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Abstract

The field of visual object recognition has seen a significant progress

in recent years thanks to the availability of large-scale annotated

datasets. However, labelling a large amount of data is difficult and

costly and can be simply infeasible for some classes due to the long-tail

instances distribution problem.

Zero-Shot Learning (ZSL) is a framework that consider the case in

which for some of the classes no labeled training examples are available

to train the model. To solve the problem a multi-modal source of

information, the class (semantic) embeddings, is exploited to extract

knowledge from the available classes, the seen classes, and recognize

novel categories for which the class embeddings is the only information

available, namely, the unseen classes.

To directly targeting the extreme imbalance in the data, in this thesis,

we first propose a methodology to improve synthetic data generation

for the unseen classes through their class embeddings. Second, we pro-

pose to generalize the Zero-Shot Learning framework towards a more

competitive and real-world oriented scenario. Thus, we formalize the

problem of Open Zero-Shot Learning as the problem of recognizing

seen and unseen classes, as in ZSL, while also rejecting instances from

unknown categories, for which neither visual data nor class embed-

dings are provided. Finally, we propose methodologies to not only

generate unseen categories, but also the unknown ones.
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Chapter 1

Introduction

In this Chapter, we will give an introduction of faced problems and overview of

our research, pointing out the original contributions.

1.1 Overview

The huge increase of visual data availability of the last twenty years made a

revolution in computer vision, started back in the 1940s, possible. The will to

understand and simulate how neurons of the brain work led to the idea of artificial

neural networks, but the theory was faster than applications. The power of the

neural networks is in their ability to autonomously learn patterns and extract

features from the data, largely outperforming algorithms based on hand-crafted

features and reaching human level performances in many computer vision tasks.

On the downside, neural networks are eager for data to learn, thus, to prove their

capabilities and use them in real-world applications, the scientific community had

to wait for the possibility to collect and analyze a big corpus of annotated data.

Therefore, it was possible to prove their capabilities and largely outperform the

competition only in the last years.
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1.1 Overview

Figure 1.1: Example of attribute based classification. If the model is able to learn
the attributes “equine“ and “black and white pattern“ on the seen categories,
transferring this knowledge on the unseen domain, is able to recognize, based
on these attributes, a Zebra, even if it was trained without Zebra examples. To
achieve knowledge transfer, the attributes have to be shared and discriminative
across the classes.

However, collecting and labelling a massive amount of data is not only difficult

and expensive, but sometimes unfeasible [9]. In fact, while for some classes can

be easy to collect a massive amount of visual data, for example is very easy to

collect pictures of an actor as Brad Pitt, for other classes can be very difficult

to collect a balanced amount of data, for example for a common person like an

average PhD student, and for other classes can be impossible, like the famous

criminal D.B. Cooper.

For this reason, different captivating research topics in machine learning and

computer vision focus on limited data source availability. For example, in Domain

Adaptation problem [10; 11; 12] the categories to be classified are available during

training, but there could be limited or not at all labeled data for the target
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1.1 Overview

domain of application. For example, for self-driving car applications, it can be

difficult or expensive to collect data for the full possible weather, lighting or

context conditions. Besides, in Few-Shot Learning problem [13; 14], while some

categories are largely represented by training examples, for some other categories

very few training examples are available.

In this thesis, we investigate an extreme case of the aforementioned issues:

the Zero-Shot Learning problem. Differently from a conventional fully supervised

paradigm, in which each single category is assumed to be (evenly) represented

by a set of annotated visual data, Zero-Shot Learning allows this assumption to

hold only for a restricted set of seen categories. The goal is then to recognize a

disjoint set of target unseen categories, for which labeled data are not available.

Thus, Zero-Shot Learning is the problem of recognizing novel categories, even if

a classifier has not been directly trained on them [15; 16], and to solve it we need

to develop machine learning methodologies that can work in these limited data

constraints.

To achieve these goals, the inspiration comes from the ability of human beings

to generalize in categorization, identifying completely new classes when provided

with high-level descriptions. For example, if the equines are already known, from

the phrase “equines with distinctive black-and-white striped coats” is possible to

recognize a zebra even if the zebra has been never seen previously. Thus, to trans-

fer knowledge from seen to unseen categories, auxiliary information can be ex-

ploited, and it is actually typically adopted in the form of either manually-defined

attributes [16] or features extracted from a neural network from textual input (as

the distributed word embeddings [17]). To perform classification, this auxiliary

information is required to be shared and discriminative across the classes, and we

refer to it as class embeddings (see Figure 1.1).

Classical approaches to solve Zero-Shot Learning either can firstly perform

3



1.1 Overview

class embedding prediction followed by class prediction, or can directly learn

a compatibility function between visual features and class embeddings. These

methods have shown compelling performances in the original Zero-Shot Learning

framework, that consider only unseen classes for evaluation, but fail to balance

performances between seen and unseen classes.

In fact, in order to define a more realistic and competitive scenario, generalized

Zero-Shot Learning has been proposed. Generalized Zero-Shot Learning considers

both the unseen and the seen classes for evaluation, thus it is important to address

the extreme data imbalance problem in order to overcome the natural bias towards

predicting the class for which more training examples are available.

Latest competitive approaches in Generalized Zero-Shot Learning directly ad-

dress this imbalance by generating a synthetic dataset for the unseen classes

through the class embeddings. These methods builds upon the possibility of

mimicking the human brain in hallucinating a mental imagery of a certain un-

seen category, while reading a textual description of it. State-of-the-art methods

rely on neural networks based architecture that, conditioned on the class embed-

dings, generate corresponding class examples. Ideally, the generative process for

Generalized Zero-Shot Learning can be schematized in the three main following

steps.

1. Train a generative process to generate visual features based on the class

embeddings. Seen data are used to learn the relation between class embed-

dings and the visual features since we have the labels.

2. Use the unseen class embeddings to generate labeled synthetic data for the

unseen classes. This is possible since the class embeddings are shared across

the classes.

3. Train a classifier using the real labeled data for the seen classes and the

4



1.2 Contributions of the Thesis

synthetic labeled data for the unseen ones.

1.2 Contributions of the Thesis

In this thesis, targeting the Generalized Zero-Shot Learning, we introduce a novel,

more effective, feature synthesis method to balance, hence improving the training

process. The goal of the generative process is to generate synthetic descriptors

indistinguishable from a pool of pre-trained real features. To achieve this goal the

generative process has to solve two tasks: first, capturing the data distribution of

the seen and unseen domains and second, translating the semantic information

into visual patterns.

Hence, differently from prior work, we propose to separately solve the two

tasks by decoupling the feature generation stage to better control the generation

process. We implement the decoupled feature generation with a novel architec-

ture, named DecGAN. With this architecture we can separate the two tasks into

two different branches, having a better control on each of them. Additionally we

can take advantage, when available, of unlabeled unseen data by combining the

two branches. With this additional step we alleviate the domain-shift problem

[3; 18; 19; 20] when moving from generating the seen domain to generating the

unseen one. We validate our architecture through an extensive ablation study and

outperform with it the state-the-art methods on different Generalized Zero-Shot

Learning benchmark datasets.

On the one hand, with DecGAN we work to improve the generative process for

the competitive Generalized Zero-Shot Learning framework, on the other hand we

work to propose an even more general and competitive setup. With this setup we

continue the process of extending Zero-Shot Learning to more real-world oriented

scenarios started with Generalized Zero-Shot Learning.
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In Generalized Zero-Shot Learning, both the seen and the unseen classes are

considered for evaluation, but under the assumption of knowing in advance the

full set of classes and their class embeddings. We claim that this assumption

(namely the closed-set assumption) is still a limitation for Zero-Shot Learning

methods in real/world applications. In fact, while it is reasonable to assume

that we can describe all the seen classes with the class embeddings, it seems too

constraining to know and be able to describe all the classes for which we have

no labeled visual data. In fact, collecting rich and expressive class embeddings

could be difficult and costly.

To overcome the closed-set assumption and moving to the open-set scenario

(that is, we consider a possible infinite set of classes at inference time), we in-

troduce a third type of classes. Other than the seen, for which we have visual

data and class semantic descriptors, the unseen, for which we have only class

embeddings, we add the unknown, for which we have neither the visual data nor

the semantic class embeddings. Thus, we extend Generalized Zero-Shot Learning

to Open Zero-Shot Learning, where inference has to be jointly performed over

seen, unseen and unknown classes in order to classify seen and unseen, and reject

unknown ones.

As contributions, we formally define the Open Zero-Shot Learning problem, we

provide publicly available benchmark datasets and we propose evaluation metrics

to allow fair and reproducible comparison across different algorithmic solutions

tackling Open Zero-Shot Learning. Our evaluation metrics extend the ones used

in Generalized Zero-Shot Learning to better handle the open set scenario. We

also evaluate baselines based on Generalized Zero-Shot Learning state-of-the-art

methods in the open set scenario. Additionally, we propose a methodology to

directly synthesize unknown visual features and we also propose our novel idea to

synthesize unknown class embeddings implementing it through our architecture

6



1.3 Outline of the Thesis

VAcWGAN.

1.3 Outline of the Thesis

In this section, we provide an overview of the content of the thesis.

Chapter 2: Related Work In this chapter, we formally define the Zero-

Shot Learning problem and its different setups providing and introduction of the

concepts and methods used in the next chapters. We also present a survey of

the related work in Zero-Shot Learning, discussing how these works relate to the

contributions of this thesis.

Chapter 3: Decoupled Feature Generation In this chapter, we present the

idea and the implementation of the decoupled feature generation, together with a

detailed ablation study to dissect the effect of our proposed decoupling approach,

while demonstrating its superiority over the related state-of-the-art.

Chapter 4: Open Zero-Shot Learning In this chapter, we formalize the

Open Zero-Shot Learning problem, introducing evaluation protocols, error met-

rics and benchmark datasets. We also suggest tackling the Open Zero-Shot Learn-

ing problem by proposing the idea of performing unknown feature generation.

Chapter 5: Conclusion In this chapter, we summarize the contribution of

our thesis.
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1.4 Publications

• Marmoreo Federico, Jacopo Cavazza and Vittorio Murino. (2021). “Trans-
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Open Zero-Shot Learning.” Under review.
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Chapter 2

Background and Related Work

In this Chapter we will formally introduce the Zero-Shot Learning problem and

the generative models that will be used in Chapters 3 and 4. We also present the

most relevant work and recent developments in Zero-Shot Learning.

2.1 Problem Definition

Zero-Shot Learning is a classification problem that considers two disjoint sets of

classes: the seen classes S and the unseen ones U (S ∩ U = ∅). Differently from

a classical classification problem, a training set of labeled visual data is available

only for the seen classes.

We distinguish between inductive Zero-Shot Learning, where training visual

data are not available at all for the unseen classes, and transductive Zero-Shot

Learning, where for the unseen classes unlabeled data are available.

The task is to correctly classify visual examples belonging to the unseen do-

main. To achieve this goal, we use an auxiliary source of information that lets us

perform a knowledge transfer from the seen domain to the unseen one. We refer

to this auxiliary source of information as the class embeddings.

9



2.1 Problem Definition

2.1.1 Class Embeddings

The class embeddings play a key role in Zero-Shot Learning since they provide

class level information that lets us recognize the novel classes.

Widely used class embeddings in Zero-Shot Learning are the attribute em-

beddings. With attributes visual properties of the class can be described, as for

example the color or the shape. Among the benefits of these embeddings, first

they are shared across the classes and thus let us perform the knowledge transfer

from the seen to the unseen domain, second they are very intuitive to understand

and more resemble the human approach in recognizing novel categories based on

visual properties. On the downside, they are not only required to be shared across

classes, but to perform classification they are also required to be discriminative

across them, thus they have to be sufficiently fine-grained for the domain of inter-

est. More importantly, attributes are obtained through human annotation, thus

can be difficult or costly to obtain. For example the attributes for the Caltech-

UCSD Birds-200-2011 [6], a standard benchmark dataset in Zero-Shot Learning,

attributes are obtained selecting 312 visual properties (for example “wing shape”

and “wing colour”), and have been obtained with crowdsourcing.

As a solution to avoid costly human annotation, word embeddings can be

used. Word embeddings are representations of words, usually in the form of a

real-valued vector, such that the words that are similar in meaning are projected

close in the vector space [21; 22; 23]. Commonly used word embeddings in Zero-

Shot Learning are word2vec [22; 24]. Word2vec are computed training a neural

network on a very large corpus of text, specifically can be trained either with a

continuous bag-of-words architecture, that predicts the current word based on the

context, or the Skip-gram model, that predicts surrounding words given the cur-

rent word. Word2vec are inexpensive to compute and had been show to capture

high semantic information of words and also able to translate the semantic rela-

10



2.1 Problem Definition

tion between words into mathematical operations, for example vector(“Athens”)

- vector(“Greece”) + vector(“Norway”) = vector(“Oslo”). However, they could

not capture visual properties and consequently lead to poor performances in Zero-

Shot Learning.

To capture visual features from a textual description text embeddings have

been proposed [25]. If visual descriptions of the images are available, a long short-

term memory recurrent neural network [26; 27] is used to learn a sentence rep-

resentation that is close to the visual features representation (see Section 2.1.2).

These descriptors improve over the word2vec, but require a more difficult training

and the construction of the text description dataset.

Very recent work in jointly learning visual and textual embeddings may help in

overcoming current class embeddings limitations in future work and a discussion

is presented in Appendix A.1.

2.1.2 Visual Features

As we anticipated in Chapter 1.1, neural networks are widely used to extract

visual features features representations from an image and achieve state-of-the-

art performances. The class of artificial neural networks used to analyze visual

imagery are the convolutional neural networks.

A convolutional neural network consists of an input layer, hidden layers and an

output layer. In image classification, the input consists of the image, represented

as a matrix, while the output in the predicted class. The hidden layers, that

involve convolutional operations, are named convolutional layers. Convolutional

layers are composed of kernels (or filters), represented by matrices and non-linear

functions called activation functions. If the input matrix has dimensions (height)

x (width) x (depth), Frobenius inner products are computed shifting the kernel

matrix along the height and width dimensions of the input matrix. Then the

11



2.1 Problem Definition

output of the Frobenius inner products is used as input for the following activation

function. This operation generates a matrix that is used as input for the next

layer. The output of the hidden layers (that is a real valued matrix or vector) is

referred to as visual features, with the addition of the adjective deep to refer to

the higher, or deeper, layers of the neural network.

Convolutional neural networks often also include pooling layers. A pooling

layer locally aggregates the features by the max value or averaging them.

Intuitively, at the first hidden layer, passing the kernels all over the image

they learn local simple properties of the image, as for example lines, that are

represented by a feature, while going deeper (that is in the following layers) into

the network these features became always less local and more abstract, as for

example shapes or faces, representing high level information about the image.

Differently from hand-crafted kernels, the kind of features represented by the

network are not defined, but is the neural network that learns them during the

training process in order to minimize the cost function.

Pioneering work in convolutional neural networks has been proposed by Yann

LeCun in 1988 with the LeNet-5 architecture [28] and the following year, 1989,

with the beck-propagation algorithm to perform optimization [29]. LeNet-5 was

proposed to classify handwritten numbers and has been applied by several banks

to recognize cheques, but was limited in the possibility to be applied in more

difficult problem or higher resolution images due to the need of a large amount

of annotated data and training resources to be applied to bigger problems. So

the interest in convolutional neural networks started rising in the 2000s when big

corpus of data started to be available and GPU parallel implementations were

proposed. A proof of convolutional neural networks potential arrived in 2012,

when AlexNet architecture, an improvement over the original LeNet-5, won the

ImageNet Large Scale Visual Recognition Challenge [30]. Later, much effort has
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been made to train deeper and more complex convolutional neural networks, as

for example GoolgleNet[31], VGG [32], ResNet [33] and Inception [34].

To take advantage of convolutional neural networks also on smaller dataset,

that is a big corpus of data is not available, a common practice is to use pre-trained

networks. In fact these networks learn different kinds of features depending on the

layer, from low-level features to high level features going deeper in the networks as

we mentioned before. The usage of big corpus of data, with high variability in the

domain, generally leads to very general features. In fact, while the final layers are

used for classification, and thus can be specific for the domain, the previous layers

focus on learning very general patterns to analyze the images. For these reasons,

when using a pre-trained network, generally only the last layers are fine-tuned,

or learned from scratch, on the new domain.

For fair comparison in Zero-Shot Learning, generally, visual features used

for bench-marking different methodologies are fixed and obtained from the top

pooling layer of ResNet101 [33] deep convolutional network. The network has

been trained on the large scale dataset ImageNet [35] and not fine-tuned [17].

2.2 Evaluation Metrics

As we have already introduced in Section 1.1 we distinguish between two main

frameworks, that are Zero-Shot Learning and the more real-world oriented sce-

nario Generalized Zero-Shot Learning [17].

Zero-Shot Learning. In Zero-Shot Learning, for evaluation, only unseen classes

are considered. To balance the performance on each class and consequently

take into account the possible long-tail distribution of the classes, that is

some classes are less represented from others, the accuracy of the classifier

is averaged over the accuracy on every class and we refer to it as mean-per-
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class-accuracy A.

In detail, given u ∈ U an unseen class, Ru the accuracy, or recall, of the

classifier for u (that is the number of the correctly classified examples di-

vided by the number of test example for u) the mean-per-class-accuracy on

the unseen classes AU is given by

AU =
1

|U|
∑
u∈U

Ru, (2.1)

where |U| is the total number of unseen classes.

Generalized Zero-Shot Learning. Generalized Zero-Shot Learning evaluation

is performed on both, the seen and unseen classes. To balance the perfor-

mance on the two disjoint sets of classes, the harmonic mean H of the

mean-per-class-accuracy on the unseen classes AU and the mean-per-class-

accuracy on the seen classes AS is computed. In detail,

H = 2
ASAU

AS + AU

, (2.2)

where AU is defined in equation (2.1) and similarly,

AS =
1

|S|
∑
u∈S

Rs, (2.3)

where Rs is the recall for the seen class s ∈ S and |S| the total number of

seen classes.
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2.3 Generative Methods

As we anticipated in Section 1.1, recent works in Zero-Shot Learning take advan-

tage of deep generative methods to produce synthetic data for the unseen classes.

Generative Adversarial Networks (GANs) [36; 37] are one of the most used and

flexible artificial neural network architectures for data generation, that showed

state of the art performances in different generative problems as conditional image

generation [38; 39; 40; 41; 42].

GANs are an implicit generative model. This means that the distribution of

the data is not directly defined, but it is directly learned by the model from the

training example. To learn the distribution, two different adversarial neural net-

works are used, a Generator G and a Discriminator D. The goal of the Generator

is to produce data as realistic as possible, while the task of the Discriminator is

to distinguish between real and synthetic data.

The Generator takes as input random noise, that is vectors composed of ran-

dom variables, and produces as output synthetic data examples. The Discrimi-

nator takes as input synthetic and real examples and assigns a score to each of

them, representing if they are real or fake (see Figure 2.1). As for example in the

initial formulation [36], the output is a value between 0 and 1 representing the

probability of being a real example.

To perform optimization, a two player min-max game is performed. As in

the case of [36; 37], while the Discriminator tries to maximize the probability of

assigning the correct label (real or synthetic) to the examples, the Generator is

trained to fool the Discriminator by minimizing the difference between the true

label and the value assigned by the Discriminator. Playing this game, the Gener-

ator implicitly defines a distribution of the data, obtained by directly producing

data examples from the non-observable latent variables used as input.

GANs showed to be a very powerful and flexible architecture to model very
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Figure 2.1: Representation of GAN architecture. The Generator G takes as
input a vector of random variables z, producing a synthetic examples x̃. The
Discriminator D takes as input synthetic examples x̃ and real data x assigning a
score representing if they are real or fake. GAN can be extended to a conditional
model if both, G and D, take as input a condition factor c.

complex data distributions, becoming a state-of-the-art paradigm for image gen-

eration. However their training can be unstable and could suffer from mode

collapsing (that is the Generator produces synthetic examples with very limited

variety). As shown by [43], as the Discriminator gets better in distinguishing

between real and synthetic examples, the gradient gets closer to 0, providing no

useful information to update the Generator. Thus we need to carefully balance

the training and the updates on the Generator and the Discriminator.

To address this issue, Wasserstein GAN has been proposed [44; 45]. While

in GANs, in their original formulation [36], the Jensen-Shannon divergence be-

tween the distribution defined by the Generator and the real one is minimized, in

Wasserstein GANs their Earth-Mover (or Wasserstein-1) distance is minimized.

With the usage of the Earth-Mover distance, we can avoid to carefully balance

the training of the Generator and the Discriminator, since the Generator can

be trained until optimality and high quality gradients can be used to train the

Generator [44].
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Another common family of artificial neural networks used for data generation

is Variational Autoencoders (VAEs) [46]. VAEs start from a different theoretical

point of view compared to GANs, trying to explicitly approximate the intractable

data distribution.

VAEs are composed of two neural networks: an Encoder and a Decoder. The

Encoder maps the input example into the latent space, associating to each image

normal distributions in the latent space. A vector sampled from the distributions,

is used as input for the Decoder, which tries to reconstruct the input example. To

regularize the latent space, the normal distributions are constrained to be close

to a standard normal distribution (that is mean 0 and variance 1).

Optimization is performed using two terms: a reconstruction term, that is the

mean square error between the input and its reconstruction and the regularization

term, that is the Kulback-Leibler divergence between the encoded distribution

and a standard Gaussian.

After the training the Decoder can be used in the same way of a GAN Gen-

erator, that is firstly sampling from the latent space a random input vector and

secondly using it as input to generate a synthetic example.

GANs and VAEs can be extended to conditional models if both, the Generator

and the Discriminator, or the Encoder and the Decoder, takes some conditioning

information as input [47]. In Zero-Shot Learning we are interested in conditioning

on the class embeddings. In fact, if a generative model is trained to generate

class specific visual examples based on the class embeddings, it can be used to

generate labeled synthetic visual features for the unseen classes reducing the

extreme data imbalance. Ideally, the generative model can be trained using seen

visual features and class embeddings, and then, since as described in Section

2.1.1 the class embeddings are shared across the classes, it can be conditioned on

the unseen class embeddings to generate unseen visual features. Finally, having
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labeled examples for all the seen and unseen classes, the final recognition stage

can be solved by exploiting a simple classifier.

2.4 Closed-Set and Open-Set Assumptions

As we already anticipated in the introduction, in Chapter 4 we will extend the

Generalized Zero-Shot Learning setup to Open Zero-Shot Learning.

Standard and Generalized Zero-Shot Learning setups, are both defined under

the closed-set assumption, that is all the set of classes valuated at inference time

is finite and known. We consider this assumption a strong constrain to apply

Zero-Shot Learning in real-world scenarios. Indeed, it is reasonable to assume

the possibility to describe with the rich content of the class embeddings all the

classes for which we have training data, but could be very hard or impossible

to describe with them all the other categories, for which no labeled example is

provided. In fact, as we presented in Section 2.1.1, having class embeddings that

are semantically rich and shared and discriminative across all the classes can be

hard or impossible to achieve, in particular for classes we have never actually

seen.

To overcome these limitations, we move towards the open-set setup, that is

we consider a possibly infinite number of classes at inference time dividing them

into three disjoint sets:

1. the seen classes, for which we have the labeled visual data and the class

embeddings;

2. the unseen classes, for which do not have the labeled training data but we

have the class embeddings;

3. the unknown classes, for which we do not have the labeled data and neither
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the class embeddings.

We define, with Open Zero-Shot Learning, the problem of classifying the seen

and the unseen classes while rejecting the unknown ones.

When moving form the closed-set assumption to the open one, the main chal-

lenge is to control the classification regions in the feature space. Generally, in a

closed-set environment, the classifier is trained to assign portions of the feature

space to every known class, based on the information provided during training.

If no constraint is provided, the classifier divide all the features space (that is

Rd, where d is the number of features) into classification regions for the known

classes. This means that every unknown instance is presented at inference classes

is misclassified as one of the known ones. To avoid this phenomena, ideally, we

should shrink the classification region as much as possible around the regions

where we see the known classes and reject everything that is outside.

To tackle this problem, classical approaches in open-set environments based on

deep visual features leverage on the statistical properties of the classifier learned to

measure the confidence of the classifier in the prediction [1; 48; 49; 50]. However,

these methods only consider seen and unknown classes .

The main challenge when removing the closed-set assumption in Zero-Shot

Learning, is that for the unseen classes we do not have labeled data or we do not

have data at all. Thus, measuring the confidence of a classifier is not straightfor-

ward.

Generative approaches for Zero-Shot Learning can be used to synthetically

generate features for the unseen classes and thus combining the two methodolo-

gies. However, the synthetically generated features could not necessarily own the

required statistical properties of the real ones. Furthermore, while the classifier

can be very confident in classifying the seen classes, it can be less confident on

the unseen domain since the synthetic to real domain shift.
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To tackle Open Zero-Shot Learning, benchmark methods, obtained combining

the current state of the art, and new models will be discussed in Chapter 4.

2.5 Literature Review

In this Section we summarize the most relevant work in Zero-Shot Learning and

the most popular families of approaches that have been presented throughout the

last years in which Zero-Shot Learning has captured increasing interest.

The pivotal work in the Zero-Shot Learning [51] proposes direct attribute pre-

diction. With direct attribute prediction, a first classifier predicts the attributes,

that are the values of the class embeddings, then the class is predicted with the

one closer to that prediction. Directly predicting the attribute can be unreliable,

for example not all the attributes could be discriminative enough to perform clas-

sification or equally difficult to predict. To address this issue [52] still perform

direct attribute prediction, but leveraging statistics about each attribute’s er-

ror tendencies, propose a random forest approach to train zero-shot models that

explicitly accounts for the unreliability of attribute predictions for classification.

Due to the unreliability of the attributes, succeeding methods integrate the

two stages, that is firstly learning the relation between the visual features and

secondly performing classification, in a single method. These succeeding meth-

ods can be described as compatibility learning frameworks. The general idea of

these frameworks is to project the visual features and the semantic embeddings

in a common space and then perform classification based on a compatibility func-

tion between the two. The weights of the projections are learned directly with

a classification loss, differently from the previous methodologies that optimize

the ability of predicting the attributes. A common choice for the compatibil-

ity function is a bilinear function in the class embeddings and visual features
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[53; 54; 55; 56; 57; 58]. For example, DeViSE [54] projects the visual features

into the space of the class embeddings such that the model produces a higher dot-

product similarity between the visual features and the correct class embeddings,

while ESZSL [55] proposes a formulation of the problem based on linear relations

between visual features and class embeddings that allows a simple but effective

closed-form solution. Non-linear approaches to project the visual features and

the class embeddings have been investigated, as for example in [59], where two

VAE are used to learn aligned latent representation of the two.

Other approaches aims at describing the unseen classes as combinations of

the seen classes [60; 61; 62; 63], while others approaches [64; 65] are based on

dictionary-learning [66].

Even if these methods showed compelling performance in the conventional

Zero-Shot Learning setup, they struggle in the more competitive Generalized

Zero-Shot Learning setup. In fact, in the generalized setup the classifier has

to balance the performance on both, the seen and the unseen classes, and the

extreme unbalanced Zero-Shot Learning setup can lead to classifiers biased to-

wards the seen classes. To address this issue, by generating a synthetic dataset

for the unseen classes, generative approaches for Zero-Shot Learning have been

proposed. [67] uses an explicit density model with tractable density, that is,

the density function of the conditional probability of the visual features given

the class embedding, is modeled through an exponential family of distributions.

With an explicit and tractable density function is very simple to implement and

the parameter estimation reduces to solving a regression problem, for which a

closed-form solution exists. However, constraining the density function limits the

possibility to capture all the complexity of the data. To overcome this limita-

tion deep generative models have been exploited. In fact, in the deep generative

models, presented in previous Section 2.3, is the neural network that learns the
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mapping between the latent space and the visual space. Thus much effort has

been spent to adapt them to the Zero-Shot Learning framework and to improve

the generative capabilities on the unseen domain. f-CLSWGAN [2] uses a condi-

tional Wasserstein GAN, with the addition of a classification loss in the training

to force the network producing discriminative features. In [68] multi-modal cycle-

consistency loss [69] is added to f-CLSWGAN framework, that is the semantic

embedding used to generate the visual feature has to been subsequently predicted

from the generated visual features, and a similar approach can be found also in

[70; 71]. [72] regularizes the GAN generation by forcing the generated visual

features to be close to the corresponding class cluster centroid. [4] maps both the

real and the synthetic samples produced by the deep generative model into a new

space, where with the usage of contrastive embedding the features are more class

separated and discriminative. [73] maps the generated features in a new space

to remove the redundant information from the visual features without losing the

discriminative information during the GAN training. In [74] a VAE architecture

is used. In [75] a conditional VAE is used together with triplet loss and center loss

to increase separability between classes. [76] trains a VAE to learn disentangled

feature representation in the latent space. In [77; 78; 79] a GAN and a VAE

architectures are combined by sharing the Generator/Decoder.

For the transductive setup, where unseen unlabeled data are available, [80]

proposes a procedure to perform label propagation [81] that, as shown in [17], can

be extended to the methods based on compatibility function. But due to the shift

between seen and unseen classes, the projection of the visual features and the se-

mantic embedding in a common space may struggle when switching from the seen

to the unseen domain [3; 18; 19; 20; 82]. Furthermore the supervised methodolo-

gies that can be used to learn the relation between visual features for the seen

classes have to be adapted for the unseen domain, where the label is not available.
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While some methods attempt to improve the projection in the transductive setup

with pseudo-labeling [19; 83; 84; 85], quasi-fully supervised learning loss [86] or

unsupervised-clustering [18], recent approaches take advantage of the generative

architectures as in the inductive scenario [67; 77; 78; 87; 88]. [67] models the seen

and unseen classes using an exponential family class-conditional distribution and

using an expectation-maximization algorithm to alternate between inferring the

labels and updating the parameter for the unseen classes. [87; 89] are GAN based,

while [3; 77; 78] combine a VAE and a GAN architectures, all of them extending

their architectures on the unseen domain by the addition of an unconditional

discriminator. [88] uses a self-supervised learning algorithm combined with a

Wasserstein GAN to better separate the seen and unseen domain.
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Chapter 3

Decoupled Feature Generation

3.1 Context

As we presented in Chapter 1, the field of visual object recognition has seen a

significant progress in recent years, mainly because of the availability of large-

scale annotated datasets. However, annotating a big corpus of data for each of the

categories to be recognized in a balanced way can be costly or is simply unfeasible

due the well known long-tail distribution problem [9].

As a promising solution to the aforementioned issues, Zero-Shot Learning al-

gorithms tackle the problem of recognizing novel categories [15; 16] by transferring

auxiliary information from the seen classes to the unseen ones (see Chapter 2).

When transferring from the seen to the unseen classes, the main challenge is

handling such category shift [3; 18; 19; 20]: in this Chapter, we evaluate this in

the Generalized Zero-Shot Learning setup in which a method is evaluated on both

seen and unseen classes, requiring to learn the latter without forgetting the former

ones. In fact, given the separation of the data into labelled seen and unlabelled

unseen instances, supervised training can be done for seen classes only, resulting

in an unbalanced performance in Generalized Zero-Shot Learning. To address
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this issue, various recent works proposed to augment the unseen-class data with

synthetic labeled data [2; 59; 68; 72; 74; 77; 78; 87; 90; 91; 92].

In this Chapter, we address the transductive Generalized Zero-Shot Learning

problem, by introducing a novel, more effective, feature synthesis method able to

balance the training process. In details, our approach builds upon the possibility

of mimicking the human brain in hallucinating a mental imagery of a certain

unknown category while reading a textual description of it. As pursued by a

number of recent works [2; 59; 68; 72; 74; 77; 78; 87; 90; 91; 92], conditional

feature generation is adopted for this purpose. Specifically, images from the

seen classes are fed into a backbone ResNet-101 network which pre-computes a

set of real visual features [17]. Subsequently, through a Generative Adversarial

Network (GAN) [36; 44; 45], the following min-max optimization game is solved:

a generator network is asked to synthesize visual embeddings which should look

real to a discriminator module. Since the generator network is conditionally

dependent upon semantic embeddings, the trained model can be exploited to

create synthetic features of the classes for which we lack visual labeled data.

Afterwards, Generalized Zero-Shot Learning can be solved as simple classification

problems through a softmax classifier trained on top of real features (from seen

classes) and generated features (from the unseen ones).

In the literature, several variants have been attempted to improve the pipeline

under the architectural point of view with the aim to solving efficiently Gener-

alized Zero-Shot Learning: using an attribute regression module [91], easing the

generator with a variational auto-encoder [59; 74; 77; 78; 90], adopting cycle-

consistency [68], designing intermediate latent embeddings [72] or employing

features-to-feature translation methods [2; 59; 68; 72; 74; 77; 78; 87; 90; 91; 92].

On the one hand, as commonly done in adversarial training, we need to generate

synthetic descriptors indistinguishable from a pool of pre-trained real features
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used as reference. On the other hand, synthetic features are required to translate

the semantic information into visual patterns, which are discriminative for the

seen and unseen classes to be recognized.

We posit that resolving these two tasks within a single architecture is arguably

difficult and we claim that this is the major limitation affecting the performance

of the currently available feature generating schemes for Generalized Zero-Shot

Learning. In fact, since adopting a single architecture for two tasks, one of

them may be suboptimally solved with respect to the other, resulting in a poor

modelling of either the visual or the semantic space.

Hence, differently to prior work, in this Chapter we propose to separately solve

the two tasks, decoupling the feature generation stage to better tackle transduc-

tive Generalized Zero-Shot Learning. First, we train an unconditional generative

adversarial network with the purpose of synthesizing features visually similar to

the real ones in order to properly model their distribution in an unsupervised

manner. Since our generation is not conditioned on semantic embeddings, we are

sure to specifically model the visual appearance of our feature representations.

Second, we encapsulate such visual information into a structured prior, which

is used in tandem with a conditioning factor (here, the semantic embedding) to

(conditionally) generate synthetic feature vectors. Because of the improved source

of noise, we expect to enhance the semantic-to-visual translation as well, yielding

visual descriptors with richer semantic content. The resulting architecture for

decoupled feature generation is named DecGAN.

Since our DecGAN is decoupled into one unconditional and one conditional

GAN-like branches, it is capable of exploiting the unlabeled visual data which

are available in transductive Generalized Zero-Shot Learning. In fact, while we

can compare the generated seen features with the real ones, both conditionally

and unconditionally (since we have access to labels), we cannot do it for the un-
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seen ones. Unseen classes are, in fact, not supported by annotated visual data,

hence the conditional discriminator cannot “verify” them. We deem that our

proposed architecture contributes in addressing this problem by cross-connecting

the conditional branch with the unconditional one. In other words, we use the

unconditional discriminator to evaluate the “quality” of the conditionally gener-

ated features. In this way, we decouple the feature generation, not only for the

seen categories, but also for the unseen ones, resulting in a better modelling for

both and improving the Generalized Zero-Shot Learning performance.

In summary, this work provides the following original contributions.

• We introduce the idea of decoupling feature generation for transductive zero-

shot learning by encapsulating visual patterns into a structured prior, which

is subsequently adopted to boost the semantically conditioned synthesis of

visual features.

• We implement our idea through a novel architecture, termed DecGAN,

which combines an unconditional and a conditional feature generation mod-

ule, introducing a novel cross-connected branch mechanism able to decou-

pling feature generation for both seen and unseen categories.

• Through an extensive ablation study, we analyze each single component of

our architecture. As compared to the transductive Generalized Zero-Shot

Learning state-of-the-art, DecGAN outperforms it on CUB [6] and SUN [8]

datasets (see Table 3.4, Section 3.4).

The rest of the Chapter is organised as follows. In Section 3.2, we outline the

most relevant related work. In Section 3.3, we present the proposed approach,

which is then experimentally validated in Section 3.4. The final conclusions are

drawn in Section 3.5.
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3.2 Related Work

In this Section, we will cover the most relevant related work in the field of trans-

ductive zero-shot learning. For more general details on other zero-shot paradigms,

the reader can refer to Chapter 2.

Classical approaches in Generalized Zero-Shot Learning aim at learning a

compatibility function between visual features and class embeddings, projecting

them in a common space [17].

In order to exploit unlabeled data for the unseen classes in the transductive

Generalized Zero-Shot Learning, [80] proposes a procedure to perform label prop-

agation [81] as to simultaneously learn a representation for both seen and unseen

classes. As shown in [17], this label propagation procedure can be extended to

all the methods based on compatibility functions that map the visual features

into the class embedding space [53]. Due to the shift between seen and unseen

classes, the projection may struggle when switching from the seen to the unseen

domain. To this end, in [18; 84; 85], the projection function is improved, while

[19] tries to alleviate the issue using an ensemble of classifiers. Differently, we

perform synthetic feature generation to produce labeled visual features for the

unseen classes.

Generative approaches for transductive Generalized Zero-Shot Learning have

been recently proposed [67; 77; 78; 87]. Using the taxonomy of generative models

[93], the method proposed in [67] can be categorized as an explicit density model

with tractable density. In fact, here it is proposed to model the density function

of the conditional probability of the visual features given the class embedding

through an exponential family of distributions. Among the profitable benefits

of tractable density function, the computational pipeline becomes simpler and

more efficient. However, constraining the density function limits the possibility

to capture all the complexity of the data. Instead, our framework is based on

28



3.2 Related Work

GANs [36; 44; 45], a direct implicit density model [93], and therefore, we do not

impose any density function for the distribution from which we want to generate

the visual features, but we let the model to directly learn it from the data.

In [87], a constraint is introduced in GAN training to improve the discrimi-

native properties of the generated features. Specifically, a compatibility function

f between visual features and class embeddings is learned, then the correlation

between gradients of real and generated features in respect to f is maximized

during GAN training.

In [78] and [77], a mixture of explicit and implicit models, a Variational Au-

toencoder (VAE) [46] and a GAN, is proposed. Specifically, a single genera-

tor/decoder is conditioned on the attribute embeddings and used to approximate

the numerically intractable distribution of the visual features. By directly min-

imizing the divergence between the real visual features and the generated ones,

the model learns 1) how to extract visual features for those classes which are not

seen during training but only described through their attributes, and 2) how to

mimic the distribution of visual features (with the addition of one adversarial

categorization network in [77]).

Differently to [77; 78; 87], in our work, we propose a decoupled feature gen-

eration framework. Hence, instead of training one single conditional generator,

we train an unconditional generator to solely capture the complexity of the vi-

sual data distribution, and we subsequently pair it with a conditional generator

devoted to enrich the prior knowledge of the data distribution with the semantic

content of the class embeddings.

To generalize the generative deep networks on the (unlabeled) unseen do-

main: [87] use an unconditional discriminator for both, seen and unseen data,

and implicitly learns the class label information through the compatibility func-

tion; [77] apply a pseudo-labeling strategy; [78] use an additional unconditional
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discriminator for the unseen data. Differently, we cross-connect our conditional

and unconditional branches.

3.3 Decoupled Feature Generation

3.3.1 Notation and Problem Definition

We consider two disjoint sets of classes: the seen classes Ys and the unseen ones

Yu, such that Ys ∩Yu = ∅. For the seen classes, a dataset of triplets (xs, ys, c(ys))

is available: xs ∈ X is the visual feature vector, ys ∈ Ys is its class label and

c(ys) is the corresponding class embedding. Differently, for the unseen classes,

in transductive Generalized Zero-Shot Learning we only have unlabeled visual

features xu. The sets of the labels yu of the unseen classes are described in terms

of their semantic embeddings c(yu), as for the seen ones.

Given a test visual feature x, the goal is to predict the corresponding class

label y which can either belong to the seen or to the unseen classes.

For feature generation approaches, a conditional generator G is fed with ran-

dom noise z, and a class embedding c(y) and it synthesizes a feature vector which

will be denoted by x̃. Once G is trained, synthetic features x̃u are generated for

the unseen classes and are used, together with xs, to train a softmax classifier

which is responsible for the final recognition task.

3.3.2 Our Proposed Architecture: DecGAN

Looking at Figure 3.1, our proposed DecGAN architecture is composed of two

cross-connected branches, which consist of two GANs - one unconditional (in

yellow in the figure) and one conditional (in light blue), which are cross-connected

forming a third cross-branch (in violet).
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Figure 3.1: Our proposed DecGAN architecture is composed of two cross-
connected branches consisting of two GANs: unconditional and conditional. The
unconditional branch (yellow) is composed of generator G0 and discriminator D0,
and the conditional branch (light blue) is composed of generator Gc and discrim-
inator Dc. An additional cross-branch (violet) is composed of Gc and D0.
Generator G0 is decomposed into G1 and G2, such that given some random noise
z, G2(G1(z)) = G0(z) = x̃0. The structured prior s = G1(z) is fed as input intoGc

together with the class embeddings c(y), for the sake of conditionally-generating
visual descriptors x̃c. Best viewed in colors.
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It can be noticed that there are two main ingredients: a structured prior and a

cross-connection between the conditioned and unconditioned branches. Since the

unconditional branch learns how to mimic the feature representation, regardless of

the semantic class embeddings, this allows to generate a structured prior which

can be shared across classes and adopted by the conditional branch to better

perform the semantic-to-visual mapping. The cross-connection is fundamental as

well: once synthetic features are conditionally generated, they can be checked to

be realistic from the conditional generator only if they belong to the seen classes

- for which we have labels. But, with the additional usage of the unconditional

generator, we can also verify if the synthetic features from unseen classes are

similar to real ones in distribution. This framework fully exploits the possibility

of a transductive zero-shot learning.

The reader can refer to Figure 3.1 for a visualization and to the next para-

graphs for the details on the design of our architecture.

3.3.2.1 Unconditional Branch.

The unconditional branch is composed of the generator G0 and the discriminator

D0. The generator G0 is decomposed into G1 and G2, such that, given some ran-

dom noise z, G2(G1(z)) = G0(z). We refer to the output of G1 as the structured

prior s, that is s = G1(z). The concatenation of s and the class embeddings c(y)

is passed as input to the conditional branch (see next paragraph). The uncon-

ditional branch is dedicated to learning the data distribution and we model it

as a Wasserstein GAN (WGAN) [44; 45]. Hence, optimization is performed by

minimizing the Wasserstein distance between the real data distribution and the

synthetic’s one by playing the following two-player game between G0 and D0 [44]:

min
G0

max
D0

Ex[D0(x)]− Ex̃0 [D0(x̃0)], (3.1)
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3.3 Decoupled Feature Generation

where x̃0 = G0(z) denotes the features generated from the unconditional gener-

ator G0. To regularize the min-max optimization, we use the following penalty

term [45]:

R = Ex̂[(
∥∥∇D0(x̂)

∥∥
2
− 1)2], (3.2)

where x̂ = αx + (1− α)x̃0 with α ∼ U(0, 1).

3.3.2.2 Conditional Branch.

To learn how to translate the semantic content of the class embeddings c(y) we

model the conditional branch with the extension of the WGAN to a conditional

model [2]. The conditional branch is composed of the generator Gc and the dis-

criminator Dc. In this architecture, both the generator and the discriminator

are conditioned on the class embeddings. The generator Gc takes as input the

structured prior s and it is conditioned on the class embeddings, learning how to

enrich the information about the data distribution contained in s with the seman-

tic content of c(y). The generated features x̃c = Gc(s, c(y)) are then evaluated

by the discriminator Dc together with the class embedding that generated them,

and compared to real data pairs (x, c(y)).

With this architecture, Gc learns how to enrich s with the content of the class

embeddings. The quality of the relation between the generated visual features

and the semantic content is then evaluated by Dc. The optimization is carried

out through

min
Gc

max
Dc

Ex[Dc(x, c(y))]− Ex̃c [Dc(x̃c, c(y))], (3.3)

with the regularization term [2]:

R = Ex̂[(‖∇Dc(x̂, c(y))‖2 − 1)2], (3.4)

where x̂ = αx + (1− α)x̃c with α ∼ U(0, 1).
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3.3 Decoupled Feature Generation

We also add the regularization term introduced by [68]. That is, given a pre-

trained linear module A and ã = A(x̂) the reconstruction of c(y) given x̂, we add

the reconstruction loss:

Rrec = ‖c(y)− ã‖2
2. (3.5)

3.3.2.3 Cross Branch.

Because labeled data are not available for the unseen classes, we cannot feed

the conditional discriminator Dc with them. To exploit the unlabeled data we

propose to conditionally generate the visual features x̃c and evaluate them only

by their distribution using D0. Thus in this setting we do not condition both the

generator and the discriminator, as is commonly done in GAN based conditional

generation, but we only condition the generator. Hence, optimization is obtained

by

min
Gc

max
D0

Ex[D0(x)]− Ex̃c [D0(x̃c)], (3.6)

adapting as consequence the regularization term on the gradients as

R = Ex̂[(
∥∥∇D0(x̂)

∥∥
2
− 1)2], (3.7)

where x̂ = αx + (1 − α)x̃c with α ∼ U(0, 1) and adding the reconstruction loss

defined in equation (3.5).

The origin of the proposed architecture. Our work is inspired by FusedGAN

[94], which combines two GANs to improve image generation in a semi-supervised

setup. Differently, in our case, we handle feature generation in the zero-shot case,

so we have no annotated data at all for some of the classes and we need to gen-

erate them. To solve this problem, differently from FusedGAN, we cross-connect

the two branches to transfer the knowledge of the seen domain to the unseen one.
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3.3 Decoupled Feature Generation

Figure 3.2: DecGAN training is performed in 3 stages. Stage 1 performs an
alternate training on the conditional and the unconditional branch using seen
data. Stage 2 uses the unconditional branch to fine-tune G0 using unseen data
to improve the structured prior s. Finally, Stage 3 carries out the fine-tuning of
Gc, feeding the cross-branch with unseen data.

3.3.3 Training Methodology

To train the proposed DecGAN, we propose a three-staged training strategy,

which is explained beneath and sketched in Figure 3.2.

1. In the first stage, we optimize both the conditional and the unconditional

branch using only data from the seen classes. We seek to achieve decoupled

feature generation for the seen categories in a way that, while G0 learns

how to model the data distribution, Gc learns how to enrich the structured

prior with the content of the class embeddings. We perform an alternate

training strategy in which, first, we update D0 and G0 using equations (3.1)

and (3.2). Then, we update Dc and Gc using equations (3.3) and (3.4). A

full update step consists of k updates of D0, 1 update of G0, k updates of

Dc and 1 update of Gc in sequence with k > 1 [45]. Here, we chose k = 5

as done in [2].

2. In the second training stage, we want to take advantage of the unseen un-

labeled data to add into the structured prior the information of the unseen

data distribution. To reach our goal, we use the unseen data to fine-tune

D0 an G0 using equations (3.1) and (3.2).

35



3.4 Experiments

3. The third stage consists in the fine-tuning of the conditional generator Gc

on the unseen data. Using structured prior, generalized over the unseen

classes in the previous stage, we condition Gc with the embeddings of the

unseen classes to reinforce its ability to translate semantic content into

visual features in the unseen domain. That is, we use equations (3.6) and

(3.7) to update D0 an Gc using unseen data.

3.3.4 Implementation Details

We implement G2 and Gc as single hidden layer neural networks with hidden layer

of size 4096 and leaky ReLU activation and output layer that has the size of the

visual feature vectors, 2048, and ReLU activation. In G1, a leaky ReLU is used

as the activation function (without hidden layer). Specifically, G0 is a 2-hidden

layer neural network and we use its first layer as structured prior. The size of the

structured prior (the output of G1) is fixed to 1024. The size of noise z is fixed

to 512 and is sampled from a multivariate normal distribution N(0, I), where 0 is

the 512-dimensional vector of zeros and I is the 512-dimensional identity matrix.

D0 and Dc are neural networks composed of a single hidden layer of size 4096

(with leaky ReLU activation) and by an unconstrained real number as output.

3.4 Experiments

3.4.1 Datasets and Benchmarks

We evaluate proposed DecGAN on standard benchmark datasets for Generalized

Zero-Shot Learning. We considered Oxford Flowers (FLO) [7], SUN Attribute

(SUN) [8] and Caltech-UCSD-Birds 200-2011 (CUB) [6]. FLO consists of 8,189

images of 102 different types of flowers, SUN 14,340 images of scenes from 717
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Dataset att stc #Ys #Yu

FLO [7] - 1024 62+20 20
SUN [8] 102 - 580+65 72
CUB [6] 312 - 100+50 50

Table 3.1: Statistics of considered datasets: number of seen classes #Ys (training
+ validation), unseen classes #Yu, dimension of attribute (att) annotation and
sentences (stc) extracted features.

classes and CUB of 11,788 images of 200 different types of birds.

For SUN and CUB, we use manually annotated attributes [17]. Because for

FLO the attributes are not available, we follow [78] in using 1024-dim sentence

embedding extracted by the character-based CNN-RNN [25] from fine-grained

visual descriptions of the images. Statistics of the datasets are available in Table

3.1. For a fair comparison, we split the classes of SUN and CUB between seen

and unseen using the splits proposed by [17]. For FLO, we use the splits as in

[25]. For all datasets, the visual features are chosen as the 2048-dim top-layer

pooling units of the ResNet-101 [33], provided by [17].

As evaluation metrics, the Generalized Zero-Shot Learning setup, we measure

the performance as harmonic mean between seen and unseen accuracy, each one

computed as top-1 classification accuracy on seen and unseen classes [17].

3.4.2 Ablation Study

In this Section, we will perform an accurate ablation analysis on the different com-

ponents of our proposed DecGAN architecture. Specifically, we will separately

evaluate the impact on performance of each of the three branches which endows

DecGAN: namely, the unconditioned, conditioned and cross-branch as presented

in Section 3.3.2. We will also pay attention to the effects of the different stages of

our training pipeline: the first stage is evaluated in stand-alone fashion, while we

also provide experimental evidence for the effect of removing the second stage.
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FLO SUN CUB
au as H au as H au as H

DecGAN(Stg1) 58.1 79.8 67.2 45.0 34.5 39.1 44.1 56.7 49.8
DecGAN(Stg3) 4.7 82.2 8.9 1.2 30.1 2.3 2.0 35.3 3.8

DecGAN(−Stg1) 5.8 73.9 10.1 1.3 39.1 2.5 1.7 35.3 3.2
DecGAN(−Stg2) 71.1 50.5 80.1 53.2 44.2 48.2 55.1 66.6 60.3
DecGAN(−Stg3) 50.5 80.1 62.0 44.5 34.7 38.3 45.3 53.8 49.1
DecGAN 73.0 92.2 81.5 57.2 44.3 49.9 59.1 68.4 63.4

Table 3.2: We assess the impact on performance of the presence/absence of each
stage of the training pipeline of our DecGAN model. We report top-1 accuracy
on seen classes as and unseen classes au and their harmonic mean H. Best H
values are highlighted in bold. All results are reported by averaging accuracies
over 5 different runs.

3.4.2.1 The Impact on Performance of each Training Stage.

To better analyse our composite training pipeline, in Table 3.2, we present an

ablation study to assess the impact on performance of each of the three stages

of our training pipeline. Precisely, we evaluate the drop in performance resulting

from removing any of the aforementioned stages from the full training pipeline

of DecGAN: when either removing the first, second or third stage, we obtain

DecGAN(−Stg1), DecGAN(−Stg2) and DecGAN(−Stg3), respectively. We also as-

sess the performance of the first and third stage separately (DecGAN(Stg1) and

DecGAN(Stg3)) Note that, we cannot evaluate the stage 2 in a standalone fashion

since such stage lacks of a conditional feature generation pipeline from which we

can sample features for the seen/unseen classes (see Figure 3.2).

With respect to the performance of the full DecGAN model, the first stage

always achieve a suboptimal performance, and this can be clearly explained by

the fact that, DecGAN(Stg1) exploits data from the seen classes only (inductive

setup). The poor performance of DecGAN(Stg3) reveals that without the condi-

tional discriminator, which takes as input the visual features and the related class

embeddings (consequently learning the relation between visual features and class
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FLO SUN CUB
au as H au as H au as H

Not decoupled 69.5 91.4 79.0 52.7 44.3 48.1 54.3 66.7 59.9
Decoupled 73.0 92.2 81.5 57.2 44.3 49.9 59.1 68.4 63.4

Table 3.3: The effect of decoupling the feature generation stage. We compare
the decoupled approach of DecGAN to the not decoupled baseline. We report
top-1 accuracy on seen classes as and unseen classes au and their harmonic mean
H. Best H values are highlighted in bold. All results are reported by averaging
accuracies over 5 different runs.

embeddings), the generator does not learn to generate class dependent visual

features. When removing the first stage, the performance is comparable with

DecGAN(Stg3): this shows how pivotal this first step is for the whole pipeline.

During the second stage, we fine-tune the structured prior adding information

about the data distribution of the unseen visual features, but we update the

conditional generator on the new structured prior only in Stage 3. The mis-

alignment between the structured prior that the conditional generator expects as

input and the updated one it receives leads in a performance drop when compar-

ing DecGAN(Stg1) and DecGAN(−Stg3). However, the importance of the transitory

Stage 2, is highlighted by the difference in performance between DecGAN and

DecGAN(−Stg2). The third stage has a clear effect on performance: fine-tuning

the conditional generator over the unseen data always boosts the performance,

no matter if the second stage was performed or not.

3.4.2.2 The Effect of the Decoupled Feature Generation.

We posit that the main advantage of DecGAN is the possibility of decoupling the

feature generation stage, as to tackle two problems separately: 1) the generation

of features which are visually similar to the real ones, and 2) the translation

of semantic patterns from attributes to features. We want now to prove that

the aforementioned separation of the tasks leads to a superior performance if
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Figure 3.3: Baseline architecture. Left : a visualization of the architectural design
of the baseline. Right : similarly to our proposed DecGAN, we adopt a staged
training to optimize the baseline.

compared to a model which tries to perform both tasks jointly. To do so, we

compare the proposed decoupled feature generation (achieved through DecGAN)

with a baseline model in which we perform a similar staged training, without

performing decoupling.

Specifically, we consider the architecture represented in Figure 3.3, which

is described beneath. It is composed of a single conditional generator Gc and

two discriminators, one conditional Dc and one unconditional D0, implemented

through Wasserstein GANs subjects to gradient penalty loss and reconstruction

loss in the same way of our DecGAN. Moreover, similarly to our DecGAN, we

train this architecture in two stages (see Figure 3.3). In the first stage, we train

Gc together with Dc using only seen data, and in the second stage, we train

Gc together with D0 using unseen data. Differently to DecGAN, generation is

performed with a single generator that has to learn both, the data distribution

of the real visual features and how to translate the semantic content of the class

embeddings into them, without taking advantage of the structured priors and

the decoupled features generation. As for DecGAN, Gc and D0 and Dc for this

baseline are one-hidden layer neural networks with hidden layer of size 4096 with

leaky ReLU activation. The size of the noise is fixed to 1024, the same of the

structured prior s.
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The results of this analysis are presented in Table 3.3 and discussed in the

following.

The effect of decoupling is clearly visible on all the 3 benchmarks showing

that it is always advantageous since leading to a superior performance, when

considering all error metrics adopted in this Chapter: accuracy over unseen and

seen classes au, as and harmonic mean H. When we do not perform decoupling,

the resulting performance is comparable to the one achieved by DecGAN(−Stg2)

(check Tables 3.2 and 3.3). We think that this is an effect of what happens to

the structure prior, which is first trained on the seen data and the conditional

generator, and then fine-tuned on the unseen ones. Such discontinuous usage of

seen and unseen data leads the generator to use the structured prior as a random

input, since it is not able to read the visual information which is encapsulated

inside.

3.4.3 Comparison with the State-of-the-Art in transduc-

tive Generalized Zero-Shot Learning

In this Section, we report the key benchmark against the state-of-the-art trans-

ductive Generalized Zero-Shot Learning. The methods are the projection with

visual structure constrain (CDVSc) [18], the effective deep embedding (EDE ex)

[84], the progressive ensamble network (PREN) [19], the domain-invariant projec-

tion (Full DIPL) [85], the attribute-based latent embedding (ALE) [53], the gen-

erative framework based on a family of Gaussian distributions (GFZSL) [67], the

discriminative semantic representation learning (DSRL) based on a non-negative

matrix factorization approach [80], the feature generation approach based on a

paired network and variational auto-encoder GAN and VAE [77; 78] (f-VAEGAN-

D2 and Z-VAE-GAN) and the addition of the gradient matching loss during the

gan training [87] (GMN). We additionally report some classical inductive meth-
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ods as [53; 55; 58; 62], as well some generative inductive methods based on GAN

[2; 68], VAE [59; 90] or combination of them [78]. We selected the three publicly

available benchmark datasets (FLO, SUN and CUB) presented in Section 3.4.1.

We present the results through mean over five different runs at a fixed number of

DecGAN training epochs. We report results obtained in Table 3.4.

In Table 3.4, we show how our proposed decoupled feature generation, im-

plemented through our DecGAN model, is capable of improving in performance

prior methods.

Among the inductive zero-shot learning methods, DecGAN sets up sharp im-

provements in performance: methods such as CADA-VAE [59] are improved in

the scored harmonic mean H by +9.3% on SUN and by +11.0% on CUB. Simi-

larly, DecGAN is capable of ouperforming cycle-WGAN [68] on FLO (+16.3%),

SUN (+10.5%) and CUB (+10.4%). Actually, even the performance of DecGAN

in the first training stage is superior to cycle consistency: DecGAN(Stg1) improves

cycle-WGAN by +2.0% of FLO.

A solid performance is shown also when benchmarking the state-of-the-art

in the transductive generalized zero-shot learning setup. On FLO, DecGAN im-

proves several prior methods by margin, in terms of H: +59.3% with respect to

ALE [17], +47.7% with respect to GFZSL [67] and +43.6% with respect to DSRL

[80]. The only method reported in Table 3.4 which is slightly superior to us is

f-VAEGAN-D2 [78] and the reason for that is the usage of two feature generation

schemes: a variational autoencoder and a GAN. We therefore deem that our idea

is still competitive: by means of our structured prior, we can almost match the

performance of a method which uses twice the number of feature generators. This

evidently shows DecGAN as a balance between model light-weighting and perfor-

mance. On the other two benchmark datasets, DecGAN improves f-VAEGAN-D2

[78] by +0.3% on SUN and +0.2% on CUB and, similarly, surpasses in perfor-
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Table 3.4: Results in Generalized Zero-Shot Learning. We report top-1 accuracy
on seen classes as and unseen classes au and their harmonic mean H. First and
second best values are highlighted in bold and italic, respectively, for H. Inductive
(I) and Transductive (T) methods are reported. †: results not reported because
of the usage of different class embeddings, which are not comparable. Our results
are presented by averaging performance scores over 5 different runs.

FLO SUN CUB
au as H au as H au as H

ESZSL [55]

I

- - - 11.0 27.9 15.8 12.6 63.8 21.0
ALE [53] - - - 21.8 33.1 26.3 23.7 62.8 34.4
SynC [62] - - - 7.9 43.3 13.4 11.5 70.9 19.8
LATEM [3] - - - 14.7 28.8 19.5 15.2 57.3 24.0
f-CLSWGAN [2] 59.0 73.8 65.6 42.6 36.6 39.4 43.7 57.7 49.7
f-VAEGAN [78] 56.8 74.9 64.6 38.0 45.1 41.3 48.4 60.1 53.6
cycle-WGAN [68] 61.6 69.2 65.2 33.8 47.2 39.4 47.9 59.3 53.0
SyntE [90] - - - 40.9 30.5 34.9 41.5 53.3 46.7
CADA-VAE [59] - - - 47.2 35.7 40.6 51.6 53.5 52.4
DSRL [80]

T

26.9 64.3 37.9 17.7 25.0 20.7 17.3 39.0 24.0
GMN [87] - - - 57.1 40.7 47.5 † † †
CDVSc [18] - - - 27.8 63.2 38.6 37.0 84.6 51.4
PREN [19] - - - 35.4 27.2 30.8 35.2 55.8 43.1
Z-VAE-GAN [77] - - - 53.1 35.8 42.8 64.1 57.9 60.8
ALE trans [17] 13.6 61.4 22.2 19.9 22.6 21.2 23.5 45.1 30.9
Full DIPL [85] - - - - - - 41.7 44.8 43.2
EDE ex [84] - - - 47.2 38.5 42.4 54.0 62.9 58.1
GFZSL [67] 21.8 75.8 33.8 0.0 41.6 0.0 24.9 45.8 32.2
f-VAEGAN-D2 [78] 78.7 87.2 82.7 60.6 41.9 49.6 61.4 65.1 63.2
DecGAN (ours) 73.0 92.2 81.5 57.2 44.3 49.9 59.1 68.4 63.4
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mance recent prior art such as PREN [19] (+19.1% on SUN and +20.3% on CUB)

or Z-VAE-GAN [77] (+7.1% on SUN and +2.6% on CUB).

3.5 Conclusions

In this Chapter, we address a major limitation of the mainstream approach in

(generalized) zero-shot learning, consisting in the necessity of solving two prob-

lems with a single computational pipeline: 1) capturing the distribution of visual

features in order to generate realistic descriptors, and 2) translating semantic at-

tributes into visual patterns. Therefore we proposed DecGAN, which decouples

the aforementioned problems, by means of an unconditional GAN generating a

structured prior. The latter can be used to improve the conditional generation of

visual features. The overall architecture has a staged training, whose steps have

been validated in a broad experimental comparison, assessing that this computa-

tional setup is particularly favorable for the transductive Generalized Zero-Shot

Learning setup. In fact, DecGAN is improving in performance previous state-of-

the-art on challenging public benchmark datasets.
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Chapter 4

Open Zero-Shot Learning

4.1 Context

Figure 4.1: Open Zero-Shot Learning, a framework where we aim at classify-
ing seen and unseen classes (for which no visual data of the latter is given) while
also rejecting (i.e., refusing to take any decision on) unknown classes. Neither
visual data nor class embeddings are available for unknown classes.

As we presented in the previous Chapters, Zero-Shot Learning aims at rec-

ognizing novel classes by performing knowledge transfer taking advantage of the

class embeddings. Since the initial publications [15; 16; 51], Zero-Shot Learning

has attracted increasing attention and many competitive solutions to the problem

have been proposed (see Section 2.5). However the initial setup was considered
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a major limitation for real-world application and thus the more realistic and

competitive Generalized-Zero Shot Learning have been proposed. Generalized

Zero-Shot Learning considers both the unseen and the seen classes for evalua-

tion, differently from the standard Zero-Shot Learning that only considers the

seen classes.

In Generalized Zero-Shot Learning, the challenge is to overcome the bias of

the model towards predicting the classes on which it has been directly trained

on, and for which it is much more confident in forecasting. To solve the extreme

imbalance of the Generalized Zero-Shot Learning framework, much effort has

been exerted to perform synthetic feature augmentation for the unseen classes [2;

4; 59; 68; 72; 74; 77; 78; 87; 90; 91; 92]. By exploiting deep generative models, as

Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs),

it is indeed possible to take advantage of the class embeddings to generate class

consistent features for the unseen classes by training on the seen ones, leading to

remarkable performances in Generalized Zero-Shot Learning.

However, we claim that the assumption of knowing in advance the full set

of classes, the closed-set assumption, and their class embeddings is still a strong

limitation for Generalized Zero-Shot Learning in real world applications. In fact,

while it is reasonable to assume that we can describe all the seen classes with the

class embeddings, it seems less reasonable not only to know, but also to describe

with the rich semantic content of the class embeddings, all the classes for which

we have no visual training data.

We introduce a new paradigm, Open Zero-Shot Learning (Figure 4.1).

Open Zero-Shot learning overcomes the closed-set assumption and goes to the

open-set scenario by considering a possible infinite set of classes at inference time.

As a consequence, we have three types of classes: 1) the seen, for which we have
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Figure 4.2: The proposed pipeline for Open Zero-Shot Learning. We
synthesize visual descriptors from seen and unseen classes, using a Generative
Adversarial Network (GAN). We also learn how to perform unknown generation
and synthesize descriptors (represented by ), even for the unknown classes,
and better precondition a classifier in classifying seen/unseen and reject unknown,
with the usage of Openmax [1].

visual data and class semantic descriptors, 2) the unseen, for which we have only

class embeddings, and 3) the unknown, for which we have neither the visual data

nor the (semantic) class embeddings. Thus, Open Zero-Shot Learning extends

Generalized Zero-Shot Learning with the possibility of performing recognition in

the open-set regime [95] where inference has to be jointly performed over seen,

unseen and unknown classes in order to classify seen and unseen, and reject

unknown ones.

We build Open Zero-Shot Learning as the open-set generalization

of Generalized Zero-Shot Learning. To warm up the research community

towards the solution of Open Zero-Shot Learning, we design evaluation protocols,

extracting unknown classes as a subpart of unseen classes from typical Generalized

Zero-Shot Learning benchmark datasets used in the related state of the art [2;
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4; 59; 68; 72; 74; 77; 78; 87; 90; 91; 92]. We will make these splits publicly

available so as to ease the research community in this direction, and we also

propose error metrics to allow fair and reproducible comparison across different

algorithmic solutions tackling Open Zero-Shot Learning. We also extend prior

Generalized Zero-Shot Learning error metrics (harmonic mean of the per-class

average accuracy [17]) to better handle the open set scenario. In particular, we

consider F1-score between seen and unseen average precision and/or recall scores

to better account for successful rejections.

We approach Open Zero-Shot Learning by synthesizing the unknown.

(Figure 4.2). In Generalized Zero-Shot Learning, GANs or alternative generative

methods [2; 4; 59; 68; 72; 74; 77; 78; 87; 90; 91; 92]) generate visual features

conditioned on class embeddings in order to synthesize descriptors for the un-

seen classes and train a softmax classifier on top of them as well as of real seen

features. We purport that we can easily extend this state-of-the-art paradigm

to Open Zero-Shot Learning by replacing the standard softmax classifier with

Openmax1 [1]. We provide a preliminary exploratory analysis, evaluating both

baseline methods (e.g ., Generalized Zero-Shot Learning feature generator simply

borrowed for Open Zero-Shot Learning) and our novel idea to synthesize unknown

class embeddings and using them to generate unknown visual features, which we

implemented through a variation of Wasserstein GANs [2; 3; 45], which we term

VAcWGAN (variationally-conditioned Wasserstein GAN). VAcWGAN optimizes

a conditional generative process on semantic embeddings (so that, we first “syn-

thesize the unknown” and then we generate unknown visual features). Despite

this approach being arguably harder (since we attempt to generate something we

1Openmax [1] augments the softmax classes’ bins (out of which probabilities are arg-maxed
to compute predictions) by introducing an extra-bin estimating the probability to reject an
instance. Thanks to Openmax, we can still cast recognition over seen & unseen classes, and
rejection over unknown classes through a single argmax step.
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do not see nor know), our experimental evidence shows some potential which we

deem worthy to be further investigated by the computer vision community.

4.2 Related Work

Generalized Zero-Shot Learning. Feature generating networks are surely a

“big thing” for Generalized Zero-Shot Learning [2; 4; 59; 68; 72; 74; 77; 78; 87;

90; 91; 92]. As proposed by [78] and [96] almost independently, a (Wasserstein)

GAN, conditioned on class embeddings, is paired with a classification loss in

order to generate sufficiently discriminative CNN features, which are then fed to

a softmax classifier for the final inference stage.

Recently, several modifications have been adopted to improve feature gen-

eration for ZSL, for instance, by either replacing the GAN with a variational

autoencoder [74; 90] or using the latter two models in parallel [77; 78], cycle con-

sistency loss [68; 91] or contrastive loss [4]. In [72], class embeddings are regressed

from visual features, while semantic-to-visual generation is inverted with another

generative, yet opposite, visual-to-semantic stream [59; 97].

Differently to all these methods, our GAN-based architecture is different in the

way it synthesizes class embeddings for the unknown classes. Please note that two

recent solutions applied a similar idea for the sake of learning a better noise for

the GAN [92] [98], but, to the best of our knowledge, we are the first to synthesize

class embeddings. As a concurrent work to ours, [99] seems to approach the

open-set scenario as well: but, rather than building upon the “standard” (G)ZSL

protocol used in computer vision [17], it approaches the “compositional setup”.

That is, seen classes are defined as combinations of tags (e.g ., “wet dog” or “furry

cat”) and inference has to be done on unknown combinations (e.g ., “furry dog”).

Differently to [99], we put no prior on the classes we need to generalize onto
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(unseen and unknown mainly) as we tackle the challenging generalization gap

that requires us, for example, to reject unknown dolphins while not forgetting

how to classify seen humpback whales and unseen blue whales.

Rejecting Unknown Categories. After the initial formalization of [95] on

how to learn in the open set paradigm, many approaches have proposed for letting

traditional machine learning models to deal with the unknown [100; 101; 102; 103;

104; 105; 106; 107; 108; 109; 110; 111; 112; 113; 114]. The interested reader may

refer to [115] for an overview.

Leveraging the widespread usage of softmax classifier as the default classifier

of deep neural networks, Openmax [1], proposed a meta-learning algorithm so

that the probability of a data point to be an outlier can be modelled generating

an extra-bin which estimate the probability of rejecting the given instance when

recognized as outlier. Since then, a few algorithmic variants have been applied to

Openmax, ranging from the usage of data-driven preconditioning [48] to conter-

factual learning [116]. In our case, we do not change Openmax in its algorithmic

implementation, but, rather, we fed it by data which are “much more difficult” to

manage as compared to prior art. In fact, we ask Openmax not only to recognize

seen classes, but also two different types of categories for which visual data are

not available (unseen and unknown). Prior art in Openmax only considers seen

vs. unknown [1] or seen vs. unseen [117] and, to the best of our knowledge, we

are the first to jointly consider seen, unseen and unknown.

4.3 Problem Formulation

In this Section, we relax the closed-set assumption that constraints Generalized

Zero-Shot Learning methods in knowing class embeddings for all categories (both

seen S and unseen ones U): we therefore attempt to reject unknown categories
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while not forgetting seen and unseen ones. We do so by proposing Open Zero-

Shot Learning, in which we augment S and U with a third set of classes, dubbed

unknown, and denoted by Ω. Unknown classes are deprived of both visual data

and class embeddings (see Fig. 4.1). We formalize the Open Zero-Shot Learning

problem by instantiating evaluation protocols, datasets and error metrics. We

root these in Generalized Zero-Shot Learning to ease the transfer of the zero-shot

learning community towards the new Open Zero-Shot Learning paradigm.

4.3.1 Open Zero-Shot Learning evaluation protocol.

In Generalized Zero-Shot Learning, seen classes S are provided of data which

are triplets [x, y,Cy]: x are vectorial visual embeddings extracted from a deep

convnet (usually, ResNet101 [17]) fed by related images, y is the class label and

Cy is a class embeddings (e.g ., a list of manually-defined attributes describing the

class that are converted into float numbers ranged in [0, 1] through Osherson’s

default probability scores [16]). Unseen classes U are instead only given of class

embeddings (and labels) [y,Cy] at training time, hence totally missing visual data.

In Open Zero-Shot Learning, together with the recognition of seen and un-

seen classes, we encompass potentially infinitely many classes at inference time.

In fact, in addition to classify examples from S and U, we also consider examples

to be rejected since belonging to unknown categories we never observed before

(no visual data available) and without class embeddings disclosed to the learner.

Thus, unknown classes, denoted by Ω, are totally deprived of any visual or se-

mantic information.

Therefore, the task is to train a zero-shot learner to handle the open-set sce-

nario where, not only it has to recognize any unobserved test instance for which

visual patterns are apparently matching semantic information of class embed-

dings, but it has also to avoid to take any decision on instances that seem to
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have a visual content that is not compatible with any prior semantic knowledge

encapsulated in seen and unseen class embeddings.

4.3.2 OSZL datasets.

In order to allow practitioners to provide experimental results in both the closed-

set, i.e., Generalized Zero-Shot Learning, and the open-set, the proposed Open

Zero-Shot Learning, we build Open Zero-Shot Learning benchmark datasets rear-

ranging Generalized Zero-Shot Learning ones. Specifically, we consider Animals

with Attributes (AWA) [5], Caltech-UCSD Birds 200 2011 (CUB) [6], Scene Un-

derstanding (SUN) [8], and Oxford Flowers 102 (FLO) [7] since they are, by far,

ubiquitous in Generalized Zero-Shot Learning literature [2; 59; 68; 72; 77; 78; 87;

90; 91; 92]. We leverage the “Proposed Splits” [17] to be still enabled to use Ima-

geNet pre-trained models to obtain visual descriptors (which are actually already

pre-computed from a ResNet-101 and shared by the authors of [17]) and we stick

to their proposed subdivision into seen and unseen classes. We select unknown

categories by sampling from unseen classes. In short, we propose to sample 50%

of the unseen classes of [17] and transform them to unknown classes, keeping the

remaining 50% as unseen categories in Open Zero-Shot Learning. A complete list

of seen, unseen and unknown classes for the selected four benchmark datasets is

available in the Supplementary Material A.

4.3.3 Error metrics.

In Generalized Zero-Shot Learning, the performance is usually [17] evaluated

using the harmonic mean

HGZSL =
2RSRU

RS +RU

, (4.1)
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between each per-class accuracy RS and RU, computed over seen and unseen

classes, respectively. RS and RU are defined as:

RS =
1

|S|
∑
s∈S

Rs =
1

|S|
∑
s∈S

TPs

TPs + FNs

, (4.2)

RU =
1

|U|
∑
u∈U

Ru =
1

|U|
∑
u∈U

TPu

TPu + FNu

. (4.3)

where, in Eq. (4.2), we compute Rs, for the fixed seen class s ∈ S, as the ratio

between true positives TPs and the total test examples of the class s, that is the

sum of TPs and the false negatives FNs for that class. To obtain RS from Rs,

s ∈ S, we average Rs over the whole list of seen classes (having cardinality |S|).

Analogous operations are carried out in Eq. (4.3) to compute RU, but applied

to unseen classes in U, instead. The metrics HGZSL, RS and RU were proposed

in [17] and adopted by state-of-the-art methods for their experimental validation

[2; 59; 68; 72; 74; 77; 78; 87; 90; 91; 92].

In Generalized Zero-Shot Learning, given that both seen and unseen classes

have to be reliably classified, it makes sense to have error metrics depending upon

true positives and false negatives which are computed independently over seen

and unseen classes and (harmonically) averaged in order to balance performance

over these two sets of categories [17].

In Open Zero-Shot Learning, in order to break the closed-set assumption, we

need to take into account also false positives FP . In fact, FP simulates cases

where examples are predicted as if they belong to that class, albeit their actual

ground-truth class is different. Please note that, since we cannot write explicit

multi-class classification accuracy scores for the unknown classes Ω - since we do

not have anything describing them - we have to rely on false positives, for both

seen and unseen classes (FPs, for every s ∈ S, and FPu, for every u ∈ U), in
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order to indirectly control the rejection performance. In other words, in order to

quantitatively measure the performance of a predictor of seen and unseen classes

S and U, which is also a rejector of unknown classes Ω, we need to control FPs

and FPu, for every s ∈ S and u ∈ U. This will reduce the possibility of wrongly

associating generic unknown instances to any of the seen/unseen classes.

Obviously, the prior control on seen/unseen false positives has to be paired

with penalization of “traditional” mis-classifications in a Generalized Zero-Shot

Learning sense, since we do not want to gain in robustness towards unknown

categories while forgetting how to predict seen or unseen classes. Therefore,

we propose to measure performance in Open Zero-Shot Learning through the

harmonic mean

HOZSL =
2F1SF1U

F1S + F1U

(4.4)

of the F1 scores F1S and F1U, over seen and unseen classes, defined as

F1S =
1

|S|
∑
s∈S

F1s =
1

|S|
∑
s∈S

2RsPs

Rs + Ps

, (4.5)

F1U =
1

|U|
∑
u∈U

F1u =
1

|U|
∑
u∈U

2RuPu

Ru + Pu

. (4.6)

In Eq. (4.5), for each seen class s ∈ S, we compute the harmonic mean F1s of

Rs, defined as in Eq. (4.2), and the precision Ps relative to s. We have that

Ps = TPs

TPs+FPs
, being defined as the ratio of the true positives TPs for that class

and the total test examples classified as belonging to that class, that is the sum

of TPs and false positives FPs. We repeat the analogous operations over unseen

classes to obtain F1U, as in Eq. (4.6).

We claim that HOZSL, as defined in Eq. (4.4) extends the prior metric HGZSL

(in Eq. (4.1)) by preserving its property of evaluating a correct classification

of seen and unseen categories. Concurrently, with HOZSL, we also inject false

54



4.4 Unknown Feature Generation

positives, formalizing their addition using F1 scores, for the sake of controlling

any misclassification involving unknown classes: this is a computable proxy to

evaluate performance on unknown classes.

4.4 Unknown Feature Generation

Feature generators for Generalized Zero-Shot Learning, such as [2] or [3], leverage

the operative assumption of knowing the class embeddings even for the categories

which are unseen at training time. Class embeddings are, in fact, adopted as con-

ditioning factors inside GAN- [2; 4], VAE- [74; 90] or GAN+VAE-based methods

[3; 78] to synthesize visual descriptors for the unseen classes. We cannot repeat

the very same operation for unknown classes Ω since we have no class embed-

dings, but we still need to generate visual features because we do not have them

as well.

4.4.1 Direct Unknown Generation (DUG)

Exploiting the generative methods [2; 3; 4], is possible to train a generative

method, trained only on seen categories, to be conditioned on semantic embed-

dings to generate corresponding visual features. Thus, once the training is com-

plete, is possible to condition on the class embeddings of the unseen classes to

generate unseen visual features. Once both the seen and unseen visual features

are available, inspired by [118], we take advantage of the MixUp approach to

directly generate visual features for the unknown categories.

That is, given two visual features x1 and x2, representative of different classes,

we mix them with

xk = λx1 + (1− λ)x2, (4.7)

where λ ∈ [0, 1] is sampled from a distribution Beta(α, β), and the unknown label
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is assigned to xk.

The mixed features present mixed traits of the seen and unseen categories,

belonging to any of them, and lie in regions of the feature space in between

different classes. By labeling them as unknown, we can heuristically build borders

for the classification regions for the seen and unseen classes and create a prior

knowledge for classifying the unknown features.

4.4.2 Semantic Based Unknown Generation (SBUG)

Instead of directly using the visual feature space to generate the unknown fea-

tures, a different approach that we investigate is to take advantage of the seman-

tic embeddings to generate them. To this end, we propose to adopt a generative

process to learn the distribution of the semantic space, as to learn the region

of influence of seen and unseen class embeddings (blue and yellow balls in Fig.

4.3). So doing, we can map class embeddings into a transformed semantic space,

and we claim that, inside it, we can generate class embeddings for the unknown

classes by performing a mixing approach similar to the one presented in Section

4.4.1 Specifically, we sample the transformed semantic space “in between” the

region of interest of seen and unseen classes, obtaining synthetic unknown class

embeddings. Using them, we generate unknown visual features which help a clas-

sifier in rejecting unknown classes while still reliably classifying seen and unseen

ones (from real seen and synthetic unseen visual features, respectively).

Thus, differently from DUG, where we can apply the unknown feature genera-

tion over an existing methodology, with SBUG we perform an end-to-end training

together with the generative process to learn the mapping of the semantic em-

beddings in a new, more controllable, semantic space.
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4.4.2.1 VAcWGAN

We introduce a semantic sampler S which is responsible of learning first and sec-

ond order statistics (µ and Σ) for each of the classes y whose semantic embedding

is given (seen and unseen). Once trained, we sample a vector s from a Gaussian

distribution of mean µ and covariance matrix ΣΣ>. The role of S is to transform

the semantic space through a generative process, as the result of which, seen class

embeddings C1,C2, . . . ,Ck, and unseen ones Ck+1,Ck+2, . . . ,Ck+u are mapped into

regions of influence. That is, they are mapped into N1,N2, . . . ,Nk (light blue

balls in Fig. 4.3) and Nk+1,Nk+2, . . . ,Nk+u (yellow balls in Fig. 4.3). We model

N1,N2, . . . ,Nk,Nk+1,Nk+2, . . . ,Nk+u as Gaussian distributions and we use them

to sample the conditioning factor s which, paired to a random noise vector z

is passed to a Wasserstein GAN. This GAN is trained to generate synthetic vi-

sual features x̃ by making them indistinguishable from the real seen features x

extracted by an ImageNet pre-trained ResNet-101 model.

We call the aforementioned architecture variationally-conditioned Wasserstein

GAN (VAcWGAN), which is built over the following optimization: min
G,S

max
D

L,

where

L(x, x̃, s) = Lreal(x, s)− Lfake(x̃, s)

= Ex∼real

[
D(x, s)

]
− Ex̃∼gen

[
D(x̃, s)

]
. (4.8)

In Eq. (4.8), L(x, x̃, s) attempts to align the Wasserstein (Earth Mover) distance

[44] between the distributions of synthesized features x̃ over the distribution of

the real ones x. We introduce two auxiliary losses for VAcWGAN by jointly

considering a standard gradient penalty term [45]

R(x, x̃, s) = Et∈[0,1]

[
(‖∇D(tx + (1− t)x̃, s)‖2 − 1)2

]
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which is commonly acknowledged to regularize the whole generation process,

increasing computational stability [45]. We used a cross-entropy classification

loss [2]

C(x̃) = −Ex̃∼gen

[
log p(y|x̃)

]
(4.9)

which constraints the softmax probability p of classifying x̃ to belong to the

class y: it has to match the prediction done on x̃ when generated from the class

embedding Cy relative to the class y.

The pseudocode to train VAcWGAN is provided in Alg. 1.

Algorithm 1: Training VAcWGAN

1 Randomly initialize S,G and D ;
2 Generate x̃ and pre-train the softmax classifier p while not converged do
3 for i← 1 to M do
4 update D using L and R

5 end
6 Synthesized unseen features x̃ ;
7 Update G using Lfake, R and C;
8 Update S using Lfake, R and C;

9 end

4.4.2.2 Implementation details

We implement G, D and S as single hidden layer neural networks with hidden

layer of size 4096 for G and D and 2048 for S with leaky ReLU activation for all.

S takes as input the class embeddings C and gives as output mean and gives as

output mean vector µ and log(
√
σ) of the same size of C. G takes as input the

vector s, sampled from the Gaussian distribution defined by µ and log(
√
σ) con-

catenated with a noise vector z of the same size of s sampled from a multivariate

normal distribution N(0, I), where 0 a vector of zeros and I and identity matrix,

and output a visual feature vectors (of size 2048 and ReLU activation). D takes
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as input visual feature vectors with the related class embedding C and output an

unconstrained real number. To compute the regularization classification loss we

directly classify the synthesized visual features with a pre-trained softmax. M

of Alg. 1 (in the Chapter) is fixed to 5. Adam [119] is used as optimizer.

4.4.2.3 Unknown Generation.

L

R

C

Figure 4.3: Using VAcWGAN, we generate unknown class embeddings (in a trans-
formed semantic space) from which, in turn synthetic unknown visual features
can be generated.

We train VAcWGAN using seen data only. In addition to generating unseen

visual features (as commonly done in Generalized Zero-Shot Learning, see Section

4.2), we can also generate the unknown with a two-stages process. Given the

generative process that VAcWGAN endow on class embeddings, we estimate the

region of interest N1∪N2∪· · ·∪Nk∪Nk+1∪Nk+2∪· · ·∪Nk+u of both seen and unseen
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classes (in a transformed semantic space). We can exploit the complementary of

it (i.e., the pink region in Figure 4.3) to sample class embeddings that lie in

the new semantic space in the regions in between the seen and unseen classes by

mixing samples of seen and unseen class embeddings.

Specifically, we sample two semantic embeddings for two different classes Ci

and Cj, sample accordingly to the regions of interest si ∼ Ni and sj ∼ Nj, and

than we mix them with

sk = λsi + (1− λ)sj, (4.10)

where λ ∈ [0, 1] is sampled from a distribution Beta(α, β), and the unknown label

is assigned to sk. Once unknown class embeddings are sampled, they can be used

as a conditioning factor to generate visual features that can be ascribed to the

unknown classes.

4.5 Experiments

In order to understand how difficult Open Zero-Shot Learning is, in this Section,

we inspect the performance achievable by combining state-of-the-art feature gen-

erators ([2; 3] for ZSL, combining them with a state-of-the-art classifier for open

recognition: Openmax [1].

In Figure 4.4, we compare a standard softmax (in blue) vs. Openmax (in red),

using a CLSWGAN [2] for unseen (but not unknown) feature generation. On

average, we do not register a sharp overall advantage of openmax versus softmax

(only +0.6% boost in precision and +0.9% for recall given by Openmax tuned

with tail size 2). In principle, openmax is theoretically superior to a softmax

operator, since it is capable of performing rejection. However, experimentally,

we did non register a direct consequence in a superior classification performance.

In fact, the recall of Openmax in rejecting the unknown (RΩ = 22.12%) is not
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Figure 4.4: Precision and Recall of CLSWGAN [2] combined with either Softmax
or Openmax [1] on the AWA dataset. Openmax has been tuned using different
tail sizes (ranging from 2 - darkest red - to 10 - lighter red). When adopting state-
of-the-art solutions (like [1]) to cope with the unknown, we argue that the joint
presence of unseen classes (which we do not have to forget) prevents Openmax to
reliably rejecting the unknown - as it appears to be able to if we remove unseen
classes (see [1]). We perceive this as evidence of the challenges related to Open
Zero-Shot Learning.

so dissimilar to the recall values scored on some unseen classes (e.g ., Horse or

Bobcat in Fig. 4.4). As shown in the literature [1], Openmax is arguably a

state-of-the-art method to perform rejection, while also recognizing seen classes

only. However, a plain transfer of Openmax from its original framework to Open

Zero-Shot Learning (in which, unseen classes have to be recognized as well) is

not enough to solve the problem. We deem this as evidence for the intrinsic

difficulty of Open Zero-Shot Learning which appears as arguably hard - and thus

intriguing.

Even resorting to a better feature generator is not enough to solve the problem,

as we show in Table 4.1. Therein, we provide a comparison between the F1Ω score

computed over unknown classes, pretending to treat all unknown classes into a
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tf-VAEGAN [3] PΩ RΩ F1Ω bobcat giraffe horse sheep F1U

AWA
Softmax 0.00% 0.00% 0.00% 84.90% 87.61% 39.40% 59.80% 72.22%
Openmax 18.81% 58.24% 28.43% 92.66% 87.56% 37.38% 48.94% 76.04%

CLSWGAN [2] PΩ RΩ F1Ω blue whale bobcat dolphin rat F1U

AWA
Softmax 0.00% 0.00% 0.00% 72.07% 72.36% 45.73% 56.97% 70.42%
Openmax 22.45% 70.87% 34.10% 77.35% 75.26% 46.25% 55.75% 74.90%

tf-VAEGAN [3] PΩ RΩ F1Ω green violetear scarlet tanager tree sparrow yellowthroat F1U

CUB
Softmax 0.00% 0.00% 0.00% 89.55% 88.06% 26.67% 51.67% 67.15%
Openmax 0.80% 40.00% 1.57% 100.00% 98.33% 12.31% 18.90% 69.43%

CLSWGAN [2] PΩ RΩ F1Ω bl. cormorant red c woodp orange warb mockingbird F1U

CUB
Softmax 0.00% 0.00% 0.00% 83.05% 96.55% 31.67% 13.51% 64.45%
Openmax 3.35% 70.16% 6.40% 69.49% 89.66% 26.39% 17.22% 68.53%

tf-VAEGAN [3] PΩ RΩ F1Ω purple cone tigerlily pink prim sweetpea F1U

FLO
Softmax 0.00% 0.00% 0.00% 80.65% 93.33% 45.00% 42.86% 65.14%
Openmax 10.16% 65.17% 17.58% 88.24% 73.68% 37.50% 20.51% 69.78%

CLSWGAN [2] PΩ RΩ F1Ω purple cone camellia buttercup azalea F1U

FLO
Softmax 0.00% 0.00% 0.00% 88.24% 82.14% 30.90% 46.43% 52.56%
Openmax 18.32% 81.36% 29.91% 80.65% 80.36% 32.92% 44.64% 53.80%

tf-VAEGAN [3] PΩ RΩ F1Ω hoodoo fishpond bow wind. ind. elevator F1U

SUN
Softmax 0.00% 0.00% 0.00% 85.00% 85.00% 50.00% 35.00% 56.33%
Openmax 2.06% 43.35% 3.92% 95.00% 85.00% 29.41% 20.00% 61.68%

CLSWGAN [2] PΩ RΩ F1Ω car seat church indoor field cult. ballroom F1U

SUN
Softmax 0.00% 0.00% 0.00% 86.36% 70.59% 22.67% 22.92% 50.44%
Openmax 6.94% 58.99% 12.43% 94.44% 75.00% 24.14% 38.89% 53.76%

Table 4.1: Baseline methods for Open Zero-Shot Learning evaluated on their
capability of rejecting unknown (treated as a separated class for which precision
PΩ, recall RΩ, and F1 F1Ω scores can be computed. We also focus here on
classifying unseen classes, reporting the average F1 score F1U over them, while
also reporting the per-class F1 score for two exemplar classes whose performance
is above the mean (6th, 7th columns, marked in green), and two classes that
are below it (8th, 9th columns, marked in red). We observe that, generically,
Openmax achieves high recall and low precision. The softmax is not capable of
rejecting, therefore PΩ = RΩ = F1Ω = 0%.

macro-container called “unknown” (while in principle unknown instances belong

to potentially infinite different unknown categories). In addition, we also check

F1U, the F1 score over unseen classes only. While exploiting a better model

than tf-VAEGAN, we can surely always state that Openmax yields a better F1U

with respect to CLSWGAN with Openmax (76.04% vs. 74.90% on AWA, 69.43%

vs. 68.53% on CUB, 69.78% vs. 53.80% on FLO and 61.68% vs. 53.76% on

SUN), while also improving tf-VAEGAN with softmax (improving F1U by +4%
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on AWA, +2% on CUB, +5% on FLO and +6% on SUN). But, this result comes

at the price of loosing in F1Ω, whose performance is much higher when using

CLSWGAN as opposed to tf-VAEGAN (-6% on AWA, -4% on CUB, -12% on

FLO and -8% on SUN).

Apparently, taking existing feature generators for ZSL (CLSWGAN [2] or tf-

VAEGAN [3]) and combining them with state-of-the-art methods in open recog-

nition (like openmax [1]) is not enough to solve Open Zero-Shot Learning which

appears as an intriguing problem. To start solving it, in the next Section, we

evaluate the effect of performing unknown feature generation.

4.5.1 Open Zero-Shot Learning through Unknown Gen-

eration

In Table 4.2 we perform an experimental evaluation between the two strategies of

unknown feature generation we presented: DUG (Direct Unknown Generation,

Sec. 4.4.1) and SBUG (Semantic Based Unknown Generation, Sec. 4.4.2). We

combined DUG and SBUG separately and/or jointly to the VAcWGAN archi-

tecture (Sec. 4.4). In the sharp majority of the cases, doing unknown feature

generation (with either DUG, SBUG or DUG+SBUG) is better than not doing it.

We deem this result highly non-trivial: by attempting to learn how to synthesize

unknown descriptors, we are simultaneously better shaping the region of interest

of seen and unseen classes, so that the F1U and F1S metrics often improve (and

so happens for their harmonic mean HOZSL as well). For instance, the unknown

feature generation improves by +1.48%, +1.02% and +0.18% the performance of

WAcWGAN on AWA, CUB and SUN respectively, while considering the HOZSL

metric and the SBUG, DUG + SBUG and DUG techniques, respectively.

Over DUG and SBUG, the former is advantageous over the latter because

it acts directly on the visual space (so that the feature generator has not to be
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AWA CUB FLO SUN
F1U F1S HOZSL F1U F1S HOZSL F1U F1S HOZSL F1U F1S HOZSL

VAcWGAN 50.31% 64.84% 56.66% 45.08% 49.23% 47.34% 47.68% 72.69% 57.59% 38.05% 37.33% 37.68%
VAcWGAN + DUG 51.83% 65.18% 57.74% 45.48% 49.98% 47.63% 46.25% 73.30% 56.71% 33.87% 38.37% 37.68%
VAcWGAN + SBUG 50.62% 68.28% 58.14% 45.59% 51.42% 48.04% 46.01% 69.40% 55.33% 37.65% 38.07% 35.98%
VAcWGAN + DUG + SBUG 51.63% 66.20% 58.01% 45.76% 51.28% 48.36% 47.24% 72.00% 57.05% 34.83% 38.53% 36.59%

Table 4.2: Direct and semantic unknown generation (DUG and SBUG) for the
WAcWGAN model (check Sec. 4.4.2).

AWA CUB FLO SUN
F1U F1S HOZSL F1U F1S HOZSL F1U F1S HOZSL F1U F1S HOZSL

CSLWGAN 52.37% 65.52% 58.21% 47.01% 52.77% 49.73% 48.47% 76.08% 59.22% 36.31% 38.77% 37.50%
CLSWGAN + DUG 57.34% 67.41% 61.97% 47.76% 53.29% 50.37% 49.34% 76.48% 59.98% 36.92% 39.64% 38.23%
tf-VAEGAN 55.49% 71.47% 62.48% 52.24% 56.62% 54.34% 54.78% 80.00% 65.03% 43.00% 41.09% 42.02%
tf-VAEGAN + DUG 60.56% 71.73% 65.68% 51.60% 57.92% 54.58% 54.35% 81.33% 65.15% 46.53% 40.76% 42.10%
CEZSL 51.70% 71.66% 60.07% 39.43% 56.83% 46.56% 39.21% 85.36% 53.74% 33.35% 30.83% 32.04%
CEZSL + DUG 55.76% 71.30% 62.58% 40.52% 57.54% 47.55% 40.26% 85.25% 54.69% 35.17% 30.15% 32.47%

Table 4.3: The effect of direct unknown generation (DUG) applied on three bench-
mark methods: CSLWGAN [2], tf-VAEGAN [3] and CEZSL [4] on the proposed
OZSL splits for AWA [5], CUB [6], FLO [7] and SUN [8] datasets.

re-trained for unknown synthesis, but can be adapted to it). In view of this

consideration, we can apply unknown feature generation to three state-of-the ap-

proaches for ZSL, better tailoring them towards the open ZSL regime. Namely, we

consider the following methods: the Wasserstein generative adversarial network

conditioned on class embeddings (CLSWGAN) [2] and its extension tf-VAEGAN

[3] in which this architecture is paired with a variational auto-encoder to boost the

generation stage. We also considered the usage of contrastive learning as adopted

in CEZSL [4] in tandem with adversarial training. We combine CLSWGAN, tf-

VAEGAN and CEZSL with the direct unknown generation that we presented in

Sec. 4.4.1 and dubbed here “DUG” for brevity. As we show in Table 4.3, the

adoption of DUG is always able to improve in performance all the considered

baseline approaches with respect to the HOZSL metric (e.g ., +3.76% on AWA for

CLSWGAN, +0.73% on SUN for CLSWGAN, +0.99% on CUB for CEZSL and

+3.2% on AWA for tf-VAEGAN). Again, we interpret the consistent improve-

ments that we registered as evidence for the effectiveness of performing unknown

feature generation for Open Zero-Shot Learning.
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4.6 Conclusions and Future Work

In this Chapter, we proposed a novel paradigm, called Open Zero-Shot Learn-

ing, extending traditional ZSL frameworks towards the additional rejection of

unknown categories (neither visually nor semantically described) while still rec-

ognizing seen and unseen classes. Using the experimental protocols and error

metrics that we proposed, our experimental findings suggest that attempting to

synthesize unknown descriptors (to be rejected) seems a viable solution for Open

Zero-Shot Learning.

Future works will be aimed at adopting techniques from out-of-domain gen-

eralization to better achieve the way we explore the semantic/visual spaces while

seeking better strategies to generate the unknown.
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Chapter 5

Conclusion

In this thesis, we introduced the Zero-Shot Learning classification problem and its

different setups. Among the real-world scenarios, where annotating big corpora

of data that are balanced in the classes to be predicted is commonly not feasi-

ble, Zero-Shot Learning analyze the extreme case of them. Zero-Shot Learning

considers two disjoint classes: the seen classes, for which label data are available,

and the unseen classes, for which visual data are not available at all (inductive

Zero-Shot Learning) or available but without annotation (transductive Zero-Shot

Learning). Class embeddings are used to perform knowledge transfer from the

seen to the unseen domain. Class embeddings are class level semantic information

that needs to be shared and discriminative across the classes.

Generative Zero-Shot Learning is a competitive and challenging scenario in

which the model has to balance the performance on both, the seen and the unseen

classes. To address the data unbalance and to avoid the classifier being biased

towards predicting the seen classes, recently, generative approaches have been

proposed.

The generative approaches take advantage of deep generative neural networks

that, conditioned on the class embeddings, produce synthetic labeled data for the
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unseen classes.

We proposed a generative solution focusing on the transductive Generalized

Zero-Shot Learning setup, that is we we can take advantage of unlabeled data.

We propose the decoupled-features generation to alleviate the seen to unseen

domain-shift problem and improve the data generation. With our decoupled fea-

ture generation we improve the control in the two tasks of capturing the domain

distribution and translating the semantic content of the class embeddings into

visual features. We implemented the decoupled feature generation with our Dec-

GAN architecture and achieved with it state-of-the-art performance on different

transductive Generalized Zero-Shot Learning benchmark datasets.

We additionally proposed a further extension of Generalized Zero-Shot Learn-

ing setup that is more competitive and more oriented towards real-world scenarios

and named it Open Zero-Shot Learning. In fact, obtaining the class embeddings

can be as well difficult and costly as for the annotated visual features. Thus,

we removed the constraint of having all the possible unseen classes represented

by the class embeddings. Consequently, we have three set of classes: the seen,

the unseen and the unknown. The seen and the unseen classes are defined as in

Zero-Shot Learning, while the unknown classes are the ones for which we have

neither the visual features nor the class embeddings. The task in Open Zero-Shot

Learning is to correctly classify the seen and the unseen classes while rejecting

the unknown instances. We formalized the problem, proposed publicly available

benchmark datasets and evaluate different baselines. Additionally, we tackled

the problem with novel unseen and unknown synthetic data generation with two

different strategies. In particular we propose and implement with VAcWGAN

our idea of generating unknown class embeddings.
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Appendix A

Supplementary Material for

Chapter 4

A.1 Recent Advances in Visual-Language Mod-

els

Recently, deep visual and language models have been successfully combined for

Zero-Shot transfer through a model named CLIP (Contrastive Language-Image

Pre-training) [121]. Zero-Shot transfer aims at using a pretrained model with

no fine-tune at all on new datasets. To perform Zero-Shot transfer, during the

training, CLIP model learns to maximize the similarity between images and their

corresponding textual description, as for example the description “Pepper the

aussie pup” associated to a picture of an australian shepherd dog-breed puppy

[121]. Since it does not use explicit labels for classification, at inference time a

pre-computed set of descriptions can be created and their embeddings can be

used for classification. For example, if, after training, we want to classify cats

and dogs, we can:
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• construct two fixed descriptions “This is a picture of a cat” and “This

is a picture of a dog”,

• compute the embeddings of the descriptions with the language model,

• compute the embedding of a new images with the visual model,

• classify the images accordingly with the similarity between the embedding

of the image and the embeddings descriptions.

This is similar to what happens in Zero-Shot Learning when a visual features

are compared to the class embeddings in the compatibility function methods

presented in Section 2.5. The main differences is that with their pretraining

it is not required by the model to learn the compatibility between a specific

class embeddings and the visual features on the new dataset. In fact their pre-

training already learns the compatibility between visual and textual features with

the combination of visual and language models. Differently current Zero-Shot

Learning methods rely on visual features extracted from a pure visual model,

thus the compatibility has to be learned and it is achieved using the seen data.

Differently from Zero-Shot learning, this framework does not guarantee the

Zero-Shot Learning assumption that the unseen classes have not been seen during

training. In fact, CLIP model is based on a massive training using 400 million

of images and text pairs collected form a variety of publicly available sources on

the Internet and aims at Zero-Shot transfer on a new dataset thanks to a very

general and extended pre-training.

However, the main idea of this paper is very valuable in Zero-Shot Learning

and worth been investigated and improved. But the joint learning of textual

descriptors and visual features can overcome the major limitations of the currently

used families of class embeddings presented in Section 2.1.1.
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As we presented in the section it is difficult to obtain rich class embeddings

that do not require large human effort in annotation and the idea of computing

rich and inexpensive class embeddings is attractive and relevant for Zero-Shot

Learning and computer vision community due to the possibility to generalize

models to unseen categories.

A first study in producing class embeddings based on textual description for

Zero-Shot Learning is proposed in [25] and presented in Section 2.1.1. However,

while [25] requires very specific textual descriptions, thus difficult to obtain and

limiting its applicability, the pre-training of CLIP is based on very raw and general

description, increasing the computational cost, but allowing learning from a much

wider source of information. In future studies, will be very important to balance

raw and rich descriptions, in fact, as author point out in their work, CLIP model

is very dependent on the availability and the quality of the text and images

pairs and can struggle in fine-grained dataset as FLO [7], that is a standard

benchmark in Zero-Shot Learning, and other fine-grained datasets. I particular

authors point out that the choice and the construction of the textual embeddings

is very important, named by authors as prompt engineering, and can help the

model to achieve better performance. For example “A photo of a {label}’’

can be improved adding additional information as “a type of flower”

Very interestingly, in [129], authors propose to extend the Zero-Shot transfer

problem to an Open Set framework, similarly to what we propose in this thesis for

the Generalized Zero-Shot Learning problem. To address this problem, authors

propose to extend CLIP to manage unknown categories. Since CLIP is trained

to jointly learn visual and textual features, the authors use a text decoder on top

of CLIP image embeddings to generate text. From this generated text, candidate

unknown classes, that is words not belonging to the known ones, are extracted and

new embeddings are created with the same CLIP prompt engineering procedure.
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Thus for every image a set of possible unknown embeddings are created and used

for classification, as well with the known ones. We differently, with VAcWGAN

proposed to generate the unknown class embeddings in the latent space used for

image generation.

A.2 Proposed Splits for Open Zero-Shot Learn-

ing

In this pages, we provide the actual unseen and unknown classes that we consid-

ered for AWA [5], CUB [6], SUN [8] and FLO [7]. In the following tables, 3 will

denote class to be unseen for a given split (representing that the class embed-

ding is disclosed) while 7 denotes those classes for which the class embedding

is not available while visual data are missing as well (i.e., the unknown). For

brevity, we omit from the following tables the list of seen classes (provided of

both visual and semantic data) since this list is overlapping with the seen classes

from the “Proposed Splits” of the survey [17]. We operated this choice to make

our proposed Open Zero-Shot Learning setup complementary to the close-world

setup of generalized zero-shot learning, so that practitioners can gradually shift

towards the open-world regime - handling possibly many unknown classes while

not forgetting neither seen nor unseen ones.

AWA [5]

Class Name unseen

horse 3

blue+whale 3

sheep 7
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seal 7

bat 7

giraffe 7

rat 3

bobcat 3

walrus 7

dolphin 3
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CUB [6]

Class Name unseen

004.Groove billed Ani 3

012.Yellow headed Blackbird 3

023.Brandt Cormorant 3

026.Bronzed Cowbird 3

028.Brown Creeper 3

031.Black billed Cuckoo 7

033.Yellow billed Cuckoo 7

043.Yellow bellied Flycatcher 7

045.Northern Fulmar 3

049.Boat tailed Grackle 7

052.Pied billed Grebe 7

055.Evening Grosbeak 7

070.Green Violetear 3

072.Pomarine Jaeger 7

077.Tropical Kingbird 7

084.Red legged Kittiwake 3

087.Mallard 3

091.Mockingbird 3

094.White breasted Nuthatch 7

097.Orchard Oriole 3

098.Scott Oriole 7

103.Sayornis 7

104.American Pipit 7
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111.Loggerhead Shrike 7

113.Baird Sparrow 3

119.Field Sparrow 3

123.Henslow Sparrow 7

124.Le Conte Sparrow 3

127.Savannah Sparrow 7

130.Tree Sparrow 3

132.White crowned Sparrow 7

136.Barn Swallow 7

138.Tree Swallow 3

139.Scarlet Tanager 3

143.Caspian Tern 7

148.Green tailed Towhee 7

156.White eyed Vireo 7

157.Yellow throated Vireo 3

161.Blue winged Warbler 7

163.Cape May Warbler 7

164.Cerulean Warbler 3

165.Chestnut sided Warbler 7

168.Kentucky Warbler 7

169.Magnolia Warbler 3

173.Orange crowned Warbler 3

180.Wilson Warbler 3

188.Pileated Woodpecker 7

190.Red cockaded Woodpecker 3
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191.Red headed Woodpecker 3

200.Common Yellowthroat 3
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SUN [8]

Class Name unseen

alley 7

archive 7

arena basketball 3

artists loft 3

auditorium 3

ballroom 3

bank vault 3

batting cage outdoor 3

bazaar indoor 7

bazaar outdoor 7

betting shop 3

bog 7

bow window indoor 3

bow window outdoor 3

brewery indoor 7

brewery outdoor 7

bus depot outdoor 7

car interior frontseat 3

casino outdoor 7

chemistry lab 3

church indoor 3

church outdoor 3

doorway indoor 7
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elevator interior 3

excavation 3

exhibition hall 7

field cultivated 3

firing range indoor 7

fishpond 3

galley 3

geodesic dome indoor 7

hangar indoor 7

hoodoo 3

hotel room 7

ice shelf 7

jacuzzi indoor 7

japanese garden 3

lawn 3

monastery outdoor 3

mosque indoor 3

motel 7

observatory outdoor 3

parking lot 3

piano store 7

promenade deck 3

pub indoor 3

racecourse 3

rectory 7
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sandbox 3

savanna 3

ski resort 3

temple south asia 7

theater indoor seats 3

ticket booth 3

trading floor 3

train station platform 3

tundra 7

tunnel road outdoor 3

volleyball court outdoor 3

workshop 3

wrestling ring indoor 7

yard 7

ziggurat 7
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FLO [7]

Class Name unseen

Bird of paradise 7

Balloon flower 7

Artichoke 3

Alpine sea holly 3

Barbeton daisy 7

Bolero deep blue 3

Buttercup 3

Bishop of llandaff 3

Black eyed susan 3

Californian poppy 3

Bearded iris 7

Azalea 3

Anthurium 7

Bee balm 7

Ball moss 7

Bougainvillea 7

Camelia 3

Bromelia 3

Blanket flower 7

Blackberry lily 7
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