-

rogate function on the same training data. Hence, the knowledge-

parameter vector can be encoded as θLK−SL = (D, X , ˆ L , ˆ f) .

5.3.2. Perfect-Knowledge (PK) White-Box Attacks

This is the worst-case setting in which also the targeted clas-

sifier is fully known to the attacker, i.e., θ = (D, X , L , f) . Although

it is not very likely to happen in practice that the attacker gets to

know even the trained classifier’s parameters, this white-box set-

ting is particularly interesting as it provides an upper bound on

the performance degradation incurred by the system under attack,

and can be used as a reference to evaluate the effectiveness of the

system against the other (less pessimistic) attack scenarios. In the

experimental evaluation of this work, we will mostly explore this

knowledge scenario, along with limited knowledge with surrogate

learners.

5.4. Attacker’s Capability

The attacker’s capability of manipulating the input data is de-

fined in terms of the so-called attack influence and it is based on

some application-specific constraints.

Attack Influence. This defines whether the attacker can only

manipulate data at test time (exploratory influence), or if she can

also contaminate the training data (causative influence). Such con-

tamination is possible, for instance, if the system is retrained on-

line using data collected during operations that can be manipu-

lated by the attacker (Barreno et al., 2006; Biggio et al., 2014b;

Biggio and Roli, 2018; Huang et al., 2011).

Application-specific constraints. According to the given appli-

cation, these constraints define how and to which extent the input

data (and its features) can be modified to reach the attacker’s goal.

In many cases, these constraints can be directly encoded in terms

of distances in the feature space, computed between the source

malware data and its manipulated versions (Biggio et al., 2013;

Biggio and Roli, 2018; Brückner et al., 2012; Dalvi et al., 2004;

Globerson and Roweis, 2006; Lowd and Meek, 2005; Teo et al.,

2008). FlashBuster is not an exception to this rule, as we will dis-

cuss in the remainder of this section. In general, the attacker’s ca-

pability can thus be represented in terms of a set of possible mod-

ifications �(A) performed on the input samples A .

5.5. Attack Strategy

The attack strategy amounts to formalizing the derivation of

the attack in terms of an optimization problem (Biggio et al.,

2013; 2014b). Given the attacker’s goal W(A

′ , θ) , along with a
nowledge-parameter vector θ ∈ � and a set of manipulated at-

acks A

′ ∈ �(A) , the attack strategy is given as:

� = arg max A ′ ∈ �(A) W(A

′ ; θ) . (1)

nder this formulation, one can characterize different attack sce-

arios. The two main ones often considered in adversarial ma-

hine learning are referred to as classifier evasion and poison-

ng (Barreno et al., 2010; 2006; Biggio et al., 2013; 2014a; 2014b;

012; Biggio and Roli, 2018; Muñoz González et al., 2017; Huang

t al., 2011; Mei and Zhu, 2015). In the remainder of this work we

ocus on classifier evasion , while we refer the reader to Biggio et al.

2014b) ; Muñoz González et al. (2017) ; Mei and Zhu (2015) for fur-

her details on classifier poisoning .

. Evasion Attacks and Security Scenarios

Evasion attacks consist of manipulating malicious samples at

est time to have them misclassified as benign by a trained clas-

ifier. The attacker’s goal is thus to violate system integrity , ei-

her with a targeted or with an indiscriminate attack, depending on

hether the attacker is targeting a specific machine or running an

ndiscriminate attack campaign. More formally, evasion attacks can

e written in terms of the following optimization problem:

� = arg min z ′ ∈ �(z) ̂
 f (�(z ′)) , (2)

here x ′ = �(z ′) is the feature vector associated to the modified

ttack sample z ′ , x = �(z) is the feature vector associated to the

ource (unmodified) malware sample z , � is the feature extraction

unction, and

ˆ f is the surrogate classifier estimated by the attacker.

oncerning Eq. (1) , note that here samples can be optimized one

t a time, as they can be independently modified.

As in previous work (Biggio et al., 2013; 2014b), Demontis et al. ,

e first simulate the attack at the feature level, i.e., we directly

anipulate the feature values of malicious samples without con-

tructing the corresponding real-world samples while running the

ttack. We discuss in Sect. 6.2 how to create the corresponding

eal-world evasive malware samples. The above problem can be

hus simplified as:

∗ = arg min x ′ ̂ f (x
′) (3)

 . t . ‖ x ′ − x ‖ 1 ≤ ε , (4)

x lb � x ′ � x ub , (5)

here we have also made the manipulation constraints � used

o attack FlashBuster explicit. In particular, the box constraint

 lb
′ x ′ x ub (in which the inequality holds for each element of the

ector) bounds the minimum and maximum feature values for the

ttack sample x ′ . For FlashBuster, we will only consider feature in-

ection , i.e., we will only allow the injection of structural and byte-

ode features within the SWF file to avoid compromising the intru-

ive functionality of the malware samples (something that can eas-

ly happen by deleting objects or specific calls). This can be simply

ccounted for by setting x lb = x . The additional � 1 distance con-

traint ‖ x ′ − x ‖ 1 ≤ ε thus sets the maximum number ε of struc-

ural and bytecode features (i.e., tags and API calls) that can be

njected into the file. The solution to the above optimization prob-

em amounts to identifying which features should be modified to

aximally decrease the value of the classification function, i.e., to

aximize the probability of evading detection (Biggio et al., 2013;

014b). This set of features varies depending on the input sample

 .

D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901 7

6

s

P

w

a

s

c

e

i

b

e

A

R

E

m

(

i

t

c

t

w

f

t

j

u

6

a

p

a

c

o

t

D

o

e

c

t

c

f

F

o

t

i

t

p

S

c

t

T

r

w

f

fi

s

w

p

f

i

a

p

a

a

w

t

a

n

r

f

p

e

w

o

e

s

m

6

6

t

t

.1. Evasion Attack Algorithm

If the objective function (i.e., the decision function of the clas-

ifier) f is not linear, as for kernelized SVMs and random forests,

roblem (3) - (4) corresponds to a non-linear programming problem

ith linear constraints. The solution is, therefore, typically found at

 local minimum of the objective function. Problem (3) - (4) can be

olved with standard algorithms, but this is not typically very effi-

ient, as such solvers do not exploit specific knowledge about the

vasion problem. We thus devise an ad-hoc solver based on explor-

ng a descent direction aligned with the gradient ∇ ̂

 f (x ′) using a

isect line search, similar to that used in our previous work (Russu

t al., 2016). Its basic structure is given as Algorithm 1 . To mini-

lgorithm 1 Evasion Attack

equire: x , the malicious sample; x (0) , the initial location of the

attack sample; ̂ f , the surrogate classifier (Eq. 3); ε, the maxi-

mum number of injected structural and bytecode features (Eq.

4); x lb and x ub , the box constraint bounds (Eq. 4); ε, a small pos-

itive constant.

nsure: x ′ , the evasion attack sample.

1: i ← 0

2: repeat

3: i ← i + 1

4: t ′ = arg min t
ˆ f ((x (i −1) − t∇ ̂

 f (x (i −1))))

5: x (i) ← 	(x (i −1) − t ′ ∇ ̂

 f (x (i −1)))

6: until | ̂ f (x (i)) − ˆ f (x (i −1)) | < ε
7: return x (i)

ize the number of iterations, we explore one feature at a time

starting from the most promising feature, i.e., the one exhibit-

ng the highest gradient variation in absolute value), leveraging

he fact that the solution will be sparse (as the problem is � 1
onstrained). We also minimize the number of gradient and func-

ion evaluations to further speed up our evasion algorithm; e.g.,

e only re-compute the gradient of ˆ f (x) when no better point is

ound on the direction under exploration. Finally, we initialize x (0)

wice (first starting from x , and then from a benign sample pro-

ected onto the feasible domain), to mitigate the problem of ending

p in a local minimum that does not evade detection. 5

.2. Constructing Adversarial Malware Examples

A common problem when performing adversarial attacks

gainst machine learning is evaluating whether they can be truly

erformed in practice . As gradient-descent attacks are performed

t the feature level, the attacker is then supposed to solve the so-

alled inverse feature-mapping problem , i.e., to reconstruct from the

btained features the sample that can be concretely used against

he target classifier (Biggio et al., 2014b; Huang et al., 2011),

emontis et al. .

Such an operation is not smooth to perform in many cases, not

nly from a more theoretical standpoint (as discussed in Huang

t al. (2011)) but also from a practical perspective. In the specific

ase of Flash malware (as well as malware in general), generating

he corresponding real-world adversarial examples may be compli-

ated, as a single wrong operation can compromise the intrusive

unctionality of the embedded exploitation code Demontis et al. .

or example, removing one structural feature such as one frame

r script might entirely break the SWF file. For this reason, in this
5 This problem has been first pointed out in Biggio et al. (2013) , where the au-

hors have introduced a mimicry term to overcome it. Here we consider a different

nitialization mechanism, which allows us to get rid of the complicated mimicry

erm in the objective function.

E

aper, we only considered injection of additional content into the

WF file. In particular, we propose a methodology to automatically

onstruct the real evasive samples by automatically injecting fea-

ures that do not alter the overall functionality of the SWF files.

his methodology applies to content-based features, which rep-

esent the majority of features employed by FlashBuster, and it

orks as follows:

1. We disassemble the target SWF file by extracting its Action-

Script bytecode (by using, e.g., tools such as RABCDasm).
2. We explore the disassembled code until we find return -type

instructions in functions (e.g., returnvoid).
3. We inject a set of instructions that are never parsed by the

code (as it comes after the return instruction). In particular,

we inject a combination of two instructions: pushstring ,
combined with the name of the API call (e.g., pushstring
’’flash.utils.ByteArray’’); pop , which essentially re-

moves the string pushed into the stack. This combination does

not alter the memory of the virtual machine.

4. The disassembled code is reassembled back to the original file.

With this technique, it is possible to increase the content-based

eature values of FlashBuster without changing the behavior of the

le. We tested this methodology on various samples by using the

andbox-based analyzer Any.run (Any.Run, 2020) 6 . In particular,

e run the samples before and after the reconstruction, by com-

aring the extracted reports. In the tested cases, we found no dif-

erences in behavior between the original and the modified files.

It is worth noting that unreachable code injected after return
nstructions could be discarded by making FlashBuster analyze the

pplications flow-graph. We plan to implement control flow-based

arsing in future work. However, it would still be possible for

n attacker to inject unreachable code while defying control flow

nalysis. For example, attackers may employ opaque predicates ,

hich are conditional branches that are typically extremely hard

o evaluate statically (Collberg et al., 1998). In this case, unreach-

ble code can be added as an apparently legitimate branch that is

ever taken, and advanced static (or dynamic) analysis would be

equired to detect and discard it.

A similar strategy can be employed to modify structural-based

eatures. By using libraries such as PySWF (Timknip, 2017), it is

ossible to extract the structures of tags and add new ones. How-

ver, changing the number of tags alters the whole SWF structure,

hich must be then reconstructed with the correct offsets. This

peration is not easy to carry out in an automatic fashion. How-

ver, it is possible to use JPEXS to edit and reconstruct the SWF

tructure manually. We plan, in future work, to extend the auto-

atic reconstruction of samples also to structural.

.3. Summary of the Evasion Methodology

As a further clarification of what we described in Sections 5 and

 , we provide a brief, practical summary of the attack scenario and

he evasion methodology that will be employed in the following of

his paper.

• The goal of the attacker is to modify Flash applications classi-

fied as malicious by the target system to make them misclassi-

fied as benign.

• The attacker possesses full knowledge of the target system.

She knows which features were used to train the model, the

classifier, and the trained model itself (Perfect Knowledge Sce-

nario). The only exception is represented by attacks against

non-differentiable Random Forest classifiers, where the attacker
6 It is not possible to use Any.run to perform analysis of groups of samples.

ach sample should be analyzed singularly through the graphical interface.

8 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

Fig. 2. Conceptual representation of learning (left) and feature (right) vulnerability. Red, blue and green samples represent, respectively, malicious, benign and attack samples.

i

t

t

p

k

(

c

t

f

n

o

i

a

t

(

T

l

n

e

p

t

(

t

d

E

T

a

s

d

o

t

t

B

T

d

t

B

n
employs a differentiable surrogate model to perform the attack

(Limited Knowledge with surrogate models).

• The attacker performs evasion against the trained model by

employing a gradient descent algorithm. The role of gradient

descent is selecting which features should be changed to max-

imize the probability of evasion with the minimum number of

changes to the application. The attack is performed on the fea-

ture level and outputs a modified feature vector.

• Once the attacker manages to attain evasion for a specific sam-

ple, she can concretely inject the features to the sample in or-

der to obtain the corresponding evasive feature vector.

7. Feature and Learning Vulnerability

We discuss here an interesting aspect related to the vulnera-

bility of learning-based systems, first highlighted in Biggio et al.

(2015) ; Russu et al. (2016) , and conceptually represented in Fig. 2 ,

which shows two classifiers on a two-feature space. The classifiers

can be defined as surfaces closed around malicious (left) and be-

nign (right) samples. The red, blue, and green samples represent,

respectively, malicious, benign, and attack samples. An evasion at-

tack sample is typically misclassified in two scenarios: (i) the fea-

ture vector related to the sample is far enough from those belong-

ing to the rest of known training samples (both malicious and be-

nign), or (ii) the feature vector is indistinguishable from those ex-

hibited by benign data.

In the first scenario, usually referred to as blind-spot evasion , re-

training the classifier on the adversarial examples (with adversarial

training) should successfully enable their detection, improving clas-

sifier security. This means that the classification error induced by

such attacks could be reduced in advance, by designing a learning

algorithm capable of anticipating this threat; e.g., building a classi-

fier that better encloses benign data and classifies as malicious the

regions of the feature space where training data is absent or scarce

(see, e.g., the classifier in the right plot of Fig. 2). We refer to this

vulnerability as one induced by the learning algorithm (left plot in

Fig. 2).

In the second scenario, instead, retraining the classifier would

be useless, as the whole distribution of the evasion samples is

overlapped with that of benign data in feature space, i.e., the at-

tack increases the Bayesian (non-reducible) error. We thus refer to

this attack as mimicry evasion , and the corresponding vulnerability

as one induced by the feature representation (right plot in Fig. 2).

In fact, if a malware sample can be modified to exhibit the same

feature values of benign data, it means that the given features are
ntrinsically weak, and no secure learning algorithm can prevent

his issue.

This notion can also be motivated in formal terms, similarly to

he risk analysis reported in Biggio et al. (2015) . From a Bayesian

erspective, learning algorithms assume an underlying (though un-

nown) distribution p (x , y) governing the generation of benign

 y = −1) and malicious (y = +1) data, and aim to minimize the

lassification error E(f) = E (x ,y) ∼p � (y, f (x)) , where E is the expec-

ation operator, � is the zero-one loss, and f is the classification

unction returning the predicted class label (i.e., ± 1). Let us de-

ote the optimal classifier achieving the minimum (Bayesian) error

n p with f � . It is clear that, if there is no evidence p (x) of (train-

ng) data in some regions of the feature space (usually referred to

s blind spots), such regions can be arbitrarily classified by f � as ei-

her benign or malicious with no impact on the classification error

the expectation on p will be in any case zero in those regions).

his is precisely the underlying reason behind the vulnerability of

earning algorithms to blind-spot evasion.

Within this setting, evasion attacks can be conceived as a ma-

ipulation of the input samples x through a function a (x), which

ssentially introduces a deviation from the source distribution

 (x , y). By denoting with E a (f) = E (x ,y) ∼p � (y, f (a (x))) the error of

he classifier f on the manipulated samples, with f ′ the optimal

Bayesian) classifier on such manipulated data, we can compute

he increase in the classification error of f � on the manipulated

ata as the following:

 a (f �) − E(f �) = E a (f ′) − E(f �) ︸ ︷︷ ︸
feature vulnerability

+ E a (f �) − E a (f ′) ︸ ︷︷ ︸
learning vulnerability

. (6)

he first term is the increase in Bayesian error before and after the

ttack (which characterizes the vulnerability of the feature repre-

entation), while the second represents the classification error re-

ucible by retraining on the attack samples (i.e., the vulnerability

f the learning algorithm).

Under this interpretation, we can introduce a metric to assess

he feature vulnerability quantitatively. To this end, we consider

he so-called Bhattacharyya Coefficient (BC):

C =

∫
x ∈X

√

p b (x) p m

(x) d x ∈ { 0 , 1 } . (7)

his coefficient essentially evaluates the overlapping between the

istributions of benign p b and manipulated attack p m

samples over

he whole feature space X . If the two distributions are the same,

C = 1 , while if they are perfectly separated, BC = 0 . The conve-

ient aspect of this metric is that it has a closed form for several

D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901 9

k

t

D

a

m

t

B

u

b

g

e

t

t

p

t

i

8

i

t

i

(

t

S

m

o

g

e

c

t

t

s

o

c

f

a

t

a

s

a

d

t

t

M

r

e

8

1

w

g

w

fi

V

f

j

i

Table 1

Notation and symbols employed in the paper.

Symbol Description

W Objective function

A and A

′ Input samples and modified attack samples

θ System knowledge

D and ˆ D Training data and surrogate training

X Feature set

L Learning algorithm

f , ˆ f Decision function, surrogate classifier

f � Classifier with minimum Bayesian error

� Space that embeds D, X , L , f
� Set of possible modifications

� Feature extraction function

x and x ′ Original and modified feature vectors

z , z ′ and z � Original, modified, and optimal input samples

x lb and x ub box-constraint bounds

ε Number of feature modifications

y Labels

E Classification error

� Zero-one loss

p Data distribution

a Deviation from data distribution

E Classification error

BC Bhattacharyya Coefficient

μ, �b Mean and covariance of data

Table 2

Distribution of malicious samples by the

date of first submission to the VirusTotal

service. The number of unique identified

CVEs are reported for each year.

Year Num.Samples Num. CVE

2018 233 3

2017 149 2

2016 495 2

2015 453 18

2014 127 9

2013 45 2

2012 37 4

2011 18 6

2010 25 2

2009 9 0

2009 2 0

p

t

s

C

2

t

C

r

fi

t

p

t

t

a

t

t

b

7 There may be further CVEs in the dataset that were not identified by VirusTotal.

One CVE may apply to multiple files.
nown distributions; e.g., in the case of multivariate Gaussian dis-

ributions, it is given as BC = exp (−D B) , where

 B =

1

8

(μb − μm

) � �−1 (μb − μm

) +

1

2

log
det �√

det �b det �m

, (8)

nd where
 = 0 . 5(
b +
m

) , while μb , μm

,
b and
m

are the

eans and covariance matrices of benign and attack data, respec-

ively. To assess feature vulnerability, we use this expression for

C, and exploit the well-known result that the Bayesian error is

pper bounded by 1
2 BC . One may indeed measure the difference

etween such value computed after and before the attack, which

ives us an (approximate) indication of the increase in the Bayesian

rror induced by the attack, and thus, a quantitative measure of

he feature vulnerability (i.e., of the first term in Eq. 6). Therefore,

his coefficient can represent a useful measure that can be em-

loyed in practice to recognize the presence of feature vulnerabili-

ies. We will use BC to discuss the efficacy of adversarial retraining

n Section 8.4 .

. Experimental Evaluation

The experimental evaluation proposed in this paper is divided

nto two parts, which we describe in the following.

Standard Accuracy Evaluation. In this evaluation, we tested

he performances of FlashBuster against benign and malicious files

n the wild by comparing them with the results attained by Šrndic

2016) ; Šrndi ́c and Laskov (2016) . FlashBuster and Hidost were

rained with a dataset of randomly chosen malicious and benign

WF files, and they were tested against many previously unseen

alicious and benign files. This experiment provided information

n the general performances attained by FlashBuster and Hidost re-

arding true and false positives. The goal of this evaluation was to

nsure that the feature set we introduced obtained performances

omparable to those attained by other publicly available state-of-

he-art tools. Additionally, we tested the capability of FlashBuster

o predict previously unseen attacks. To this end, we trained the

ystem with data obtained before 2017 and tested it against data

btained after the same year. Finally, to ensure that FlashBuster

ould be reliably used also to detect new threats, we also per-

ormed an additional evaluation in which our system was tested

gainst obfuscated and encrypted samples.

Adversarial Evaluation. In this experiment (directly linked to

he previous one), we evaluated the performances of FlashBuster

gainst adversarial attacks performed according to a gradient de-

cent strategy (see Section 6). It is the first time that such evalu-

tion has been carried out on Flash files and against Flash-based

etection systems. Our goal was to understand the robustness of

he features extracted by FlashBuster against adversarial modifica-

ions by employing possible defenses such as classifier retraining.

oreover, we provide a discussion about the efficacy of adversarial

etraining as a possible defense to counteract adversarial attacks.

In the following, we describe the dataset and the basic setup

mployed for all the experiments.

.1. Dataset

The dataset used for our experiments is composed of 5828 files,

593 of which are malicious (an amount comparable to previous

orks (Overveldt et al., 2012; Šrndi ́c and Laskov, 2016; Wressneg-

er et al., 2016)) and 4235 are benign (we chose this amount to

ork on balanced datasets (Rossow et al., 2012)). All malicious

les, as well as part the benign ones, were retrieved from the

irusTotal service (Google, 2018). Other benign files were retrieved

rom the DigitalCorpora repository (Corpora, 2013). Notably, for ob-

ective analysis, we only employed samples featuring code belong-

ng to ASVM2 (as the previous version of the Virtual Machine em-
loys different instructions and routines). Table 2 reports the dis-

ribution of the malicious samples by the date of the first submis-

ion to the service VirusTotal, together with the number of unique

VEs that were correctly identified by the service 7 .

The number of samples is well-balanced between 2015 and

018, which were the years when Flash malware was employed

he most by attackers. In particular, we report almost 30 unique

VEs in 2015 and 2016. Overall, the employed dataset features a

ather large diversity of vulnerabilities. This aspect is further con-

rmed by Table 3 , which shows the top-10 malware families con-

ained in the dataset. We extracted the malware families by em-

loying the popular tool AvClass (Sebastián et al., 2016), applied

o the VirusTotal data. Note that most malware families are related

o exploit-kits (e.g., neutrino) that contain a specific Flash vulner-

bility. This aspect shows that the analyzed samples belong to at-

acks that are consistently employed in the wild. Hence, we claim

o have employed a dataset that is representative of the Flash-

ased malware ecosystem in the wild.

10 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

Table 3

Distribution of the top-10 mal-

ware families retrieved from the

dataset of Flash-based malware.

Family Num. Samples

neutrino 114

axpergle 89

exkit 64

angler 45

swfexp 40

swif 38

lodabytor 35

swfdec 21

gwan 21

pubenush 15

w

p

8

s

c

e

e

o

f

r

t

w

t

r

r

W

(

(

(

(

l

k

γ

w

a

d

w

a

i

e

m

i

o

W

e

f

s

2

t

m

a

W

i

8

t

d

a

w

d

f

B

5

a

b

r

8 Notably, Hidost was not released with a pre-trained classifier but only with the

feature extraction module.
8.2. Basic Setup

In this section, we describe the basic setup of the pre-

processing, feature extractor, and classification modules for Flash-

Buster and Hidost. This setup is common to all the evaluations de-

scribed in this section.

8.2.1. Pre-Processing

Pre-processing was performed by FlashBuster and Hidost as fol-

lows:

• FlashBuster. As mentioned in Section 4.1 , the original JPEXS
parser was modified to allow a faster analysis of multiple SWF

files, as well as better integration with the other components

of FlashBuster. All data related to tags and bytecodes were ex-

tracted and dumped into files, to allow for subsequent analyses

by the other FlashBuster modules. The extraction time may vary

from milliseconds to some minutes for very large files.

• Hidost. Hidost employed SWFReTools (Sporst, 2011), a Java-

based parser to analyze the structure of SWF files. After pre-

processing, the analyzed files were added to a special cache to

reduce the extraction times, which may vary from milliseconds

to minutes.

8.2.2. Feature Extraction.

We now provide some details about the feature extraction

mechanisms employed by FlashBuster. It is critical to point out that

our experimental goal was not developing the most accurate sys-

tem possible, but performing an effective security evaluation under

reasonable, practical constraints. In particular, there can be high

differences in values among the employed features. Thus, attackers

can create samples with abnormal values of certain features that

would make the adversarial sample utterly different from the typi-

cal malware distribution (e.g., using specific functions thousands of

times in the same method, while others are only used few times),

thus achieving easy evasion. However, this evasion attempt is triv-

ial, as anomalous values would make the sample easy to detect by

using anomaly detectors.

To create a realistic situation for the attacker, we established an

upper limit on each feature value in our dataset. For our experi-

ments, we chose 10 as a reasonable value that limits how often

the same feature can be injected. We established this threshold

empirically by performing statistics on how many features of the

same type were typically contained in our dataset. Our findings

showed that, while some samples may call the same API hundreds

of times (especially in benign applications), the majority of the an-

alyzed features were called (on average) less than 10 times. Hence,

the choice of this threshold represents the fact that it is unlikely

that the majority of the features would appear more than 10 times

in a sample. To confirm that limiting the feature values does not

influence classification performances, we repeated our experiments
ith higher upper limits, without noticing significant differences in

erformances.

.2.3. Classification and Training Procedures

We used the popular machine-learning suite

cikit-learn (Pedregosa et al., 2011), which features the

lassifiers used in our evaluation, 8 as well as secml to simulate

vasion attacks against them (Melis et al., 2019). All the performed

valuations (except the temporal evaluation and the one against

bfuscated malware, which were carried out on an entirely dif-

erent dataset) share the following elements: (a) The dataset was

andomly split by considering 70% of it as a training set and

he remaining 30% as a test set. The classifier hyperparameters

ere evaluated with a 5-fold cross-validation performed on the

raining set to optimize the true positive rate at 1% false-positive

ate. We repeated the whole procedure five times, in order to

ule out possible biases related to specific train/test divisions. (b)

e performed our tests on four classifiers: (i) Random Forest

RF); (ii) support vector machine with the linear kernel (SVM);

iii) support vector machine with the Radial-Basis-Function kernel

SVM-RBF); (iv) support vector machine with the Laplacian kernel

SVM-Lap). For support vector machines, we optimized the regu-

arization hyperparameter C and the kernel hyperparameter γ (for

ernel-based support vector machines) via cross-validation with C,

∈ {0.01, 0.5, 0.2, 0.1, 1, 2, 10, 20, 50, 100}. For random forests,

e optimized the minimum number of samples required to split

n internal node in {2, 5}, and either did not set any maximum

epth or set it to 30 or 100.

Adversarial Training (AT). Under the same experimental setup,

e retrained the same classifiers by adding the attacks generated

gainst them to their training set. This procedure amounts to solv-

ng a minimax game known as adversarial training (Goodfellow

t al., 2015; Szegedy et al., 2014) in which the attacker maxi-

izes the training loss of the classifier by manipulating the train-

ng points, while the classifier minimizes the same loss (computed

n the manipulated samples) by adjusting its training parameters.

e implemented an iterative version of this game in which, at

ach iteration, we first selected at random 500 malware samples

rom the training set and optimized them to evade the target clas-

ifier. These samples were optimized by randomly-picking ε ∈ {1,

, 5, 10, 20, 50, 100}. Then, we added such adversarial samples

o the training set and retrained the target classifier on the aug-

ented training data. We terminated this procedure after 10 iter-

tions, or earlier if convergence to a stable solution was observed.

e denote the corresponding robust classifiers with the suffix AT,

.e., SVM-AT, SVM-RBF-AT, SVM-Lap-AT, and RF-AT.

.3. Standard Accuracy Evaluation

The standard accuracy evaluation was performed by following

he criteria described in Section 8.2.3 . For both FlashBuster and Hi-

ost, and for each of the four classifiers tested, we calculated the

verage (among its splits) Receiving Operating Characteristic (ROC),

hich reports the detection rate (i.e., the fraction of correctly-

etected malware) at different false-positive rates (FPR, i.e., the

raction of misclassified benign samples).

Results are shown in Fig. 3 . The leftmost plot shows that Flash-

uster detects more than 90% malware samples at 1% FPR, while at

% the detection rate is higher than 95%. Non-linear models such

s Random Forests and SVMs with the Laplacian kernel perform

etter than their linear counterparts. The middle plot reports the

esults obtained by retraining the classifiers with adversarial at-

D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901 11

Fig. 3. Average ROC curves and related AUCs obtained on 5 train-test splits on FlashBuster (left - no adversarial retraining; center - with adversarial retraining) and Hidost

(right).

Table 4

Accuracy performances on five classifiers on

a test set composed of data released from

2017. Each classifier has been trained with

data released before 2017. We also report

the performances of retrained classifiers.

Classifier Acc. Acc. (Retrain)

RF 88% 89%

SVM Laplacian 88% 89%

SVM Linear 85% 89%

SVM RBF 75% 87%

t

s

t

s

n

B

f

s

d

c

d

H

t

fi

c

t

i

8

u

s

w

t

t

W

r

e

s

s

9

F

t

g

o

S

t

i

a

e

s

8

c

s

2

D

i

s

l

fi

t

o

p

t

w

e

p

p

c

m

D

w
acks (described more in detail in Section 8.4). The attained re-

ults show that, despite adding artificially-generated samples to

he training set, the detection rate of the classifiers does not sub-

tantially change. We discuss these aspects more in detail in the

ext section.

The rightmost plot shows the results attained by Hidost. Flash-

uster performs better than Hidost with every classifier, with a dif-

erence in detection rates between 10% and 20%, depending on the

elected classifier. We interpret these results with the fact that Hi-

ost employs only structural features without analyzing the byte-

ode embedded in Flash applications. Some SWF files may in-

eed employ very similar structures, but extremely different codes.

ence, such files could be difficult to detect with purely struc-

ural approaches. This aspect has also been encountered in PDF

les, where purely structural-based methods may fail with mali-

ious files with many employed objects (Maiorca et al., 2019).

Overall, the attained curves show that FlashBuster can be effec-

ively used as a detector of malicious files, outperforming compet-

ng state-of-the-art approaches.

.3.1. Temporal Evaluation

We evaluated the ability of FlashBuster to predict previously-

nseen attacks. To this end, we trained the system by only using

amples whose first submission date to the VirusTotal service

as previous to 2017 (a total of 1211 malicious samples), plus all

he benign files in the dataset. The test set was therefore made of

hose malicious samples released in 2017 and 2018 (383 samples).

e used all the classifiers of the previous experiments (along with

etrained classifiers), and the parameters of the classifiers were

valuated with a 5-fold cross-validation performed on the training

et.

Table 4 shows the results for this evaluation. It is possible to

ee that RF and SVM-Lap report very high accuracy values (almost
0%) on the test set. This result is also in-line to what showed in

ig. 3 . It is interesting to point out that linear classifiers, which are

he ones to perform worst against malware in the wild, provide

ood accuracy (85%) on unseen attacks. SVM-RBF classifiers are the

nes to perform worst with a 75% of accuracy. Notably, the linear

VM significantly improves its performances after having been re-

rained with adversarial samples. We speculate that this behavior

s due to similarities between the adversarial generated samples

nd the novel samples belonging to the test set. Overall, all mod-

ls prove to be reliable at detecting previously-unseen malware,

howing that FlashBuster can be effectively used for this task.

.3.2. Evaluation against Obfuscated Malware

To test the detection capabilities of FlashBuster against obfus-

ated samples, we generated two additional datasets of malicious

amples by using the popular obfuscation tool DoSWF (DoSWF,

013), starting from the original malicious dataset. Notably, as

oSWF could not obfuscate all the samples (due to technical lim-

tations of the tool), the two generated datasets featured fewer

amples than the starting one. The datasets were organized as fol-

ows:

• Obfuscated. This dataset was generated by replacing variable

names and by performing changes to the control flow graph

without modifying the file semantics. After obfuscation, we ob-

tained 1278 obfuscated samples.

• Encrypted. This dataset was generated by making each file be

dynamically generated at runtime. Typically, encryption is em-

ployed to dynamically load files in memory through customized

routines introduced by the obfuscator. After encryption, we ob-

tained 1466 samples.

We used a training set composed of all malicious and benign

les employed during the experiments reported in Section 8.3 . We

hen tested the various classifiers of FlashBuster (including the

nes featuring retrained data) on the two datasets. Results are re-

orted in Tables 5 and 6 , and show that FlashBuster is able to de-

ect almost all obfuscated and encrypted samples in the wild.

This result may seem rather surprising because obfuscated mal-

are should be significantly different from the original one. How-

ver, there are two explanations to this effect: (i) The features em-

loyed by FlashBuster are related to system-API calls, and the im-

act of obfuscation on these features is rather limited. In some

ases, encryption may add other system API-based routines, which

ay increase the maliciousness of the file for the classifier; (ii)

oSWF has been often used as a way to conceal malware in the

ild. Hence, we speculate that obfuscated and encrypted malware

12 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

Table 5

Accuracy performances (in percentage) on

five classifiers on a test set composed of

obfuscated data. We also report the perfor-

mances of retrained classifiers.

Classifier Acc. Acc. (Retrain)

RF 97% 98%

SVM RBF 95% 96%

SVM Laplacian 94% 94%

SVM Linear 93% 92%

Table 6

Accuracy performances (in percentage) on

five classifiers on a test set composed of

encrypted data. We also report the perfor-

mances of retrained classifiers.

Classifier Acc. Acc. (Retrain)

RF 100% 100%

SVM RBF 100% 100%

SVM Laplacian 94% 94%

SVM Linear 100% 100%

f

‖

a

v

a

d

o

w

s

B

t

t

a

c

t

e

a

T

e

c

a

c

i

i

a

t

a

d

s

t

t

s

i

t

a

i

c

s

t

(

s

t

c

S

f

i

s

s

s

t

t

r

i

d

t

d

9

d

e

was already in the employed training set. As a consequence, the

classifier learned the characteristics of obfuscated malware and

recognized obfuscated attacks due to their characteristics (an as-

pect also observed in a very recent work (Mantovani et al., 2020)).

8.4. Adversarial Evaluation

The adversarial evaluation aimed to assess the performance of

the classifiers employed in the previous experiment after the gra-

dient descent attacks described in Section 6 . In this case, we evalu-

ated how the detection rate (at 1% FPR) of the classifiers decreases

against an increasing number of injected features ε. According to

this security evaluation procedure, a classifier is said to be more

robust if its detection rate decreases more gracefully (Biggio and

Roli, 2018).

It is important to observe that RF classifiers are not differen-

tiable, so we can not use our gradient-based attack directly to eval-

uate their security. We thus attacked our RF classifiers by first op-

timizing the attacks against all the SVM-based classifiers (used as

surrogate models), and then evaluating whether such attacks trans-

fer correctly to the RF classifiers (Limited Knowledge - surrogate

models). In practice, we found that the attacks exhibiting the high-

est success against the RF classifiers were those optimized against

the SVM-Lap models.

The leftmost plot in Fig. 4 provides the results of the evalu-

ation when the classifiers are not retrained with adversarial at-

tacks. While all SVM-based classifiers are completely evaded after

ε = 100 changes, Random Forests can still detect 20% of the at-

tacks. This effect may be present because we are using a surrogate

model to attack the RF classifiers rather than directly optimizing

the attack against them. For this reason, we can not state with cer-

tainty that RFs are generally more secure; indeed, a more powerful

white-box attack as that in Kantchelian et al. (2016) may enable

evading them with higher probability. We thus leave a more de-

tailed investigation of this aspect to future work.

The rightmost plot in Fig. 4 shows the security evaluation

curves obtained by retraining the classifiers with samples gener-

ated through adversarial attacks. While the retraining strategy es-

sentially brings no additional robustness for SVM and SVM-RBF

classifiers, we point out a significant increment of robustness in

SVM-Lap and RF classifiers. This effect may be due to the decision

function learned by these models, which may be better shaped to

counter the presence of � 1 -norm adversarial attacks (as those sim-

ulated in this work, where the attack algorithm manipulates only a
ew relevant features due to the presence of the sparse constraint

 x ′ − x ‖ 1 ≤ ε) (Russu et al., 2016).

Discussion on Adversarial Training. We investigate here why

dversarial training is only slightly improving robustness to ad-

ersarial attacks in this case. To this end, in Fig. 5 we report the

verage feature values (i.e., the centroid) for benign and malware

ata (normalized in [0,1] after division by 10), extrapolated from

ne test set, and the average feature values for adversarial mal-

are samples optimized against SVM-Lap and SVM-Lap-AT. For the

ame data, we also report in Fig. 6 the variation of the related

hattacharyya coefficient BC (described in Section 7) computed be-

ween the malicious and benign distributions after projection on a

wo-dimensional space via Linear Discriminant Analysis (LDA).

From Fig. 5 , it may appear that the centroids of malware and

dversarial malware are not that different. This phenomenon is

orrect since we are only considering the injection of ε = 50 fea-

ures in each sample. However, the two-dimensional projection

laborated in Fig. 6 unveils an interesting phenomenon. First of all,

ttacking SVM-Lap and SVM-Lap-AT decreased the initial BC value.

his effect is surprising since it means that the attacks are effective

ven though the Bayesian error (distribution overlap) might de-

rease. In other words, both attacks evade detection by placing the

dversarial malware samples in blind spots, without mimicking the

haracteristics of the benign distribution. Nevertheless, adversar-

al malware optimized against the non-robust SVM-Lap classifier

s much more separable than the adversarial malware optimized

gainst the robust SVM-Lap-AT classifier from the benign data (cf.

he BC values in the middle and rightmost plots). This means that

dversarial training, even after several rounds of retraining and ad-

ition of up to 5,0 0 0 adversarial malware samples in the training

et, is capable of enforcing the attack samples to better reproduce

he behavior of legitimate samples to be successful. However, even

hough the classifier has eventually learned a more robust decision

urface in our case, this is not sufficient to stop practical attacks

n this specific domain. In fact, by injecting more features, the at-

acker may be able to even better mimic the benign distribution

nd evade detection with higher probability. In addition, adversar-

al training is a very costly procedure in terms of computational

omplexity, both in space and time, especially in high-dimensional

paces like in our case (FlashBuster generates more than 4,0 0 0 dis-

inct features), as it requires generating a huge number of samples

potentially exponential in the number of features) before being

lightly effective. Accordingly, robust methods based on regulariza-

ion rather than data augmentation may be better suited to our

ase Demontis et al. , (Lyu et al., 2015; Ross and Doshi-Velez, 2018;

imon-Gabriel et al., 2018).

To summarize, the attained results show that, although the

unction was retrained against the attacks to reduce the learn-

ng vulnerability, the feature vulnerability related to the employed

tatic features could not be reduced by merely retraining the clas-

ifier. In more detail, the problem here is that none of the employed

tatic features is likely to appear in malware much more frequently

han in benign data , i.e., there is no invariant feature that charac-

erizes malware uniquely from benign data (and that can not be

emoved) (Tong et al., 2017). Such lack of invariance means that,

n principle, it is possible to create a malicious sample that is in-

istinguishable from benign ones (even by only injecting content to

he input SWF file) and, thus, additional features are required to

etect adversarial SWF malware examples correctly.

. Summary of Results and Discussion

In this Section, we provide a summary of the results attained

uring the experimental Section, along with a brief discussion on

ach point.

D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901 13

Fig. 4. Security evaluation curves on FlashBuster. On the x-axis, we report the number of changes to the feature values is reported. On the y-axis, we report the decrease of

the detection rate as more features are modified. The left-side curves are related to the classifiers that were not retrained with adversarial attacks, while the right-side ones

concern the classifiers under adversarial retraining.

Fig. 5. Average feature values for one test set in which malicious samples (red) were modified with our gradient-based attack (ε is the number of changes) against SVM-Lap

(green) and SVM-Lap-AT (black). The Bhattacharyya coefficient BC values between these malicious (red, green and black) and benign (blue) samples are reported in Fig. 6 .

Fig. 6. Two-dimensional LDA projections of benign samples against malware (leftmost plot), adversarial malware targeting SVM-Lap (middle plot) and adversarial malware

targeting SVM-Lap-AT (rightmost plot), along with the corresponding BC values.

• Detection of malware in the wild . FlashBuster can effectively

detect malware in the wild. In particular, it features signifi-

cantly higher performances than Hidost, a valid state-of-the-art

tool for SWF malware detection. Using structural- and content-

based features provides a more reliable detection against mal-

ware with structures similar to benign files. Overall, we demon-

strated that our system could be validly used as a reference for

further experiments related to robustness.

• Detection of previously unseen and encrypted malware .

FlashBuster provides very good accuracy at detecting samples

released after training data. Moreover, FlashBuster can detect

obfuscated and encrypted (by a popular off-the-shelf tool) mal-

ware. In this last case, the distribution of training data is crit-

ical to ensure that the malware could be effectively detected.

In particular, if the distribution of encrypted malware signifi-

cantly differs from the one of normal malicious or benign files,

it is likely that the system would not be able to detect it.

14 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

B

p

s

a

A

s

M

a

t

n

t

g

E

t

R

A

A

B

B

B

B

B

B

C

C

C

C

C
D

D

D

D

Conversely, if samples obfuscated with similar techniques are

present in the training set, the system’s performances can be

extremely high.

• Evasion attacks against classifiers . When no retraining is em-

ployed, gradient-based attacks can completely evade the detec-

tion of all classifiers after a reasonable number of changes.

• The role of adversarial training . Adversarial training can

slightly improve robustness in some cases, but not to a satis-

fying extent for this application. The main issue here is that

defending the classifier remains useless if the adopted feature

representation is vulnerable (i.e., the attacks are able to mimic

the benign feature values). Moreover, adversarial training re-

mains very computationally demanding, hindering both its ef-

fectiveness and scalability in high-dimensional domains such as

that considered in this work.

10. Conclusions and Future Work

In this paper, we proposed a security evaluation of static mali-

cious SWF file detectors by introducing FlashBuster, a system that

combines structural and content-based information to perform an

accurate analysis of such attacks. In particular, we demonstrated

that FlashBuster could attain improved performances (in terms of

detection rate) compared to other state-of-the-art tools. Moreover,

we showed that it could be effectively employed to detect pre-

viously unseen, obfuscated, and encrypted attacks. The proposed

security evaluation showed an intrinsic vulnerability of the static

features used by SWF detectors. In particular, by using gradient

descent attacks, we demonstrated how even retraining strategies

were not always effective at ensuring robustness. More specifically,

we measured and showed how gradient descent attacks made

samples more similar to their benign counterparts, thus making

adversarial retraining inefficient in some cases. We plan to improve

and solve some of the system limitations in future work: for ex-

ample, reducing its dependence on JPEXS , whose possible failures

could compromise the whole file analysis. We also plan to perform

more experiments on SWF files that are obfuscated with off-the-

shelf tools in order to evaluate the resilience of FlashBuster against

them.

In general, our claim for future research is that focusing on

improving the classifier decision function can be effective only if

the employed features are intrinsically robust, i.e., there should be

specific features that are truly characteristic of malicious behavior

and that cannot be mimicked in benign files (or whose mimicking

would require a significant effort from the attacker’s side). For ex-

ample, the maliciousness of a feature could be better pointed out

by considering the context in which it was found. There may be

API calls that could be solely used for malicious purposes if they

operate after (or before) other API calls, with specific parameters,

or when the program is in a determined state of execution. We be-

lieve that this research direction will be useful not only for Flash

malware detection but also for the other malware detection sys-

tems.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

CRediT authorship contribution statement

Davide Maiorca: Conceptualization, Methodology, Investigation,

Software, Writing - original draft. Ambra Demontis: Software,

Methodology, Investigation, Validation, Data curation, Visualization.
attista Biggio: Conceptualization, Methodology, Investigation, Su-

ervision, Writing - original draft, Software. Fabio Roli: Supervi-

ion, Funding acquisition. Giorgio Giacinto: Supervision, Funding

cquisition.

cknowledgments

This work was partly supported by the project PON AIM Re-

earch and Innovation 2014-2020 - Attraction and International

obility, funded by the Italian Ministry of Education, University

nd Research; by the PRIN 2017 project RexLearn, funded by

he Italian Ministry of Education, University and Research (grant

o. 2017TWNMH2); and by the EU H2020 project ALOHA, under

he European Unions Horizon 2020 research and innovation pro-

ramme (grant no. 780788). The authors would like to thank Maria

lena Chiappe, Denis Ugarte and Michele Scalas for their contribu-

ions to FlashBuster.

eferences

dobe. Actionscript virtual machine 2 overview. 2007.

dobe. Swf file format specifications. 2012.

Adobe. Actionscript language specifications. 2015. https://help.adobe.com/en _ US/
FlashPlatform/reference/actionscript/3/index.html .

Any.Run. Interactive malware hunting service. 2020. https://any.run/ .
Baeza-Yates, R.A. , Ribeiro-Neto, B. , 1999. Modern Information Retrieval. Addis-

on-Wesley Longman Publishing Co., Inc., Boston, MA, USA .
arreno, M. , Nelson, B. , Joseph, A. , Tygar, J. , 2010. The security of machine learning.

Machine Learning 81, 121–148 .
arreno, M. , Nelson, B. , Sears, R. , Joseph, A.D. , Tygar, J.D. , 2006. Can machine learn-

ing be secure? In: Proc. ACM Symp. Information, Computer and Comm. Sec.,

ASIACCS ’06. ACM, New York, NY, USA, pp. 16–25 .
Biggio, B. , Corona, I. , He, Z.M. , Chan, P.P.K. , Giacinto, G. , Yeung, D.S. , Roli, F. , 2015.

One-and-a-half-class multiple classifier systems for secure learning against eva-
sion attacks at test time. In: Schwenker, F., Roli, F., Kittler, J. (Eds.), Multi-

ple Classifier Systems. In: Lecture Notes in Computer Science, volume 9132.
Springer International Publishing, pp. 168–180 .

iggio, B. , Corona, I. , Maiorca, D. , Nelson, B. , Šrndi ́c, N. , Laskov, P. , Giacinto, G. ,

Roli, F. , 2013. Evasion attacks against machine learning at test time. In: Block-
eel, H., Kersting, K., Nijssen, S., Železný, F. (Eds.), Machine Learning and Knowl-

edge Discovery in Databases (ECML PKDD), Part III. In: LNCS, volume 8190.
Springer Berlin Heidelberg, pp. 387–402 .

Biggio, B. , Fumera, G. , Roli, F. , 2014a. Pattern recognition systems under attack: De-
sign issues and research challenges. International Journal of Pattern Recognition

and Artificial Intelligence 28, 1460 0 02 .

Biggio, B. , Fumera, G. , Roli, F. , 2014b. Security evaluation of pattern classifiers under
attack. IEEE Transactions on Knowledge and Data Engineering 26, 984–996 .

iggio, B. , Nelson, B. , Laskov, P. , 2012. Poisoning attacks against support vector ma-
chines. In: Langford, J., Pineau, J. (Eds.), 29th Int’l Conf. on Machine Learning.

Omnipress, pp. 1807–1814 .
iggio, B. , Roli, F. , 2018. Wild patterns: Ten years after the rise of adversarial ma-

chine learning. Pattern Recognition 84, 317–331 .

rückner, M. , Kanzow, C. , Scheffer, T. , 2012. Static prediction games for adversarial
learning problems. J Mach Learn Res 13, 2617–2654 .

alleja, A . , Martín, A . , Menéndez, H.D. , Tapiador, J. , Clark, D. , 2018. Picking on the
family: Disrupting android malware triage by forcing misclassification. Expert

Systems with Applications 95, 113–126 .
hen, P.Y. , Zhang, H. , Sharma, Y. , Yi, J. , Hsieh, C.J. , 2017. Zoo: Zeroth order optimiza-

tion based black-box attacks to deep neural networks without training sub-

stitute models. In: 10th ACM Workshop on Artificial Intelligence and Security,
AISec ’17. ACM, New York, NY, USA, pp. 15–26 .

ollberg, C., Thomborson, C., Low, D., 1998. Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’98. Association for
Computing Machinery, New York, NY, USA, pp. 184–196. doi: 10.1145/268946.

268962 .

orpora D.. Digital corpora - producing the digital body. 2013. https://digitalcorpora.
org/ .

yberShadow. RABCDAsm. 2019. https://github.com/CyberShadow/RABCDAsm .
alvi, N. , Domingos, P. , Mausam , Sanghai, S. , Verma, D. , 2004. Adversarial classifica-

tion. In: Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD). Seattle, pp. 99–108 .

ang, H. , Huang, Y. , Chang, E. , 2017. Evading classifiers by morphing in the dark. In:
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17.

ACM, pp. 119–133 .

emontis A., Melis M., Biggio B., Maiorca D., Arp D., Rieck K., Corona I., Giacinto
G., Roli F.. Yes, machine learning can be more secure! a case study on android

malware detection. IEEE Transactions on Dependable and Secure Computing In
press;.

oSWF. DoSWF - professional flash SWF encryptor. 2013. http://www.doswf.org/ .

https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
https://any.run/
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0012
https://doi.org/10.1145/268946.268962
https://digitalcorpora.org/
https://github.com/CyberShadow/RABCDAsm
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0015
http://www.doswf.org/

D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901 15

G

M

G

G

G

H

K

K

K

L

L

L

M

M

M

M

M

M

M

M

M

O

P

P

P

R

R

R

R

S

S

S

S

S

S

S
S

S

T

T
T

T

T

Š

Š

Š

Š

Š

W

X

X

Y

loberson, A. , Roweis, S.T. , 2006. Nightmare at test time: robust learning by fea-
ture deletion. In: Cohen, W.W., Moore, A. (Eds.), Proceedings of the 23rd Int’l

Conference on Machine Learning, volume 148. ACM, pp. 353–360 .
uñoz González, L. , Biggio, B. , Demontis, A. , Paudice, A. , Wongrassamee, V. ,

Lupu, E.C. , Roli, F. , 2017. Towards poisoning of deep learning algorithms with
back-gradient optimization. In: Thuraisingham, B.M., Biggio, B., Freeman, D.M.,

Miller, B., Sinha, A. (Eds.), 10th ACM Workshop on Artificial Intelligence and Se-
curity AISec ’17. ACM, New York, NY, USA, pp. 27–38 .

oodfellow, I.J. , Shlens, J. , Szegedy, C. , 2015. Explaining and harnessing adversarial

examples. In: International Conference on Learning Representations .
oogle. Virustotal. 2018. http://www.virustotal.com .

rosse, K. , Papernot, N. , Manoharan, P. , Backes, M. , McDaniel, P.D. , 2017. Adversar-
ial examples for malware detection. In: ESORICS (2). In: LNCS, volume 10493.

Springer, pp. 62–79 .
uang, L. , Joseph, A.D. , Nelson, B. , Rubinstein, B. , Tygar, J.D. , 2011. Adversarial ma-

chine learning. In: 4th ACM Workshop on Artificial Intelligence and Security

(AISec 2011). Chicago, IL, USA, pp. 43–57 .
antchelian, A. , Tygar, J.D. , Joseph, A.D. , 2016. Evasion and hardening of tree ensem-

ble classifiers. In: 33rd ICML. In: JMLR Workshop and Conference Proceedings,
volume 48. JMLR.org, pp. 2387–2396 .

apratwar., A., Troia., F.D., Stamp., M., 2017. Static and dynamic analysis of an-
droid malware. In: Proceedings of the 3rd International Conference on Infor-

mation Systems Security and Privacy - Volume 1: ForSE, (ICISSP 2017), INSTICC.

SciTePress, pp. 653–662. doi: 10.5220/0 0 06256706530662 .
olosnjaji, B. , Demontis, A. , Biggio, B. , Maiorca, D. , Giacinto, G. , Eckert, C. , Roli, F. ,

2018. Adversarial malware binaries: Evading deep learning for malware detec-
tion in executables. In: 26th European Signal Processing Conference, EUSIPCO.

IEEE, Rome, pp. 533–537 .
in, D. , Stamp, M. , 2011. Hunting for undetectable metamorphic viruses. Journal in

Computer Virology 7, 201–214 .

owd, D. , Meek, C. , 2005. Adversarial learning. In: Proc. 11th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD). ACM Press,

Chicago, IL, USA, pp. 641–647 .
yu, C. , Huang, K. , Liang, H.N. , 2015. A unified gradient regularization family for

adversarial examples. In: 2015 IEEE International Conference on Data Mining
(ICDM), volume 00. IEEE Computer Society, Los Alamitos, CA , USA , pp. 301–309 .

aiorca, D. , Ariu, D. , Corona, I. , Aresu, M. , Giacinto, G. , 2015. Stealth attacks: An ex-

tended insight into the obfuscation effects on android malware. Comput Secur
51, 16–31 .

aiorca, D. , Biggio, B. , 2019. Digital investigation of PDF files: Unveiling traces of
embedded malware. IEEE Security & Privacy 17, 63–71 .

aiorca, D. , Biggio, B. , Giacinto, G. , 2019. Towards adversarial malware detection:
Lessons learned from pdf-based attacks. ACM Comput Surv 52, 78:1–78:36 .

aiorca, D. , Corona, I. , Giacinto, G. , 2013. Looking at the bag is not enough to find

the bomb: an evasion of structural methods for malicious pdf files detection. In:
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and

communications security, ASIA CCS ’13. ACM, New York, NY, USA, pp. 119–130 .
aiorca, D. , Giacinto, G. , Corona, I. , 2012. A pattern recognition system for malicious

pdf files detection. In: Perner, P. (Ed.), Machine Learning and Data Mining in Pat-
tern Recognition. In: Lecture Notes in Computer Science, volume 7376. Springer

Berlin Heidelberg, pp. 510–524 .
antovani, A. , Aonzo, S. , Ugarte-Pedrero, X. , Merlo, A. , Balzarotti, D. , 2020. Preva-

lence and impact of low-entropy packing schemes in the malware ecosystem.

In: Network and Distributed System Security (NDSS) Symposium NDSS 20 .
ei, S. , Zhu, X. , 2015. Using machine teaching to identify optimal training-set at-

tacks on machine learners. In: 29th AAAI Conference on Artificial Intelligence
(AAAI ’15) .

elis M., Demontis A., Pintor M., Sotgiu A., Biggio B.. secml: A Python Library for
Secure and Explainable Machine Learning. 2019.

elis, M. , Maiorca, D. , Biggio, B. , Giacinto, G. , Roli, F. , 2018. Explaining black-box

android malware detection. In: 26th European Signal Processing Conf., EUSIPCO,
IEEE. IEEE, Rome, Italy, pp. 524–528 .

verveldt, T.V. , Kruegel, C. , Vigna, G. , 2012. Flashdetect: Actionscript 3 malware de-
tection. In: Balzarotti, D., Stolfo, S.J., Cova, M. (Eds.), Research in Attacks, Intru-

sions, and Defenses. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 274–293 .
apernot, N. , McDaniel, P. , Goodfellow, I. , Jha, S. , Celik, Z.B. , Swami, A. , 2017. Practical

black-box attacks against machine learning. In: Proceedings of the 2017 ACM on

Asia Conference on Computer and Communications Security, ASIA CCS ’17. ACM,
New York, NY, USA, pp. 506–519 .

edregosa, F. , Varoquaux, G. , Gramfort, A. , Michel, V. , Thirion, B. , Grisel, O. , Blon-
del, M. , Prettenhofer, P. , Weiss, R. , Dubourg, V. , Vanderplas, J. , Passos, A. , Cour-

napeau, D. , Brucher, M. , Perrot, M. , Duchesnay, E. , 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 .

etrik J.. JPEXS. 2020. https://github.com/jindrapetrik/jpexs-decompiler .

aff E., Barker J., Sylvester J., Brandon R., Catanzaro B., Nicholas C.. Malware detec-
tion by eating a whole exe. 2017. ArXiv preprint arXiv:1710.09435.

oss, A.S. , Doshi-Velez, F. , 2018. Improving the adversarial robustness and inter-
pretability of deep neural networks by regularizing their input gradients. In:

AAAI. AAAI Press .
ossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H.,

Steen, M.v., 2012. Prudent practices for designing malware experiments: Status

quo and outlook. In: 2012 IEEE Symposium on Security and Privacy, pp. 65–79.
doi: 10.1109/SP.2012.14 .

ussu, P. , Demontis, A. , Biggio, B. , Fumera, G. , Roli, F. , 2016. Secure kernel machines
against evasion attacks. In: 9th ACM Workshop on Artificial Intelligence and Se-

curity, AISec ’16. ACM, New York, NY, USA, pp. 59–69 .
a
calas, M. , Maiorca, D. , Mercaldo, F. , Visaggio, C.A. , Martinelli, F. , Giacinto, G. , 2019.
On the effectiveness of system API-related information for Android ransomware

detection. Computers & Security 86, 168–182 .
ebastián, M., Rivera, R., Kotzias, P., Caballero, J., 2016. Avclass: A tool for mas-

sive malware labeling. In: Monrose, F., Dacier, M., Blanc, G., García-Alfaro, J.
(Eds.), Research in Attacks, Intrusions, and Defenses - 19th International Sympo-

sium, RAID 2016, Paris, France, September 19-21, 2016, Proceedings. In: Lecture
Notes in Computer Science, volume 9854. Springer, pp. 230–253. doi: 10.1007/

978- 3- 319- 45719- 2 _ 11 .

imon-Gabriel C.J., Ollivier Y., Schölkopf B., Bottou L., Lopez-Paz D.. Adversarial vul-
nerability of neural networks increases with input dimension. 2018. ArXiv e-

prints.
ingh, T. , Troia, F.D. , Corrado, V.A. , Austin, T.H. , Stamp, M. , 2016. Support vector ma-

chines and malware detection. Journal of Computer Virology and Hacking Tech-
niques 12, 203–212 .

mutz, C., Stavrou, A., 2012. Malicious pdf detection using metadata and structural

features. In: Proceedings of the 28th Annual Computer Security Applications
Conference, ACSAC ’12. ACM, New York, NY, USA, pp. 239–248. doi: 10.1145/

2420950.2420987 .
mutz, C. , Stavrou, A. , 2016. When a tree falls: Using diversity in ensemble clas-

sifiers to identify evasion in malware detectors. In: 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San Diego, California, USA,

February 21-24, 2016 .

porst. SWFRetools. 2011. https://github.com/sporst/SWFREtools .
ymantec. Internet security threat report vol.24. 2019. https://www.symantec.com/

content/dam/symantec/docs/reports/istr-24-2019-en.pdf .
zegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.,

2014. Intriguing properties of neural networks. In: International Conference on
Learning Representations. http://arxiv.org/abs/1312.6199

eo, C.H. , Globerson, A. , Roweis, S. , Smola, A. , 2008. Convex learning with invari-

ances. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (Eds.), Advances in Neural
Information Processing Systems 20. MIT Press, Cambridge, MA, pp. 1489–1496 .

imknip. PySWF. 2017. https://github.com/timknip/pyswf .
ong, L. , Li, B. , Hajaj, C. , Xiao, C. , Vorobeychik, Y. , 2017. Hardening classifiers against

evasion: the good, the bad, and the ugly. CoRR abs/1708.08327 .
ramèr, F. , Zhang, F. , Juels, A. , Reiter, M.K. , Ristenpart, T. , 2016. Stealing machine

learning models via prediction apis. In: 25th USENIX Security Symposium

(USENIX Security 16). USENIX Association, Austin, TX, pp. 601–618 .
rendMicro. North korean hackers allegedly exploit adobe flash player vulnerability

(cve-2018-4878) against south korean targets. 2018.
rndic N.. Hidost. 2016. https://github.com/srndic/hidost .

rndi ́c, N. , Laskov, P. , 2013. Detection of malicious pdf files based on hierarchical
document structure. In: Proceedings of the 20th Annual Network & Distributed

System Security Symposium (NDSS). The Internet Society .

rndic, N. , Laskov, P. , 2014a. Practical evasion of a learning-based classifier: A case
study. In: Proc. 2014 IEEE Symp. Security and Privacy SP ’14. IEEE CS, Washing-

ton, DC, USA, pp. 197–211 .
rndic, N., Laskov, P., 2014b. Practical evasion of a learning-based classifier: A case

study. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP
’14. IEEE Computer Society, Washington, DC, USA, pp. 197–211. doi: 10.1109/SP.

2014.20 .
rndi ́c, N. , Laskov, P. , 2016. Hidost: a static machine-learning-based detector of ma-

licious files. EURASIP Journal on Information Security 2016, 22 .

ressnegger, C. , Yamaguchi, F. , Arp, D. , Rieck, K. , 2016. Comprehensive analysis and
detection of flash-based malware. In: Caballero, J., Zurutuza, U., Rodríguez, R.J.

(Eds.), Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer International Publishing, Cham, pp. 101–121 .

u, M., Kim, T., 2017. Platpal: Detecting malicious documents with platform di-
versity. In: 26th USENIX Security Symposium (USENIX Security 17). USENIX

Association, Vancouver, BC, pp. 271–287. https://www.usenix.org/conference/

usenixsecurity17/technical- sessions/presentation/xu- meng
u, W. , Qi, Y. , Evans, D. , 2016. Automatically evading classifiers. In: Proceedings of

the 23rd Annual Network & Distributed System Security Symposium (NDSS).
The Internet Society .

ang, W. , Kong, D. , Xie, T. , Gunter, C.A. , 2017. Malware detection in adversarial set-
tings: Exploiting feature evolutions and confusions in android apps. In: ACSAC.

ACM, pp. 288–302 .

Davide Maiorca received from the University of Cagliari
(Italy) the M.Sc. degree (Hons.) in Electronic Engineering

in 2012, and the Ph.D. in Computer and Electronic En-
gineering in 2016. He is currently an Assistant Professor

at the Department of Electrical and Electronic Engineer-
ing, University of Cagliari. In 2013, he visited the Sys-

tems Security group at Ruhr-Universitat Bochum, guided
by Prof. Dr. Thorsten Holz, and worked on advanced ob-

fuscation of Android malware. His current research in-

terests include adversarial machine learning, malware in
documents and Flash applications, Android malware, and

mobile fingerprinting. He has been serving as a reviewer
and program committee member for various conferences

nd journals.

http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0018
http://www.virustotal.com
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0021
https://doi.org/10.5220/0006256706530662
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0037
https://github.com/jindrapetrik/jpexs-decompiler
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0038
https://doi.org/10.1109/SP.2012.14
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0041
https://doi.org/10.1007/978-3-319-45719-2_11
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0043
https://doi.org/10.1145/2420950.2420987
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0045
https://github.com/sporst/SWFREtools
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
http://arxiv.org/abs/1312.6199
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0047
https://github.com/timknip/pyswf
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0049
https://github.com/srndic/hidost
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0051
https://doi.org/10.1109/SP.2014.20
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0053
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0053
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0053
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0054
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0054
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0054
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0054
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0054
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/xu-meng
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0056
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0056
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0056
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0056
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0057
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0057
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0057
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0057
http://refhub.elsevier.com/S0167-4048(20)30176-0/sbref0057

16 D. Maiorca, A. Demontis and B. Biggio et al. / Computers & Security 96 (2020) 101901

t

Ambra Demontis is an Assistant Professor at the Uni-

versity of Cagliari, Italy. She received her M.Sc. degree
(Hons.) in Computer Science and her Ph.D. degree in

Electronic Engineering and Computer Science from the
University of Cagliari, Italy, in 2014 and 2018. In 2016,

she visited the University of Manchester, UK, where she

worked on the security of machine learning to test-time
attacks. Her research interests include secure machine

learning, kernel methods, biometrics, and computer se-
curity. She serves as a reviewer for several international

conferences and journals. She is a Member of the IEEE
and the IAPR.

Battista Biggio is an Assistant Professor at the University

of Cagliari, Italy. In 2015, he co-founded Pluribus One, a
research-intensive startup company that develops inno-

vative solutions based on machine learning for cyberse-
curity. He received the M.Sc. degree (Hons.) in Electronic

Engineering and the Ph.D. degree in Electronic Engineer-
ing and Computer Science from the University of Cagliari,

Italy, in 2006 and 2010. His research interests include
adversarial machine learning, kernel methods, biometrics

and cybersecurity. In particular, he has provided pioneer-

ing contributions in the area of secure machine learning,
demonstrating evasion and poisoning attacks, and how to

mitigate them, playing a leading role in the establishment
and advancement of this research field. He regularly serves as a program committee

member for the most prestigious conferences and journals in the area of machine
learning and computer security (ICML, NeurIPS, ACM CCS, IEEE SP). He chairs the

IAPR TC on Statistical Pattern Recognition Techniques, co-organizes the S+SSPR, DLS

and AISec workshops, and serves as Associate Editor for IEEE TNNLS, Pattern Recog-
nition and IEEE CIM. Dr. Biggio is a senior member of the IEEE and member of the

IAPR and of the ACM.
Fabio Roli received his Ph.D. in Electronic Engineering

from the University of Genoa, Italy. He was a research
group member of the University of Genoa (’88-’94). He

was adjunct professor at the University of Trento (’93-
’94). In 1995, he joined the Department of Electrical and

Electronic Engineering of the University of Cagliari, where

he is now professor of Computer Engineering and head
of the research laboratory on pattern recognition and ap-

plications. His research activity is focused on the design
of pattern recognition systems and their applications. He

was a very active organizer of international conferences
and workshops, and established the popular workshop

series on multiple classifier systems. Dr. Roli is Fellow of

he IEEE and of the IAPR.

Giorgio Giacinto is Professor of Computer Engineering at

the University of Cagliari, Italy. Since 1995 he joined the
research group on Pattern Recognition and Applications,

where he leads the Computer Security unit. His research
interests are in the field of pattern recognition and ma-

chine learning for malware analysis and detection, web
application security, and phishing detection. Prof. Giacinto

has been serving either as the coordinator in many R&D

projects at the local, national and European level. Prof. Gi-
acinto is an author of around 150 scientific papers in in-

ternational journals and conferences. He is a senior mem-
ber of IEEE and ACM.

	Adversarial Detection of Flash Malware: Limitations and Open Issues
	1 Introduction
	2 ShockWave Flash File Format
	2.1 ActionScript in SWF

	3 Related Work
	3.1 Flash Malware Detection
	3.2 Adversarial Machine Learning

	4 FlashBuster Architecture
	4.1 Parser
	4.2 Feature Extraction
	4.2.1 Structural Features (Tags)
	4.2.2 Actionscript Bytecode Features (API calls)

	4.3 Classification

	5 Attack Model
	5.1 Notation
	5.2 Attacker’s Goal
	5.3 Attacker’s Knowledge
	5.3.1 Limited-Knowledge (LK) Black-Box Attacks
	5.3.2 Perfect-Knowledge (PK) White-Box Attacks

	5.4 Attacker’s Capability
	5.5 Attack Strategy

	6 Evasion Attacks and Security Scenarios
	6.1 Evasion Attack Algorithm
	6.2 Constructing Adversarial Malware Examples
	6.3 Summary of the Evasion Methodology

	7 Feature and Learning Vulnerability
	8 Experimental Evaluation
	8.1 Dataset
	8.2 Basic Setup
	8.2.1 Pre-Processing
	8.2.2 Feature Extraction.
	8.2.3 Classification and Training Procedures

	8.3 Standard Accuracy Evaluation
	8.3.1 Temporal Evaluation
	8.3.2 Evaluation against Obfuscated Malware

	8.4 Adversarial Evaluation

	9 Summary of Results and Discussion
	10 Conclusions and Future Work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

