Numerical modelling and in-situ experiment for self-sealing of the induced fracture network of drift into the Callovo-Oxfordian claystone during a hydration process

Hui Wang a, b, *, Rémi de La Vaissière c, Minh-Ngoc Vu c, Christian La Borderie b, Domenico Gallipoli b

a School of Civil and Architectural Engineering, Hainan University, Hainan, China
b Université de Pau et des Pays de l’Adour, Département de génie civil, SIAME, Allée du Parc Montaury, 64600 Anglet, France
c Andra, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry, France

ARTICLE INFO

Keywords: Self-sealing COx claystone Damaged zone Numerical modeling In-situ experiment Permeability

ABSTRACT

The excavation damage zone surrounding an underground tunnel/gallery, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. This paper focuses on numerical analysis of the self-sealing of the damaged zone based on an in-situ CDZ experiment for exploring the self-sealing of excavation damage zone during a hydration process. A plastic damage model is employed to describe the mechanical behaviour of Callovo-Oxfordian claystone (COx), and an added deformation model coupled with the standard Biot’s model to simulate the significant deformation of COx claystone during the change of water content. Crack estimation and permeability evaluation of unsaturated fractured COx claystone are carried out through a post-processing method based on the fracture energy regularization and the cubic law, respectively. The validation of the proposed model is performed by numerical simulation of: (1) COx claystone swelling and triaxial compression tests, (2) self-sealing of fractured COx claystone samples during hydration process, (3) self-sealing of the damaged zone during a hydration process. Comparisons between the numerical and experimental results demonstrate the reliability of the proposed model to accurately describe the self-sealing of the fractured COx claystone, and the global water permeability reduction in hydration illustrates the accomplishment of the self-sealing of damaged zone.

1. Introduction

In France, Callovo-Oxfordian claystone, in its natural state, exhibits excellent conditions for the storage of radioactive waste thanks to its significant retention capacity for radionuclides, small molecular diffusion and low permeability (Descostes et al., 2008). Therefore, deep geological disposal for intermediate level long-life radioactive waste (IL-LLW) and high-level radioactive waste (HLW) called Cigéo is planned to be constructed in deep Callovo-Oxfordian claystone (COx) formation (~150 m thickness), and Cigéo will be in the middle of the COx claystone formation (around ~500 m deep). Since 2000, to conduct experiments and to be able to validate the feasibility of establishing and operating a nuclear waste disposal facility in Callovo-Oxfordian claystone, Andra launched the construction of the Meuse Haute-Marne underground laboratory (Andra, 2005). The laboratory, mainly located at 490 m below the ground, is accessible by means of two vertical shafts dug. Along with the vertical shafts digging and underground tunnels excavation, a drying process of the COx claystone close to the excavation surface is occurring caused by the ventilation of the shafts and tunnels (Armand et al. 2014; de La Vaissière et al., 2015). The loss of water by the ventilation makes water saturation of COx claystone decrease from 100% to 70% within a distance of 0 m – 1 m from the exposed surface.

* Corresponding author.

https://doi.org/10.1016/j.compgeo.2021.104487
Received 21 August 2020; Received in revised form 19 September 2021; Accepted 24 September 2021
Available online 13 October 2021
0266-352X/© 2021 Elsevier Ltd. All rights reserved.
The underground tunnels excavating, the desaturating of the COx claystone, and the associated increasing of pore water tension, control the shrinkage of the material and the consequent reduction of total stresses in radius direction of underground drifts (Diederichs, 2003; Vinsot et al., 2014). This decompression also causes the development of fractures of different sizes close to the excavated area, which increases permeability of this zone (Armand et al., 2014; de La Vaissière et al., 2015, Pardoen et al., 2016). As evidenced by Armand et al. (2014), excavation of COx claystone within the URL provokes fractured zone due to (1) the anisotropy of in-situ stress state (Wileveau et al., 2007); (2) inherent anisotropy of material (elasticity, strength, permeability, etc.) (Armand et al., 2017a,b; Zhang et al., 2019) and (3) induced anisotropy (pore pressure distribution, damage instability, etc.) (Trivelati et al., 2019; Souley et al., 2020; Vu et al., 2020). The excavation induced fractured zone includes the zone of connected fractures (more frequently referred to as excavated damage zone), containing both induced fractured zone and connected fractures (Armand et al., 2014). The excavation of intact COx claystone is about $10^{17} m^2$. As evidenced by Armand et al. (2014), the permeability of intact COx claystone is about $10^{-20} m^2$ (de La Vaissière et al., 2015; Giot et al., 2019). In the zone of connected fractures, cracks develop from the surrounding rock surface and tend to be larger generating values of permeability up to $10^{-17} m^2$. Instead, in the zone of diffuse fractures, which is between the connected fractured zone and the intact rock, permeability remains relatively low, i.e. between $10^{-19} m^2$ and $10^{-17} m^2$. An increase of permeability in both zones augments the risk of radionuclide leakage, which can be mitigated by the self-sealing of the COx claystone upon resaturation.

As shown in many experimental studies, the swelling property of the COx claystone during resaturation similarly displayed in other claystone (Qi and Vanapalli, 2016; Li et al., 2016; Zhou et al., 2017; Gong and Chok, 2018; Liu and Vanapalli, 2019; He et al., 2020), and the swelling of the COx claystone is significant to seal the fractures of the damage zone (Pham et al., 2007; Davy et al., 2007; Zhang, 2013). In laboratory tests, the free volumetric swelling of the COx claystone by hydration was beyond 8% in comparison with sample’s original volume, and its significant capacity of swelling during wetting processes were observed even when the confining pressure reached 17 MPa (Zhang, 2013, Zhang et al., 2020a,b). In self-sealing experiments of fractured COx claystone, the permeability of fractured COx samples can be more than the level of $10^{-10} m^2$, however, the permeability can reduce to less than the level of $10^{-17} m^2$ after a hydration process, and the main reason led to this reduction is due to the significant swelling of the COx claystone meeting water.

The self-sealing of the damaged zone in drifts and shafts is crucial to the safety of underground nuclear waste disposal. Due to the swelling capacity of bentonite during a resaturation process, it has been chosen as the main element of the sealing system (Assadollahi and Nowamooz, 2020; Darde et al., 2020). A swelling pressure from bentonite is provided against the walls of underground drifts, and this pressure helps to seal the damaged zone and recover galleries’ radius stress. Between 2010 and 2012, CDZ (Compression of the Damaged Zone: a specific experiment) was carried out to study the evolution of the excavation damaged zone properties (fractures, permeability) upon the resaturation and the mechanical loading on the drift wall (de La Vaissière et al., 2014, 2015). The investigation results from CDZ experiments prove that the damaged zone can accomplish self-sealing upon both mechanical loading and resaturation, which is a key information for the safe storage of nuclear waste in underground galleries.

The application of numerical analysis is essential to understand the self-sealing of fractured COx claystone, at the same time, to validate a numerical tool for the long-term safety assessment of the underground disposal with accounting the self-sealing process. As far as the authors know, there wasn’t an existed large-scale modelling of self-sealing of clay material under both the mechanical loadings and the resaturation yet. This is the main purpose and motivation of the research. To describe the hydro-mechanical behaviour of the COx claystone, a material model is formulated. The formulated model can analyse the fracturing of the unsaturated COx claystone upon excavation/desaturation, and also it is used to explain the self-sealing mechanism of the damaged zone. Gens and Alonso (1992), and a number of scientists have studied the hydro-mechanical behaviour of soils, building up a framework to predict the unsaturated soils deformation upon suction changes. On the basis of these previous research, we develop a model in this paper that applies to the prediction of swelling/shrinkage of COx claystone caused by changes in water content. In terms of the COx claystone, it is made up by 40%-45% fine clay matrix, 20%-30% quartz and 20%-30% calcite grains (Coril et al., 2020), and its significant deformation behaviour and the self-sealing quality are primarily decided by the clay part. In addition, Nadai criterion is taken to compute the plastic behaviour of the COx claystone, and then crack estimation, permeability computation and water diffusion inside fractured COx claystone are carried out, respectively. Based on the numerical methods discussed above and experiments carried out (Davy et al., 2007; de La Vaissière et al., 2015), this paper focuses on the predictions of the self-sealing of cracked COx claystone samples and fractures connected zone by hydration.

2. Constitutive model

2.1. Mechanical model

2.1.1. Equilibrium equation

According to the Biot’s theory, and with the stress calculated from the added deformation, the equilibrium equation is written as follows:

$$\sigma = \sigma_0 + BS_P I - 3K\Delta \pi_{add} I$$

(1)

which is the sum of the skeleton stress σ_0, the capillary stress BS_P I (Assuming that the capillary pressure is equal to total suction, and the effect of solute suction is relatively small. However, several projects exploring the impacts of solute suction were carried out in Andra, and a better understanding on this point for the COx claystone can be provided in future) and the stress produced by the added deformation, where π is the Biot coefficient (the Biot coefficient B from Armand et al. (2017) is 0.85 for the COx claystone). K is the Bulk Modulus. The term F in equation (2) represents the body force.

$$\text{div}(\sigma) + F = 0$$

(2)

2.1.2. Parameters of unsaturated COx

Based on our previous works refer to Young Modulus E, tensile stress σ_0 and fracture energy G_f of the COx claystone (Wang et al., 2020), here the relations between these three parameters and capillary pressure are directly listed in the following equations, respectively, which are used in numerical simulation afterwards.

$$E = \left(-1.09 \times 10^{10} \frac{\text{Pa}}{\text{m}^2} + 2.04 \right) E_{\text{unsaturated}}$$

(3)

$$\sigma_0 = \sigma_0(1 + \frac{P_1}{P_f})$$

(4)

$$G_f = G_{f0}(1 + \frac{P_1}{P_{f0}})$$

(5)

where W_m, R, T, ρ_w are Molar mass of water, the universal gas constant, temperature and water density, respectively. The

<table>
<thead>
<tr>
<th>Parameters for evolutions of σ_0, E, G_f with changing of water content.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Values</td>
</tr>
</tbody>
</table>
parameter values of the three equations above are listed in Table 1.

2.1.3. Plasticity and Yielding criterion

The following flow function \(F(\sigma) \) is introduced to define the plastic surface.

\[
F(\sigma) = \frac{1}{1 + B^* (\sigma_{1} + \sigma_{2} + \sigma_{3})} - (R_0 + R)
\]

(6)

where \(B_1, C_1, R_0 \) and \(R \) are four material parameters with \(B_1 \) and \(C_1 \) being determined according to the Nadai plastic criterion, \(R_0 \) being equal to tensile stress \(\sigma_0 \) and \(R = MP_x \varepsilon^p \) being plastic strain, \(MP \) being the plastic strain slope and its values is equal to 0.5 times the Young Modulus \(E \) and \(\varepsilon^p \) is the plastic strain, \(\sigma_0 \) is the Von Mises equivalent stress while \(B_1 \) and \(C_1 \) depend on the values of \(\sigma_0 + \sigma_2 + \sigma_3 > -4 \times (R_0 + R) \), then \(B_1 = 1 \) and \(C_1 = 2 \), else \(B_1 = 0.25 \) and \(C_1 = 3 \). According to Hooke’s law and using \(\varepsilon^p \) calculated from plastic flow equation, the effective stress \(\sigma^e \) after plastic deformation can be expressed as follows:

\[
\sigma^e = \lambda (\varepsilon_{kk} - \varepsilon^e) \delta_k + 2G \varepsilon^e
\]

(7)

where \(\lambda = \frac{E^s \varepsilon_0}{1 + \nu \varepsilon_0} \) and \(G = \frac{E^s \varepsilon_0}{2(1 + \nu)} \). \(\varepsilon_{kk} \) and \(\varepsilon^e \) are total strains, \(\varepsilon_{kk} \) and \(\varepsilon^e \) are plastic strains. When \(i = j, \delta_i = 1 \), else \(\delta_i = 0 \). The Poisson ratio \(\nu \) is 0.295.

2.1.4. Damage model

The damage model is based on the continuum mechanics framework developed by Fichant et al. (1999) where the effective stress in the damaged material is related to the macroscopic stress. Here the damage model is coupled with a plastic model and equation (14) is formulated in terms of elastic strains \(\varepsilon^e_{kk} = \varepsilon_{kk} - \varepsilon^e \) and \(\varepsilon^e_{ij} = \varepsilon_{ij} - \varepsilon^e_{ij} \) directly as follows:

\[
\sigma^e_{ij} = \lambda (\varepsilon_{eei} - \varepsilon^e_{ij}) \delta_k + 2G \varepsilon^e_{ij}
\]

(8)

where the effective stress \(\sigma^e_{ij} \) of the damage model is expressed as follows:

\[
\sigma^e_{ij} = (1 - d) \sigma^s_{ij} + (1 - d^e) \sigma^e_{ij}
\]

(9)

where \(\sigma^s_{ij} \) is the tensile part of \(\sigma_{ij} \) and \(\sigma^e_{ij} \) is the compressive part. The symbol \(d \) indicates the damage variable (note that, in the isotropic version of the model, \(d \) is taken as a scalar) while \(d^e \) is defined as:

\[
d^e = \frac{\varepsilon_{eei} - \varepsilon^e_{ij}}{\varepsilon_{eei} - \varepsilon^e_{ij}}
\]

(10)

where \(\varepsilon_{eei} \) is the damage threshold and its value is equal to \(\varepsilon_{ij0} \) while \(\beta \) is a hardening/softening variable. The parameter \(\beta \) commands the slope of the softening curve, and its relation with the fracture energy \(G_f \) is given below, where \(h \) is the size of mesh element:

\[
G_f = h \frac{E^s \varepsilon_0}{\beta}
\]

(11)

Finally, the equivalent strain \(\varepsilon_e \) is defined as:

\[
\varepsilon_e = \sqrt{\varepsilon_{ij}^2 - \varepsilon^e_{ij}^2 + \varepsilon_{ij0}^2}
\]

(12)

where \(\varepsilon_{ij}^2, \varepsilon^e_{ij} \) and \(\varepsilon_{ij0} \) are the principal elastic strains.

2.1.5. Crack estimation

A practical finite element method has been developed to compute cracks on the basis of a damage plastic model developed by Matallah and La Borderie (2009), which is based on the fracture energy regularization. The crack openings evaluation concerns skeleton solid phase, and the total strain of the skeleton phase is as follows:

\[
\varepsilon_{ik} = C_{ijkl}^{-1} \sigma_{ij}
\]

(13)

The effective strain of skeleton was obtained as follows:

\[
\varepsilon_{ik} = C_{ijkl}^{-1} \sigma_{ij}
\]

(14)

The total strain \(\varepsilon_{ik} \) in the solid skeleton is decomposed into two parts: an elastic part \(\varepsilon_{ik}^e \) and a cracking part and, it is represented by the Unitary Crack Opening strain tensor \(\varepsilon^e_{ik} \):

\[
\varepsilon_{ik} = \varepsilon_{ik}^e + \varepsilon^e_{ik}
\]

(15)

Multiplying the unitary crack opening strain \(\varepsilon^e_{ik} \) by the size of numerical element \(h \), the width of the crack is obtained as follows:

\[
\delta_n = n b_n u_{ijkl} = n b_n u_{ijkl} n
\]

(16)

where \(n \) is the unit vector normal to the crack, the method of crack estimation has been validated under different arbitrary loadings and complex boundary conditions.

2.2. Added deformation law

Fig. 1 provides a comparison of the swelling/shrinkage of the COx claystone predicted by the Biot’s model (Biot and M.A., 1941) during a cyclic variation of capillary pressure and the values measured by Zhang et al. (2010) during free deformation experiments.

The initial saturation of a COx claystone sample and its corresponding capillary pressure are 0.9 and −14 MPa, respectively, in the experiment Zhang et al. (2010). Through flowing dry gas with a relative humidity 25% (capillary pressure −200 MPa) on the sample for 30 days, after that, the dried sample was put into water (capillary pressure 0 MPa), and the shrinkage and swelling of the COx sample were recorded during the drying and wetting processes. In Fig. 1, it is clear that the COX claystone deformation produced by the standard Biot’s model is far less than that values measured from the experiments, therefore, a new law for calculating the extra wetting/drying deformations is added up with the standard Biot’s model to match experimental data in this research. The added deformation model aims to reproduce the difference between the measured COX claystone desaturation and resaturation curves \(\varepsilon_{COX}(\text{desaturation}) \) and \(\varepsilon_{COX}(\text{resaturation}) \) shown in Fig. 1 and the calculated standard Biot’s curve \(\varepsilon_{\text{Biot}} \) also shown in Fig. 1 (Wang et al., 2020):

\[
\varepsilon_{\text{added}} = \varepsilon_{\text{COX}}(\text{desaturation}) - \varepsilon_{\text{COX}}(\text{resaturation})
\]

(17)

\[
\varepsilon_{\text{added}} = \varepsilon_{\text{Biot}}(\text{desaturation}) - \varepsilon_{\text{Biot}}(\text{resaturation})
\]

(18)

where \(a, b, c \) and \(\Delta P \) are model parameters. The two above equations are then combined into a single equation as follows:

\[
\varepsilon_{\text{added}} = a \exp(b \frac{P_f}{P_c + \Delta P})
\]

(19)

where \(a, b, c \) and \(\Delta P \) are model parameters. Derivation of the combined equation provides the added deformation slope \(\frac{d\varepsilon_{\text{added}}}{dP_c} \) from which the strain differential is obtained as:

\[
\frac{d\varepsilon_{\text{added}}}{dP_c} = \frac{d\varepsilon_{\text{added}}}{dP_c} \frac{dP_c}{d\varepsilon_{\text{added}}}
\]

(20)

When capillary pressure increases from \(P_{C0} \) to \(P_c \), \(d\varepsilon_{\text{added}} \) can be integrated within the range between \(P_{C0} \) and \(P_c \), and then the strain increment is concluded as follows:
\[\Delta v_{\text{added}} = \int_{P_0}^P \frac{df_{\text{added}}}{dP} \, dP \]

(21)

This added deformation model performed very well in numerical computation of COx claystone hydro-mechanical behaviour, and the details of the extra deformation law formulation can also be seen from Wang et al., (2020).

2.3. Permeability and diffusion

As we know, the Darcy law performs very well in describing fluid flow through a non-fractured porous material. In the case that a porous material fractured, the Cubic law (Witherspoon, 1980) is used to describe flow through fractures, and as in the authors previous work Matallah and La Borderie (2016), the permeability matrix in principal coordinate expresses as follows:

\[\kappa = \begin{bmatrix} \kappa_0 + \frac{\xi(w_1) w_1^3}{12L_1} & \frac{\xi(w_1) w_1^3}{12L_2} & 0 \\ \frac{\xi(w_1) w_1^3}{12L_2} & \kappa_0 + \frac{\xi(w_2) w_2^3}{12L_1} & 0 \\ 0 & 0 & \kappa_0 + \frac{\xi(w_3) w_3^3}{12L_1} \end{bmatrix} \]

(22)

where \(w_1, w_2, w_3 \) are fracture values computed from the cracks estimation model, and \(\xi \) is an empirical coefficient to correct the standard cubic law as follows:

\[\xi = \left(\frac{w}{w_i} \right)^7 \]

(23)

here this equation is directly used for the Callovo-Oxfordian claystone with \(w_i = 278 \mu \text{m} \) and \(\gamma = 1.45 \). Based on the previous work by Fahy et al. (2013), introducing Darcy law into the water balance equation, the differential relation can be obtained as follows:

\[c \frac{\partial P_i}{\partial t} + \frac{k}{g} \text{div}(\nabla(P_i - pgz)) = 0 \]

(24)

where \(P_i \) is capillary pressure field changing with time, \(c \) is the mass capacity which is written as follows:

\[c = -\rho \frac{\partial \theta}{\partial P_i} \]

(25)

where \(\rho \) is water density. According to Vogel et al. (2000), a modified Van Genuchten’s retention model is proposed, and \(\theta \) is written as follows:

\[\theta = \begin{cases} S_e \left(\frac{\theta_m - \theta_s}{\theta_i - \theta_s} \right)^n + \theta_s & \text{if } P_i > P_{c(ev)} \\ \theta_s & \text{if } P_i < P_{c(ev)} \end{cases} \]

(26)

where \(S_e, \theta_i, \theta_s, \theta_m \) are effective saturation degree, saturated water content, residual water content and the air-entry value of capillary pressure, respectively. The effective saturation \(S_e \) in the equation above can be written as follows:

\[S_e = \frac{\theta_m - \theta_s}{\theta_i - \theta_s} \left(1 + \left(\frac{P_i}{a} \right)^{\frac{1}{m}} \right)^{-n} \]

(27)

In particular, \(\theta_m \) is the maximum water content, which is equal to or greater than the saturated water content \(\theta_i \), and their values are extremely close to the COX claystone porosity of 18%. On the basis of experiments Zhang et al. (2010) and Armand et al. (2017a,b), by fitting the water retention curve (Van Genuchten, 1980) with these two experimental data (Fig. 2), the values \(a \) and \(m \) are computed for numerical simulation and listed in Table 2.

By imposing the effective saturation \(S_e = 1 \), we can have the air-entry capillary pressure \(P_{c(ev)} \) as follows:

\[P_{c(ev)} = a \left(\frac{\theta_m - \theta_s}{\theta_i - \theta_s} \right)^{1/m} \left(1 - \left(\frac{\theta_m - \theta_s}{\theta_i - \theta_s} \right)^{1/m} \right)^n \]

(28)

where the calculated air-entry capillary pressure is listed in Table 2. However, the hydraulic conductivity \(k \) of Darcy law for unsaturated porous material is different from the one for saturated material, it is written as follow (Fahy et al., 2013):

\[k = \begin{cases} \frac{\rho kX_a P_i}{\mu} \text{if } P_i > P_{c(ev)} \\ \frac{\rho kX_a P_i}{\mu} \text{if } P_i < P_{c(ev)} \end{cases} \]

(29)

where \(k_{R} \) is written as follows:

\[k_R = \sqrt{S_e} \left(1 - \left(\frac{\theta_m - \theta_s}{\theta_i - \theta_s} \right)^{1/m} \right)^2 \]

(30)

All the hydraulic parameters of COX claystone for the equations above are listed in Table 2.
becomes nonlinear and plastic deformations occur. Moreover, the pre-stress reaches a value of about 20 MPa, at which the material response experimental data. This linear behaviour continues until the deviator strain curve exhibits a linear behaviour which is consistent with MPa (Fig. 3) shows that, in the early stages of deviatoric loading, the lateral strain.

Under different confining stresses 0 MPa, 2 MPa, 6 MPa and 12 MPa, a series of triaxial tests on the COx claystone were carried out (Fouché et al., 2004; Armand et al., 2017a,b). All the tested samples were drilled from the Muse Haute-Marne underground laboratory and they were carefully protected to avoid exchanges of moisture with the outside environment and, before triaxial testing, they were equalised to a relative humidity of 90%. This relative humidity corresponds to a capillary pressure of –14 MPa, a degree of saturation of 94%, fracture energy of 10.4 N/m and tensile strength of 1.05 MPa. Fig. 3 compares the experimental and numerical results in terms of deviator stress, axial strain and lateral strain.

The numerical simulation of the test at the confining pressure of 0 MPa (Fig. 3) shows that, in the early stages of deviatoric loading, the strain curve exhibits a linear behaviour which is consistent with experimental data. This linear behaviour continues until the deviator stress reaches a value of about 20 MPa, at which the material response becomes nonlinear and plastic deformations occur. Moreover, the predicted peak deviator stress of 21.4 MPa matches reasonably well the corresponding measured values. In general, at all four levels of confining pressure, a sufficiently good fit is obtained between experimental data and model simulations.

3.2. Free desaturation/resaturation tests

The proposed model was also adopted to simulate the free deformation of the COx claystone during desaturation and resaturation paths according to the laboratory experiments carried out by Pham et al. (2007).

Fig. 4 indicates that, when capillary pressure changes between –60 MPa and –150 MPa, the rate of deformation is relatively low. However, when capillary pressure changes between –2.7 MPa and –60 MPa, the rate of deformation increases considerably. This effect of the capillary pressure range on the deformation of the COx claystone is well captured by the proposed model, meanwhile, the numerical and experimental results validate that the significant swelling of the COx claystone mainly distributes in the capillary pressure changes between –50 MPa and 0 MPa.

3.3. Self-sealing of fractured COx samples by hydration

Experiments of Davy et al. (2007), Zhang (2013) and Di Donna et al. (2019) demonstrated the excellent self-sealing capability of fractured COx claystone through mechanical loading or hydration injecting synthetic water (Fig. 5).

In these experiments, the macro-cracks of Callovo-Oxfordian claystone samples were created through Brazil splitting test. To analyse the impacts of the hydration and hydration time on the self-sealing of fractured COx claystone, corresponding numerical simulation for the experiments Davy et al. (2007) on the self-sealing of sample 2 MSE761 and sample 5 MSE748 are carried out, and the diffusion time of them are 5 days and 24 days, respectively. The boundary condition of these two experiments Davy et al. (2007): 1) Cylindrical COx samples were wrapped in a special plastic films to prevent water loss, after that, brazil splitting tests were carried out to produce fractures within these samples. 2) Fractured COx samples were emplaced in a strain confined instrument to prepare for the self-sealing tests during a resaturation process, and then a water flow was loaded on their left sides of these two fractured samples. 3) Significant swelling of the material happening during the resaturation processes, fractures closing. Meanwhile, a global permeability was measured in between the left and the right sides of the fractured samples.

Fig. 6a illustrates the value of the crack after splitting in the numerical simulation and, the corresponding intrinsic permeability resulting from these cracks displays in Fig. 6b. Fig. 6c displays the state of capillary pressure when the water flows through the macro-crack of the fractured COx claystone sample. The distribution of capillary

Table 2

Parameters for water diffusion in unsaturated COx claystone

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_i</td>
<td>0.1799</td>
</tr>
<tr>
<td>θ_s</td>
<td>0</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.18</td>
</tr>
<tr>
<td>P_{cav} [Pa]</td>
<td>-1.962×10^2</td>
</tr>
<tr>
<td>μ_1 [m/s]</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>k_0 [m²]</td>
<td>2×10^{-20}</td>
</tr>
<tr>
<td>m</td>
<td>0.45</td>
</tr>
<tr>
<td>a [Pa]</td>
<td>1.86237×10^7</td>
</tr>
</tbody>
</table>

3. Modeling of laboratory test

3.1. Triaxial compression tests

Under different confining stresses 0 MPa, 2 MPa, 6 MPa and 12 MPa, a series of triaxial tests on the COx claystone were carried out (Fouché et al., 2004; Armand et al., 2017a,b). All the tested samples were drilled from the Muse Haute-Marne underground laboratory and they were carefully protected to avoid exchanges of moisture with the outside environment and, before triaxial testing, they were equalised to a relative humidity of 90%. This relative humidity corresponds to a capillary pressure of –14 MPa, a degree of saturation of 94%, fracture energy of 10.4 N/m and tensile strength of 1.05 MPa. Fig. 3 compares the experimental and numerical results in terms of deviator stress, axial strain and lateral strain.

The numerical simulation of the test at the confining pressure of 0 MPa (Fig. 3) shows that, in the early stages of deviatoric loading, the strain curve exhibits a linear behaviour which is consistent with experimental data. This linear behaviour continues until the deviator stress reaches a value of about 20 MPa, at which the material response becomes nonlinear and plastic deformations occur. Moreover, the predicted peak deviator stress of 21.4 MPa matches reasonably well the corresponding measured values. In general, at all four levels of confining pressure, a sufficiently good fit is obtained between experimental data and model simulations.

3.2. Free desaturation/resaturation tests

The proposed model was also adopted to simulate the free deformation of the COx claystone during desaturation and resaturation paths according to the laboratory experiments carried out by Pham et al. (2007).

Fig. 4 indicates that, when capillary pressure changes between –60 MPa and –150 MPa, the rate of deformation is relatively low. However, when capillary pressure changes between –2.7 MPa and –60 MPa, the rate of deformation increases considerably. This effect of the capillary pressure range on the deformation of the COx claystone is well captured by the proposed model, meanwhile, the numerical and experimental results validate that the significant swelling of the COx claystone mainly distributes in the capillary pressure changes between –50 MPa and 0 MPa.

3.3. Self-sealing of fractured COx samples by hydration

Experiments of Davy et al. (2007), Zhang (2013) and Di Donna et al. (2019) demonstrated the excellent self-sealing capability of fractured COx claystone through mechanical loading or hydration injecting synthetic water (Fig. 5).

In these experiments, the macro-cracks of Callovo-Oxfordian claystone samples were created through Brazil splitting test. To analyse the impacts of the hydration and hydration time on the self-sealing of fractured COx claystone, corresponding numerical simulation for the experiments Davy et al. (2007) on the self-sealing of sample 2 MSE761 and sample 5 MSE748 are carried out, and the diffusion time of them are 5 days and 24 days, respectively. The boundary condition of these two experiments Davy et al. (2007): 1) Cylindrical COx samples were wrapped in a special plastic films to prevent water loss, after that, brazil splitting tests were carried out to produce fractures within these samples. 2) Fractured COx samples were emplaced in a strain confined instrument to prepare for the self-sealing tests during a resaturation process, and then a water flow was loaded on their left sides of these two fractured samples. 3) Significant swelling of the material happening during the resaturation processes, fractures closing. Meanwhile, a global permeability was measured in between the left and the right sides of the fractured samples.

Fig. 6a illustrates the value of the crack after splitting in the numerical simulation and, the corresponding intrinsic permeability resulting from these cracks displays in Fig. 6b. Fig. 6c displays the state of capillary pressure when the water flows through the macro-crack of the fractured COx claystone sample. The distribution of capillary

Table 2

Parameters for water diffusion in unsaturated COx claystone

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_i</td>
<td>0.1799</td>
</tr>
<tr>
<td>θ_s</td>
<td>0</td>
</tr>
<tr>
<td>θ_t</td>
<td>0.18</td>
</tr>
<tr>
<td>P_{cav} [Pa]</td>
<td>-1.962×10^2</td>
</tr>
<tr>
<td>μ_1 [m/s]</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>k_0 [m²]</td>
<td>2×10^{-20}</td>
</tr>
<tr>
<td>m</td>
<td>0.45</td>
</tr>
<tr>
<td>a [Pa]</td>
<td>1.86237×10^7</td>
</tr>
</tbody>
</table>

Fig. 3

Triaxial tests under confining stresses of 0 MPa/2MPa/6 MPa/12 MPa at a relative humidity of 90%
the intrinsic permeability, and the increment of the intrinsic permeability accelerates the water flow dramatically. In the experiment, the process of water flow marching through the cracked cylinder was accompanied by a mechanical and chemical interaction between water and the COx claystone. It is not clear whether the chemical interaction is good for the declination of the intrinsic permeability and the self-sealing of the fractured COx claystone. Still, there is clear evidence showing that mechanical interaction produces a great swelling of COx claystone, the main reason why the fractured COx claystone could recover its impermeability and accomplish self-sealing. Same as in the experiment, the main reason of COx claystone self-sealing during the resaturation process is from the swelling of COx claystone in numerical simulation. Fig. 6d shows the capillary pressure distribution in 5 days diffusion, and the red zone (saturated zone) expands a lot in comparison with that in Fig. 6c. Fig. 6e and f show the capillary pressure of sample 5 MSE748 in 12 days and 15 days diffusion, respectively.

Fig. 7a shows the intrinsic permeability of sample 2 in 5 days diffusion. It is clear that a significant declination occurred before and after the hydration process. Fig. 7b shows the evolutions of water permeability and water flow with the water diffusion time increment in the numerical simulation and experimental tests. In experiments, the permeability tested is an average value, whereas the permeability of numerical simulation is produced from a water flow which is calculated using intrinsic permeability in Cast3M. Examination of the numerical and experimental results indicates that both of the two cracked samples accomplish self-sealing in 0.5-day water diffusion, which validates the excellent healing property of cracked COx claystone meeting water. Comparing the permeability of sample 2 and 5 illustrates that there is a continuous reduction of permeability with the increment of diffusion time.

4. Modeling of in-situ CDZ test

In order to investigate the self-sealing of the excavation damaged zone, CDZ (Compression Damage Zone) experiment has been carried out in the Meuse/Haute-Marne underground laboratory. This experiment contains two stages: (1) measuring gas permeability during loading a pressure against the wall of underground drift, (2) measuring water permeability during a hydration process of CDZ. Fig. 8 shows the position of the drift GET in the underground laboratory where the CDZ experiment was implemented, and de La Vaissière et al. (2014, 2015) presented a detailed process of this experiment.

This drift is parallel to the major horizontal stress \((\sigma_{H})\) direction N150°E, the \(\sigma_{H}\) is around 16 MPa, the minor horizontal stress \(\sigma_{v}\) and the vertical stress \(\sigma_{v}\) are approximate to each other around 12.5 MPa (Wileveau et al., 2007). For the Meuse/Haute-Marne URL, if the drifts are parallel to the direction of the major horizontal stress, their excavation damage zone is mainly placed at the horizontal direction, namely, inside the walls of the drifts. Therefore, in terms of drift GET, CDZ experiment for testing self-sealing of fracture-connected zone focused on its wall sides.

Fig. 9 shows the setup for CDZ experiment. A hydraulic loading device was applied to impose a mechanical compression on the drift wall. This device consists of a 1m\(^2\) circular steel plate and a concrete block which was installed between the plate and the wall to reinforce the plate. Six boreholes (CDZ1301 to CDZ1306) were installed multi-packer systems for performance testing and hydraulic measurement, three of which (CDZ1301 to CDZ1303) are located near the steel plate forming an equilateral triangle with sides of 1.72 m, the other three(CDZ1304 to CDZ1306) behind the loading plate (see Fig. 10). The six boreholes above hold a total surface area of 1.3m\(^2\) at the drift wall, and encompassed a 6.4m\(^3\) of the COx claystone.

Fig. 10 shows an enlarged view of multi-packer boreholes. Multi-packer systems installed in the boreholes (CDZ1301 to CDZ1306) behind the plate comprise five intervals 20 cm in length except for the last interval at the end of each borehole. Between December 2010 and February 2011, all the boreholes were drilled and the installation of jack for the boreholes finished in late February 2011. To avoid the self-sealing effects of the intervals during a resaturation process after the period of installation, only intervals 1 of all the six boreholes and the intervals 2 of the boreholes (CDZ1301 to CDZ1303) were filled with synthetic water, and the rest of the intervals were filled with nitrogen at
atmospheric pressure. As mentioned before, the first phase of the test is to investigate the effects of mechanical compression on the gas permeability of CDZ. This test was carried out by loading compressive pressure on the plate of increasing to 2, 3 and 4 MPa (the maximum swelling pressure providing by bentonite core against walls of drifts in the sealing system can reach 4 MPa) and then reduced to 0 MPa rapidly. These values are to selected to simulate the swelling pressure of bentonite core against the drift wall. CDZ1304, CDZ1305 and CDZ1306 were located behind the loading plate, therefore, the loading pressure was directly imposed on the zone of the three boreholes. For the second phase of investigating hydration effects, the hydration process was initiated by saturating the gas-filled intervals with synthetic water, and the hydration tests lasted one year from September 2011 to September 2012. CDZ1301, CDZ1302 and CDZ1303 are not placed behind the loading plate, which is equal to cancel the first phase of mechanical loading, and their self-sealing directly depends on the hydration process. In CDZ experiments, self-sealing of the interval 5 of CDZ1303 (CDZ1303PRE05) by hydration was carried out, therefore the numerical simulation focus on studying self-sealing of CDZ1303PRE05 without mechanical loading in order to prove the reliability of storing nuclear waste in the COx claystone layer.

Fig. 6. (a) initial cracks value (m) of sample 2 (b) initial intrinsic permeability (m²) of sample 2 (c) capillary pressure (Pa) of water flowing through sample 2 (d) capillary pressure of sample 2 in 5 days diffusion (e) capillary pressure of sample 5 in 12 days diffusion (f) capillary pressure of sample 5 in 24 days diffusion.

Fig. 7. (a) intrinsic permeability of sample 2 in 5 days diffusion (b) water permeability with diffusion time.
4.1. Strategy of numerical modeling for CDZ experiment

In order to approximate to the in-situ condition of CDZ experiments, a simplified method is proposed by taking the geological stresses and fracture number into account for numerical analysis. Fig. 11a shows that there is a mixture between tensile and shear fractures of the cores drilled from boreholes, and Fig. 11b provides the relation between fracture density and the depth from the surface of drift wall. Based on the information of fracture patterns, fracture density and CDZ1303PRE05 position (between 0.29 m and 0.99 m from the surface of drift wall), the fracture number of CDZ1303PRE05 is 6.

Excavation induces a redistribution of geological stresses surrounding the drift, and it is not an easy task to simulate the stress condition precisely. Therefore, a simplified method is used to reproduce the stress field so that the geological stresses in numerical simulation can approximate to those of in-situ experiment, as shown in Fig. 12. Fig. 12 (a) firstly shows the position of the numerical mesh for simulating the intervals of the boreholes in the CDZ experiments, the direction of the length of the numerical mesh is parallel to the intervals’ direction. Secondly, a schematic for calculating the radius direction stress and tangential direction stress in the surrounding claystone of drift GET. In the CDZ experiment, the borehole (CDZ1303) is parallel to the line O₁O₂. Therefore, the tangential stress of the surrounding COx claystone of GET drift in the position of the borehole is assumed to equal to the tangential stress σθ along the line O₁O₂, and σθ is calculated using the equation (31).

Fig. 8. Position of the drift GET for the CDZ experiment (de La Vaissière et al., 2015).

Fig. 9. Experimental setup for CDZ (de La Vaissière et al., 2015).

Fig. 10. Enlarged view of multi-packer boreholes (de La Vaissière et al., 2015).
Fig. 11. Fractures density with the depth of drift sidewall (Armand et al., 2014).

Fig. 12. (a) Tangential stress calculation for loading the geological stress in numerical simulation. (b) A schematic of numerical mesh for crack opening and simulation of the CDZ experiments (c) A 2D schematic picture for boundary condition and mechanical loadings for the numerical simulation of CDZ1303PRE05.
The numerical mesh is blocked on its left end. (2) A displacement U_y is loaded on the right end of the numerical mesh, and the numerical mesh is cracked from this loading. For the numerical mesh of CDZ1303PRE05, U_y is 2.35×10^{-4} m. (3) σ_0 (21.2 MPa) and σ_1 (16 MPa) are imposed on the numerical mesh after the displacement loading. There is an incrementing process of the right end (ΔU_y) during the loading of σ_0 and σ_1, therefore, a displacement U_y is loaded on the right end whose value keeps consistent with ΔU_y so that the stress on the right end is close to 0 MPa after the two stresses loaded. $U_y = \Delta U_y = 9.8 \times 10^{-4}$ m. (4) A global permeability produced by the above three steps a, b, c in numerical simulation is 1.1×10^{-13} m2 which is approximate to the initial global permeability of 1.04 $\times 10^{-13}$ m2 in CDZ experiment of CDZ1303PRE05. Therefore, the total displacement (U_y) of the right end for cracking the numerical mesh is a sum of U_{y1} and U_{y2}, $U_y = U_{y1} + U_{y2} = 1.215 \times 10^{-3}$ m. (5) Based on the above four steps, self-sealing of CDZ1303PRE05 is carried out by loading σ_{CDZ}. The method for this loading is to give a displacement U_{y3} on the right end at the opposite direction of U_{y2} and U_{y2}. When the stress on the right end reaches to 4 MPa (the maximum mechanical loading in CDZ experiments), $U_{y3} = -3.78 \times 10^{-4}$ m. (6) This step is to unload σ_{CDZ}. The method for this unloading is loading a displacement U_{y4} based on U_{y3}. When the stress on the right end comes back to 0 MPa, $U_{y4} = 2.41 \times 10^{-4}$ m. (7) After the gas permeability test, keeping σ_0, σ_1 constant, fixing the displacement of the right end, and then a hydration process is carried out by means of imposing water on the behind surface, and water flows out of the front surface through the cracks rapidly. This diffusion process lasts 100 days, and a water flow between the behind and front surface is calculated. Then a relation of a global water permeability with the diffusion time is obtained.

Due to an existed difficulty to find out a displacement U_{y3} to guarantee a obtained global permeability in numerical mesh is approximate to the initial permeability of CDZ1303PRE05 in CDZ experiment, a process of trying many times is inevitable so that an appropriate U_{y3} can be picked out.

4.2. Numerical analysis process

Strictly follow the five steps above, the numerical analysis of the self-sealing of CDZ1303PRE05 is carried out.

In the CDZ experiment, the borehole CDZ1303 is located at the outside of the steel plate, therefore the increment of the loading pressure on the steel plate had little effects on the gas permeability of CDZ1303PRE05. The global gas permeability of interval CDZ1303PRE05 was 1.04×10^{-13} m2 when the loading pressure was 0 MPa, and it was 5.46×10^{-14} m2 with the loading pressure increased to 4 MPa. Whereas, mechanical loading directly imposed on CDZ1303PRE05 is tried in numerical simulation, and this is the advantage of the numerical method. Fig. 13 shows the initial values of cracks and intrinsic permeability of CDZ1303PRE05 after steps (1) and (2).

In the numerical simulation, the initial saturation is 0.85, that is the same as in the experiment, and the corresponding capillary pressure at this saturation is -2.15×10^5 Pa. With the increment of σ_{CDZ}, a method is taken to calculate a mean permeability using intrinsic permeability. The method is imposing a gas pressure p1 on the front surface and another gas pressure p2 on the behind surface. This gas pressure difference (p1-p2) provides a gas flow between the two surfaces, the equation for flow calculation is shown as follows:

$$Q_{gas} = \int q_{scl}ds$$

Based on the gas flow Q_{gas}, the global gas permeability is calculated as follow:

$$\kappa_{gas} = \frac{2 \times (2.2 \times 10^{-3} Pa)m^3 \times (1.01 \times 10^5 Pa) \times (1 \times 10^{-1} m)Q_{gas}}{(0.7m^0.2m)((1.5 \times 10^5Pa)^2 - (1 \times 10^5 Pa)^2)}$$

With the growth of the compression pressure, the cracks close and the intrinsic permeability decreases. Therefore, the gas flow Q_{gas}, which is calculated from CAST3M decreases at the same time, and the corresponding global gas permeability κ_{gas} also decreases, which are displayed in Fig. 14.

Fig. 14 shows that the gas permeability decreases from 1.04×10^{-13} m2 to 1.2×10^{-14} m2 with the loading pressure increases from 0 MPa to 4 MPa in the numerical simulation. The difference between the experimental and numerical results when loading pressure is 4 MPa illustrates that the mechanical loading makes a significant contribution to the decrease of the global gas permeability.

For the hydration process of CDZ1303PRE05, we assumed that there is no mechanical load imposed in numerical simulation. Therefore, the initial global permeability for hydration is numerically beginning from 1.1×10^{-13} m2. The hydro-mechanical behaviors occurred in the hy-

Table 3

<table>
<thead>
<tr>
<th>Interval CDZ1303PRE05</th>
<th>Dpt (m)</th>
<th>Fn</th>
<th>Pex (m$^{-3}$)</th>
<th>σ_0 (MPa)</th>
<th>σ_1 (MPa)</th>
<th>Sc</th>
<th>U_{y1} (m$^{-3}$)</th>
<th>U_{y2} (m$^{-3}$)</th>
<th>Pnu (m$^{-3}$)</th>
<th>U_{y3} (m$^{-3}$)</th>
<th>U_{y4} (m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29 m-0.99 m</td>
<td>6</td>
<td>1.04 $\times 10^{-13}$ m3</td>
<td>21.2 MPa</td>
<td>16 MPa</td>
<td>0.85</td>
<td>2.35 $\times 10^{-4}$ m</td>
<td>9.8 $\times 10^{-4}$ m</td>
<td>1.1 $\times 10^{-13}$ m3</td>
<td>-2.48 $\times 10^{-4}$ m</td>
<td>2.11 $\times 10^{-4}$ m</td>
<td></td>
</tr>
</tbody>
</table>

Note: Dpt, Fn, Pex and Pnu are depth of intervals from gallery wall surface, fracture number, initial experimental permeability and initial numerical permeability, respectively.
The hydration process both of the experimental and numerical methods include:

1. Water was injected in the gas-filled interval CDZ1303PRE05 in the experiment. In the numerical simulation, capillary pressure of the behind surface of the numerical mesh is decreased from 2.15×10^7 Pa to 0 Pa, and a diffusion process begins.

2. In the experiment, interval 5 of CDZ1303 was filled with water and water diffusion occurred in the surrounding area of the interval. This diffusion included water penetrating in intact COx claystone and water flowing through fractures. In the numerical simulation, capillary pressure starts to vary due to the capillary pressure gradient between the behind surface of the cuboid and its rest parts, the variation rate is determined by the intrinsic permeability which is summed up by the initial permeability of intact COx and the permeability from cracks.

3. In the experiment, the interaction between water and COx led to swelling and the cracks closure during the resaturation process. This swelling closed water pathway, and it slowed down the rate of water diffusion. In the numerical simulation, the variation of capillary pressure produces deformation, which decreases the width of cracks (Fig. 13a) and permeability (Fig. 13b).

Fig. 13. (a) initial cracks value (m) of CDZ1303PRE05 (b) initial intrinsic permeability value (m^2) of CDZ1303PRE05.

Fig. 14. Permeability change with loading pressure.

Fig. 15a numerically demonstrates the saturated and unsaturated parts in 0.1-day water diffusion. If the six main cracks in Fig. 15a are numbered 1–6 from the left to the right side, we can find that water flows through the second crack at the first moment due to its high permeability, that is why the place of the second crack has the largest saturated zone (the red area). In the experiment, the depth of the cracked COx for water diffusion could be regarded as an infinitive, and the corresponding one in numerical simulation is 0.1 m. Therefore, water will completely flow out of all the six cracks by turns and, finally, all the material will be saturated. Fig. 15b illustrates the saturated zone in one-day diffusion. In comparison with the one in 0.1-day diffusion, there is a significant expansion of the red zone, and the expansion in the second crack zone is more evident due to the well-developed micro-cracks in this part. Fig. 15c displays the distribution of the saturated and unsaturated zone in 10 days diffusion. It is clear that water flows out of all the main cracks except for the fifth main crack. Fig. 15d shows the proportion between the saturated zone and unsaturated zone in 100 days diffusion, and there are 70% of the mesh...
saturated. Due to the extremely low permeability of the intact COX, there are 30% area unsaturated remained.

In comparison with the cracks value before the resaturation process, there is a significant declination of this value after 100 days resaturation (Fig. 15e). This declination proves the self-sealing capacity of cracked COX during the resaturation process.

In terms of the maximum intrinsic permeability, the value is $9.36 \times 10^{-11} \text{m}^2$ before the resaturation process, whereas it declines to $2.09 \times 10^{-16} \text{m}^2$ in 100 days resaturation (Fig. 15f). Moreover, the maximum intrinsic permeability mainly placed at the positions of notches.
Therefore, there would be a significant decrease when the intrinsic permeability is transferred into the global water permeability.

To calculate the global water permeability, a water flow \(Q_{\text{water}} \) is calculated in CAST3M according to the following equation and its relation with the diffusion time is shown in Fig. 16.

\[
Q_{\text{water}} = \int q_{\text{water}} \, ds
\]

Substituting the water flow \(Q_{\text{water}} \) into the following equation

\[
\kappa_{\text{water}} = \frac{\mu_w L Q_{\text{water}}}{A (P_1 - P_2)}
\]

where \(\mu_w = 1.005 \times 10^{-3} \text{Pa}s \) and \(P_1 = 1.5 \text{MPa}, P_2 = 0.1 \text{MPa}, A = 0.2 \times 0.7 \text{ (m2)} \) and \(T_H = 0.1 \text{ m} \). Through this calculation, the global water permeability of the cracked material between the behind and the front surface is shown as following:

Fig. 16 shows the changes of the experimental water permeability, numerical water permeability and water flow with the increment of the diffusion time. Inspection of this Fig. 16 illustrates that the minimum values both of the numerical and experimental water permeability are less than \(1 \times 10^{-17} \text{m}^2 \). Proving that the cracked zone of CDZ1303PRE05 can accomplish self-sealing without an extra compression pressure loaded. The initial global water permeability is \(1.04 \times 10^{-17} \text{m}^2 \) in the experiment, and the corresponding value is \(1.1 \times 10^{-18} \text{m}^2 \) in the numerical simulation. This value of the experiment decreased to \(2.28 \times 10^{-18} \text{m}^2 \) in 100 days diffusion, and the corresponding value of the numerical simulation declines to \(1.13 \times 10^{-19} \text{m}^2 \). The most significant declination of the water permeability was obtained in one-day diffusion due to the swelling of COX claystone during the hydration process. And the proposed model captured this behaviour perfectly with the declination of the water permeability to \(2.1 \times 10^{-19} \text{m}^2 \) after one-day diffusion. This declination of permeability slows down the water diffusion in the later period, and it contributes significant effects on the self-sealing of the fractured material. The accomplishment of the self-sealing of CDZ1303PRE05 proves that the excavation induced fracture zone can recover to its initial permeability even there was no mechanical loading imposed on the drift wall. The good agreement between the numerical and experimental results validates that the proposed model can analyse the large scale self-sealing in the underground excavated damage zone. The bentonite backfill to underground galleries after the emplacement of nuclear waste will provide a great loading pressure against the galleries’ walls due to the excellent swelling capacity of bentonite in a later resaturation process, which will further strength the self-sealing of the excavated damage zone.

5. Conclusion

To model the hydro-mechanical behaviour of Gallovo-Oxfordian claystone, an elastoplastic damage model coupled with an added deformation upon saturation model in the framework of Biot theory is proposed in the present paper. The model accounts for the variation of Young’s modulus, tensile strength and fracture energy with capillary pressure change and is able to represent the mechanical behaviour of claystone under different saturation and stress conditions. Because the standard Biot’s theory is not able to exhibit the significant shrinkage/swelling deformation of COX claystone due to the variation of water content, a hysteretic model that accounts for this “extra deformation” is proposed, and this model can simulate COX claystone swelling with water content changing under free or confined conditions.

Due to the necessity of describing the self-sealing of fractures connected zone and fractures diffuse zone, cracks estimation is carried out by a post-processing method based on fracture energy regularization, and then permeability evaluation is carried out by introducing the estimated cracks value into the Cubic law. In this paper, the self-sealing of fractured COX claystone samples and the self-sealing of CDZ experiments are analysed using the numerical method in terms of the quantities of cracks and permeability. For the self-sealing of fractured COX claystone samples, water permeability can easily decline to less than \(1 \times 10^{-17} \text{m}^2 \) when water flows through cracks of COX claystone, and an evident cracks closure process was observed in experiments due to the induced swelling of COX claystone. The declination of permeability is also obtained in numerical simulation, and good agreements between the numerical and experimental results illustrate that the self-sealing of fractured COX claystone samples and fracture-connected zone can accomplish. In comparison with experiments of the self-sealing of fractured COX claystone which can only test an average permeability, the numerical simulation of the proposed model can detail the anisotropic intrinsic permeability evolution which provides us a better understanding of the mechanism of the self-sealing of cracked COX claystone. Based on the perfect performance of this model in describing self-sealing of cracked COX claystone samples, the numerical simulation and experimental test of self-sealing of CDZ1303PRE05 prove that the fracture-connected zone can seal by hydration, whereas there will be bentonite cores put in the sealing system in engineering application which is able to provide a maximum stress of 4 MPa against the wall of fracture-connected zone. Therefore, the safety for storing nuclear waste in Cigéo underground drift of France can be guaranteed.

In conclusion, a new model which can describe the hydro-mechanical behaviors of excavated damage zone in French nuclear waste deep disposal scheme was developed. It is also the first time that a numerical analysis method is successfully used to simulate the time-dependent self-sealing of fractured unsaturated claystone by a
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge the funding by the French National Radioactive Waste Management Agency (Andra) and China Scholarship Committee (CSC).

References

