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Abstract 

As industrial research in automated driving is rapidly advancing, it is of paramount importance to 

analyze field data from extensive road tests. This thesis presents a research work done in L3Pilot, 

the first comprehensive test of automated driving functions (ADFs) on public roads in Europe. 

L3Pilot is now completing the test of ADFs in vehicles by 13 companies. The tested functions are 

mainly of Society of Automotive Engineers (SAE) automation level 3, some of level 4. The overall 

collaboration among several organizations led to the design and development of a toolchain aimed 

at processing and managing experimental data sharable among all the vehicle manufacturers to 

answer a set of 100+ research questions (RQs) about the evaluation of ADFs at various levels, 

from technical system functioning to overall impact assessment. The toolchain was designed to 

support a coherent, robust workflow based on Field opErational teSt supporT Action (FESTA), a 

well-established reference methodology for automotive piloting. Key challenges included ensuring 

methodological soundness and data validity while protecting the vehicle manufacturers’ 

intellectual property. Through this toolchain, the project set up what could become a reference 

architecture for managing research data in automated vehicle tests. In the first step of the workflow, 

the methodology partners captured the quantitative requirements of each RQ in terms of the 

relevant data needed from the tests. L3Pilot did not intend to share the original vehicular signal 

timeseries, both for confidentiality reasons and for the enormous amount of data that would have 

been shared. As the factual basis for quantitatively answering the RQs, a set of performance 

indicators (PIs) was defined. The source vehicular signals were translated from their proprietary 

format into the common data format (CDF), which was defined by L3Pilot to support efficient 

processing through multiple partners’ tools, and data quality checking. The subsequent 
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performance indicator (PI) computation step consists in synthesizing the vehicular time series into 

statistical syntheses to be stored in the project-shared database, namely the Consolidated Database 

(CDB). Computation of the PIs is segmented based on experimental condition, road type and 

driving scenarios, as required to answer the RQs. The supported analysis concerns both objective 

data, from vehicular sensors, and subjective data from user (test drivers and passengers) 

questionnaires. The overall L3Pilot toolchain allowed setting up a data management process 

involving several partners (vehicle manufacturers, research institutions, suppliers, and developers), 

with different perspectives and requirements. The system was deployed and used by all the relevant 

partners in the pilot sites. The experience highlights the importance of the reference methodology 

to theoretically inform and coherently manage all the steps of the project and the need for effective 

and efficient tools, to support the everyday work of all the involved research teams, from vehicle 

manufacturers to data analysts. 

Keywords:  Automated Driving, Consolidated Data Base, Data Sharing and management, 

Confidentiality 
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1. Introduction 

Automated driving (AD) is a hot topic for research both at academic and industrial level [1–

5]. Particularly, there is a growing effort towards validating automated driving functions (ADFs) 

[6–10]. In this context, analyzing field data from extensive road tests is of paramount importance 

to guarantee effectiveness of AD and assess its impact. 

The L3Pilot project, which is introduced in section 1.1 and in which context this thesis has 

been made, aimed to analyze data from extensive road tests to guarantee effectiveness of AD and 

assess its impact. It thereby developed a toolchain to support an efficient workflow for AD data 

processing and sharing among different vehicle owners (i.e., car manufacturers and suppliers who 

prepared prototype vehicles used in the pilot sites).   

Vehicle owners involved in L3Pilot performed the driving test on different road types in 

different countries, logging a huge amount of data. The researchers in L3Pilot generated a list of 

100+ research questions (RQs) to assess the impact of ADFs at various levels: technical system 

functioning, user acceptance, traffic and mobility and societal level [11]. These questions had to 

be quantitatively answered based on the data collected in the project.  

The FESTA Methodology [12] (presented in chapter 3) details all the steps for pilot 

management. However, to the best of our knowledge, specific tools that support daily activities of 

data management as data logging, synthesis, and querying (and with specific requirements in terms 

of confidentiality and data quality check) are not available in the state of the art. The idea was, 

thus, to develop an ad-hoc toolchain.  

There was a need to support homogeneous workflow by many project partners, such as vehicle 

owners, research institutions, suppliers, and developers, with different perspectives and 
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requirements. Data confidentiality was at stake and the proprietary data were of different types: 

objective (vehicular data), and subjective (user data). Overall, there was the need to process the 

source automotive data to obtain quantitative information that answer RQs considering several 

factors such as different experimental conditions, driving context i.e., road types (motorway, urban, 

parking), and driving scenarios.  

To face these challenges, L3Pilot designed and deployed a data toolchain able to support the 

different types of actors to perform efficiently their tasks.  

To allow homogeneous and efficient processing of data from heterogeneous proprietary 

sources, L3Pilot defined a common data format (CDF), onto which all the source signals were 

mapped. The Common Data Format (CDF) has been released open source, and this is a 

fundamental resource for the research community in ADFs study and assessment [13]. 

L3Pilot also defined performance indicators, which are statistical summaries of the signals 

computed in meaningful intervals of a trip (i.e., the driving scenarios, beside the whole trip). A key 

novelty introduced by L3Pilot is the use of the consolidated database (CDB), a cloud system 

sharing all the performance indicators collected through the project’s pilot sites. The overall data 

toolchain was deployed and used by vehicle owners and related partners (for raw data processing, 

check, and insertion to the CDB). Ultimately, a set of industrial psychology and sociology 

researchers have used the toolchain on a daily basis, who are responsible for assessing the impact 

of AD based on the pilot data. 

The toolchain has been developed by the partners for L3Pilot project and will be exploited 

and extended in future collaborative projects, according to the availability of the partners. 
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Information about the design, deployment and testing of the toolchain has been published in some 

journal [14,15] and conference [16] articles  and in this thesis. 

As the University of Genoa is one of the partners who contributed to the development of the 

toolchain, the thesis will give an overview of the overall system, with specific attention onto those 

modules to which the candidate mainly contributed.  

1.1 The L3 Pilot Project 

Automated driving represents a highly challenging technological domain, with a huge amount 

of research being carried out in the field (e.g., [17–19]). Over the years, many projects paved the 

way to introduce the AD to the market [20–22]. In this pre-competitive industrial research context, 

L3 Pilot performs extensive on-road testing of automated driving functions (ADFs) of SAE levels 

three (L3) and four (L4) [23]. Thereby, it exposes AD to mixed traffic environments: high speed 

motorway, traffic jams, urban and parking along different road networks. The main objective of 

the project is to check that the AD performance is consistent, reliable, and predictable. Additionally, 

it assesses the user acceptance and interaction with AD deployed systems [24,25]. The L3Pilot 

consortium brings together different partners, including original equipment manufacturers (OEMs), 

suppliers, research institutes, infrastructure operators, governmental agencies, insurance sectors, 

and user groups.  

OEMs partners are the following: 

• Volkswagen AG (coordinator) 

• Audi AG 

• BMW AG 
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• Centro Ricerche FIAT 

• Ford 

• Groupe PSA 

•  Groupe Renault 

•  Honda R&D Europe 

• Jaguar Land Rover 

• Mercedes-Benz AG 

• Opel Automobile GmbH 

• Toyota Motor Europe 

• Volvo Car Corporation. 

 Research institutes comprise: 

• BAST - the Federal Highway Research Institute 

• DLR - German Aerospace Center 

• ICCS - Institute of Communication and Computer Systems 

•  IKA - Institute for Automotive Engineering at RWTH Aachen University 

• SAFER - Vehicle and Traffic Safety Centre at Chalmers 

• SNF - Centre for Applied Research at NHH 

• TNO - Netherlands Organization for Applied Scientific Research 

• University of Genova 

• University of Leeds 

• VTT Technical Research Centre of Finland 

• WIVW - Würzburg Institute for Traffic Sciences GmbH 
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• WMG - University of Warwick. 

Suppliers are: 

• Aptiv 

• FEV GmbH 

• Veoneer 

Small and Medium Enterprises (SMEs): 

• ADAS Management Consulting and European Center for Information 

• European Center for Information and Communication Technologies GmbH 

Insurers: 

• AZT Automotive GmbH 

• Swiss Reinsurance Company 

Authorities: 

• RDW - Netherlands Vehicle Authority 

User Group: 

• FIA - Fédération Internationale de l’Automobile 
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Figure 1-1 L3Pilot structure [25] 

Figure 1-1 illustrates the structure of the project with all its sub-projects (SP) [25]. SP3 

(“Methodology”) defined and managed the project methodology, and defined a list of research 

questions (RQs) to assess the impact of ADF in four key areas such as: (I) technical performance 

of the tested L3 ADFs, (II) user acceptance and behavior, (III) impact on traffic and mobility and 

(iv) societal impacts (see [11]). SP4 (“Pilot preparation and support”) and SP6 (“Piloting”) 

developed experimental procedures to collect required data to answer the RQs, and a robust 

evaluation plan to ensure that reliable and valid results are achieved from the pilot testing [25]. 

SP7 (“Evaluation”) performs the data evaluation and analysis. SP5 (“Pilot tools and data”) 

developed robust methodologies and tools to define and collect required data to answer the RQs. 

The University of Genova participated in SP5 and SP6.  
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1.2  Outline of the Thesis 

The remainder of the thesis is organized as follows.  Chapter 2 analyzes literature to draw the 

relevant state of the art.  Chapter 3 describes the reference methodology targeted and applied in 

L3Pilot.  Chapters 4 and 5 go in details of the developed data toolchain, considering objective (i.e., 

vehicular) and subjective (i.e., from test users) data.  Chapter 6 focuses on the deployment of the 

toolchain in the project’s pilot sites. Chapter 7 draws the final conclusions on the presented work. 
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2. Literature Review  

Computer-aided solutions are crucial in automated driving development [26]. In this context, 

technological solutions are needed to deal with big data to manage knowledge and support 

development of effective solutions for mobility [27]. 

The remainder of this chapter is dedicated to analyzing some key fields related to the L3Pilot 

research, such as: management and sharing of big data in collaborative projects, methodologies 

for automotive piloting, and driving scenario representation. 

2.1 Big Data in Automotive Projects  

Data acquisition and telemetry are key factors for quality and performance in vehicle 

development and management [28]. The euroFOT project already used small built-in devices with 

flash storage and GPRS network connection to remotely track and upload data during field 

operational tests (FOT) [29].Recently, connectivity has been introduced in automotive production 

series, making vehicles highly mobile nodes in the Internet of Things (IoT) paradigm. In this 

context, [30] presents the Common Vehicle Information Model as a harmonized data model, 

allowing a common understanding and generic representation, brand-independent throughout the 

whole data value and processing chain. 

Since the volume of the data collected from vehicles using telematic services can be very high, 

we need to design scalable and efficient systems and frameworks. [31] explore the opportunities 

of leveraging Big Automotive Data for knowledge-driven product development, and to present a 

technological framework for capturing data from connected vehicles and analyzing them online. 
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Concerning the data format, [32] describes an approach to combine standards specified for the 

automotive test data management with the widely used Unified Modelling Language (UML). The 

Here company, purchased by a consortium of vehicle owners, developed the HD Live Map 

comprising a road centerline model and a lane model, enriched with other attributes. They used 

the Google’s Protocol Buffer data format to describe the schema of their data model [33]. [34] 

implemented an encoding solution for point cloud Lidar big data in the Hadoop distributed 

computing environment based on the Google Protocol Buffers framework. The Google Protocol 

Buffers format is binary, compact, highly versatile (so adaptable to any change in structure), and 

supported by multiple languages as Python, Java. However, it is not supported by some others as 

MATLAB.  

2.2 Data Sharing in Collaborative Projects 

Literature is rich of papers on privacy and risk management in projects. For instance, [35] deal 

with Risk Assessment in Multi-Disciplinary Engineering Projects, [36] with privacy risks when 

sharing data on information systems. Furthermore, [37] investigates the validity of sharing 

privacy-preserving versions of datasets. They propose a Privacy-preserving Federated Data 

Sharing (PFDS) protocol that each agent can run locally to produce a privacy-preserving version 

of its original dataset. The PFDS protocol is evaluated on several standard prediction tasks and 

experimental results demonstrate the potential of sharing privacy-preserving datasets to produce 

accurate predictors. In addition, [38] provides an extensive review of data analytic applications in 

road traffic safety, with particular attention to crash risk modelling.  
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Furthermore, [39] deals with integrating diverse knowledge through boundary spanning 

processes, with a particular focus on multidisciplinary project teams. The concept of a Project 

Consortia Knowledge Base (PC-KB) is presented in [40] in an integration framework based on 

semantic knowledge that facilitates project-level communication as well as access to project data 

across tool and partner boundaries. Commercial companies (e.g., Amazon, Microsoft, Google) 

have established efficient cloud ecosystems for data management providing very powerful services, 

but they rely on proprietary technologies, with very limited interoperability and development 

opportunities for third parties. However, we could not find in the literature guidelines on how to 

exploit these cloud technologies to support project partners in processing big data to address 

quantitative research questions. 

2.3 Methodologies for Piloting Projects 

In recent years, several field operational tests (FOTs) have been executed to test new 

Advanced driver-assistance systems (ADAS) involving thousands of drivers (e.g., euroFOT 

[29,41]). With a view to ensure scientific soundness, the Field opErational teSt supporT Action 

(FESTA) project developed a methodology for field operational tests (FOTs), with three main 

focuses: user, vehicle, context [42]. This methodology is described in the FESTA Handbook which 

has been frequently updated according to the latest lessons learned [12]. The FESTA handbook 

records lessons learned and provides best practices collected in several European FOTs in the last 

ten years. L3Pilot decided to adapt this methodology to suit the needs of a real-world piloting of 

automated driving systems which are at an earlier technology readiness level [43]. As 

methodologies used to evaluate Field Operational Tests (FOTs) lacks guidance about assessing the 
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impact of automated driving on users’ behavior and acceptance. L3Pilot used new methods to 

collecting data during an automated driving pilot [44]. As an example of such studies, [45] 

investigated the public acceptance of SAE level 3 automated passenger cars through filled 

questionnaires among 8,044 car-drivers in seven European countries.  

Several collaborative industrial research projects have been conducted in Europe addressing 

the first levels of automated driving. The AdaptIVe project developed several functionalities 

providing various levels of driver assistance, such as partial, conditional, and high automation 

[21,46]. Drive C2X investigated cooperative awareness, which was enabled by periodic message 

exchange between vehicles and roadside infrastructure [47,48]. The FOT-Net Data project 

provides hands-on recommendations for sharing data of transport research [49].  

2.4 Driving Scenarios 

Validating and verifying the correct functioning of automated driving systems is a 

fundamental challenge. High number of possible traffic scenarios arise from varying 

environmental conditions and unusual and complex situations [33]. A conventional validation 

process requires the development of new testing procedures. [50] estimated that testing an 

automated driving function for highways requires 6.6 billion kilometers of driving to statistically 

undercut the currently expected distance between two fatal accidents. Thus, [51] presented a 

generic simulation-based toolchain to identify critical scenarios. PEGASUS project [52] designed 

6-Layer Model for describing highway logical scenarios [53],[54]. It defined functional, logical, 

and concrete scenarios for the simulation-based tests [55], using standards like OpenDRIVE [56] 

and OpenSCENARIO [57]. However, a concern when developing a scenario framework based on 
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data without incorporating knowledge is that only the scenarios that exist in the dataset are 

detectable [54]. Nevertheless, we needed to design and implement algorithms to detect driving 

scenarios along the ego vehicle’ trip based on the definitions given in the previous projects. 

 

As a concise outcome of the literature review, we can observe that several industrial research 

projects have addressed the AD challenges in these years. However, L3Pilot required extensive 

piloting in several sites with a huge number of vehicles, manufacturers, drivers, and conditions to 

quantitatively assess various types of impacts of AD functions. The FESTA methodology, detailed 

in the next chapter, was chosen for quantitatively addressing the RQs defined by L3Pilot. Thus, 

developing a custom toolchain was crucial to implement and support the daily activities required 

by the FESTA methodology for L3 ADFs, and for all the project partners. 
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3. Methodology and Requirements 

This chapter overviews the methodology developed by L3Pilot SP3 (“Methodology”), for which 

efficient application L3Pilot researchers and developers (among them, the candidate) developed 

the data toolchain, that will be described in the following chapters 4 and 5. The methodology relies 

on Field opErational teSt supporT Action (FESTA) [12], which details how to deal with the various 

activities to be performed in an automotive piloting project.  

3.1 FESTA Methodology 

A fundamental step in managing a complex automotive piloting project, combining human 

and technological aspects, is given by the definition of the methodology, which shapes all the 

phases of a FOT project. As several FOTs have been conducted in Europe in recent years, the 

FESTA methodology has established itself as a reference [42], [58]. The FESTA approach gives 

general guidance on organizational issues, methodology and procedures, data acquisition and 

storage and evaluation for FOTs. FESTA covers the whole process of planning, preparing, 

executing, analyzing, and reporting a FOT. The steps that need to be carried out during a FOT are 

graphically presented in the form of a V diagram, where a correspondence links the preparation 

layers on the left-hand side and the evaluation layers on the right-hand side. 

Figure 3-1 shows the L3Pilot implementation of the FESTA methodology [11][59]. The left 

side of the V descends from definition of functions and use cases, down to research questions and 

hypotheses, performance indicators and measures, data collection tools and pilot site set-up. The 

bottom of the V is the “use” pillar in the FESTA methodology and denotes “drive” in L3Pilot i.e., 
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the data acquisition during tests. In L3Pilot, the drive phase consists of two parts: pre-tests, that 

we define as pre-pilots, and tests, that we define as pilots. The pre-tests period takes place before 

large-scale user tests can safely begin. During pre-testing, e.g., function performance is honed, and 

data collection processes are tested. Traditionally, in FOT terminology, the pre-testing would be 

called piloting. Finally, the right-side rises mirroring the left side: data processing, data analysis to 

answer research questions on technical performance, user acceptance and behavior, impact on 

traffic and mobility, up to societal impacts. The methodology allows considering, at different levels, 

the point of view of different stakeholders, such as politics, industry, and research.

  

Figure 3-1 L3Pilot Methodology overall structure [11] 

Data are in the core of the methodology and pivot on assessment. Consequently, we needed 

to design an effective and supportive toolchain for collecting the data along testing and assessment 
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phases. To assess the impact of ADF, the l3Pilot, the L3Pilot analysis, based on FESTA, is driven 

by a set of research questions (RQs) and hypotheses that have been published in the L3Pilot 

deliverable [11]. Section 3.2 delineates these research questions with an example of logging 

requirements for a hypothesis.  

3.2 Research Questions for L3Pilot  

The RQs for all impact areas in the L3Pilot project were generated by L3Pilot SP3 

“Methodology” [1] through the top-down approach recommended by the FESTA Handbook [12]. 

The process began with a review of the descriptions of automated driving functions (ADFs) that 

were going to be piloted during the project. Therefore, in the early stages, only high-level RQs 

(Levels 1 and 2 in Table 1 example) were defined, to meet the project objectives.  
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Table 1 An example of how logging requirements were defined per hypothesis [11] 

Item Example 

Evaluation area Technical &traffic 

RQ level 1 What is the impact of the ADF on driving behavior?  

RQ level 2 What is the impact of the ADF on driven speed in different scenarios? 

RQ level 3 What is the impact of ADF on driven speed in driving scenario X? 

Hypothesis  e.g., 1: There is no difference in the driven mean speed for the ADF compared 

to manual driving. 

e.g., 2: There is no difference in the standard deviation of speed for the ADF 

compared to manual driving. 

Required 

performance 

indicators 

Mean speed, standard deviation of speed, max speed, plot (speed/time) 

Logging 

requirements/sensors 

available 

CAN bus of vehicle: Ego speed in x-direction  

 

In such a top-down approach, the generation of the RQs and hypotheses is based typically on 

theoretical understanding of the mechanisms that influence the different impact areas. The RQs 

were simply based on literature and the experience of the project members in previous, related 

work. The generation of the first (higher) level of research questions was structured according to 

the four L3Pilot evaluation areas. The second stage involved the development of more detailed 

RQs related to specific components of the higher-level questions, where appropriate. For each RQ, 
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the underlying hypothesis is then made explicit. Table 1 provides an example in the Technical and 

Traffic area. 

In line with the FESTA Handbook, the next steps after generation of the hypotheses concerned 

the definition of the relevant performance indicators and of the logging needs related to them. Here, 

we differentiated the subjective and objective data [7]. Questionnaires would collect subjective 

data across test participants (drivers and possible passengers), and objective data would be 

collected mostly from the data loggers of the test vehicles, additional cameras installed on them, 

and, when necessary, from external data sources (e.g., weather information, road type, etc.) [24].    

provides an overview of the RQ definition and implementation workflow. 

3.3 Vehicular Data  

According to the developed methodology, L3Pilot (particularly, SP3, 5 and 7) had to define 

the source vehicular signals, the derived measures (DMs) (that are intermediate, domain-

significant values useful for the computation), and performance indicators (PIs), to be shared from 

all the pilot sites to provide a quantitative basis for answering the project research questions. The 

overall analysis led to the definition of a set of signals to be provided by all the vehicle owners 

[24]. Beside the standard vehicular signals (e.g., speed, acceleration, pedal activity, etc.), source 

data also come from automated driving sensors, such as cameras, Light Detection, lidars, and 

radars.  

Table 2 shows the four types of PIs defined by L3Pilot as sharable data in the CDB [15]. The 

table reports only two Datapoint types, as examples since there is one datapoint type for each 

driving scenario type. 
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Table 2 An overview of the L3Pilot performance indicators (PIs) types [15] 

PI Types Description Example of PIs 

Trip PI PIs computed at trip level. Mean of longitudinal acceleration, 

percentage of time elapsed per driving 

scenario type.  

 

Scenario specific Trip PI PIs computed at trip level but 

only when a specific driving 

scenario occurs. Example of 

driving scenarios, described 

later, are: Driving in a traffic 

jam, Lane change. 

 

Mean of duration of sections with speed 

lower than a threshold 

Scenario instance PI PIs computed for each instance 

of a driving scenario. The same 

PIs are computed in each type of 

scenario. 

 

Mean of time headway, mean position in 

lane  

Datapoint for a Following 

a lead vehicle scenario 

Datapoint PIs are computed for 

each instance of a driving 

scenario. Different types of 

scenario have a different 

datapoint structure. Here we 

report two examples. Datapoints 

are used as input for the impact 

assessment by either simulating 

driving scenarios or constructing 

artificial scenarios based on 

statistical analyses of scenarios 

encountered during piloting. 

Mean of relative velocity, Time headway 

at minimum time to collision 

Datapoint for 

Approaching a traffic jam 

scenario 

Vehicle speed at brake or steering onset, 

Longitudinal position of object at brake 

or steering onset 

 

PIs are typically constituted by statistical aggregations (e.g., avg/std/min/max) in significant 

intervals of a trip. Two PI types are computed at trip level: while Trip_PIs are general indicators 
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synthetizing a trip, ScenarioSpecific_TripPIs are computed aggregating trip segments from a 

specific scenario only. The other two PI types (namely, ScenarioInstance_PI and Datapoints) are 

much more specific, as they are computed for each instance of a given driving scenario detected 

during a trip.  

Datapoints are defined to be utilized as feeds to further impact analysis. Not only, in fact, does 

L3Pilot capture a snapshot of how automated driving technology is and looks like today. It also 

scales up the detailed findings from log and survey data with various tools, such as macroscopic 

simulations and transparent stepwise calculations, to estimate higher level impacts of automated 

driving. Key performance indicators were thus defined by L3Pilot for each driving scenario type 

in order to enable also simulation studies for impact analysis. 

Several research questions required to analyze context data beyond the actual vehicular signals 

and questionnaire answers. Context data were useful, particularly to segment information so to 

allow comparisons and more focused analysis. Among context data we highlight:  

• Experimental conditions. Different conditions must be considered, such as: baseline, 

ADF not available, ADF off, ADF on.  

• Road types. Tests are performed on various road types, such as: motorways, major 

urban arterials, other urban roads.  

• Driving scenarios. The system must track different types of driving scenarios, that are 

typical driving situations, such as uninfluenced driving, lane change, lane merge, 

following a lead vehicle, etc. Scenarios are computed by the L3Pilot data toolchain, 

processing the vehicular time series. 
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So, Trip PIs are to be computed in different segments, based on the actual experimental 

condition (i.e., baseline, ADF off, ADF on) and road type; and Scenario Instance PIs, alike, are to 

be segmented not only based on the scenario type itself, as per definition, but also considering the 

different experimental conditions and road types. Other metadata were mandated as well, such as 

driver type (professional or ordinary), temperature and speed limits to better characterize the 

context of each PI measurement. 

3.4 Subjective Data 

A complete assessment of ADF functions requires processing subjective data as well. 

Subjective data include information collected from participants at the various pilot sites through 

questionnaires (the complete version of the questionnaires is available in [60]). L3Pilot defined 

questionnaires for three different types of settings (driving environments and relevant ADF types): 

motorway and traffic jam, urban and parking.  

The first part of the questionnaires includes background information, i.e., sociodemographic 

questions, vehicle use and purchasing decisions, driving history, in-vehicle system usage, activities 

while driving, trip choices and mobility patterns. The data collected in the first part were used to 

create different user groups for the user and acceptance evaluation. 

The second part of the questionnaires concerns the ADFs. For example, these questions assess 

various aspects of participants’ initial reactions to using the ADFs. 

Finally, the last section is an optional section to evaluate the users’ performance during take-

over situations in the traffic jam / motorway and urban on-road tests. 
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 When conducting studies across multiple sites, it is essential that any data collection 

methodologies are applied uniformly. For example, the pilot site questionnaires are administered 

across all pilot sites, which vary in many respects (e.g., country language), but most relevant here 

is the interexperimental variability.  

To minimize the effect of this variability on the quality of the data in L3Pilot, specific 

requirements for a common questionnaire management tool at the project level were defined. 

Basically, these requirements include:   

• Conditional questions routing i.e., skip logic. Some questions appear or not 

depending on previous responses by the test user. 

• Multi-language support. 

• Different devices. The tool must support inputting data from desktop, tablets, and 

mobile devices. 

• Illustrative multimedia material support. 

• Off-line surveying. Beside supporting online questionnaires (filled with tablets, 

phones, or other devices), the tool should consider an offline (i.e., paper-based) user 

inputs at the various test sites. 

• Data export of responses in different formats as XLS, csv, SPSS, xml, and pdf. 

• Questionnaires export to reduce the work in case different installations were needed. 

• Information/development support. 

• Simplicity of use. 

• System integration (e.g., keeping contact with users through e-mails). 

• Support for different user roles (administrator, respondents, manager). 
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• Support for adding jQuery scripts for customized types of questions. 

3.5 Confidentiality 

Along the project, a major focus was on the confidentiality side, which involved significant 

discussions in SP 3 (“Methodology”), 5 (“Pilot data and tools”) and 6 (“Pilot”). The consortium 

decided to not share any private data as trip Ids, user Ids and sociodemographic. It was also decided 

that data should be pseudonymized before uploading to the CDB and sharing among the partners. 

The CDB toolchain aggregates data from several sites in such a manner that commercially 

sensitive information is protected. Beside protecting the privacy of manufacturers, it is also 

necessary the shared data must describe the impacts of automated driving. The merging of data 

from different sites corresponds to the fact that the L3Pilot results should not represent the impact 

of single (OEM)-specific ADFs, but the generic impacts that can be expected once these systems 

are introduced to the road [14].  

A key point concerned the harmonization of the conflicting need for having IDs within the 

CDB (to avoid duplicates and misses) and for protecting vehicle owner confidentiality and driver 

privacy. To solve this issue, SP5 (“Pilot tools and data”) decided to apply pseudonymization (or 

de-identification) to the trip and test participant IDs. Pseudonymization allows identifying entities, 

but only by the owner of the data (the vehicle owner, in the L3Pilot case), who is the only one 

knowing the created pseudonymized ID.  

The pseudonymized ID is an 8-character string, obtained through a simple procedure, based 

on SHA-256 hashing. Source information (e.g., driver name, date of birth, trip place, vehicle owner, 

etc.), integrated with a secret word for “salting”, is processed through a deterministic hash function 
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(e.g., SHA-256), that generates a 64-character identifier [61]. For the purposes of L3Pilot, it was 

sufficient to extract the left-most 8 characters of the 64-character string to have the driver ID and 

the trip ID. This way, there are still enough unique combinations with sufficiently low collision 

probabilities. 

In summary, the consortium defined four key requirements for confidentiality, to apply when 

sharing data to the CBD:   

• Stored data should not allow tracing back the original test site. For instance, attention 

was paid to exclude metadata, such as temperature, speed limit and date, that may 

lead to reveal the location of the pilot site.  

• IDs (of the trip and of test participant) should be pseudonymized. 

• The personal data about the driver, passengers or test participants are not shared to the 

CDB.  

• The behavior of the single ADF implementations should not be detectable/rebuild. 

This was achieved by the fact that vehicular sensor data are not uploaded to the CDB 

as time series but as summarized performance indicators, which are described later.  
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4. Objective Data Processing Tool Chain  

This chapter describes the architecture and the design of the data processing toolchain 

implemented by L3Pilot, showing examples of algorithms designed to implement this workflow. 

The chapter focuses on the modules to which development the candidate contributed. A more 

complete description of the toolchain can be found in [56] and [68]. The CDB framework will be 

described independently in Chapter 5.  

The data toolchain was developed by SP5 (“Pilot tools and data”), particularly these partners: 

Institut für Kraftfahrzeuge (IKA) RWTH Aachen University, Jaguar Land Rover, Chalmers 

University of Technology (SAFER), VTT Technical Research Centre of Finland, TNO - 

Netherlands Organization for Applied Scientific Research, Ford, FEV Gmbh, Institute of 

Communication and Computer Systems (ICCS), University of Genova. 

The specific contribution of the candidate to the modules presented in this chapter is 

summarized in Table 3. 

Table 3 Contribution of the candidate to the developed module within SP5 

Module Role of the Candidate 

Common Data Format   Only contributed to the discussions within SP5 

Data Conversion Tool  Independently tried to code and test a conversion tool on MATLAB to have 

more experience and efficient discussion on how to convert and store data into 

HDF5. 

Data Post-processing 

and Enrichment - DMs 

and Driving Scenarios 

Contributed to the computing of some DMs and driving scenarios, particularly 

the ones presented in the subsection 4.3 
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4.1 Overall Data Management Workflow 

L3Pilot defined a multi-layer data processing workflow, beginning with raw data acquisition 

from the vehicles and ending with the analysis of the shared data [62,63]. 

 

Figure 4-1 High level schema of the overall L3Pilot data management architecture [62,63] 

Figure 4-1 highlights four layers characterizing the L3Pilot data processing workflow. The 

left-most one is the vehicle owner layer, involving proprietary data logged from the vehicle. 

Filtered data, according to the vehicle owner confidentiality requirements and policies, are then 

converted to the CDF, to tackle the variety of proprietary data sources. Afterwards, data are post-

processed to enrich vehicular signal time series of a single trip with computed derived measures 

(DMs) and detected driving scenarios. These measures are fundamental for the computation of the 

CDB PIs (See chapter 5). Selected partners (one selected partner for each vehicle owner) support 

data owners to execute the scripts for extracting indicators and events and to verify their data 



26 

 

‘quality running the video annotation, data quality checking tools. Nonetheless, such partners are 

also consulted on test procedures, analysis of signal quality and verification of driving. 

4.2 Data Conversion to a Common Format and Storage in HDF5 

A key point in the project concerned the processing and the analysis of data from a variety of 

heterogeneous sources and with a variety of tools. Thus, a fundamental design choice was to define 

a common format to be agreed and shared by all the project partners. SP5 (“Pilot tools and data”), 

particularly JLR, IKA-RWTH Aachen Univ., Chalmers Univ., VTT, defined the L3Pilot Common 

Data Format (CDF), which makes it possible to use a comprehensive toolchain for all analysis 

steps, following the transfer of data from the vehicle owner up to the delivery to analysts. 

From a methodological viewpoint, the format emerged as a combination of a bottom-up 

approach, stemming from the need to include all the signals necessary to answer the project’s RQs, 

and of a top-down approach, due to the need for generalizing and abstracting the data structure for 

future projects. 

The first step in the data management chain consists of logging raw data, in a proprietary 

format, from the vehicular communication buses. Logged data are then converted in the L3Pilot 

CDF. Conversion is done through MATLAB, Python or C++ scripts. This conversion module, 

developed by IKA RWTH Aachen University, produces one file for every test trip. The file contains 

all the information related to that trip, apart from the videos recorded by the several cameras 

installed in the vehicle (front camera, driver face and upper body, driver hands, driver feet).  

L3Pilot SP5 (“Pilot tools and data”) decided to store the CDF data in HDF5 [64], a binary file 

format characterized by its ability to contain and compress large and complex structured data [65]. 
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HDF5 also includes a data model and software libraries for storing and managing data. Through 

the compression, HDF5 enables portability, so facilitating the transfer of large amounts of data. 

HDF5 supports various programming languages, one of them being Python, which is important 

for exploiting the rising potential within artificial intelligence (e.g., for automatic scene detection 

and video data annotation). An .h5 file can be extracted to a set of .csv files and, vice-versa, several 

tables (or .csv files) can be combined into one .h5 file. The benefit over. mat is in the wider 

selection of supported tools. 

  

Figure 4-2 The different groups of data inside the HDF5 file 

The data inside the HDF5 file are saved in hierarchical data structures. They are grouped in 

six datasets, illustrated in Figure 4-2. The main signals of the ego vehicle, such as its speed, 

acceleration and brake pressure are stored in the “egoVehicle” dataset. The “laneLines” dataset 

saves information about the lane markings, e.g., the distance to the lane markings and their type 

and the curvature. Dynamic objects surrounding the ego vehicle and their properties, such as speed 

and distance, are saved in the “objects” dataset. The objects can be trucks, pedestrians, bicycles or 
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vehicles and the “objects” dataset contains information on them like their lateral and longitudinal 

position with relative to the ego vehicle, their classification etc. 

The “positioning” dataset contains information (from a global navigation satellite system 

(GNSS), e.g., GPS) about the position and heading of the vehicle and the number of satellites. The 

“metadata” dataset contains context information about the trip, such as the driver type, passengers, 

vehicle length and width, timing, and experimental condition (test or baseline, fuel type). 

As it is important to capture information about the external environment to know under which 

conditions the ego vehicle was tested, two important external data sources were identified for 

L3Pilot: weather and map information. Weather information can be provided by various weather 

services and is about temperature, precipitation, and cloud coverage. Map data provides 

information about the number of lanes, speed limits or intersections. These data are saved in the 

“externalData” dataset and grouped hierarchically under the “map” and “weather” subgroups.  

In each dataset, each signal timeline (listed in columns) is recorded with a 10 Hz sampling 

frequency. For each signal, the CDF specifications mandate units, resolution, range of values or 

enumeration, required frequency, data type and interpolation method (linear or zero-order hold). 

L3Pilot has released the CDF as open source [13]. To the best of our knowledge, this is the 

first time that such a big automotive consortium defined and released as open source a common 

data format for processing information about automated driving. 

4.3 Data Post-Processing and Enrichment  

A fundamental processing step, after conversion in the CDF, is represented by data enrichment. 

This involves the processing, through MATLAB scripts, of the data present in an HDF5 file, to 
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obtain additional information, particularly related to the project RQs. L3Pilot SP5 (“Pilot tools and 

data”) specified three main clusters: Derived measures (DMs), driving scenarios and performance 

indicators (PIs). The first two are described in the following sub-sections, while PI definition will 

be presented in section 5.1, about the Consolidated Database, since PIs are the statistical 

measurements extracted from the automotive signals to be stored in the CDB.  

4.3.1 Derived Measures 

The derived measures (DMs) are time-series data computed from the collected raw signals. 

Examples of DMs include the time headway, the time to collision TTC, longitudinal distance 

between in-front object and ego vehicle, and others. Once computed, the DMs are stored in the 

“DerivedMeasures” HDF5 dataset, which is added to the original HDF5 file structure. 

DMs aim to enrich the dataset by computing compound values useful for the detection of the 

driving scenarios and the computation of the PIs. DMs were defined and formalized during several 

workshops among SP3 (“Methodology”), SP5 (“Pilot tools and data”) and SP7 (“Evaluation”) 

partners. The main contribution on DMs was by IKA and Jaguar Land Rover. Table 4 shows the 

DMs implemented in MATLAB by the candidate.  
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Table 4 Examples of some computed derived measures DMs in the data processing toolchain 

Measure Description Mathematical Definition 

Longitudinal 

distance to rear 

vehicle 

The longitudinal Distance 

between the rear object and the 

rear bumper of the ego vehicle. 

 

𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑅𝑉 
=  𝐿𝑜𝑛𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑅𝑉 
−  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐸𝑔𝑜𝑅𝑒𝑎𝑟𝐵𝑢𝑚𝑝𝑒𝑟 

(1) 

Take Over Time The time interval between 

takeover request (TOR) and 

first driver-initiated 

intervention. The intervention, 

is defined as the first conscious 

input, either braking or 

steering [66]. 

𝑇𝑎𝑘𝑒𝑂𝑣𝑒𝑟𝑇𝑖𝑚𝑒
= time(𝑀𝑎𝑛𝑢𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛)
−  time(𝑇𝑂𝑅) 

(2) 

𝑀𝑎𝑛𝑢𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛(𝑖)

= {
𝐻𝑎𝑛𝑑𝑠𝑂𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 > 0 ||  

𝐵𝑟𝑎𝑘𝑒𝑃𝑒𝑑𝑎𝑙𝑃𝑜𝑠 > 0 ||
𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑃𝑒𝑑𝑎𝑙𝑃𝑂𝑠 > 0

 

(3) 

Longitudinal 

Distance Lead 

Object 

The longitudinal distance 

between lead (in-front) object 

and the ego vehicle (Figure 

4-3). 

𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑙𝑒𝑎𝑑𝑜𝑏𝑗𝑒𝑐𝑡

=  𝐿𝑜𝑛𝑔𝑃𝑜𝑠𝑙𝑒𝑎𝑑𝑜𝑏𝑗𝑒𝑐𝑡

−  𝐹𝑟𝑜𝑛𝑡𝐵𝑢𝑚𝑝𝑒𝑟𝑃𝑜𝑠 

(4) 

 

Longitudinal 

Distance Rear 

Object 

The longitudinal distance 

between the rear object and the 

ego vehicle (Figure 4-3) 

𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝑜𝑏𝑗𝑒𝑐𝑡

=  𝑎𝑏𝑠(𝐿𝑜𝑛𝑔𝑃𝑜𝑠𝑙𝑒𝑎𝑑𝑜𝑏𝑗𝑒𝑐𝑡

−  𝑅𝑒𝑎𝑟𝐵𝑢𝑚𝑝𝑒𝑟𝑃𝑜𝑠) 

(5) 
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Figure 4-3 The longitudinal distance of the front / rear object to the Ego Vehicle DM 

4.3.2 Driving Scenarios  

A high number of traffic scenarios may occur during a drive on public roads. Their recognition 

(achieved by analyzing the raw signal timelines) is necessary, since the L3Pilot research question 

differentiate the analysis based on the different driving scenarios. Examples of scenarios 

recognized by L3Pilot include uninfluenced driving, lane change, merge, cut-in, approaching a 

leading vehicle, approaching a static object, following a lead vehicle. Thus, the data toolchain 
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implemented by SP5 (“Pilot tools and data”) includes a module which detects the driving scenarios 

and saves them in the scenario dataset of the enriched HDF5 file. Scenarios were defined and 

formalized during several workshops among SP3 (“Methodology”), SP5 (“Pilot tools and data”) 

and SP7 (“Evaluation”) partners. The main contribution on driving scenario development was by 

IKA and Jaguar Land Rover.  The following sub-sections provide details on the scenarios 

implemented in MATLAB by the candidate.  
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4.3.2.1 Lane change of a lead vehicle   

 

Figure 4-4 Flow chart of the lead vehicle’ lane change scenario 
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Figure 4-4 presents the flow chart of the algorithm we designed to detect the scenario of the 

lane change of the lead vehicle. It was challenging to detect this scenario as the in-front object 

varies along the trip and sometimes can be a static object. Besides, it can be a pedestrian or a 

vulnerable road user with regards to the data object’s classification value available in the object 

dataset timeline. The algorithm thus loops over each time the lead vehicle object changes its 

identifier (lead vehicle ID), then translates this change into possible scenarios: either a new lead 

vehicle appears, or the current lead vehicle had disappeared from the lane vision of the go vehicle. 

Thereby, the algorithm follows the below steps:  

1. First, the algorithm loops over all the time instances the lead vehicle object identifier 

changes: 

d/dt(𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝐷)  ≅  0  

(6) 

2. Then, the reason behind the ID change is investigated. There could be many reasons, 

but the scenario should trigger only when the lead vehicle changes its lane.  

a) If a new lead vehicle appears, the algorithm verifies that the ego vehicle did not 

change the lane during this time scope, neither the new lead vehicle cut in the lane 

of the ego vehicle. The latter can be verified by checking the longitudinal distance 

between the ego and the lead vehicle is greater than a defined threshold: 

(𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖) > 𝐷𝑖𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) | 𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡𝑖)

> 𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖−1) 

(7) 
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b) Otherwise, if no newer vehicle is in front, the algorithm checks whether the 

previous lead vehicle still appears in the lane vision of the ego vehicle. Then, it 

verifies its distance to the lane center is greater than the half of the lane width. 

Therefore, the scenario triggers.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐸𝑔𝑜𝐿𝑎𝑛𝑒(𝑡𝑖) > 𝐿𝑎𝑛𝑒𝑊𝑖𝑑𝑡ℎ(𝑡𝑖)/2  

(8) 

3. Finally, the results are stored in an array of time instances, which is saved back to the 

dataset. 

 

The function signature is then defined, as shown in Table 5 (input parameters) and Table 6 

(output parameters). 

Table 5 Input parameters for the Lane change of lead vehicle’s algorithm  

Input Parameters Description 

Data The struct containing all the datasets of the L3Pilot CDF, i.e., ego vehicle, 

objects, lanes, and positioning. This parameter is common for all the 

function. 

DistThreshold 

 

The Distance Threshold accepted for Lane change scenarios. The distance to 

the ego vehicle helps to discern the current vehicle in front did not cut in the 

lane of the ego vehicle. Thus, we consider the lead vehicle made a lane 

change only if the longitudinal distance is greater than the threshold.   
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Table 6 Output parameters for the lane change of Lead vehicle’s algorithm   

Output 

Parameters 

Description 

Data_out A struct containing the input data and, in addition, the new scenario in the 

corresponding scenario struct, i.e., 

Data_out.scenarios.LaneChangeLeadObject 

 

4.3.2.2 Following a Lead Vehicle  

This function detects the following a lead vehicle scenario.  

 

Figure 4-5 Graphical representation of the following a Lead vehicle scenario. 

 Figure 4-5 illustrates three presentations of the ego vehicle following another lead vehicle’ 

scenario. The Ego-centric presents the chase view by the in-front camera. The Brid’s-Eye plots 2-
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D coverage areas around the ego vehicle by the mounted sensors; the in-front camera and radar 

detect the in front objects, measures their velocities and the distances to them. The algorithm 

detects the potential candidates for following a lead vehicle. It tracks only if:  

1. A lead object is detected by the sensors mounted on the ego vehicle. 

2. The lead vehicle is driving on an accepted tolerance speed above or below the speed of 

the ego vehicle.  

3. The longitudinal distance between the two vehicles is very short.  

The mathematical formulation of the problem was defined as it follows: 

𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝐷 >  0 & 

‖ 𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦‖  >  𝐸𝑔𝑜𝑆𝑝𝑒𝑒𝑑 ±  𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 & 

𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(dx, dv, v)  

(9) 

The function signature is then defined, as shown in Table 7 (input parameters) and Table 8 

(output parameters). 
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Table 7 Input parameters for the following a lead vehicle function.  

Input Parameters Description 

Data The struct containing all the datasets of the L3Pilot CDF, i.e., ego vehicle, 

objects, lanes, and positioning. This parameter is common for all the 

function. 

SpeedTolerance  The tolerance above or below the ego speed that is accepted for vehicle 

following scenarios. 

THW The time headway for the distance to the lead vehicle for following a lead 

vehicle scenario 

 

Table 8 Output parameters for following a lead vehicle function.  

Output Parameters Description 

Data_out A struct containing the input data and, in addition, the new scenario in the 

corresponding scenario struct, i.e., 

Data_out.scenarios.FollowingALeadVehicle 

 

Then, the function is expressed in pseudo-code and finally implemented in MATLAB. The 

steps of the following a lead vehicle scenario detection are the following:  

1. Set the default input values if the relevant parameters were not passed.  

2. Check for necessary fields.  

3. Loop over all the lead vehicles raw data and, for all the time samples in which a new 

lead vehicle is detected, check whether the difference between the lead and ego vehicle 

velocity is within a tolerable range, as defined in (9). 

4. Elicit the tolerable distance headway from the time headway by applying this formula:  
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𝐷𝑖𝑠𝑡𝐻𝑒𝑎𝑑𝑤𝑎𝑦 =  THW ∗  𝐷𝑎𝑡𝑎. 𝑒𝑔𝑜𝑉𝑒ℎ𝑖𝑐𝑙𝑒. 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑆𝑝𝑒𝑒𝑑(𝑖𝑑𝑥)  

(10) 

5. Check that the longitudinal distance between the two vehicles is not exceeding the 

tolerable distance headway for a following a lead vehicle scenario. 

6. Write the following a lead vehicle scenario to the scenario dataset and finally pass the 

updated overall dataset as the output parameter.  

4.3.2.3 Cut-in  

Figure 4-6 and Figure 4-7 illustrate the Cut-in scenario. 
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Figure 4-6 Graphical representation of the vehicle (green) cutting-in the trajectory between the ego vehicle 

(blue) and the lead vehicle (violet) 
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Figure 4-7 Graphical representation after performing the cut-in scenario by the green vehicle. 

First, the goal of the function is defined, which, in this case, is to detect a situation in which a 

vehicle is changing its lane to the lane of the ego vehicle, such that the new resulting scenario for 

the ego vehicle will be either Following a lead vehicle or Approaching a lead vehicle. The 

mathematical formulation of the problem was defined as it follows: 

d/dt(𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝐷)  ≅  0 & 

 𝑁𝑒𝑤𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <  𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 &  

𝑁𝑒𝑤𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 <  𝑆𝑝𝑒𝑒𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 

  𝑁𝑒𝑤𝐿𝑒𝑎𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑂𝑟𝑖𝑔𝑖𝑛 ==  {𝐿𝑒𝑓𝑡𝐿𝑎𝑛𝑒, 𝑅𝑖𝑔ℎ𝑡𝐿𝑎𝑛𝑒}  

 (11) 
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The algorithm considers the cases where a new lead vehicle is detected. For a cut-in scenario 

to be detected, some prerequisites are mandatory. First, the distance of such vehicle from the 

vehicle under test must be less than the exclusion distance (a predefined threshold). Second, its 

absolute speed should be less than a speed threshold. Finally, the vehicle must be changing its lane 

coming from either the left or right lane, with respect to the lane of the ego vehicle.  

The function signature is then defined, as shown in Table 9 (input parameters) and Table 

10(output parameters). 
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Table 9 Input parameters for the Cut-in function.  

Input Parameters Description 

Data The struct containing all the datasets of the L3Pilot CDF, i.e., ego vehicle, 

objects, lanes, and positioning. This parameter is common for all the 

function. 

 

SpeedThreshold  

 

The Speed Threshold accepted for Cut-in scenarios. Vehicles with a speed 

higher than this threshold are not considered as making a cut-in 

ExclusionDistan

ce 

The exclusion distance starts from the ego vehicle to the end of the exclusion 

zone. Vehicles that are farther from the ego vehicle than the exclusion 

distance are not considered as making a cut-in 

 

DeadPeriod  The period that will be excluded from the calculation 

WindowSize  The length of the period where lateral positions of the newLeadVehicle are 

checked for detecting a cut-in 

 

LateralDistance

Threshold  

The threshold for the lateral distance 

 

Table 10 Output parameters for the Cut-in function  

Output 

Parameters 

Description 

Data_out A struct containing the input data and, in addition, the new scenario in the 

corresponding scenario struct, i.e., Data.out.scenarios.CutIn 
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Then, the function is expressed in pseudo-code and finally implemented in MATLAB. The 

steps of the Cut-in scenario detection are the following:  

1. Set the default input values if the relevant parameters were not passed.  

2. Check for necessary fields.  

3. Preparatory calculations. This involves the creation of the Cut-in scenario array (one 

entry for each sample in the timeline), which is initially zeroed. Then in a later step the 

newLeadVehicle_Indices vector is defined, which marks all the time samples where a 

new lead vehicle is detected. 

4. Iterate over the time samples in which a new lead vehicle is detected:  

a) Get the index of the object matching the lead vehicle.  

b) Check that the object is not empty and that its longitudinal distance and absolute 

velocity are below the given thresholds.  

c) Get the mean of the lateral position of this object starting from (current time - 

WindowSize) until (current time - DeadPeriod). If this mean is greater than 

LateralDistanceThreshold, Cut-in is considered from the left. If this mean is lower 

than -LateralDistanceThreshold, Cut-in is considered from the right. Otherwise, 

no Cut-in is detected. 

5. Write the Cut-in scenario to the scenario dataset and finally pass the updated overall 

dataset as the output parameter of the function.  

If, in 4b above, the object is empty, the execution is interrupted as this is not a Cut-in scenario 

instance. However, if the id of the former lead vehicle still exists, then it is a lane change of the 

lead vehicle; otherwise, the lead vehicle left the view range.   
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5. Consolidated Data Base (CDB) 

The final step of the data processing involves the preparation of information for the CDB, 

which was developed by partners of SP6 (“Piloting”) and SP5 (“Pilot tools and data”). The goal is 

to collect aggregated and pseudonymized information from all the HDF5 files and make them 

available to the whole consortium (while the “selected partner” analysis is restricted to each 

specific vehicle owner) to support high-level impact analysis. 

From an architectural point of view, a platform for supporting project-level data storage and 

retrieval was developed by the University of Genova. The platform relies on a MongoDB non-

relational database, which is accessed through a Node.js application programming interface (API) 

(Figure 5-1). The platform, which is based on the open source Atmosphere framework [67], 

exposes a set of RESTful APIs [68,69] for inserting and retrieving data [70]. A web Graphical User 

Interface (GUI) has been implemented by the University of Warwick to allow a user-friendly 

access to data. Different user roles have been defined for administrators, vehicle owners, and 

analysts. Such roles implement different data read/write rights, to meet the project information 

confidentiality requirements. An Uploader tool has also been created, to support efficient checking 

(e.g., for duplicates) and batch upload and download of data.  
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Figure 5-1 The CDB overall architecture [14] 

As the personal contribution of the author in this scope of work focused on data processing 

and aggregation for the CDB, this chapter will present the CDB-aggregator module, which is the 

responsible for computing the PIs for vehicular data, and the subjective data module. PIs were 

defined by L3Pilot SP3 “Methodology”, SP5 “Pilot tools and data”, SP7 “Evaluation”, as 

described in section 3.3. Details on the CDB application programming interface (API) back end, 

the uploader tool, the user roles and access and the GUI are described in [15].Table 11 outlines the 

main modules of the CDB presented in this chapter and highlights the contribution of the candidate.  
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Table 11 Contribution of the candidate to the CDB modules 

Module Role of the Candidate 

CDB-Aggregator 

Objective PIs 

Contributed to the computation of the PIs for vehicular data    

Questionnaire 

Management Tool 

Implemented the questionnaires in LimeSurvey and contributed to the 

methodological refinements with the University of Leeds. 

Mapping to CDF  Proposed the creation of mapping files that were necessary to link the 

CDB-aggregator to the CDF, and contributed to their development  

Subjective Data Quality 

Check  

Computed the algorithm to check the quality of the subjective data and 

contributed to the methodological requirements with Univ. of Leeds   

CDB-Aggregator 

Subjective PIs  

Developed the module  

 

5.1 CDB Objective PI Computation   

To meet the methodological goals for the CDB objective (i.e., vehicular) data, the CDB PI 

computation step consists in synthesizing the vehicular time series so that the CDB stores only 

high-level information that allows tackling the project RQs, without compromising the 

confidentiality of the single-vehicle owner companies.  

This stage is undertaken by the CDB-aggregator module, which processes HDF5 files (one 

per each trip), containing the original time series formatted in CDF and enriched through the 

computation of the Derived measures and Driving scenarios (Chapter 4). The output of the CDB-

aggregator module is represented by a set of .json files storing the computed PIs. Processing an 
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input HDF5 file, the Aggregator produces one .json file for each one of the four PI types defined 

in Table 2 (i.e., Trip PI, Scenario Instance PI, etc.). The .json files are ready to be uploaded to the 

CDB, for instance through a well-established Application Programming Interface (API) client such 

as Postman, or, better, through the Uploader [66]. The same information contained in the .json files 

is also saved in corresponding .csv files that are more easily readable by the analysts. 

The CDB-aggregator module consists of a set of MATLAB scripts. Figure 5-2 provides a high-

level outlook of the programme, with three main phases: initialization, reading signals from the 

input HDF5 file; processing loop; and a final saving of the four types of PIs. The processing loop 

is the core of the programme, as it processes the time series and segments the computation of the 

PIs according to the context information presented in Subsection 3.3. First, the experimental 

condition is considered. Then, for each identified segment, the road type is considered. This level 

of segmentation leads to the computation of Trip PIs. Computation of Scenario Instance PIs and 

Datapoints requires further segmentation of the timeline based on the detected driving scenarios. 

Scenario Specific Trip PIs introduce the need for accumulating the indicator values across all the 

scenario instances in the trip. Similarly, the length of each scenario instance is needed for the Trip 

PI indicator reporting the percentage of time passed in each scenario within the trip.  

An example of the resulting segmentation is reported in Figure 5-3, where we can see that 

eight different scenario instance PIs have been computed. One-time interval, indicated as 

Unrecognized 1 (U1), does not produce Scenario Instance PI, nor Datapoints, nor Scenario 

Specific Trip PI, as a scenario could not be detected there. However, the signal values contained 

in that segment do contribute to the Trip PI indicators in the ADF on condition. 
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Figure 5-2 High-level flowchart of the PI computation by the CDB-aggregator [68] 
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Figure 5-3 Example of scenario segmentation during a trip [68] 

5.2 Subjective Data Processing 

The second type of data addressed by L3Pilot is subjective data, that were collected through 

questionnaires defined by SP3 “Methodology” based on the methodological requirements 

presented in section 3.4. In L3Pilot, test participants were asked to reflect on ADF and report about 

their test experience, mainly addressing the RQs on user acceptance evaluation and socio-

economic impact evaluation. Three questionnaires (motorway, urban and carpark) were designed, 

corresponding to the three main driving environments, with their relevant ADFs. 

Based on the requirements, a reference workflow for processing subjective data was defined 

to be implemented in each pilot site. Figure 5-4 illustrates the workflow.  The first step consists in 

collecting the questionnaire data. L3Pilot developed a reference implementation (it is described in 

section 5.2.1) exploiting the LimeSurvey online tool [71], which was selected based on the 

requirements stated at the end of section 3.4, even if pilot sites could use different tools for 

questionnaire management. The output of the questionnaire tool is then formatted in the common 

data format (CDF) for subjective data. This step is described in section 5.2.2 for the reference 
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implementation.  Then, a quality check step is performed (section 5.2.3) before the conversion of 

data to the .json format acceptable to upload to the CDB. Like for objective data, also subjective 

data are then ready to be accessed by SP7 “Evaluation” analysts. 

 

Figure 5-4 Subjective Data workflow in each pilot site 

The work of the candidate on subjective data mainly concerned the implementation and 

refinement of the methodological requirements in collaboration with Univ. of Leeds human factor 

researchers. 

5.2.1 Questionnaire Management Tool (LimeSurvey Implementation) 

This section describes the reference questionnaire implementation using LimeSurvey. The 

implemented questionnaires involved different types of questions, that were handled by 

LimeSurvey, such as: single choices, arrays, mask questions (e.g., date/time, equation, ranking 

yes/no, file upload, etc.), test inputs and multiple choices questions. 
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Figure 5-5 Example of customized array’ sub-question inputted by the participant.   

While LimeSurvey provided valid templates, customization was needed for some questions, 

for instance, to add text options to numeric arrays or to add text input to sub-questions (typically 

to allow the participant to specify the “Other” option) as shown in Figure 5-5, or to automatically 

set values for consistency among answers. Figure 5-6 shows another example of customized arrays 

where headers are merged on three columns to fit the question’ context requirement.  

Customizations were implemented by modifying/adding the JavaScript and jQuery source 

code for the relevant questions. LimeSurvey has a well-established user/developer community that 

provides extensive support for hand-tailored designs, queries, and extensions.    
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Figure 5-6 Example of customized array. Up left: design requirements of the question. Up right: source 

code edited behind. Bottom: question’s UI 

Conditional questions were also implemented, for example to show (or hide) some questions 

(or their answers), based on the answer to a previous question. Conditions can be added from a 

user interface or through regular expressions [72]. As an example, Figure 5-7 shows how to set a 

condition on a question about the household gross income of the participant, where options are 

grouped in a drop-down list and the context (i.e., the currency) varies regarding his selection of 

the country of residency.  
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Figure 5-7 Add condition to the question based on previous questions. 

Several questions required participant’s input validation, to prevent the insertion of incorrect 

data. For instance, Figure 5-8 and  Figure 5-9 show an example of question where participants 

must provide ordered values and select at least one preference or three at most when ranking 

transport mode preferences. However, two choices cannot have the same ranking. This is 

guaranteed by writing validation expressions which are checked at runtime by the LimeSurvey 

Expression manager. For instance, if the participant selects that he does not take the same trip, the 

other selections should be automatically dropped as shown in the first row of the same figure. 
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Figure 5-8 Example of questions with input validation 

 

Figure 5-9 Validation expression in LimeSurvey 
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Following the completion of questionnaires, test participants’ responses results must be 

exported to the xlsx file format (as in Figure 5-10).  

 

Figure 5-10 Function to export questionnaire responses to excel format. 

5.2.2 Mapping to CDF 

Although selected partners/pilot sites responsible could create, edit, or view a survey, SP3 

(“Methodology”) and SP7 (“Evaluation”) mandated that the questionnaire item codes are not 

changed, as this may allow tracking responses from different pilot sites. To ensure that data could 

be correctly collected across all the pilot sites, instructions on the questionnaire implementation, 

administration and metadata were defined at consortium level. This approach ensures that the data 

output can be integrated seamlessly and transferred to the consortium-wide CDB.  

The methodology partners specified all the questionnaire items required to be shared to the 

CDB. In addition, they set four supplementary items to be added by the pilot sites to entry, such as 

ADF type, participant ID, participant type, and test type. All such data (questions and possible 

closed answers), grouped in the three L3Pilot questionnaire types, were encoded in a common data 

format (CDF) specific for subjective data. 
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Using the common LimeSurvey implementation had to ensure that all questionnaire items and 

responses follow the CDF schema. However, some partners used other implementations, and post-

editing could introduce errors. Thus, to guarantee integrity of subjective data before uploading 

them to the CDB, a data format map was prepared for each type of questionnaire, with all the 

required questions and possible answer codes and ranges, according to the CDF.  

Figure 5-11 screens a traffic jam and motorway questionnaire’s mapping including the IDs of 

each question and the code-based text interpretation of possible answers.  The output values are 

used for data parsing of exported answers to their corresponding in the CDF.  The merge column 

specifies conditional questions that need to be merged in one item compatible with the CDF. The 

upper and lower limits, however, are useful to check that the answer codes are within the acceptable 

interval limits.   
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Figure 5-11 Mapping for questionnaires on traffic jam and motorway 

5.2.3 Data Quality Check  

This sub-section describes a MATLAB script developed to capture possible errors in a 

subjective data input .xlsx file. The process involves three main steps.  

First, it verifies that all questionnaire items and responses follow the nomenclature set out in 

the CDF (See Figure 5-11). Using the common LimeSurvey implementation should prevent this 

issue. However, there is always the chance that in a local implementation some item names and/or 

codes deviate from the original. In case item names and responses do not match the CDF 

specifications, such items are saved in a log file and the user is warned to check and verify the data 

input.   
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Second, it checks if the item responses fall within the range set out in the original questionnaire. 

Let us consider the case of a question with an answer set between 1 and 5 (corresponding to a five-

point Likert scale of “Strongly Disagree” to “Strongly Agree”). If a given response falls outside 

that range, then the user would receive an error message asking for a content check.  

Finally, there may be some situations where a pilot site wished to upload a dataset that contains 

missing values. Data could be missing because there was an error in data collection, or a pilot site 

has chosen to not collect that particular item. There could also be some errors in the data transfer 

process between data collection, LimeSurvey, and CDB upload. In order to distinguish the case of 

data that are known to be missing, pilot sites are asked to fill the corresponding cells with a dummy 

response (-1). Thus, should a pilot site attempt to upload dataset that inadvertently includes empty 

cells, the data quality checker would warn him with an error message and save a trace in the error 

log file for all the missing items.  

Further quality checks verifies the data types and the possible number of digits for an 

acceptable response. Table 12 provides an example of such checks. 
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Table 12 Data quality check on subjective data based on the CDF. 

Item  Data Type Number of digits Missing data 

is acceptable?  

Participant id  Numeric and characters 8 No 

 

Year of birth  Numeric  4 -1  

TJM14 Numeric and characters, it 

also supports some special 

characters like $, € but the 

system saves only numeric 

inputs to the Database 

30 -1 

TJM35 Numeric  3 -1 

All other items  Numeric  1 or 2 -1 

 

When an error triggers, the quality checker saves the empty/mistaken answers in the log file. 

5.2.4 Subjective Data CDB-Aggregator 

 The subjective data CDB-aggregator module is responsible for preparing the data in .json 

structures readable by the CDB. It comprises a set of functions implemented in MATLAB that read 

the xlsx file (or a set of files in a directory) exported by LimeSurvey and implement the 

functionalities described in the previous two sub-sections, namely CDF mapping and data quality 

check.  

As anticipated, some pilot sites did not use the LimeSurvey system for collecting data through 

questionnaires. These sites implemented their own modules to translate their data to the defined 
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CDF. Once translated to the CDF, also these data are homogeneously processed by the CDB-

aggregator. 

Figure 5-12 shows the logic of the module, which, for each xlsx input file, loads the relevant 

CDF map (there are different maps for the three questionnaire types), and verifies that all the 

questions’ items required in CDF are present. Otherwise, an error to the user is issued.  

The next step (“Alter Table”) performs a translation, when needed, from LimeSurvey alpha-

numerical codes into numerical only codes required by SP7 “Evaluation”. Then, the algorithm 

calls the data quality check’ function described in section 5.2.3 to verify integrity of the inputted 

answers. If some errors trigger, the CDB- aggregator stops processing and asks the user to verify 

the empty/mistaken answers saved in the log file by the data quality checker. Otherwise, the 

algorithm continues the process and converts the subjective data to json structures uploadable to 

the CDB. 
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Figure 5-12 Flowchart of the processing of a subjective data file by the CDB-aggregator 
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6. Deployment and Assessment 

As of April 2021, the data toolchain has been developed, tested, and deployed in all the pilot 

sites within SP6 “Piloting”. Deployment and use of our modules were carefully coordinated 

between developers and pilot site managers. This careful collaboration, which involved several 

meetings and provision of detailed deployment and usage instructions in the project’s collaboration 

tool, was extremely useful to the success of the project. Given a good documentation and 

presentation of the data tool chain, partners involved in the pilot sites got familiarity with the 

process, according to their different roles. Various patterns of use could be observed. Vehicle owner 

companies uploaded and checked their data and analysts accessed and analyzed data from all the 

pilot sites, but only concerning their specific features (i.e., subjective, or objective data and 

different types of PIs within subjective data).  

The whole data chain was tested in the pre-pilots, that were planned for preliminarily testing 

the data processing and analysis chain, before full-scale, on-road tests. These tests allowed 

developers to spot bugs and face challenging situations, that we had not previously considered. 

Feedback on this from the users helped to improve communication and overall effectiveness, in an 

iterative process. Not only did the pre-pilot testing of the installations highlight some bugs in the 

code, but it also enabled the developers to tune the overall process and suggest significant 

improvements, based on the experience and the analysis of the first sets of (real and synthetic) data. 

Such suggestions were discussed in the L3Pilot multidisciplinary team and finally implemented, 

leading to a continuous improvement of the methodology process described in chapter 3 

“Methodology and requirements”.  

In the following, we go in the details of the deployment of the main modules. 
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6.1 Subjective Data Modules  

The LimeSurvey template file of the questionnaire was delivered to all pilot sites, where the 

staff had to make the country language translation and/or other customizations according at each 

pilot site’s specific policy. The selected partners/pilot sites were provided with guidelines on how 

to import the surveys and export the responses. 

In terms of the administration of the questionnaire, there have been differences between pilot 

sites regarding the length and number of drives by each participant. Therefore, the project 

recommendation was that the questionnaire should be completed after the last test ride, irrespective 

of whether a driver has multiple drives [44]. Participants to the drive-tests were recruited by the 

pilot site leaders among ordinary and professional drivers [60].   

During pre-pilots it became apparent that some supplementary items (i.e., metadata) should 

be added to allow a proper assessment by SP7 “Evaluation”. These metadata include the ADF type, 

the participant ID, the participant type, and the test type. Particularly, the pseudonymized ID was 

necessary to allow pilot sites track their own subjective data after uploading them to the CDB. This 

ID was employed also as the participant token, which is used by LimeSurvey for the distribution 

of the questionnaires and to link the answers to the participants. This was implemented by setting 

up a participant’s table in LimeSurvey, linking each test participant personal data (available only 

to the pilot site staff) with the participant token (to be exported to the CDB), as shown, for instance, 

in Figure 6-1.  



65 

 

 

Figure 6-1 Participant’s table implemented in LimeSurvey. 

To support a correct translation of the questionnaires, it was important to provide pilot site 

staff with indications on how to make the translations in LimeSurvey without impacting the 

common format (questions and answers’ codes). Instructions were provided to pilot site staff about 

running the CDB-aggregator module. The staff provided continuous feedback, that was useful to 

iteratively improve the system, tuning the requirements and their implementation. This stress the 

importance of designing the system for flexibility and extension.   

The partners were generally pleased about the process and response time (in the order of the 

seconds). The CDF and quality check were found to be very useful. Enhancements could be added 

to the data management tool chain, through an excellent team collaboration. Table 13 synthetizes 

feedback from diverse partners about their experience.  



66 

 

Table 13 Feedback on the use of the different modules of the subjective data toolchain 

Step Feedback 

The process of 

implementing 

the 

questionnaires 

in LimeSurvey 

The process could be error-prone in the sense that to implement the questionnaires we 

had to find in Confluence (i.e., the project official collaboration tool) the right version 

of the questionnaires. Therefore, we implement the latest version available in 

Confluence, not knowing if this was the right one. The process could have been 

improved if a direct link to the final version of the questionnaire was provided to 

everyone. 

Especially for the post-questionnaire, it was not ready to be immediately implemented 

because some pilot sites, for some reasons, had to remove some questions. This was 

not immediate and required some technical support. 

Exporting 

Questionnaires 

from 

LimeSurvey 

There was a lack of instructions, leading to the fact that some answers were missing 

because not all the right export options were selected. Handling with this issue required 

some technical support from our side, which could be avoided if proper instructions 

had been given beforehand. 

Put 

questionnaire 

data in the 

defined 

common 

format  

It took some effort to convert the data into the common data format because there were 

some errors in the implementation. E.g., even with our latest version, 8-digit user IDs 

are only accepted if they contain at least one letter, but it is possible that the hashed ID 

consists of eight numbers. Such IDs were changed manually before conversion. 

Some of the manual steps could probably still be improved, like adding of the metadata 

(these could be parameters given when calling the script) to remove even more 

possibilities for manual errors. Free text field from LimeSurvey were not read properly 

from the csv file if the answer had line breaks, so these had to be removed manually. 

The script could also have capabilities to remove either answer from a single token or 

answers to questions from all participants. 

Converting the 

data into .json 

file 

No problems were reported. A suggestion stressed that the driving context (i.e., 

whether it was urban or motorway or parking) should come from the questionnaire 

data rather than from the filename, as we did for ease of implementation. 

 

In the future, it should be taken care that implemented process can be handled by human factor 

researchers without deep knowledge in IT, without Admin rights and probably also without access 

to expensive tools like MATLAB. It is no option that user need e.g., to use their private PC because 
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they are not allowed to install the required tools on their work PC, because of the organization 

policies. 

6.2 Objective Data Modules  

All the modules of the objective data toolchain were finally integrated to process the vehicular 

data. The CDB was deployed in the cloud, together with the web user interface. In parallel, the 

Uploader was distributed to all the pilot sites. After the login to the CDB, each data row from the 

input files is tentatively inserted to the CDB provided that the structure of its data matches the 

corresponding Feature resource, which is the CDB integrity check. 

Writing detailed instructions and suggestions in the project’s collaboration tools (Wiki or 

README files in the Gitlab code repository for technical developers, and Confluence pages for 

all the users) was useful to facilitate the usage of the system. 

Important system functionalities have been added thanks to this collaboration. For instance, 

we initially considered more experimental conditions than those presented in Section 3. There was 

also a “Treatment” condition, aggregating a trip’s measurements independent of the status of the 

ADF—it is sufficient that the ADF is on the vehicle, as opposed to the baseline condition. However, 

analysts asked to remove this condition, to reduce the amount of data to be processed. 

A conceptual problem found at the beginning of the deployment was that, if the experimental 

condition changes within an occurring scenario, two scenario instances are created and uploaded 

to the database although there is only one scenario occurring. This is fine in some scenarios. For 

others, however, this gives wrong results for, e.g., the duration of a lane change or the standard 

deviation of the speed during following a lead vehicle. The problem became apparent when looking 
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at lane changes. During the recordings, lane changes are often not performed by the ADF but by 

the safety driver, or at least signs off on them. In the aggregated data this leads to three scenarios 

that are uploaded to the database and that are evaluated at the end, which is not the desired output. 

L3Pilot analysts thus introduced the concept of “partial” (uninfluenced driving, following a lead 

vehicle) and “complete” (all the others) scenarios. For partial scenarios, splitting them up, due to 

an intervening condition change (e.g., from ADF on to ADF off), is fine. For all others, the 

complete scenario instance is always needed, no matter the condition changes during the scenario. 

Moreover, all the transitions of conditions that may occur during a complete scenario need to be 

traced. These additions were handled by adapting the CDB-aggregator workflow reported in 

Figure 5-2.    
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6.3 Achievements and Discussions 

Finally, the whole data toolchain has been employed in the L3Pilot tests sites, from Italy to 

Sweden, both in its cloud and local versions. Vehicular sensor data are now being processed by six 

impact analysis teams and as many traffic analyses teams, while subjective data by three teams, to 

respond to the research questions. In the following we go in the detail of some major achievements. 

A test showed that the L3Pilot CDF stored in HDF5 files is more efficient than formats well 

established for FOTs, such as csv (82% size reduction). On the other hand, it performs almost as 

well in terms of memory efficiency as the MATLAB proprietary format (9% size increase), while 

being independent of the software used [64]. Portability has already been successfully experienced 

using various tools that process the CDF files in different environments: Windows or Linux, and 

using Python, R, Java, or MATLAB. The binary format requires specific tools for accessing/adding 

data in HDF5 files, but this is considered a minor limitation. L3Pilot contributed new open-source 

code to the HDF Group by improving the Java support of the format (e.g., handling complex 

variables, which entailed a table within a table). 

Using a common format among different vehicle owners was deemed as very useful. For 

research organizations and development projects in general, a common data format for both 

subjective and vehicular data would enable development of various tools on top of it, with clear 

efficiency advantages compared to the state-of-the-art. 

A huge quantity of data (in the order of terabytes) has been processed, the size mostly 

depending on the amount of video cameras and selected resolution. Aggregated data has been 

loaded in the CDB (both in local private installations and in the shared cloud installation, that 

collects data from all the pilot sites). Scalability is necessary when dealing with such quantities of 
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data. This is ever better supported by state-of-the-art cloud services, which platform was exploited 

by the CDB.  

Algorithm development for the data toolchain took it seriously the time performance point, to 

ensure a fast processing of huge quantities of data. As an example, the execution time of vehicular 

data from three trips (total size of 78MB) by the CDB-aggregator takes 12 seconds on a lab PC. 

Input files, encoded in HDF5 format, contained the original vehicular signal timelines, enriched 

with the computed derived measures and driving scenarios. The Aggregator computed all the four 

types of CDB PIs (Trip PI, Scenario Specific Trip PI, Scenario Instance PI and Datapoints) and 

finally exported them to json, for direct uploading to the CDB, and to csv, for post-editing by the 

analysts.  

6.4 Lessons Learnt  

The piloting on real roads of SAE L3 ADFs [23] is a huge challenge, which required, in the 

L3Pilot case, the work of a consortium of 34 partners. The development of the shared data-flow 

toolchain was carried out by a team of researchers which addressed all the issues from data logging 

to the user interface to a shared database, which is now queried by data analysts to answer research 

questions on the impact of ADFs. The design and implementation tasks were iterative and the 

continuous interaction with members from both the methodology and experimental evaluation 

teams was crucial for tuning and validating requirements and for keeping the process in the right 

track. The overall team involved multiple people who were able to help each other facing the 

technological challenges and scientifically validate results. Vehicle owners played a key role in the 

development process, which was a big advantage for fully testing the tools on real automotive data 
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and fully understanding the requirements. This also involved important aspects of confidentiality, 

property, and privacy, that had to be considered and adequately balanced.  

Toolchain developers found it good practice to organize weekly scrum calls to review 

development status, list tasks and go through issues, according to an agile methodology. Weekly 

meetings also enabled creation of a well-functioning team across many organizations, and the use 

of a versioning tool such as GitLab was vital to manage the several teams working on complex 

hardware/software system development. We created in the project’s backlog tasks for each one of 

the performance indicators, derived measures and driving scenarios that had to be developed. Task 

information was carefully updated and tracked.  Every member would assign to himself the right 

tasks in the backlog. At the end of the implementation of each algorithm/module, one or more 

reviewers would be assigned for code review. Finally, a tester would be responsible for validating 

the new/updated algorithms on real data. A template for implementing and documenting functions 

was defined, so to target transparency and maintainability of the developed script. As an example, 

Figure 6-2 shows a commit pushed on GitLab for a driving scenario script.   
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Figure 6-2 Example of a shared script on GitLab 

While final results from the SP7 Evaluation teams are not available yet, the L3Pilot experience 

seems to indicate feasibility of assessing impact of novel ADFs exploiting multi-vehicle-owner 

data shared at the level of indicators and well-defined syntheses (e.g., the datapoints), which 

enables combining test results from several pilot sites, still keeping a good level of confidentiality. 

The scope of data processing scripts in a project such as L3Pilot has become very large. The 

number of derived measures, performance indicators and scenarios to be calculated out of test data 

amounts to hundreds. If pilot sites would each face such evaluation and calculation requirements 

alone, they would just end up carrying out a limited evaluation due to lack of resources. There are 

also general barriers that hinder data sharing, such as: intellectual property rights, privacy and 

product confidentiality, quality issues, lack of resources or trust, poor or missing agreements. This 

obviously stresses the importance of data sharing clauses in consortium agreements. 

A key point, also for future research, concerns the study on how to improve CDF, particularly 

considering the different and sometimes conflicting needs of different users and stakeholders (e.g., 
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different departments of an automotive company), also implying different types of source data, 

derived measures, detectable scenarios, and performance indicators. 

Another aspect concerns the integration of all the modules in a single system, from converting 

data to the CDF up to sharing them on the CDB. Deploying the provided tools in the pilot sites 

sometimes required some level of IT knowledge. This was resolved through instructions and 

friendly collaboration. Combining user friendliness with leading edge research is not easy, but is 

a goal that could enhance effectiveness and efficiency in future projects.  

While the implementation is exclusively in the automotive field, we argue that the proposed 

methodological approach and system architecture and tools are general and could be efficiently 

adapted and employed in different domains to support quantitative research analyses:  

• The common data format can be defined for any application domain, if not yet 

available.  

• The principles of the CDB-aggregator (segmentation and statistical data synthesis) are 

generally applicable. Different factors (experimental condition, types of context of 

usage of a new system to test, etc.) can be efficiently nested in the modular 

processing. 

• The subjective data management tool is implemented for automotive driving, but its 

schema should be applicable to any investigation on human factors and user 

acceptance through questionnaires.  

Finally, the data gathered through the project was large and advanced machine learning could be 

applied on these data, for instance to classify scenarios to help taking decisions while the system 

takes over the driving task.  
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7. Conclusions  

Conducting a pilot on novel ADFs implies processing a huge amount of data, to extract 

meaningful information. To the best of our knowledge, there is no specific tool support for daily 

activities concerning data management in AD piloting, from logging to data synthesis to query for 

impact assessment RQs (considering requirements of confidentiality, data quality check, etc.). 

L3Pilot designed and implemented a confidentiality-aware toolchain to allow effective and 

efficient implementation of all the data-management related activities, by a variety of concerned 

actors. 

L3Pilot created and promotes the common data format (CDF) for open collaboration in 

automotive research. The CDF allows homogenous processing of all the data across all the vehicle 

owners and pilot sites. It is a high-compression HDF5-based file format, where each trip is saved 

as one file, including metadata that provides further information of the recording.  

The common format enabled the development of combined analysis scripts for all pilot sites 

that include indicator calculation, event and driving situation detection, and support for video data 

annotation. The shared calculation framework ensures that fully comparable indicators, 

distributions, and event lists can be extracted from each test. The resulting indicators and data 

distributions were further used as an input for impact assessment, where results from many pilot 

sites are statistically combined. The toolchain processing was applied to both objective (i.e., 

vehicular) and subjective (i.e., from user questionnaires) raw data.   

As another key novelty of the project, a pseudonymized statistical aggregation of data from 

each test trip is stored in the CDB shared in the cloud to provide a quantitative basis for answering 
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the set of 100+ research questions defined by L3Pilot. Combining results from different pilot sites 

enabled analysts to use a larger dataset for statistical work.  

Establishing a collaborative community of researchers and developers who are knowledgeable 

in their respective domains was a key factor for the project. This team has been vital to allow a full 

understanding of the requirements, development of specifications and system and proper handling 

of all the issues that emerged with the concrete operations in the pilot sites. Discussions between 

experts in different fields have been very useful to achieve quality in a reasonable timeframe.  

The toolchain was developed by a multidisciplinary team of partners, of which the candidate 

was part. Beside the general contribution to the overall system design, the candidate particularly 

focused on developing some modules, such as subjective data processing, and Performance 

Indicator computation (that represent the synthesis data sharable by all the vehicle owners in order 

to allow a quantitative response to the 100+ research questions defined by the L3Pilot analysts), 

and implementing some derived measures and driving scenarios, as detailed in this thesis. 

The scientific value and originality of the candidate’s contribution has been confirmed by the 

participation of the candidate in two articles that were published on high-quality peer-reviewed 

journals and three articles that were presented in peer-reviewed scientific conferences, as detailed 

at the end of this thesis. 

Based on the project experience and feedback, we can indicate some directions for future 

research. These include extending and using the data processing and enrichment with DMs and 

driving scenarios module to answer further research questions. Another important point will be to 

optimize the MATLAB scripts in terms of memory occupation and time of execution. Also, the 
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deployment of the scripts could be enhanced by exploiting docker installation. Another point 

concerns developing human computer interaction modules to enhance usability of the scripts.  
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Glossary of Acronyms and Abbreviations 

The Glossary provides a list of key terms denoted in this document. The definitions are excerpt 

from previous work in the field of automated driving. 

ADF Automated Driving Function. 

Automated Driving System   A combination of hardware and software required 

to realize an ADF [11]. 

Baseline   Set of data to which the performance and the effects of the 

technology under study are compared [25].  

Derived Measures (DMs) A single measure calculated from a direct measure (e.g. by 

applying mathematical or statistical operations) or a 

combination of one or more direct or derived measures [12].  

Driving Scenarios  The abstraction and the general description of a driving 

situation without any specification of the parameters of the 

driving situation, thus, it summarizes a cluster of 

homogenous driving situations. Driving scenarios are 

typically short in time (t < 30 s) and only a few vehicles are 

involved. An example is lane change to the left lane [73].  
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Performance Indicator (PI) Quantitative or qualitative indicator[s], derived from one or 

several measures, agreed on beforehand, expressed as a 

percentage, index, rate, frequencies, or other value, which are 

monitored at regular or irregular intervals and can be 

compared to one or more criteria. In some cases, these will be 

the same as a derived measure, in other cases, further 

processes are required to generate a PI [25].  

Pilot Test   Field test of applications and functions not as mature as in 

FOTs. The methodology for testing, however, may be in 

principle the same. The test is used to decide how and whether 

to launch a full-scale project [25].  

Raw Data  Data that has been recorded in instrumented vehicles (CAN 

data, video, GPS logs etc.). This data is by nature 

heterogeneous; different vehicles will produce different 

datasets. These datasets are thus not immediately useful for 

comparison [11].  

Research Question (RQ) A general question to be answered by compiling and testing 

related specific hypotheses [11]. 

SAE L3 – 

Conditional Automation   

The driving mode-specific performance by an Automated 

Driving System of all aspects of the dynamic driving task with 
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the expectation that the human driver will respond 

appropriately to a request to intervene [74,75].  

SAE L4 – High Automation  The driving mode-specific performance by an Automated 

Driving System of all aspects of the dynamic driving task, 

even if a human driver does not respond appropriately to a 

request to intervene [75]. 

CDF The common data format defined released open source to 

convert vehicular datasets to a common HDF5 structure. 

CDB A cloud database onto which objective and subjective 

synthesis indicators are uploaded from all the pilot sites to 

provide a quantitative basis for answering the project research 

questions. 

Ego Vehicle  The self-driving vehicle in the road-test. 

Lead Vehicle  The vehicle in front of the Ego Vehicle.  

TTC  The time to collision. 

THW  The time headway is the time difference between two 

successive vehicles as they cross the same point on the 

roadway [76]. 
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FOT Field Operational Test.  

FESTA  Field opErational teSt supporT Action [12].  
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