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Abstract

Configuration and design of complex products represents a challenge
in many application fields. The designer must take into account many
different aspects and make decisions typically driven by experience while
taking into account performance constraints and costs. Methods and tools
for design automation represents a viable solution to such complex decision
problems, giving also the possibility to optimize the performance of the final
product on particular context-driven aspects. Artificial intelligence (AI)
algorithms can help in dealing with complexity and enhance the current
tools by supplying solutions in feasible time.

My research is concerned with the development and testing of different
artificial intelligence (AI) techniques to automate the design of elevators.
Elevator design is a problem with many interesting aspects like the need to
deal with a hybrid search state space (continuous and discrete variables)
constrained by design requirements and safety regulations. The study,
design and integration of AI techniques in this particular application field
can provide the end user with design automation tools that output feasible
solutions within acceptable computation times.

My research considered AI techniques such as special-purpose heuristic
search, genetic algorithms and constraint satisfaction to solve elevator
configuration problems. I tested them considering different setups and
parts of the whole design process. I have also implemented a tool LIFTCREATE,
available as a web application. LIFTCREATE leverages the findings of
my research to automate the design of elevators and, to the best of my
knowledge, there is currently no similar tool publicly available from either
academia or industry that provides the same level of design automation.
Keywords: artificial intelligence, automated design, product configuration, elevator
design
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Chapter 1

introduction

1.1 Context

Implementing automated design techniques involves at least two major
related steps: product configuration and product optimization. The former
step is about computing feasible solutions given a catalog of components,
relationships among them and structural constraints. The latter one is about
finding among feasible solutions those that optimize given performance
indicators. Both product configuration and product optimization enjoy
a substantial body of scientific literature which can fuel research on the
specific topic of CautoD for elevator systems.

In particular, concerning product configuration, the survey by Linda
L. Zhang [1] provides a recent and comprehensive account of past and
ongoing research in the field. Using the categories proposed in the survey,
the ones that are more pertinent to my project are: configuration ontology,
configuration recommendation, configuration solving and configuration design
and system development. Configuration ontology is about conceptualizing
the domain of components and relationships among them in order to store,
update and retrieve the correct elements of a design when solving a specific
product configuration. In [2] a general purpose ontology is provided
which can be customized to elevator systems. A preliminary attempt
in this direction is also provided in [3]. Configuration recommendation is
about suggesting to the users feasible solutions among several and possibly
overwhelming alternatives. For instance, the paper by Tiihonen,Felfernig
and Mandl [4] suggest that recommendation technologies like the ones
used in e-commerce sites can be integrated in product configuration. I did
not consider specific recommendation algorithms for my investigation.
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Configuration solving is the most important part of automated design
applications and it involves the development of algorithms and methods
that can compute feasible solutions based on product ontologies and user
choices. As mentioned in [1] there are several techniques proposed in the
literature including those based on heuristic search methods, constraint
programming and also case based reasoning — see, e.g. [5]. All these
techniques have been reviewed and I considered the most promising ones
for integration in my prototype. A preliminary study comparing heuristic
techniques versus computer intensive (brute force) approaches in solving
product configuration is presented in [6]. Another study considering
SMT/OMT techniques is presented in [7]. In this thesis I present also some
results obtained with GAs, currently under review as a journal submission.

Considering system development, only two publicly available products
are endowed with some CautoD functionality targeted to elevator design:
LIFTDESIGN1 from DigiPara® and LIFTMATIC2 from ApplicativiCAD. Both
applications offer libraries of commercial off-the-shelf components wherewith
2D elevator drawings (plan and vertical views) are generated trying to
accomodate physical constraints, designers’ choices, and customers’ requirements.
While LIFTDESIGN can also generate 3D models, it consists of “predefined
elevator parameters, component structure and elevator logic” which makes
the creation of customized solutions rather difficult. Furthermore, LIFTDESIGN

does not provide guidance to the designer amidst alternative implementations,
but it just provides warning and error messages. LIFTMATIC provides more
support for customization and more design automation than LIFTDESIGN,
in that it guides the user through various steps of the design by trying to
ban alternatives that will almost surely lead to unfeasible designs. The
main issue with LIFTMATIC is that it relies on a rather contrived and
acronym-laden graphical interface which, together with some maturity
issues, severely affects usage by all but the most experienced designers.

1.2 Motivations and Goals

Adautomated design of systems is the process whereby a design of some
implement is carried out by computer programs which supports the work
of engineers and technicians. At the highest level of automation, the process
requires a designer to enter few configuration parameters, guidelines and

1https://www.digipara.com/products/liftdesigner/.
2http://www.applicativicad.it/ascensori.php.
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physical constraints only, and the work of generating feasible designs will
rest on computer programs. Automated design differs from “classical”
computer-aided design (CAD) in that it is oriented to replace some of
the designer’s capabilities and not just to support a traditional work-
flow with computer graphics and storage capabilities. While automated
design programs may integrate CAD functionalities, their purpose goes
far beyond the replacement of traditional drawing instruments and most
often involves the use of advanced techniques from AI. As mentioned in [8],
the first scientific report of automated design techniques is the paper by
Kamentsky and Liu [9], who created a computer program for designing
character-recognition logic circuits satisfying given hardware constraints.
In mechanical design — see, e.g., [10] — the term usually refers to tools
and techniques that mitigate the effort in exploring alternative solutions
for structural implements, and this is the flavour of CautoD that will be
considered hereafter. — see, e.g., [11] —

The main question of my research was driven by the search of techniques
and solutions to create products able to emulate the decision process made
by engineers. The research in this field was historically addressed with
the development of expert systems. Previous works highlighted how such
systems were able to solve such problems by inferring new solution from
a predefined knowledge base. Expert systems had good performances
but the real challenge was the definition of the problem encoding: to
specify a very complex design process an highly skilled expert of the field
considered study must be directly and constantly involved. Considering
an engineering problem, many variables and rules must be traversed, with
no warranty on the optimality of the solution.

In elevator design context questions like "which components better fit
the requirements?" or "what is the best position of that particular part?" pose
a challenge for the design teams in many different fields. The main goal of
the thesis is to study, design and develop tools able to solve such problems
relying on AI techniques for the encoding and elaboration of solution. The
candidate algorithms that I have considered are genetic algorithms and
constraint-based technologies such as SMT and OMT solvers.

Another research question in my work is about the possibility to support
the design process of a particular product as a service via a web application.
Digital solutions are currently pervasive in the manufacturing industry.
The industry 4.0 field deals with this new process of integration of digital
solutions with production systems. A branch of industry 4.0 is strictly
correlated with product design process proposed: Engineer to order (ETO).
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This, deals with all the procedures required to define a project, accordingly
to installation constraints and customers needs. New technologies led
the software industry to reconsider how the software capabilities are
supplied to customers: canonical monolithic solutions deployed on several
firm’s servers migrated to cloud technologies bringing enhancements
under may different aspects. The first impacted aspect is the development
process, now dealing with services, that are components implementing
the business logic and providing the functionalities to the users. This
approach enable the possibility to test single parts in isolation and provide
the possibility to update part of the solution without downtimes of the
complete application. Also, architectural solutions oriented to service
permit the so called horizontal scalability of the computational resources:
firms no longer requires to estimate the traffic to size their data center. The
established approach is to define rules to launch new instances in case of
demand peaks happens. During my research I easily migrated to different
deploying solution with the main objective to keep the user experience
inside at an high level of interactivity. This objective is motivated by
considering the audience of our solutions: our users expected solution in
the order of tenth of seconds. The evolution of encoding and solutions
proposed took in account also such time constraints, posing a real challenge.

1.3 Structure of the document

The document is structured as follows:

• In chapter 2 we outline the main elements of the elevator design
and the various verification steps required to validate a design; we
also provide a brief survey of the software technologies on which
LIFTCREATE is based

• In chapter 3 we introduce special-purpose heuristic search techniques
and compare them with brute force.

• In chapter 4 we introduce genetic algoritms and compare them with
heuristic search.

• In chapter 5 we introduce constraint-based techniques and compare
them with genetic algorithms and heuristics.

• We provide some final remarks and hints for future research directions
in chapter 6.
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Chapter 2

Background

2.1 Elevator Design

An elevator is a complex product and the definition of a project of an
elevator must pass through different procedures in order to obtain feasible
and viable solutions.
An elevator design can be considered as a an hybrid problem where some
some parameters are dictated by the commercial available components
and some values must be simulated and validated, taking in account the
constraints from safety norms. The parameters coming from a selection are
then evaluated considering specific calculations to check the final safety of
the configuration. The decision variables deals with the positioning and
the sizing of the various components.
This daunting process usually is done by expert technicians just before the
release of a new family of products, leading the firm to the definition of
pre-defined solutions considering the installation parameters.
It’s also important to note that elevators are established and mature products:
standard solutions are available for many cases but, for each installation
all the technical verifications must be carried out in order to certificate the
elevator itself.
As in many other standardization process, this brings an optimized flow

for the commercial and technical aspects: the solutions are pretty well
pre-defined and the correct configuration could be founded directly via
simplifications of the complete problem, but at the same time cuts out many
best performing solutions in terms of profitability margins.
As in other engineering problems, designers tends to oversize some parts,
bringing more expensive solutions, even if cheaper viable solutions are
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Figure 2.1: Technical drawing reporting the 2D cad drawing of a RHE -
Roped Hydraulic Elevator
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available, because the cost of verification and certification of the solution
is higher. Also, some safety margins dictated by norms, in fact, sets the
minimum acceptable values for an already overestimated safety margins.
The safety interval imposed by the European Normative impose a wide
gap for acceptance; parameters like the maximum load for the single ropes
are accepted with a very high level of safety. This means that, starting
from the material composition of the ropes, its geometry, alloy and the
process used to build it the supplier certificate that product with, among
other parameters, the maximum peak load sustainable. Such certifications
are obtained by calculation results and standard testing procedures. This
value, in order to use that particular ropes in the project, must be at leat
6 times bigger than the maximum load obtained by simulating the worst
case scenario, where the cabin, at full load, stops the falls stretching out the
ropes.
The input of the entire verification process is the complete design, composed
by all details of the final project, and should deal with all the related
quantities. The model considered evolved during the development of the
solutions, dealing with an increasing number of parameters.

2.1.1 General shaft configuration

The common parts of any implements of elevators is the cabin, where the
passengers move along the different floors and the shaft, the space in which
the elevator is installed.
Another important aspect in the process of design regard the door selection.
Elevators can be configured with up to 3 different accesses, accordingly
to the the opening at the various floor levels. For each access a car door
must be considered and, for each floor a corresponding landing door must
be installed.
Doors can be categorized in 3 different types:

• Central opening door, where 2, 4 or 6 panels automatically opens
leaving the opening on the center.

• Telescopic opening door, where 1, 2 or 3 panel collapse on one side.

• Folding doors, a particular central opening door with panel folding
in half instead of sliding away.

During the design phase the selection of doors must consider the available
space in the shaft because doors impose a different depths. Also, designers
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Figure 2.2: Blueprint of a telescopic door pairs. On the upper side the car
door is reported

must check that a safety gap is available between the doors and other fixed
parts present in the shaft.

2.1.2 Hydraulic elevators

The research started considering a particular class of elevators: hydraulic
elevators. The study started from this particular type because implements
of this type are pretty common. Around 20% of new elevators installations
use specific hydraulics circuits in order to move the cabin.
This category can be furthermore split between direct hydraulic elevators
and roped hydraulic elevators.
In the first instance the cabin is operated directly by a piston which support

the weight of the cabin along the shaft. This particular implements aren’t
common in the European market because the piston moving the cabin
along the shaft, at his maximum extension, must be two time taller than
the total travel of the cabin. Such hydraulic components are composed by a
fixed part, the cylinder, and a moving part, the rod.
To install direct hydraulic elevators, an hole in the pit of the shaft must
drilled down and stabilized witch concrete walls.
In this case The cabin is mounted upon specific steel structure which
support the sliding car rails shoe. The car rails mounted along the shaft

11



Figure 2.3: A direct hydraulic elevator - note that the weight of the cabin is
imposed directly on the piston

Figure 2.4: An example of roped hydraulic elevator - the cabin is moved
along the shaft by pushing the ropes by the piston. The main pulley in this
picture is hidden by a protection safety carter
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walls interacting with the car rails shoe binds the cabin to only vertical
movements .
The cost of this installations are considerable and they also pose the concrete
risks of drilling through water tables: geographical regions like Italy, with
particular orographic conformations, brings a considerable number of
artesian spring and drilling through one can lead to serious damages to the
structures.
Considering all these peculiarities and issues, direct hydraulic elevators
represents viable solutions for low-rise buildings in some selected geographical
regions.
A more common solutions that overcome such limitations resides in hydraulic
roped elevators: with such implements the cabin is moved along the shaft
driven by a piston but in a undirected way. The cabin is hanged upon a set
of ropes which pass through a system of pulleys.
On top of the piston resides a pulley which pushes the ropes: this leads to
a movement with a ratio of 2:1 of the cabin with respect to the cylinder rod
elongation.

The piston is installed on the basement of the shaft, raised by a pillar of
proper length, removing the need of drilling through the pavements of the
pit.

2.1.3 Piston verification

The process of piston selection is driven by several parameters gathering
and consequent checks, namely:

• Maximum diameter

• Critical force

• Static pressure

• Empty car pressure

• Maximum pressure

• Cylinder stability

The first check is the least computing intensive: it deals with the the
geometrical maximum diameter of the piston and it compares it to the
maximum allowed by the car frame structure.

13



The critical force is calculated considering a parameter λ computed as
follows:

L f
i

Considering the value of λ, two different formulae are used to calculate the
critical forces. If λ has a value greater or equals to 100:

Fcr =
((π2) � E) �mip)

(2 � L f 2)

in other case:

Fcr = ((
An
2

) � (210)) � (
λ

100
)2

where:

� E is a constant equals to 206000, which is the elasticity modulus of
the particular alloy used for pistons.

� mip is the moment of inertia of the piston.

� i is the radius of gyration, the distribution of cross sectional area in a
column around its centroidal axis with the mass of the body.

� L f is the final length of the piston, obtained considering also geometry
of the car frame.

The Static pressure is the pressure that the piston system must support
during holding the cabin in fixed position along the shaft.
The first parameter to consider is the load on piston (loadP) obtained as
follow:

loadP = gn � (cm � (P + Q)) + Pr + Prh)

where:

� gn is the gravity force constant equals to 9.81 m/s2

� cm is a security coefficient
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� P is the total weight of the cabin

� Q is the total payload of the elevator, computed accordingly to the
available surface of

� Pr is the weight of the piston rod

� Prh is the weight of the suspended part of the car frame

The static pressure is then obtained using the following formula:

StaticP = (loadP/areaP) + (OilDensity � (L f /100))

where:

� areaP is the sectional area of the piston

� OilDensity is the density of the oil used in the hydraulics(with commercially-
available oils this value is considered constant and equals to 0.88)

The Empty car pressure should be checked using the same formula as
loadP but excluding the Q factor from the formula, obtaining netP. Then
the same formula used for StaticP is applied:

StaticP = (netP/areaP) + (OilDensity � (L f /100))

This value should be grater than a conventional value of 1.2 to check
that, without payload, the cabin weight is sufficient to overcome the oil
resistance plus the dynamic seals friction on the piston. If such constraint
is not satisfied, the cabin will not move along the shaft without the added
weight of the occupants.
The Maximum pressure i obtained by 8 � StaticP and it should be checked
against the maximum pressure sustainable by flexible pipes used for the
installation.
To verify the Cylinder stability 2 parameters, namely e f m and ulm must be
computed and checked that they are less than the thickness of the cylinder
and of the rod.

e f m = ((0.4 � diamP) �

r
(2.3 � 1.7 � (

StaticP
355

)) + 1

and
ulm = ((1.3 �

diamP
2

)� inRayP � 2.3.1.7 � (
StaticP

355
)) + 1
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Such consideration must be made considering all the possible pistons in
order to resolve this part of the design process. Some a-priori knowledge
can be used to filter out some solution: for instance for elevator projects
with a very high rise the smaller pistons can be filtered out of simulations,
because their stability cannot satisfies the requirements. The same filter can
be applied to bigger pistons on low rise and low payload, even if the sizing
limit on car frame allows for a fast and direct mathematical comparison.
On top of the piston, a specific circular pulley is installed. This mechanical
components, interacting with ropes, converts the linear displacement of
the piston to a variation of the ropes position. Such ropes are fixed on
one side to the shaft wall or to steel beams and, on the other end, to the
moving part of the carframe. The variation of the position of the ropes
along the shaft impose the movement to the cabin in a ratio of 2:1 so a
single meter of movement of the piston let the cabin travel for 2 meters,
hence the commercial classification of such installations.
The main pulley has several grooves where the ropes resides. On hydraulic
elevator, the dimension of this singular pulley is directly derived from the
available space imposed by the car frame. In this context no evaluation
must be done on static and dynamic friction of the ropes on the grooves,
and, due to the fact that a single pulled is used, no consideration about the
pulleys chain must be simulated. Also the weight of the cabin is always
imposed to the pulley and there’s no active rotation imposed to the pulley,
like case where a motor drives it. Problems rises when dealing with other
classes of elevators, like the roped elevator or machine room less elevators,
and this considerations are introduced in the following.
Hydraulic elevators are then built upon different other several parts:

• Car rails

• Car frame brackets

• Car rails shoes

• Car frame

16



Figure 2.6: Car rails technical drawing showing the differences among the
two available sections

2.1.4 Car rails verification

Figure 2.5: An section of a car rails
- Note the holes used to bolt each
section to the brackets

The car rails are "T" shaped steel
beams that are installed for the
totality of the elevator travel along
the elevator hoistway. Such
mechanical components are characterized
by some important measurements
that defines their geometry. Another
important parameter is the material
used to assemble car rail, which
brings different capabilities under
load. The selection of these
components take in account different
constraints regarding the results
of different tests, imposed by
European normative:

• Flex strain test

• Combined strain test

• Peak load strain test

• Compression/traction strain test

• Combination of compression and
flex strain test

• Torsion test
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Every single calculations must take in account several parameter derived
from the project, specific data from the configuration and rules imposed
by normative. First, this process is carried out by procedures that make an
initialization different parameters.
Before any further consideration is done, the geometrical parameters of the
car rails are considered: car rails comes with 2 different sections, one with
a regular "T" shape and one with slimmed out part portion interacting with
car rails shoe. The slimmed out section is typically used for bigger car rails,
leading to a lower weight of each section, but at the same time keeping the
structural strength required.

The simulations take in account three critical scenarios:

• The intervention of the safety gear where an emergency brake stops
the fall of the full loaded cabin in case that all the device sustaining
the cabin breaks apart.

• The cabin movement where the elevator starts the travel along the
different floors.

• The loading of the cabin where the weight forces of the full payload
are considered applied to the entrance of the elevator.

Each of the above scenario take in account the potential force applied to
the rails in the worst case: for each the forces are over-estimated in order to
guarantee a proper safety gap.
The most critical scenario, in most cases, is represented by the energy
dissipated by the emergency brakes that insist on the car rails.
It’s interesting to note that maximum forces obtained during these verifications
represents a crucial parameter not only for the elevator installation, but for
the entire building stability. Even if the installation is done using an external
hoistway, composed of steel beams, the interaction with the construction
must be taken in account to avoid critical situations and future structural
issues.
Car rails verification is done considering some geometrical parameters
obtained from the project: first, an axis system is derived starting from
the geometrical center of the car frame along the car rails center. From
the origin the x-axis its realized in the direction of the cabin. The y-axis is
obtained with a consequent 90 degree rotation.

Using this coordinates system four coordinates (x, y) are then obtained:
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Figure 2.7: CAD 2D drawing, obtained with LC that highlights the car rail
verification axys system - The dots on the drawing on the right represent
the several COG considered

• P the position of the center of gravity of the cabin.

• S the position of suspension point, which is the point of the pulley
where the suspension ropes applies.

• D the position of the the car door center of gravity.

• Q the position of the payload.

All these values are used to calculate the torsional momentum that car rails
must sustain, in the previous introduced scenarios.
The impact coefficient, k1 is derived from a table taking in account the
emergency brake used.
n is The number of car rails installed. This values is usually equals to 2, but
there are peculiar cases where the car rails used can be up to 4.
Then the weight of a single rails elements is obtained with

Mg = T � crw

where:

• T is the total travel, in meters, of the elevator

• crw is the weight, per meters, of a single car rail
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Another crucial parameter imposed by the normative is λ: this value is
calculated as:

λ = dstFix/mRIcr

where :

• dstFix is the distance between the car frame brackets, the components
that fix the car rails along the hoistway.

• mRIcr is the minimum radius of inertia of the car rails. This parameter
is supplied by the car rails builder.

Obtained λ, the process leads to the calculation of Ω. This value is imposed
by the normative using two different tables, each one consider different
alloy used to build the car rails. This table lookup is done to obtain 3
different coefficients:

• Ωc

• λc

• Addc

then the value for Ω is obtained as

Ω = Ωc � (λ
λc+Addc)

To conclude the initialization phase, before the actual verification, the
following parameters are obtained:

• l is the distance between the brackets

• h is the distance between car rails shoes

• Q is the payload in Kg

• Qcalc is the value of Q + 75 Kg, imposed by normative for safety
critical computations

• P is the cabin total weight, considering also the car doors weight

The check first case introduced, the intervention of the safety gear, the
values of flexion forces have to be computed, dividing the singular contribution
among the pre-defined axis system. FFlexX and FFlexY are obtained by:

FFlexX = j
k1 � gn � (Q �Q0

x) + P � Px + DPx � Pweight + DSx � DSweight + CFx � CFweight)

(n � h)
j
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and

FFlexY = j
k1 � gn � (Q �Q0

y) + P � Py + DPy � Pweight + DSy � DSweight

(n
2 � h)

j

Where :

• P is the total weight of the cabin plus the weight of the car frame
sustaining it

• P0

x and P0

y are the coordinates of the in which the cabin weight is
considered, in general an approximation considering the COG of the
cabin itself is acceptable

• Q is the total payload

• Q0

x and Q0

y are the coordinates of the in which the payload is considered

• DPx and DPy are the coordinates of the COG of the car door

• DSx and DSy are the coordinates of the COG of the optional secondary
car door

• n is the number of car rails

• h represents the vertical distance between the car rails shoes

• k1 is the impact coefficient obtained from a dedicated table

It’s important to note that the coordinates of the payload, namely Q0

x Q0

y,
are obtained by starting from the COG of the cabin and then, move them
in both possible direction of 1/8 of the cabin depth/width. This operation
must be done for all the four possible combinations, keeping the maximum
value for each FFlex pairs. This is imposed by normative in order to
consider the worst case scenario of each case.
Obtained FFlexX and FFlexY a designer is able to actually evaluate the
capability of the car rails to resist the mechanical solicitations considered.
For the sake of clarity, the complete calculation for other two case studies
are not reported here, but they follow the same procedure, with slight
changes over static coefficients.

The Car frame brackets are dedicated steel structures with the duty
to hold the car rails in vertical position. In case of concrete shafts these
are attached to walls by using expansion bolts or, under some particular
circumstances like very narrow installations, by walling a portion of bracket
itself. The last possibility is very sporadic and used for low rise elevator,
because the alignment of brackets is very challenging when a part of the
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bracket is embedded in concrete: no movement for regulation are possible
so the perpendicularity with regards the shaft must be checked for each
installation. This bring higher cost an higher risk related to final quality
of the the installation. In some critical cases a minimal angle deviation is
acceptable but brings an early consume of car rails and car shoes, imposing
shorter interval of maintenance.

Figure 2.8: Technical drawing of car
frame brackets. The image shows also
the fitting of the car rails

The canonical installation, using
expansion bolts, anyway, gives
to the installer the possibility
to compensate deformation of
the shaft maintaining the car
rails perpendicular with respect
to the pit floor. The number of
brackets that must be installed
is a parameter usually imposed
by the builder of the car frame,
taking in account the height of
the installation and imposing a
maximum distance between the
brackets.
Further consideration can be dictated
by the seismic characteristics of the
region where the elevator will be
installed.
Car rails shoes are the components that interacts directly with the car rails,
keeping the the cabin in position along the shaft.

These components consist of an "U" shaped steel beans with a polymeric
serviceable tabs that actually slides on car rails.
On a standard elevator with reasonable rise, the car rails shoes installed are
composed of 2 pairs, but in some particular cases, like very fast installations
or installations with very high payload capability, the number of such
devices can be increased. The distance between each pair of car rails is also
an important parameters used to calculate the stability of the system during
various verification phase: this value is strictly correlated with the car frame
structure and with the selected car rails.
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Figure 2.9: An example of polymeric
car rail shoe.

2.1.5 Machine room less
elevators

A different class of elevator, namely
ropes elevator, differs from the
hydraulic elevator by imposing the
movement to the cabin with an
electric motor that drives a ropes
and a pulleys system.
There are several classes of roped
elevators, but in general, the
higher level classification regards
the presence or not of a dedicated

room for the motor. To supply popular and industrial related solutions, the
research focused on Machine room-less(MRL) elevator which, in terms of
numbers, represent the bigger percentage of new installations. This type
of elevator have interesting characteristics in term of simplicity, because
an additional room to accommodate the motor is not required: all the
components can be installed directly in the hoistway and, thanks to the
relatively recent advances in brushless electrical engines, these implements
are very compact and energy efficient.

2.1.6 Pulleys and ropes verification

Dealing with ropes, from a design point of view, it’s a rather difficult
process in this case. In contrast with the process described then dealing
with hydraulic elevators, where the verification checks only the maximum
load on ropes versus the certificated values from the supplier, with electrical
motors moving the ropes and, consequently the cabin, the dynamic and
static friction must be simulated on all the pulleys chain components.
Pulleys have several characteristics:

• Number of ropes supported

• Pulley diameter
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Figure 2.10: Drawing describing the pulley’s grooves characteristics angles
- the left one is a semi-circular type - on right a "V" shaped grooves is
reported

• Shape of the grooves

• Characteristics angles

• Wrap angle

With roped elevators in general, the dynamic and static friction are critical
and need to be evaluated considering the characteristic of each pulley,
which can be different along the elevator.
Dealing with MRL elevator, featuring a simplified pulleys chain, verification
is easier in this case, but non trivial.
To check if the current configuration complies with the minimum accepted

value imposed by normative, four different cases must be evaluated and,
for each case, a parameter,µ, is defined:

• Loading operation µ = 0.1

• Emergency braking on descent µ = 0.1
(1+( rs

10 )

• Emergency braking on ascent µ = 0.1

• Blocked counterweight µ = 0.2

where rs represents the ropes speed in m/s.
In case of pulleys with semi-circular grooves the value of f can be obtained
by:

f = µ �
(cos γ

2 � sin β
2 )

π � β� γ� sinβ + sinγ

where:

• β is the carving angle.
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• γ is the characteristic angle.

If the pulleys used are V-shaped f is calculated as:

f = µ �
4(1� sin β

2 )

π � β� sinβ

where:

• β is the carving angle.

• γ is the characteristic angle.

The next to obtain an ropes system compliant with European safety norms,
requires the evaluation of the ratio between two values: T1 and T2.
These parameters are obtained with the following formulae:

T1 =
(P + Q + MCRcar + MTrav)

r
� (gn� a)+

Mcomp

2 � r
� gn + MSRcar � (gn� a �

r2 + 2
3

)

�(
iPTD �mPTD

2 � r
� a)�

(mDP � a)
r

�

r�1
∑

i=1
(mPcar � iPcar � a)

r
�

FRcar

r

and

T2 =
Mcwt + MCRcwt

r
� (gn � a) +

Mcomp

2 � r
� gn + MSRcwt � (gn � a �

r2 + 2
3

)

�(
iPTD �mPTD

2 � r
� a)�

(mDP � a)
r

�

r�1
∑

i=1
(mPcwt � iPcwt � a)

r
�

FRcwt

r

Where :

• a is the deceleration (positive value) of the cab in meter per second
squared

• FRcar is the frictional force of the shaft (efficiency of the cab side
supports and friction on the guides) in Newton

• FRcwt is the frictional force of the shaft (efficiency of the counterweight
side supports and friction on the guides) in Newton
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• gn is the gravity acceleration in meter per second squared

• H is the stroke length in meter

• iPcar the number of pulleys on the cab side with the same rotation
speed vpulley (except deflection pulleys)

• iPcwt the number of pulleys of the counterweight side with the same
rotation speed vpulley (except deflection pulleys)

• iPTD is the number of pulleys of the tensioning device

• mDP is the reduced mass (referred to the car or counterweight) of the
car side and / or counterweight side deviation pulleys in kilograms

• mPcar is the reduced mass (referred to the cab) of the cab side pulleys
in kilograms

• mPcwt is the reduced mass (referred to the counterweight) of the
counterweight side pulleys in kilograms

• mPTD is the reduced mass (referred to the cab / counterweight) of a
pulley of the tensioning device in kilograms

• Mcomp is the mass of the tensioning device including the mass of the
pulleys in kilograms

• MCR is the effective mass of the ropes / compensation chains in
kilograms

• MCRcar is the mass MCR cab side item MCRcwt is the mass MCR counterweight
side

• Mcwt is the mass of the counterweight including the mass of the
pulleys in klograms

• MSR is the effective mass of the suspension ropes in kilograms

• MSRcar is the mass MSR cab side

• MSRcwt is the mass MSR counterweight side

• MTrav is the effective mass of the flexible cables in kilograms

• nc is the number of the ropes / compensation chains

• ns is the number of the suspension ropes

• nt is the number of the flexible cables

• P is the mass of the empty car in kilograms

• Q is the scope in kilograms
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Figure 2.11: The image report a generic schematics used for the generic
pulley slip calculation. The rectangle on the left represents the cabin, with
its payload. On the right the counterweight.

• T1 T2 is the strength of the rope in Newton

• r is the size coefficient

• vpulley is the speed of rotation of the pulley in meter per second

A complete examination of the problem of elevator design represents
indeed a challenging and complex task.
During the years of research in this field, thanks to a constant involvement
of professional from the industry, participation to technical seminar and
fairs, the capabilities to translate this normative constraints to a former
software solution were acquired. In the following a set of solution are
introduced dealing with the problems introduced above.
For each techniques experimented and validated a different encoding
is realized with an incremental approach. The foundation of all these
experimental campaign is a set of special purpose heuristics developed and
tested for the LiftCreate web application1.

1Application available, after a brief registration at http://liftcreate.ailift.it
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2.2 Software Technologies

During the research an industry-oriented tool was developed. To achieve
this objective a complete stack of technologies, both for back-end and front-
end, was used.
This section present a brief introduction to technologies and methodologies
used to develop LC.
The tool was developed using mainly Java code on Spring framework, a
popular open source framework for the development of web application.
Spring is widely adopted by the Java community for its capabilities of
building web application on top of the Java Enterprise Edition platform
model. This lead Spring to be recognised as a gold standard by commercial
leading firms as strategic importance framework. The first release of the
framework was done in 2001 and, since then, it evolved integrating over
the years new technologies and development technologies.
Spring historically was one of the first framework to invest a lot of effort in
peculiar technologies like Inversion of Control (IOC) Reflection and Aspect
Oriented Programming(AOP). A brief introduction to each techniques is
reported; IOC is a architectural pattern developer conceived to support
developer in the process of simplification and reuse of the code. With the
application of IOC the various libraries that compose a software solution
are independent.
With a techniques called injection the dependencies between different
components of the software are handled directly by the framework; to
achieve this objective, in contrast with a canonical imperative languages
where dependency must be encoded explicitly, the developer must specify
a sort of contract between the different parts.
A viable way to specify such dependencies is the Dependency Injection which
represent a pattern to implement the IOC
Spring relies heavily on this, leading to an optimization in terms of payload
of the code, delegating to this solution the burden of initialization logic:
with a standard solution based on different services the responsibility of
the initialization of the different objects handling their logics is a task that
must be done by the programmer. In contrast with IOC and in particular
with Dependency Injection the framework handles directly the availability
of the service itself, letting the developer focus more on business logics
than architecture of the solution.
The main drawback of the application of dependency injection is the risk
that for some modules, too many dependencies are injected, leading to
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became an anti-pattern when overused or used incorrectly.

For the generation of technical drawings the availability CAD library
represented an important requirement and a basic foundation for the
develop of automated design techniques.
Many mechanical engineering procedure of design relies heavily on technical
drawing, using CAD software.
Typical CAD solution support the designer with the possibility to create 2D
drawings and 3D shapes compositions. On top of this firms like AutoCad
and PTC offers advanced tools for specific simulations, supporting engineers
in the product design phase with a deep knowledge about complex characteristics
parameters.
Advanced analysis like Finite Element Method are able to guide the designer
across different phase of the product development supplying a fundamental
insight about, for instance, structural analysis, heat transfer, aerodynamics
and fluid flow.
In the context of elevator design such advanced analysis tools are generally
not needed, except for particular case where and engineer must evaluate
stability of the entire building after the installation. This study is usually
done to check the structure capability under earthquake stresses conditions.
In general all the information required to evaluate the interaction between
the elevators and buildings are derived from computation done for the
European norm verification.
During our research the eventuality of a further advanced analysis was not
considered.
In the elevator design field a relevant novelty was the introducing of BIM
technologies, which represents the standard of integration of different part
of the building.
Building information modeling (BIM) is a process supported by various
tools, technologies and contracts involving the generation and management
of digital representations of physical and functional characteristics of places.
Building information models (BIMs) are representations of the building
which can be extracted, exchanged or networked to support decision-
making. BIM software is used by individuals, businesses and government
agencies who plan, design, construct, operate and maintain buildings
and diverse physical infrastructures, such as water, refuse, electricity, gas,
communication utilities, roads, railways, bridges, ports and tunnels. In
particular the survey[12] pose the problem to propose a methodology
to apply such concepts to existing building how such problems can be
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addressed starting from an existing building and
In our case the decision process and the evaluation of the requirements

leads us to develop a 2D cad library. A preliminary experimental campaign
in order to evaluate the different technologies were done bringing our
consideration to two major candidates solutions, both using client-side
scripting: OpenJSCAD and Snap.svg.
OpenSCAD is a free software application for creating solid 3D CAD (computer-
aided design) objects. It is a script-only based modeller that uses its own
description language; parts can be previewed, but cannot be interactively
selected or modified by mouse in the 3D view. An OpenSCAD script
specifies geometric primitives (such as spheres, boxes, cylinders, etc.) and
defines how they are modified and combined (for instance by intersection,
difference, envelope combination and Minkowski sums) to render a 3D
model. Snap is a javascript library that permits the generation of SVG, a
web standard for vectorial drawings. Considering that a CAD2D library
was enough for the production of technical drawings the decision was to
use the Snap library.
Also, a precise and complete 3D rendering would require a bigger set
parameters that in the designing of an elevator are not considered. Expanding
the model with such parameters would also make the computation of
solution more difficult, with the risk of losing the interactivity of the
application.

The preliminary work focused on acquiring of the current state of
the art about topics such cloud technologies, product configuration and
optimization.
Regarding cloud technologies a deep study about concepts like software as
a service(Saas), containerization of applications and most popular frameworks
for web-based developments were done.
The preliminary studies focused mainly on:

• Amazon Web Service(AWS), a cloud computing family of services
that gives the possibility, by using proprietary technologies, to obtain
industry proven and scalable computing resources. In particular
the EC2 computing product were exploited and used to deploy of
the early prototypes. A beta version of the tool LIFTCREATEis now
deployed on public domain with such technologies.

• Docker, a open source project related to deployment automation.
The tools gives the possibility to create specialized virtual machines,
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starting from a well defined image, that implements a very fast way
to obtain an host machine.

• Spring framework, an open source cloud java framework developed
by Pivotal dedicated to web applications.
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Chapter 3

Special-purpose heuristic search

3.1 Preliminaries

Elevators can be differentiated in two broad categories, namely traction
— also called rope in the following — and hydraulic elevators. In traction
elevators, the car is suspended by ropes that are moved via an electrically
driven sheave. The opposite end of the ropes is connected to a counterweight.
Depending on whether the sheave is driven directly by the electric motor
or whether a gearbox is used, these elevators are further differentiated
into geared and gearless traction systems. According to [13], geared
traction elevators are the most common “legacy” elevator type in Europe,
constituting more than two thirds of the European elevator stock. Gearless
traction elevators are a comparatively young technology and only constitute
about 8% of the total elevator stock. The remaining elevators operate on
hydraulics, i.e., they rely on one or more pistons to move the car. Energy is
usually provided to the hydraulic fluid by an electrically driven pump, and
typically no counterweight is needed to compensate for the weight of the
car. Hydraulic elevators (HEs) are often used in low-rise applications and
are widely used in new installations in some European countries, including
Italy: Their low initial costs, compact footprint and ease of installation
makes them the most viable choice for retrofitting old residential buildings,
and a cost-effective solution for new ones alike. The choice of HEs as a case
study is thus motivated by their popularity, and by the fact that, in spite of
their relative low part count, their structure presents already most of the
challenges that are to be found in other elevator types.

The components of HEs considered by LIFTCREATE CautoD procedures
are shown in Figure 3.1 using an UML class diagram to outline the corresponding
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Figure 3.1: Taxonomy of elevator types handled by LIFTCREATE (top)and
components of OnePistonHydraulicElevator (bottom).
Rectangles represent entities, IS-A relations are denoted by solid arrows,
and HAS-A relations are denoted by diamond-based arrows.
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part-whole hierarchy. Notice that, in order to manage the space of potential
designs components cannot be solely available as drawing elements, like
in classical CAD solutions, but they must be handled as first class data
inside LIFTCREATE logic. In particular, OnePistonDirectHydraulicElevator is
both a leaf entity in the taxonomy shown in Figure 3.1 (top), and also the
root node of corresponding part-whole hierarchy in Figure 3.1 (bottom).
Looking at the hierarchy, the structure of HEs with one piston direct drive
can be easily learned, the only peculiar aspect being that these implements
feature only one piston (Piston). The remaining components are common to
HydraulicElevator or Elevator. In particular, the car frame (CarFrameHydra),
i.e., the mechanical assembly connecting the car with the piston, is specific
of hydraulic elevators. Albeit not physically part of the car frame, the
entities CarRails, i.e., the rails along which the car is constrained to move,
Buffer, i.e., the dumping device placed at the bottom of the elevator shaft,
and Ropes, are logically part of it since their type and size must be inferred
from or melded with the type and size of the car frame. Common to
all elevator types, the entities Shaft and Car are both logically part of the
Elevator entity, but only Car is also a physical component, together with
its sub-component CarDoor. In the case of Shaft, while landing doors
(LandingDoor) are not physically part of the shaft, they are attached to it
and their size and type must be inferred from or melded with car doors.
The relationships encoded in such part-whole hierarchy are instrumental
to LIFTCREATE when it comes to handle drawing, storage and retrieval
of designs, but also to reason about the various trade-offs of a design
when searching in the space of potential solutions, as described in the next
section.

3.2 Heuristic search

For the sake of clarity, in the ensuing discussion about LIFTCREATE CautoD
procedures for hydraulic elevators it is assumed that only one supplier
and build are available for car frames — including all logically-attached
components, i.e., car rails, buffers and ropes — and for doors. This is not
a severe limitation, as often designers and elevator installers will have
their preferred pool of suppliers and builds for car frames and doors,
opting for different ones only when the setup requires solutions which are
manufactured only by specific suppliers. The CautoD procedure operates
according to some predefined parameters:
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• Reductions, i.e., distances from car to shaft on those sides of the car
which are free from doors and car frame.

• Car wall thicknesses (different values for each car wall).

• Maximum car frame overhang (distance from the central axis of the
car and piston).

• Choice of reduced or standard landing door frames.

• Door size tolerances with respect to other components, e.g., car frame.

Finally, it is assumed that the car will have only one door on the front, and
that the car frame is to be placed either on the left side or at the back of the
car. The case in which the car frame is placed to the right is simmetrical to
the one considered.

Independently from whether LIFTCREATE uses heuristics or computer-
intensive methods to guide the designer amidst alternative choices, the
CautoD procedure scheme is the following:

1. Shaft size (width and depth) is input by the designer; no other
configuration parameters are necessary since it is assumed that there
is only one door on the front side of the car.

2. All available car frames are considered in ascending payload order;
each selected car frame is placed either on the left or at the back of
the car, aligned to its center.

3. Taking into account the selected car frame size, car wall thicknesses
and reductions, the current internal width of the car is computed.

4. Door selection depends on whether heuristics or computer-intensive
techniques are used (see below)

5. For each selected car frame and door, the weight of the car — doors
included — and its payload are computed; given also the maximum
overhang, it is possible to validate the selected car frame: if adequate,
the current solution is saved into a list of feasible designs; otherwise,
the solution is discarded and the procedure goes back to step (3).

To complete point (4) in the procedure scheme above, one could resort
to either heuristics or computer intensive methods. In the former case, the
following steps are taken:

a. The “internal cabin door” parameter — ICD in the following —
is computed starting from the value computed in step (3) above,
considering the size of landing door frames.
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b. In order to select car and landing doors of feasible size, the ICD
parameter, the shaft width, and the door size tolerances are considered
to perform checks depending on the door types, i.e., sliding and
folding; for the sake of brevity, details are omitted, but it is important
to notice that such checks involve some non-trivial reasoning about
door placement.

c. The doors selected at step (b), together with the selected car frame are
part of the evaluation carried out in step (5) of the CautoD procedure
scheme.

If computer-intensive methods are opted for, the following steps are taken:

a. Door sizes larger than the shaft are filtered away.

b. For each combination of door size and selected car frame, the parameter
“residual car space” — RCD in the following — is computed; the
parameter amounts to the difference between the shaft width and the
total space allocated for the door; RCD is computed for each door
type, since the space available for door placement is clearly a function
of the current combination of door, car-frame, reductions and car wall
thicknesses.

c. RCD is divided up into intervals of equal length — 5mm in the
current implementation — so that a set of projects is generated, each
with a different door placement; some of these projects will not
be feasible, because door placement will not be coherent with the
overall constraints, but these will be filtered at the end of the CautoD
procedure.

While heuristics generate projects that are guaranteed to be feasible, the
computer-intensive approach requires post processing to filter out remaining
unfeasible projects. There are five checks that serve this purpose, namely:

• the door should not be placed outside the shaft;

• the door opening should be contained in the car;

• the car frame should be contained in the shaft;

• there should be no interferences between car doors and car frame;

• the landing door frame, once aligned to the car door, should not be
outside the shaft;

If at least one of the checks above fails, the corresponding design is discarded.
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3.3 Experimental results

The experimental evaluation is carried out considering eleven hydraulic
elevator case studies — CS in the following. These include both configurations
for which there exists feasible solutions, and configuration for which there
are none. Among configurations for which feasible designs exist, both
typical and “borderline” cases are considered. In more details:

• CS#1 features a shaft size which is too small to have feasible solutions;

• CS#2 is the minimum shaft size to have exactly one feasible solution:
clearly the solution found has to be the same across heuristics and
computer-intensive methods;

• CS#3-7 represent “typical” shaft sizes found in residential buildings;

• CS#8-10 feature unconventionally large shaft sizes;

• CS#11 features a shaft size which is too large to have feasible solutions.

In all the cases above, feasibility is constrained by the working hypothesis
outlined before and by the available set of components. For instance,
in CS#11 there are no feasible designs because in the component library
there are no car frames available that can handle the resulting maximum
payload. The experimental results herewith presented are obtained using
LIFTCREATE prototype implemented in Java 8 and based on the SPRING
object-persistence framework 1 using Vaadin2 to generate and display GUIs.
To handle components data and generated projects, a local instance of
Mysql server 5.7 is adopted. All the simulations are executed on a machine
with an Intel i7 5th generation 8 core CPU, featuring 8GB of RAM and
running Ubuntu Linux 16.10.

Table 3.1 presents experimental data about the comparison between
heuristics and computer-intensive methods on the selected case studies. In
the Table, CS is the unique case study id, W and D are the corresponding
shaft width and depth, respectively; both for heuristics and computer-
intensive methods, CPU is the amount of time (in milliseconds) required
to generate solutions, and OK is the number of feasible solutions found;
GEN is the number of generated projects which, in the case of computer-
intensive methods, does not readily correspond to feasible solutions, i.e.,
those that pass the checks mentioned at the end of the previous section.

1https://spring.io/.
2https://vaadin.com/home.

37

https://spring.io/.
https://vaadin.com/home


Table 3.1: Heuristics vs. computer-intensive methods.
CS W D Heuristics Computer-Intensive

CPU OK CPU GEN OK

1 900 830 235 0 1504 50 0
2 910 830 147 1 1488 120 1
3 1200 1000 670 122 3260 18972 1777
4 1200 1200 596 174 3736 18078 4181
5 1400 1000 1314 265 4122 40930 5939
6 1400 1200 943 291 3367 36440 11355
7 1600 1000 1606 406 3913 66717 9035
8 1600 1200 1349 470 2801 63854 24935
9 1800 1200 1614 516 2576 73046 28920

10 2000 1200 3628 360 1838 58888 22131
11 2000 1400 4236 0 1266 0 0

From Table 3.1 it can be observed that heuristics and computer-intensive
methods do not present substantial differences when it comes to over-
constrained configurations. In particular, for CS#1 and CS#2, the only
noticeable element is that heuristics are faster than computer-intensive
methods, as they can prune many unfeasible designs in the early stages
of search — in CS#2 there is a 10� factor between the two. As far as
“typical” configurations are considered, the picture changes. The gap in
performances is never greater than a 6� factor, and computer-intensive
methods are generating a strict superset of the projects generated by
heuristics. The difference set is populated by solutions that, albeit feasible,
do not correspond to straightforward designer choices, whose spirit is
embedded into heuristics methods. Nevertheless, many such designs
do have practical value. For instance, since computer-intensive methods
explore many alternative door placements, they find solutions which often
end up being preferred by implementors because they allow an easier
fitting of cables or other implements, whereas customers may prefer them,
e.g., because of aesthetic reasons. Finally, as for configurations which admit
many alternative solutions, it can be observed that both heuristics and
computer-intensive methods struggle with an ever-increasing search space.
In some cases, e.g., CS#10, a-posteriori pruning techniques implemented in
the computer-intensive approach end up being more efficient that heuristics.

In figure 3.2 an alternative view of the results shown in Table 3.1 is
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Figure 3.2: Average time to compute a single solution; case studies
appear along the x-axis, ordered descendingly according to their estimated
complexity; y-axis report CPU times in milliseconds, on a logarithmic
scale; the plot report the performances of heuristic (squares) vs. computer-
intensive (diamonds) methods.

shown. In the Figure, the average time to compute a single solution
for heuristics and computer-intensive methods is plotted. For each case
study, the average time per solution is just the ratio between the total
time and the number of feasible projects — columns CPU and OK in
Table 3.1. However, case studies are sorted along the abscissa of the
plot considering an ascending order of configuration complexity, whose
approximate indication can be obtained considering the number of solutions
generated by the computer-intensive approach — column GEN in Table 3.1.
The principle behind this choice is that, the more solutions are evaluated by
computer-intensive techniques, the less constrained the original configuration
is, and the less complex the overall problem is. Notice that CS#1, CS#2
and CS#11 are excluded from the plot in Figure 3.2 since the corresponding
data would not make any sense. What can be observed from the plot
is that, when the complexity of the problem is low, computer-intensive
methods may have an edge over heuristics: it takes more than 10� time to
compute a single solution using heuristics, on average. The gap becomes
smaller and smaller while the complexity increases. This is to be expected,
because computer-intensive methods will have to reject more and more
solutions, increasing the overhead to reach feasible solutions. For the
most complex design, namely CS#2, the cost of computing 120 solutions
in order to reach just one, is overwhelming with respect to what can be
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achieved using heuristics. This reveals that, all other things being equal,
computer intensive methods have an advantage over heuristics when the
problem complexity is relatively low, whereas contrived configurations
might benefit the most from the pruning power of heuristics.

Figure 3.3: Success rate (percentage); each bar represents the success rate
of either heuristic (blue) or computer intensive (orange) methods.

One last perspective about the results is shown in Figure 3.3. Here the
success ratio of heuristics and computer-intensive methods is computed
as a percentage value, considering the number of feasible designs and the
number of attempts made to generate them. While in the case of computer-
intensive methods this is simply the ratio between columns OK and GEN
in Table 3.1, in the case of heuristics the value is computed considering the
number of solutions that are “early-pruned”, i.e., those which heuristics do
not attempt to extend into a full-fledged solution. For all the case studies,
except CS#1 and CS#11 which do not admit feasible solutions, Figure 3.3
tells that the success ratio of heuristics falls below 30% only in one case,
i.e., CS#10, whereas computer-intensive methods are more configuration-
dependent. In particular, the success ratios of “easy” configurations —
namely CS#8-10 — are much higher than relativealy “hard” configurations,
e.g., CS#2, but also CS#3-5. This confirms the evidence exctracted from the
plot in Figure 3.2, i.e., that heuristics have an edge over computer-intensive
methods on “hard” configurations, whereas “easy” configurations can be
within the reach of computer-intensive methods.
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Chapter 4

Genetic Algorithms

4.1 Preliminaries

Genetic Algorithms (GAs) are optimization procedures based on ideas
borrowed from natural selection and evolution. Detailed descriptions
of GAs are to be found, e.g., in [14]. For the purpose of this paper, it
is sufficient to recall that GAs consider a population as a finite set P of
potential solutions to the target optimization problem. Each individual
p 2 P is characterized by a genotype comprised of chromosomes. As in nature,
chromosomes define the individual and are the basis for the obtaining
different individuals by “mating” procedures. The fitness function is a
mapping f : P ! R which ranks the individuals according to a fitness
score: the higher the chance of being a good solution, the higher the fitness
score. Notice that GAs provide unconstrained optimization over the space of
potential solutions. In order to take into account constraints, as our elevator
design problem requires, the fitness function should contain one ore more
loss factors — see, e.g., [15] — which penalize the individual design when it
violates specific constraints: in this way, hard constraints are turned into
preferences about solutions. By shaping the loss factors adequately we are
able to control how much getting closer to violating a constraint can be
discouraged. GAs are initialized with a randomly chosen population P
and then they seek to improve the initial choice by repeating the following
steps:

1. the fitness f (p) of each individual p 2 P is computed;

2. a set M � P is extracted from P such that individuals in M have the
highest fitness among those in P;
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3. the individuals in M are subject to “mating” procedures such as
crossover, or other evolutionary phenomena such as mutation: informally,
crossover occurs when the genotypes of two individuals are split
and recombined to form new ones bearing some chromosomes, i.e.,
common traits, from both their parents.

4. The result of the previous step is a population P0 which might contain
individuals fitter than those of the previous population P; in particular,
the crossover operation attempts to combine the genes of fit individuals
to produce fitter children, and mutation attempts to maintain diversity
in a population of designs.

5. Population P0 becomes the new population P and the search restarts
from step (1) unless some termination condition occurs, e.g., the fitness
of the fittest individuals did not change in the last k steps, or a fixed
number of h generations has been produced, where k and h are user-
controlled hyper-parameters.

In our case each element of the population is a RHE design, and the
genotype is meant to describe its main elements.

4.2 Model

4.2.1 Decision variables and parameters

We now formalize our model introducing the decision variables, the parameters
and the constraints that involve them. We note that the reference system
in LIFTCREATE origins from the top left corner of the internal shaft wall
and the y axis is inverted with respect to a canonical Cartesian system.
The origin O(x,y) of this reference system coincides with the shaft base point
(xsha f t, ysha f t) which is always set to (0, 0) — see Figure 7.1. In Figure 7.2
we present a fragment of the plan view focusing on the car frame structure,
which is comprised of the brackets — wall-mounted T-shaped components
— to support the car rails on which the car frame core gear slides. The car
frame base point, i.e., the insertion point of the car frame structure in the
configuration, lies on the outer corner of the topmost bracket and it is
marked with a cross. The coordinates of the car frame base point (xc f , yc f )
— denoted by (x, y)c f in Figure 7.2 — determine a specific placement of
the structure. The overhang of the car with respect to the car frame is the
distance from the car walls to the car frame core gear edges — the top
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edge is ygear. As shown in the drawing, the overhang correspond to two
parameters oh1 and oh2, required to handle the cases in which the car is
not centered with respect to the car frame. The parameter dcr denotes the
distance between the car rails, i.e., the size of the core gear. Starting from
the base point of the car frame, wc f and dc f are the width and the depth of
the car frame, respectively, whereas dbr is the depth of the brackets; the total
encumbrance of the car frame in the shaft is given by the sum dc f + 2dbr.

In Figure 7.3 we consider a fragment of the plan view focusing on the
door pair — notice that the car door and the landing door opening must
be aligned. The drawing in Figure 7.3 represents a pair of telescopic doors
with 3 panels. The car door base point (xcd, ycd) — denoted as (x, y)cd in the
plan view — and the landing door base point (xld, yld) — denoted as (x, y)ld
in the plan view — are always at the top left corner of the corresponding
structure. The value of these coordinates represents a specific placement of
the car/landing door pair. The landing door opening is surrounded by the
frame, i.e., the structure that surrounds the entrance to the car, with width
w f rame. The total door width is the sum of two parameters, the left axis —
lacd and lald for car and landing door, respectively — and the right axis —
racd and rald for car and landing door, respectively. Both axes originate
from the opening midpoint and, as shown in the drawing of Figure 7.3, in
general they may not coincide. Finally, stepcd and stepld denote the depth
of the step in the car and landing door, respectively; dstep is the distance
between car and landing doors.

In Tables 7.1 and 7.2 we summarize all the quantities involved in the
configuration, separating decision variables (Table 7.1) from parameters
(Table 7.2) either related to the initial specification or extracted from the
components database — all quantities are in millimeters. We introduced all
the decision variables beforehand with the exception of (xcar, ycar), i.e., the
car base point coordinates corresponding to the top-left internal edge of
the car in Figure 7.1, and wcar and dcar, i.e., the width and depth of the car.
Concerning parameters, we consider four groups of them. The first group is
related to shaft measurements and includes wsha f t and dsha f t — width and
depth of the shaft, respectively; also in this group we have reductions (redN ,
redS, etc.), i.e., the distance between the car walls and the shaft, and car
wall thicknesses (cwtN, cwtS, etc.). For both such groups of parameters we
have four values (N, S, W and E) to account for different sizes on all sides
(top, bottom, left and right, respectively). The second group is related to
car frame dimensioning and includes maxoh, i.e., the maximum overhang,
and other parameters detailed in the table. The third group is related to
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doors, with no further introduced parameters.

4.2.2 Constraints

Having defined our decision variables and parameters, we proceed to
describe the (hard) constraints required to find feasible solutions, divided
into two groups related to car frame and doors respectively. The constraints
to place the car frame must take into account two main issues. First, given
the shape of the brackets, it is not possible to model the car frame as a
simple rectangle in order to fit it with the other components. Therefore the
placement of the car frame is computed by subtracting residuals from the
total shaft measures. Second, the placement of the car frame must take into
account its maximum overhang, i.e., the car cannot “lean” too much outside
the car frame core gear. The considerations above lead to the following set
of constraints:8>>>><

>>>>:
yc f � dbr � ysha f t

yc f + dc f + dbr � ysha f t + dsha f t

0 � yc f + ygear � ycar < maxoh

0 � ycar + dcar � yc f � ygear � dcr < maxoh

(4.1)

The first two constraints are required to fit the shape of the car frame, while
the last two are required to satisfy the requirement about the maximum
overhang.

The constraints to place the car/landing door pair should guarantee
that both structures fit the shaft, that the actual opening fits the car and that
the landing door frame does not exceed the shaft size. These requirements
can be translated into the following set of constraints:8>>>>>>>>>>>><

>>>>>>>>>>>>:

xcd � xsha f t

xld � xsha f t

xcd + lacd + racd � xsha f t + wsha f t

xld + lald + rald � xsha f t + wsha f t

xcd + lacd �
opening

2 � xcar

xcd + lacd +
opening

2 � xcar + wcar

xld + lald +
opening

2 + w f rame � xsha f t + wsha f t

(4.2)

The first four inequalities are required to guarantee that the car and the
landing door structures fit the shaft; then we list two inequalities related
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to the car opening, and the last inequality guarantees that the landing
door frame size is adequate for the shaft. In addition, the alignment of
the landing door with respect to the car door must be enforced with the
following equality constraint:

xld = xcd + lacd � lald (4.3)

The placement of the car and landing door on the y axis is also enforced
with equality constraints:(

yld = ysha f t + dsha f t � stepld

ycd = yld � dstep � stepcd
(4.4)

Further equality constraints are required to take into account that the door
placement over the y axis, together with the car frame and door selection,
influences the car size as follows:8>>>><

>>>>:
xcar = wc f + cwtW

ycar = redN + cwtN

wcar = wsha f t � wc f � cwtW � cwtE � redE

dcar = dsha f t � redN � cwtN � cwtS � Hdoors

(4.5)

where Hdoors stands for the total door occupancy over the y axis computed
as:

Hdoors = stepld + stepcd + dstep (4.6)

Notice that when the car frame is positioned on the left hand side of the
elevator, its x base coordinate xc f is always set to 0.

Since the car door body may protrude over the car walls, in order
to minimize the risk of collision with other components, designers must
consider a safety margin. To guarantee this requirement, specific non-
overlapping constraints are implemented. For example, if we let r be the
security margin, the non-overlapping constraint relative to car frame and
car door can be written as follows:

xcd � r � xc f + wc f _ ycd � r � yc f + dc f (4.7)

4.3 Implementation and experimental results

In this Section we introduce and present experimental data about three
different solution strategies, namely custom heuristics (LIFTCREATE-HR),
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genetic algorithms (LIFTCREATE-GA) and SMT solvers (LIFTCREATE-
SMT). We will show some results obtained with brute-force (LIFTCREATE-
BF) and random sampling (LIFTCREATE-RS) in the space of possible
solutions, to witness that the configuration task we consider is complex
enough to make exhaustive search unfeasible and random search ineffective.
Our analysis is empirical, and the data to support our conclusions are
obtained by running different versions of LIFTCREATE using the same
database of components — 25 car frames and 236 doors — to configure
RHEs in thirty different setups. These include both cases in which, given
the available components, feasible solutions exist, and others for which
there are none. The setups we consider represent typical shaft sizes found
in residential buildings: two families of 15 setups, the former featuring
1300 mm shaft width and the latter featuring 1500 mm shaft width; shaft
depth varies in both families from 800 mm to 1500 mm. Overall, these
setups enable a thorough evaluation of LIFTCREATE versions considering
realistic settings.

Due to the specific features of LIFTCREATE versions, there are some
differences in how configurations are generated and results are presented,
differences that we describe in the following and that we tried to harmonize
as much as possible in order to make our experimental comparison meaningful.
In particular, since the methodology implemented by LIFTCREATE-HR is
under patent scrutiny, we do not disclose its details and consider it as a
black-box. LIFTCREATE-HR produces at most one solution — supposedly
the “best” one according to the heuristics — for each prototype, i.e., a pair
comprised of a door and a car frame which together fit the shaft. Therefore,
for each given setup, LIFTCREATE-HR produces as many solutions as
there are prototypes, where a solution features a specific placement of car
frame and doors. The three versions of LIFTCREATE based on search in the
space of configurations, namely LIFTCREATE-BF, LIFTCREATE-RS and
LIFTCREATE-GA, feature a common data flow implementing the following
phases:

• Prototype generation: amounts to list all prototypes, pruning up-front
those which cannot fit the given shaft.

• Expansion: given a prototype, potential configurations are explored
by attempting to place the car frame and the doors inside the shaft
within the allowable ranges: the results of this phase are early designs.

• Design validation: given an early design, a number of checks is performed
in order to validate the corresponding configuration and declare it
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feasible or not.

Specifically, the validation phase must guarantee that every constraint of
Section 4.2.2 is satisfied. The difference among LIFTCREATE-BF, LIFTCREATE-
RS and LIFTCREATE-GA lies in the expansion phase: exhaustive search
for LIFTCREATE-BF, random sampling for LIFTCREATE-RS and genetic
algorithms for LIFTCREATE-GA. Since these versions may produce many
feasible configurations for each prototype, whereas LIFTCREATE-HR outputs
only one, we cluster configurations after the validation phase. In more
details, the set of valid placements for each given prototype is clustered
around a representative, in order to make the comparison with LIFTCREATE-
HR possible. Finally, in LIFTCREATE-SMT the prototype expansion phase
is replaced by the SMT encoding of the constraints introduced in Section 4.2.2,
where the choice of components is restricted to those that can fit the shaft.
The subsequent phases of expansion and validation are merged in the
search for a solution by the SMT solver. If a cost function to drive the search
towards “optimal” designs is supplied, then LIFTCREATE-SMT outputs
exactly one configuration for each given setup.

4.3.1 Custom heuristics: LIFTCREATE-HR

The results of LIFTCREATE-HR are reported in Table 7.3. As the results
show, all the setups can be solved in less than 2 CPU seconds 1. The
number of configurations found ranges from 0 for the two setups having
shaft depth 800 mm, to more than one thousand for deeper shafts. Notice
that the number of configurations found by LIFTCREATE-HR may not
coincide with the total number of feasible configurations. This is because
heuristics in LIFTCREATE are geared towards providing arrangements that
a human designer finds satisfactory and not just feasible ones.

To better appreciate the complexity of the configuration task and the
results obtained with LIFTCREATE-HR, in Table 7.4 we present also the
results obtained with LIFTCREATE-BF. In these experiments, a timeout of
30 minutes has been set in order to avoid excessively long runtimes. As
expected, the runtime of LIFTCREATE-BF grows with the shaft size and it
is up to three orders of magnitude greater than LIFTCREATE-HR. Consider
now the difference among the time to generate prototypes (TTP), the time
to expand them (TTE) and the time to validate (TTV) early designs. As it

1The heuristic search herewith considered focuses only on the car frame and doors
coupling, so that the results of the full design may appear inconsistent with [16]
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can be observed, the largest slice of runtime is consumed by the validation
phase. This is reasonable because even if the expansion phase generates a
large number of alternatives, no processing is performed on them. Notice
also that the number of early designs (column “E” in Table 7.4) is about four
to five times greater than the number of valid designs for all but the setups
for which no feasible configuration exists. This means that LIFTCREATE-BF
wastes a lot of processing time just to discard unfeasible configurations.

Finally, we clustered all the valid designs generated by BF search
according to the procedure described before. Looking at column “C”
in Table 7.4, we can see that the number of clusters is much smaller
than the number of valid designs, indicating that LIFTCREATE-BF finds
many feasible configurations sharing the same car door and frame with
slightly different placements. On the other hand, LIFTCREATE-HR nails
down one design for each pair of car door and frame at most. As we
mentioned previously, the output of LIFTCREATE-HR is supposedly the
“best” alternative according to a human project engineer, but LIFTCREATE-
HR does not explore exhaustively all possible feasible placements, which
means that some pairs of car door and frame are discarded beforehand.
This difference surfaces in column “C \ H” of Table 7.4 where we count the
number of clusters shared between LIFTCREATE-HR and LIFTCREATE-BF.
As we can see, the values in column “C” are always greater than or equal
to the values of column “C \ H”, i.e., LIFTCREATE-BF finds all the feasible
configurations found by LIFTCREATE-HR, but its runtime is not adequate
for practical applications. On the other hand, LIFTCREATE-HR is able to
find most of the feasible design clusters in a fraction of the time taken by
LIFTCREATE-BF.

4.3.2 Genetic algorithms: LIFTCREATE-GA

In LIFTCREATE-GA the genotype is composed by 4 chromosomes, each
one consisting of a single gene. As in [17], genes are represented by integer
numbers as follows:

• Gene 1: Value of the car door x base point — xcd in Table 7.1.

• Gene 2: Value of the car frame y base point — yc f in Table 7.1.

• Gene 3: Choice of the car frame; to encode the choice among available
car frames we assigned to each one a unique integer identifier.

• Gene 4: Choice of the car door; also in this case we encoded each door
with a unique integer code.
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Since the available car frame and door identifiers, i.e., the domains of the
genes 3 and 4, are restricted to those that could fit a given shaft, each
individual represents a single early design. We do not encode the variables
xc f and ycd because, as pointed out in Section 4.2.2, the coordinates are
fixed in the design.

The fitness function to score individuals is computed by associating
costs corresponding to violations of the feasibility constraints presented
in Section 4.2, i.e., we turn hard constraints into soft ones to discourage
designs that violate the constraints. However, we cannot completely
exclude unfeasible designs and this is why LIFTCREATE-GA still retains
a validation step at the end to make sure that all generated designs are
valid. The cost function built in LIFTCREATE-GA includes also two terms
that provide some bias towards designs that are considered more desirable
than others. In particular, these terms encode preferences for choice and
placement of doors, and placements of the car frame. Regarding the doors,
we penalize projects whose door placement is misaligned with respect to
the car. To this end, we define the car axis along the x coordinate as the car
base point x coordinate plus half of the car width:

axisXcar = xcar +
wcar

2

and the door axis along the x coordinate as the car door base point x
coordinate plus the length of its left axis:

axisXdoor = xcd + lacd

In the case of telescopic of folding symmetric doors — i.e., when the
opening midpoint coincides with the door frame midpoint — good design
practices suggest that axisXdoor and axisXcar should be aligned. In this
case, the cost corresponds to the absolute difference of the two. In the case
of asymmetric telescopic doors, considering that we are configuring an
elevator with door opening on the “bottom” and the car frame on the “left”
of the plan view in Figure 7.1, it is preferable to have the opening as close
as possible to the “right” side of the car wall defined as:

xwall = xcar + wcar

When considering this case, the cost is the difference between xwall and the
right edge of the opening defined as:

xedge = xcd + lacd +
opening

2
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Finally, doors whose opening is less than 550mm and doors with opening
greater than 800mm are discouraged: the former are used only in very
special situations and the latter are usually very expensive. For this reason
we try to prefer designs with the doors opening far enough from these limit
values. The corresponding cost is then generated by summing up three
values:

1. The absolute value of the difference between the car x axis and the
door axis if the door is symmetric, the difference between xwall and
xedge otherwise.

2. A parabolic function that grows up quickly for values less than
550mm or greater than 800mm. The function we consider is f (x) =
0.01 � x2 � 13.5 � x + 4561.25 computed with x = opening.

3. A fixed weight which is either 105, if the actual door width is less
than 550mm, or 300 if the actual door width is greater than 800mm.

We use a parabolic function because, as we mentioned before, GAs provide
unconstrained optimization over the solution space, and a continuous
objective is better for the fitness computation.

Regarding the car frame, we penalize projects in which the car frame is
misaligned with respect to the car axis — i.e., considering Figure 7.1, the
car frame should appear vertically centered with respect to the car. We
define the car frame axis as the car frame base point y coordinate plus half
of the distance between the car rails:

axisYc f = yc f +
dcr
2

and the car axis along the y coordinate as the car base point y coordinate
plus half of the car depth:

axisYcar = ycar +
dcar

2

The cost term is the absolute value of the difference between the two axes.
If the choice of the car frame is such that overhangs are negative — i.e., if
the car frame dcr is greater than the resulting car depth dcar — the resulting
value is multiplied by 103.

In Table 7.5 we present a comparison among LIFTCREATE-HR, LIFTCREATE-
RS and LIFTCREATE-GA. The mutation rate was set to 10% which turned
out to be the best value according to some preliminary experiments that
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we do not show here for the sake of brevity. LIFTCREATE-RS provides a
baseline for LIFTCREATE-GA: we consider LIFTCREATE-GA effective as
long as it can perform better than LIFTCREATE-RS, either in the quality
of the final designs and/or in the time spent to find them. Notice that
LIFTCREATE-RS samples only a few configurations — 10% of the total
number of early designs in our implementation. More specifically, for each
prototype, candidate designs are selected by sampling uniformly at random
without replacement of the space of early designs. Candidate designs
are then subject to the validation phase in order to discard unfeasible
ones. Detailed results about LIFTCREATE-RS can be found in Table 7.6
and Table 7.7. As far as runtimes are concerned, we can observe that
LIFTCREATE-GA is consistently faster than LIFTCREATE-RS: in most
cases, the performance gap reaches one order of magnitude. On the other
hand, the comparison with LIFTCREATE-HR is not favorable, particularly
in the setups where the search space for potential designs is larger and
LIFTCREATE-GA takes more time to converge. However, as mentioned
before, we can see that the similarity between the designs found by LIFTCREATE-
GA and those computed by LIFTCREATE-HR is very high, reaching 100%
in the majority of cases, whereas LIFTCREATE-RS does not reach such
figures, not even in the setups with a relatively small search space — see
Table 7.6. From the figures of Table 7.5 we can conclude that LIFTCREATE-
GA consistently outperforms LIFTCREATE-RS and thus the genetic model
as well our choice of hyper-parameters make for a significantly better
choice than basic random sampling. In terms of sheer performances
LIFTCREATE-HR is still superior to LIFTCREATE-GA, but the runtimes of
the latter are reasonable for online deployment with the added flexibility
of a “declarative” encoding: adding a new constraint to LIFTCREATE-GA
only amounts to add a term to the fitness function, whereas in the case of
LIFTCREATE-HR any change involves modifying the code.
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Chapter 5

Constraint Satisfaction

5.1 Preliminaries

Satisfiability Modulo Theories is the problem of deciding the satisfiability
of a first-order formula with respect to some decidable theory T . In
particular, SMT generalizes the Boolean satisfiability problem (SAT) by
adding background theories such as the theory of real numbers, the theory
of integers, and the theories of data structures (e.g., lists, arrays and bit
vectors) — see, e.g., [18] for details. To decide the satisfiability of an input
formula ϕ in conjunctive normal form, SMT solvers typically first build
a Boolean abstraction abs(ϕ) of ϕ by replacing each constraint by a fresh
Boolean variable (proposition), e.g.,

ϕ : x � y| {z } ^ ( y > 0| {z } _ x > 0| {z } ) ^ y � 0| {z }
abs(ϕ) : A ^ ( B _ C ) ^ :B

where x and y are real-valued variables, and A, B and C are propositions. A
propositional logic solver searches for a satisfying assignment S for abs(ϕ),
e.g., S(A) = 1, S(B) = 0, S(C) = 1 for the above example. If no such
assignment exists then the input formula ϕ is unsatisfiable. Otherwise, the
consistency of the assignment in the underlying theory is checked by a
theory solver. In our example, we check whether the set fx � y, y � 0, x >
0g of linear inequalities is feasible, which is the case. If the constraints
are consistent then a satisfying solution (model) is found for ϕ. Otherwise,
the theory solver returns a theory lemma ϕE giving an explanation for the
conflict, e.g., the negated conjunction some inconsistent input constraints.
The explanation is used to refine the Boolean abstraction abs(ϕ) to abs(ϕ) ^
abs(ϕE). These steps are iteratively executed until either a theory-consistent
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Boolean assignment is found, or no more Boolean satisfying assignments
exist.

Adding theories of cost to SMT yields Optimization Modulo Theories
(OMT), an extension that finds models to optimize given objectives through
a combination of SMT and optimization procedures [19]. For example,�

ϕ : x � y ^ (y > 0_ x > 0) ^ y � 0
minx,y(x + y)

requires all the constraints in ϕ to be satisfied and the additional cost
x + y to be minimized. Notice that OMT extends classical formulations
in mathematical programming, e.g., linear programming or mixed integer
linear programming, since it allows Boolean structure to be taken into
account together with the optimization target. OMT solvers have been
developed for several first-order theories like, e.g., those of linear arithmetic
over the rationals (LRA) or the integers (LIA) or their combination (LIRA).
In this paper we consider quantifier free theories in a mixed integer/rational
domain — known as QF_LIRA in the literature [20]

5.2 Constraint satisfaction encoding

5.2.1 Component selection

The car frame, the cylinder and the doors are selected from a database
of components. In order to automate the design of an elevator, we must
consider that choosing different components yields different parameter
values for each one. The relationship between the selection of a component
and the assignment of the corresponding parameter values can be encoded
via Boolean implications of the form

Idx = i ) x.p = v (5.1)

where Idx encodes the identifier of choice for component x (a decision
variable), i is a specific identifier value, x.p is some parameter of the
component x and v is the value of x.p given that the component x with
identifier i was chosen. To encode constraints of the form (5.1) a combination
of Boolean reasoning with Integer arithmetic is sufficient. However, considering
the way data sets are usually encoded in MiniZinc with arrays [21], we
consider an alternative encoding where we associate an array to each
component parameter. For example, if a component x has two parameters
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Surface (A) Passengers (P0)
a1 < A � a2 P0
a2 < A � a3 P0 + 1

A > a3 P0 + 2

Table 5.1: Look-up table to encode the number of passengers as a function
of the car surface.

p1 and p2, we build two arrays P1 and P2 that will store the values of p1 and
p2 for each instance of the component. The index of the arrays becomes a
decision variable and its choice by the solver enforces the correct values for
the parameters.

5.2.2 Look-up tables

Some parameters, e.g., the maximum number of passengers that the car
may accommodate, are a function of others, e.g., the car surface. However,
instead of expressing such constraints directly — which might involve
the use of non-linear or transcendental functions — the correspondence
between free parameters and derived ones is encoded with look-up tables.
Table 5.1 exemplifies such a table assuming that the car surface A is
contained within three ranges. The car payload is computed in a similar
way, but, since the surface ranges are different, we need another set of
constraints structured in the same way. These requirements can be easily
modeled with implications in the same way as component selection: the
surface A is a decision variable that implies the number of passengers or the
payload. However, both SMT-LIB 1 language [22] and MiniZinc allow users
to define custom functions. In practice, functions are series of if-then-else
statements about, e.g., the car surface, where each function returns, e.g.,
the corresponding number of passengers or the payload.

5.2.3 Integers vs. Reals

Most parameters involved in the design process are expressed in millimeters
which suggests integer-based encodings. However, some parameters like
the forces exerted on the car rails require arithmetic over reals. This makes
the corresponding constraint satisfaction problems members of the mixed-
integer arithmetic family. In such encodings, the main disadvantage is that

1http://smtlib.cs.uiowa.edu/
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a large number of integer variables may increase considerably the solution
time. We try to improve on this by relaxing some of the integer variables to
reals. In particular, we consider component parameters since parameters
are not decided but their value is only assigned based on the choice of a
component. This means that the domain of the parameters is a finite set
and we can relax the arithmetic encoding without producing invalid results.
In this representation the only operation that could add decimal digits is
division, but since in our encoding there are only a few such operations,
boundary checking can be implemented easily. These considerations do
not hold for some decision variables including, but not limited to, the index
used to select components. Also, CP solvers like Chuffed are not affected by
this choice due to the fact that they do not support floating-point arithmetic.

5.2.4 Single and Multi-objective optimization

Here we describe alternative constructions of the cost functions, mentioning
the details of the parameters involved when necessary. In particular, we
encode the design objectives associating a cost to each one of them. The
cost associated to car frame misalignment on the y axis is expressed by the
absolute value of the distance between the car frame and the car axes. We
define the car frame vertical axis axisYc f as the car frame vertical base point
yc f plus half of the distance between the car rails dcr

axisYc f = yc f +
dcr
2

. (5.2)

The vertical car axis axisYcar is defined as the car vertical base point ycar
plus half of the car depth dcar:

axisYcar = ycar +
dcar

2
. (5.3)

The difference between the terms (5.2) and (5.3) gives us the first contribution
to the cost function cc f :

cc f = jaxisYc f � axisYcarj (5.4)

The second objective we consider is related to doors. In this case we
define the horizontal car axis axisXcar as the horizontal car base point xcar
plus half of the car width wcar:

axisXcar = xcar +
wcar

2
(5.5)
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The horizontal door axis axisXdoor is defined as the horizontal door base
coordinate xcd plus the length of its left axis lacd:

axisXdoor = xcd + lacd (5.6)

In the case of symmetric doors, good design practices suggest that axisXdoor
and axisXcar should be aligned. In the case of asymmetric doors, it is
preferable to have the door opening as close as possible to the side of the
car which is opposite to the car frame. In a configuration like the one in
Figure 7.1 we can define the base coordinate of such side as:

xwall = xcar + wcar (5.7)

To take into account the different arrangement of doors, we introduce
a binary variable, δt, which is assigned to 1 if the current door is an
asymmetric door and to 0 otherwise. We can then summarize the contribution
to the cost function as:

cdoor = ( (1� δt)jaxisXcar � axisXdoorj+

δt(xwall � (xcd + lacd +
opening

2 )) )
(5.8)

The first contribution of (5.8) is zero when δt = 1, i.e, for asymmetric doors
we try to minimize the distance from the side of the elevator opposite to
the car frame, whereas when δt = 0 we try to align the door and the car
axes.

The third objective is related to the components selection itself, and
gives the guidelines for sizing the car frame, the doors and the cylinder.
The maximization of the door opening leads to accessible elevators which
are always considered a plus, whenever feasible; the minimization of the
car frame depth dcr and the barrel diameter dp suggests components which
are not over-sized, thus helping to keep costs at bay. These criteria can
be translated into one additional contribution to the overall cost function
defined as:

csize = (dcr + dp � opening) (5.9)

Finally, the last term to minimize is the sum of Fx
cr and Fy

cr, i.e., the x and y
components of the force exerted on the car rails Fcr:

ccr = Fx
cr + Fy

cr (5.10)
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The computation of Fcr is non-trivial and requires additional equations and
parameters that we briefly describe. The components of Fcr are obtained as

Fx
cr = k � g � Qx(Q+75)+Px�carW+cdPx�cdW+c fW �CFx

2�h

Fy
cr = k � g � Qy(Q+75)+Py�carW+cdPy�cdW

2�h

where the parameters have the following meaning:

• k is a parameter depending on the kind of safety brakes installed;

• g is the standard acceleration due to gravity;

• Q is the car payload;

• Px and Py are the midpoint coordinates of the car;

• Qx and Qy are obtained through the equations

Qx = maxfPx +
wcar

8 , Px �
wcar

8 g

Qy = maxfPy +
dcar

8 , Py �
dcar

8 g;

• carW is the car weight;

• cdPx, cdPy are the coordinates of the center of gravity of the car door;

• cdw is the car door weight and c fW is the car frame weight;

• CFx is a coefficient computed as

CFx = 1.5 �
wc f

2

where wc f is the distance from the car frame base point to to the left
car wall;

• h is the distance between guide shoes, i.e., the supports which slide
on the car rails.

In previous works of ours we consider the weighted sum of the costs
cc f , cdoor and csize to obtain the overall cost function, but the contribution ccr
may conflict with the previous ones because the farthest is the door from
the car frame, the greater is the force exerted on the car rails. Nevertheless,
since the car rails can be chosen once the other components are fitted, this
objective can be considered with a lower priority. If we follow a single-
objective approach, we can weight the cost ccr significantly less than the
other three. The overall cost function C becomes

C = α1cc f + α2cdoor + α3csize + α4ccr (5.11)
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with α4 � αi for i 6= 4. Alternatively, we can exploit priorities among
different cost functions by resorting to multi-objective optimization using,
e.g., the lexicographic method whereby preferences are imposed by ordering
the objective functions according to their significance — see [23] for details.
Here we consider two cost functions:

C1 = α1cc f + α2cdoor + α3csize
C2 = ccr

(5.12)

where the objective function C1 is minimized first.

5.3 Experimental Results

To understand how different choices of encoding our problem impact on
different solvers, we consider the OMT solvers z3 [24] and OptiMathSat [25]
fed with SMT-LIB encodings, and five solvers fed with the corresponding
encodings in MiniZinc language [21], namely Chuffed [26], OR-Tools [27],
ECLiPSe CLP [28] CPLEX [29] and Gurobi [30].2 All the results are obtained
considering setups with shafts of varying sizes: we have a set of eight shafts
with fixed width of 1300 millimeters and another set with 1500 millimeters
width. In both cases, the depth goes from 800 to 1500 using a 100 mm step.
Each experiment is subject to a timeout of 5 minutes of CPU time, and
the times are expressed in milliseconds.3 We consider two different sets
of experiments: a baseline encoding dealing with the configuration of the
car frame and the door pair only, and a full encoding dealing also with the
selection and sizing of the hydraulic cylinder as well as the minimization
of forces on the car rails. In particular, in the baseline encoding we consider
only the cost components related to car frame and doors, whereas the full
encoding takes into account all the cost components. Overall, the baseline
encoding features 39 parameters of which 10 are decision variables, whereas
the full encoding features 59 parameters and 17 decision variables. The
number of constraints varies from a minimum of 30 of the baseline encoding
considering arrays and functions to 401 of the full encoding considering
implications for both parameters and look-up tables. Both baseline and full
encodings are generated considering a database of 25 car frames, 236 doors
and 47 hydraulic cylinders.

2In particular, we run Chuffed v0.10.3, OR-Tools v7.8, ECLiPSe v7.0, CPLEX v12.7,
Gurobi v9.0.1, z3 v4.8.7 and OptiMathSat v1.7.0.1, all in their default configuration.

3All tests run on a PC equipped with an Intel® Core™ i7-6500U dual core CPU @
2.50GHz, featuring 8GB of RAM and running Ubuntu Linux 16.04 LTS 64 bit.
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Shaft OR-Tools Chuffed ECLiPSe CPLEX Gurobi z3 OptiMathSat
1300� 800 662 200 924 856 886 100 254
1300� 900 645 198 703 1020 1802 432 30680
1300� 1000 674 192 1401 918 933 416 58066
1300� 1100 659 179 1734 940 971 582 154739
1300� 1200 655 191 1796 1056 1237 417 82698
1300� 1300 661 188 1771 1090 1725 495 100822
1300� 1400 637 188 1366 918 887* 435 79323
1300� 1500 672 206 875 1118 925* 517 98355
1500� 800 644 199 678 1023 824 116 247
1500� 900 664 179 691 902 881 787 101458
1500� 1000 673 195 1379 987 887* 619 70082
1500� 1100 639 206 1942 971 903 682 105071
1500� 1200 660 264 2024 1060 934 501 83719
1500� 1300 636 224 2412 987 1018 417 121801
1500� 1400 645 192 1509 871 919 470 97753
1500� 1500 653 216 845 856 935 463 142557

Table 5.2: Comparison of solvers on the baseline encoding: the first column
reports the setup and the other columns report the time (ms) taken to solve
each setup by the solvers — best times appear in boldface.

In Table 5.2 we show the results obtained on the baseline encoding
by all the solvers we consider. For each solver we report the best time
obtained on two variations: one in which the selection of components
is based on arrays and another featuring Boolean implications. Both
variations are integer-based because not all the solvers support arithmetic
over reals, so we do not consider relaxations; also, since the car surface
computation involves a division, we omit the deduction of the car payload
and passengers which are required for a complete design. All the solvers
leveraging MiniZinc encodings fare the best runtime when the component
parameters are encoded with arrays: CP solvers like Chuffed seem to make
effective use of element constraints and MIP solvers appear to handle
the translation of array constraints better than Boolean implications. On
the other hand, OMT solvers run faster on the version based on Boolean
implications, as the addition of arrays involves dealing with more theories
at once and this inevitably hurts performances.

As we can observe in Table 5.2, Chuffed is the one yielding the best
runtimes, except for two setups where z3 is the fastest solver. Noticeably,
these setups do not admit a feasible configuration given the shaft size and
the components available. z3 and OR-Tools are second best, their runtimes
being always less than one second; MIP solvers CPLEX and Gurobi seem

59



z3 OptiMathSat

Shaft
I I + R I + R + F I I + R I + R + F

Heuristic
SO MO SO MO SO MO SO MO SO MO SO MO

1300� 800 157 149 131 134 143 221 109 119 100 131 116 110 583
1300� 900 8878 229522 1205 844 1978 2321 — — 74960 53535 68215 52068 1784
1300� 1000 36120 133325 2818 3362 4433 2704 156761 48328 136109 107356 132166 112379 921
1300� 1100 36448 60589 3514 1967 2365 1554 192198 127753 160883 176491 199352 113889 2177
1300� 1200 42328 5530 6876 3460 2637 4155 — 208852 276380 181817 193987 160401 6865
1300� 1300 94325 8982 22279 2521 5294 5304 244973 129848 225067 165818 292777 197777 15278
1300� 1400 30452 133087 7374 1779 11096 3707 259953 244078 — 256791 — 242488 11190
1300� 1500 177355 25697 18810 4061 234235 1998 258119 213104 259693 172842 274986 222485 24380
1500� 800 176 141 121 114 140 129 100 85 100 85 100 101 926
1500� 900 25964 56674 1619 1212 3382 1876 141359 — 206751 95370 167671 100623 5215
1500� 1000 91242 235192 2888 1803 5121 1725 — 118777 223241 93759 173623 187153 2952
1500� 1100 — 18023 4977 7517 3925 4446 219596 187570 205041 179414 183862 156035 4875
1500� 1200 139993 68562 7001 1242 7431 1571 251651 148664 231829 70431 254111 189705 6232
1500� 1300 291712 — 26724 4895 20263 4325 — 225509 — 232735 — 255728 33785
1500� 1400 — 6264 35073 3139 169215 2675 — 184555 271054 107886 — 180857 21910
1500� 1500 — 17824 37722 2703 121472 2528 257242 222360 — 167762 — 251033 8699

Table 5.3: Comparison of z3 and OptiMathSat on the full encoding: the
first column reports each setup; the other columns, grouped by solver,
report runtimes (ms) of different versions: integer-based “I”, relaxed “I
+ R” and relaxed with functions “I + R + F”, respectively. Subcolumns
“SO” and “MO” refer to single objective and multiobjective optimization,
respectively — best times among z3 and OptiMathSat appear in boldface.
The last column reports LIFTCREATE heuristic engine runtimes.

slightly less effective than the leading pack. In some cases, marked with
an asterisk in Table 5.2, Gurobi returned UNSAT or UNKNOWN even if a
solution exists. Since the encoding fed to Gurobi is exactly the same fed to
the other solvers based on MiniZinc, we can exclude errors in the encoding
while we investigate other possible causes. ECLiPSe results are mixed, i.e.,
some setups are solved faster than OR-Tools or z3, others take more than
two seconds to solve. OptiMathSat is surprisingly slow on these encodings:
if we exclude scenarios for which no feasible configuration exists, then
OptiMathSat best result is 30 seconds to solve the 1300� 900 setup.

When considering the full encoding, we limit our comparison to z3
and OptiMathSat, since they are the only ones that appear to handle
encodings which contain a substantial part of arithmetic over reals, as it is
required to take into account cylinder selection, sizing and computation
of forces on the car rails. Among the MiniZinc-based tools, ECLiPSe is
meant to support arithmetic over reals, but even the baseline encoding with
relaxations resulted in a timeout for every setup other than the ones for
which no feasible configuration exists. In Table 5.3 we collect the results of
the comparison between z3 and OptiMathSat, adding the runtime of the
heuristic search performed by LIFTCREATE for reference. We focus on the
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implication-based encoding given the results with the baseline encoding. In
the table, columns labeled “I” report runtimes on the integer-based versions,
columns labeled “I+R” report runtimes on relaxed versions, and columns
labeled “I+R+F” report runtimes on versions where look-up tables are
represented as nested if-then-else functions rather than straight implications.
The columns “SO” and “MO” report the results of single-objective and
multi-objective optimization, respectively. In the single-objective case,
considering equation (5.11), we set the free parameters α1, α2 and α3 to 0.3
and α4 to 0.1 in order to encode different priorities. In the multi-objective
encoding, we set all weights to one.

Considering the results in Table 5.3, we see that the integer-based
version of the full encoding is the least appealing option: while z3 performs
slightly better than OptiMathSat on this version, other solutions yield
faster runtimes. In particular, relaxing the encoding has a substantial
impact both on z3 and OptiMathSat: solving time decreases by orders
of magnitude in some cases with respect to the integer-based encoding.
Finally, considering the addition of native SMT-LIB functions we see that
the results are mixed, i.e., it is not so clear that choosing them improves
the solving time. Noticeably, while OptiMathSat remains slower than
z3, it never exceeds the time limit on this encoding. As for single vs.
multi-objective encoding, we can see that the multi-objective approach
performs better than the single-objective one. In spite of some exceptions,
multi-objective optimization — specifically, with z3, relaxed encodings and
native SMT-LIB function — seems to be the winning option overall. When
it comes to comparing the heuristic engine of LIFTCREATE with the best
results of the constraint-based approach, we should take into account that
the former deals with the complete design cycle and not just with some
subtasks. Given this initial bias, that in some cases the heuristic engine
outperforms most constraint-based solutions, but it is overall slower than
the best ones, it is fair to say that OMT solvers with relaxed encodings and
multi-objective optimization provide a feasible replacement to heuristic
search in the design subtasks that we considered here.
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Chapter 6

Conclusions and future research

The outcome of this research is a set of enabling technologies to develop
and test a novel design tool.
The research dealt with an multidisciplinary approach to the daunting
task of design and verification. The objective to support the engineering
process of a complex product was carried out by testing several different
approaches.
All the process to define requirements, implement and test solution had
a strong impact on efforts invested in this research. In this scenario the
declarative techniques had an edge over, for example, meta-heuristics
approach.
Considering the current research and industry scenario, where implementation
of algorithms, tools, solvers and computational capability are a widespread
available resource, possible and viable extension to this research can be the
study of techniques to optimize the problem definition and encoding.
Professional engineers strive for a computational approach to design but,
except for some very advanced solutions, tools are somehow related to
technical legacies or to partial, non-integrated solution.
A further topic would be about the generalization of the techniques introduced,
expanding the fields of applications to more than just elevator design.
Ideally, starting from a specific normative, which represents a structured
and reliable source of information, an interesting extension would be the
research for an automated elaboration to obtain a first semantic definition
of the problem.
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Chapter 7

Appendix

Symbol Description
xc f , yc f Car frame base point

coordinates

xcd, ycd Car door base point
coordinates

xld, yld Landing door base point
coordinates

xcar, ycar Car base point coordinates
wcar, dcar Car width and depth

Table 7.1: Explanation of the decision variables involved in the design
process
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Symbol Description
xsha f t, ysha f t Shaft base point coordinates
wsha f t, dsha f t Shaft width and depth

red[N,E,S,W] Distance between shaft and car
walls (North, East, South, West)

cwt[N,E,S,W] Car wall thickness (North, East,
South, West)

wc f Distance from xc f to the left car wall
dc f External distance between car frame rails

ygear Core gear placement with respect to the
car frame base point

dbr External depth of the car frame bracket
from the base point

dcr Distance between car rails
maxoh Maximum car overhang that the car

frame is able to sustain

opening Doors opening
lacd, racd Left and right axis size (car door)
lald, rald Left and right axis size (landing door)

stepcd Car door step
stepld Landing door step

dstep Distance between doors
w f rame Landing door external frame width

Table 7.2: Explanation of the parameters involved in the design process

67



Shaft TIME CONF

1300 � 800 1271 0
1300 � 850 868 54
1300 � 900 731 54
1300 � 950 688 69
1300 � 1000 715 51
1300 � 1050 766 74
1300 � 1100 633 89
1300 � 1150 607 92
1300 � 1200 633 168
1300 � 1250 598 197
1300 � 1300 764 397
1300 � 1350 716 565
1300 � 1400 1062 679
1300 � 1450 953 819
1300 � 1500 966 859

Shaft size TIME CONF

1500 � 800 1213 0
1500 � 850 1304 54
1500 � 900 1250 80
1500 � 950 927 160
1500 � 1000 1330 160
1500 � 1050 1354 180
1500 � 1100 1268 198
1500 � 1150 1448 134
1500 � 1200 1544 414
1500 � 1250 1520 460
1500 � 1300 1742 920
1500 � 1350 1683 1118
1500 � 1400 1823 1179
1500 � 1450 1591 1253
1500 � 1500 1548 986

Table 7.3: Computing configurations with heuristic techniques
(LIFTCREATE-HR): “TIME” is the total runtime in milliseconds, “CONF”
is the total number of feasible configurations found (at most one for each
prototype).
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Figure 7.1: Cross-section (plan view) of a configured RHE. The shaft is the
gray box surrounding the other components, the car frame is on the left
side and doors at the bottom of the drawing.
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Figure 7.2: Detail of the car frame and related parameters.
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Figure 7.3: Detail of the car/landing door pair and related parameters.
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Shaft
LIFTCREATE-BF

TTP TTE TTV TOT E V C C \ H

1300�800 297 0 0 297 0 0 0 0
1300�850 706 445 24377 25528 5337225 187122 69 54
1300�900 484 871 53434 54789 13046550 618942 69 54
1300�950 369 1438 88256 90063 20953550 638756 84 69
1300�1000 621 2475 150499 153595 34197775 429037 56 51
1300�1050 598 2955 190942 194495 48035025 204131 79 74
1300�1100 671 4305 268022 272998 68988575 289941 95 89
1300�1150 684 5491 348839 355014 90732825 217301 95 92
1300�1200 780 7721 491018 499519 121372450 1048027 188 168
1300�1250 809 9620 632078 642507 153000450 1862813 217 197
1300�1300 982 12236 785448 798666 195302900 3196098 440 397
1300�1350 961 15071 954582 970614 238791400 5037710 623 565
1300�1400 1102 17352 1135655 1154109 282279900 6034361 724 679
1300�1450 1692 20692 1381459 1403843 331105625 7196113 876 819
1300�1500 1710 23609 1582480 1607799 380524375 8099000 886 859
1500�800 214 0 0 214 0 0 0 0
1500�850 452 674 46060 47186 11208915 311224 80 54
1500�900 624 1685 111249 113558 27399570 1154312 108 80
1500�950 485 2851 180057 183393 44005370 1580060 196 160
1500�1000 718 4355 293928 299001 71820085 1552741 175 160
1500�1050 959 6251 424036 431246 100880235 1037319 191 180
1500�1100 1382 8981 576262 586625 144885605 1311244 229 198
1500�1150 1171 12186 776171 789528 190551555 880694 152 134
1500�1200 1876 15588 973855 991319 254899030 3133714 535 414
1500�1250 1952 20302 1295708 1317962 321322230 5637692 536 460
1500�1300 2504 24886 1589546 1616936 410163260 9692307 1106 920
1500�1350 2447 31104 1963186 1996737 501495160 15565594 1268 1118
1500�1400 - - - - - - - -
1500�1450 - - - - - - - -
1500�1500 - - - - - - - -

Table 7.4: Computing configurations with brute-force techniques
(LIFTCREATE-BF): “TTP” is the time to compute prototypes, “TTE” is the
time to compute early designs, “TTV” is the time spent for verification, and
“TOT” is the total runtime (all times in milliseconds); “E” is the total number
of early designs found, and “V” is the number of valid configurations; “C”
is the number of clusters and “C \ H” is the number of clusters shared by
brute-force and LIFTCREATE-HR; dashes indicate that the corresponding
setting has exceeded the time limit of 30 minutes.72



Shaft LIFTCREATE-HR
LIFTCREATE-RS LIFTCREATE-GA

MEDT IQRT SIM[%] MEDT IQRT SIM[%]

1300 � 800 1271 85 9 – 0 0 –
1300 � 850 868 2600.5 42.5 78.26 725 209.5 100
1300 � 900 731 5815.5 124.25 78.26 1262.5 23.25 100
1300 � 950 688 9088 221 82.14 1976.5 35.5 97.37
1300 � 1000 715 15861.5 284.75 91.07 2627 26.75 94.12
1300 � 1050 766 21515 320.5 93.67 3328.5 59.5 100
1300 � 1100 633 30227 424.75 93.62 5312 380.5 100
1300 � 1150 607 39118 438 96.74 5983 401 100
1300 � 1200 633 54453 607.5 89.36 5398.5 84.75 100
1300 � 1250 598 69892 818.75 90.78 7166.5 161.5 100
1300 � 1300 764 86808.5 951.5 90.21 7554 208 96.67
1300 � 1350 716 104382.5 1119.75 90.69 8605.5 174 96.3
1300 � 1400 1062 125076 1083.75 93.78 8876 203.75 100
1300 � 1450 953 146872.5 1420 93.46 10452.5 287.25 100
1300 � 1500 966 168864 1527.5 96.9 11617 212.75 100
1500 � 800 1213 124.5 7.75 – 0 0 –
1500 � 850 1304 5300 97.75 67.5 1047 45 71.43
1500 � 900 1250 12448 250.75 74.07 1801.5 29.5 78.13
1500 � 950 927 19930.5 253.75 81.63 2537.5 35.75 83.78
1500 � 1000 1330 32566 595 91.43 3186.5 65 97.92
1500 � 1050 1354 46450 415.25 94.71 3821.5 49.75 84.21
1500 � 1100 1268 63574 839 86.46 5982 98.5 100
1500 � 1150 1448 78978 810.75 88.16 6561.5 84 100
1500 � 1200 1544 106945.5 954.25 77.53 7906 157.75 89.39
1500 � 1250 1520 139008.5 954 85.82 9088.5 240 98.55
1500 � 1300 1742 173950 1692.5 83.24 11264 373.75 100
1500 � 1350 1683 213649 1965 88.17 12597.5 230.75 100
1500 � 1400 1823 245340 2487.5 94.4 12134 290.75 100
1500 � 1450 1591 280193 2299.75 93.58 13213.5 419 100
1500 � 1500 1548 303919.5 2365.5 94.99 14653.5 703.5 100

Table 7.5: Comparison among LIFTCREATE-HR, LIFTCREATE-RS and
LIFTCREATE-GA (mutation rate 10%) across different setups. For
LIFTCREATE-HR we report the total runtime. For LIFTCREATE-RS and
LIFTCREATE-GA we report median (“MEDT”) and interquartile range
(“IQRT”) of their runtime, as well as a similarity (“SIM[%]”) measure with
respect to LIFTCREATE-HR, i.e., the ratio MEDI

MEDC
reported in Table 7.6 (all

runtimes in milliseconds).
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Shaft
LIFTCREATE-RS

P E
V C I=C \ H MEDI

MEDC
[%]

MEDV IQRV MEDC IQRC MEDI IQRI

1300 � 800 0 0 0.0 0.0 0.0 0.0 0.0 0.0 –
1300 � 850 414 533559 18723.5 177.5 69.0 0.0 54.0 0.0 78.26
1300 � 900 552 1304437 61937.5 295.5 69.0 0.0 54.0 0.0 78.26
1300 � 950 552 2095137 63868.0 229.5 84.0 0.0 69.0 0.0 82.14
1300 � 1000 966 3419396 42872.0 310.0 56.0 0.0 51.0 0.0 91.07
1300 � 1050 966 4803121 20375.5 163.25 79.0 1.0 74.0 1.0 93.67
1300 � 1100 1518 6898258 29032.0 226.75 94.0 1.0 88.0 1.0 93.62
1300 � 1150 1518 9072683 21733.5 174.75 92.0 1.0 89.0 1.0 96.74
1300 � 1200 2208 12136373 104783.5 329.75 188.0 0.0 168.0 0.0 89.36
1300 � 1250 2208 15299173 186307.0 489.75 217.0 0.0 197.0 0.0 90.78
1300 � 1300 3036 19529091 319652.5 790.0 439.0 1.0 396.0 1.0 90.21
1300 � 1350 3036 23877941 503584.0 680.75 623.0 0.0 565.0 0.0 90.69
1300 � 1400 3036 28226791 603468.0 812.75 723.0 1.0 678.0 1.0 93.78
1300 � 1450 3450 33109200 719755.5 687.5 872.0 2.75 815.0 2.75 93.46
1300 � 1500 3450 38051075 809984.5 1085.75 872.0 3.0 845.0 3.0 96.90
1500 � 800 0 0 0.0 0.0 0.0 0.0 0.0 0.0 –
1500 � 850 687 1120626 31124.0 191.25 80.0 0.0 54.0 0.0 67.50
1500 � 900 916 2739603 115395.5 458.75 108.0 0.0 80.0 0.0 74.07
1500 � 950 916 4400183 157998.0 367.5 196.0 0.0 160.0 0.0 81.63
1500 � 1000 1603 7181389 155253.0 388.5 175.0 0.0 160.0 0.0 91.43
1500 � 1050 1603 10087404 103745.0 486.0 189.0 1.0 179.0 1.0 94.71
1500 � 1100 2519 14487587 131107.0 493.75 229.0 0.0 198.0 0.0 86.46
1500 � 1150 2519 19054182 88101.0 336.25 152.0 0.0 134.0 0.0 88.16
1500 � 1200 3664 25488487 313411.0 562.25 534.0 2.0 414.0 0.0 77.53
1500 � 1250 3664 32130807 563689.0 721.25 536.0 0.0 460.0 0.0 85.82
1500 � 1300 5038 41014379 969265.0 1139.25 1104.0 1.0 919.0 1.0 83.24
1500 � 1350 5038 50147569 1556467.0 1299.25 1268.0 0.0 1118.0 0.0 88.17
1500 � 1400 5038 59280759 1660048.0 1416.25 1249.0 0.0 1179.0 0.0 94.40
1500 � 1450 5725 69534575 1784513.0 1377.5 1339.0 1.0 1253.0 0.0 93.58
1500 � 1500 5725 79913200 1666806.0 1580.0 1037.0 0.75 985.0 0.75 94.99

Table 7.6: Computing configurations with random sampling techniques
(LIFTCREATE-RS): column “P” is the number of prototypes and “E” is the
number of early designs sampled. The pair of columns “V” is the number
of valid configurations found, “C” is the number of clusters, “I=C \ H”
is the number of clusters shared by LIFTCREATE-RS and LIFTCREATE-
HR. For each pair, column “MEDx” and “IQRx” are the median and the
interquartile range of value x, respectively. Column “ MEDI

MEDC
” is the ration

between shared clusters and LIFTCREATE-RS ones.
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Shaft
LIFTCREATE-RS

TTP TTE TTV TOT
MEDP IQRP MEDE IQRE MEDV IQRV MEDT IQRT

1300 � 800 85.0 9.0 0.0 0.0 0.0 0.0 85.0 9.0
1300 � 850 273.0 14.0 81.0 10.75 2248.5 44.75 2600.5 42.5
1300 � 900 350.5 15.5 199.0 16.5 5264.5 96.5 5815.5 124.25
1300 � 950 369.0 13.5 329.5 16.5 8392.0 217.25 9088.0 221.0
1300 � 1000 566.0 15.0 541.0 34.0 14753.5 262.75 15861.5 284.75
1300 � 1050 564.0 22.5 779.5 28.0 20161.5 312.25 21515.0 320.5
1300 � 1100 828.0 30.75 1111.5 27.25 28249.0 387.0 30227.0 424.75
1300 � 1150 825.0 27.75 1477.5 44.0 36818.5 427.0 39118.0 438.0
1300 � 1200 1123.0 27.25 2020.0 49.5 51294.0 572.5 54453.0 607.5
1300 � 1250 1127.0 38.25 2574.5 71.75 66177.5 756.25 69892.0 818.75
1300 � 1300 1481.5 25.5 3290.0 51.25 81986.5 904.5 86808.5 951.5
1300 � 1350 1485.0 21.0 4060.0 75.5 98861.0 1057.25 104382.5 1119.75
1300 � 1400 1485.0 27.0 4848.0 69.0 118728.5 1025.5 125076.0 1083.75
1300 � 1450 1670.0 38.5 5753.5 97.75 139428.0 1327.25 146872.5 1420.0
1300 � 1500 1668.0 36.5 6672.0 102.5 160559.0 1450.0 168864.0 1527.5
1500 � 800 124.5 7.75 0.0 0.0 0.0 0.0 124.5 7.75
1500 � 850 437.5 11.75 163.0 17.75 4699.5 88.25 5300.0 97.75
1500 � 900 570.0 26.25 421.5 28.5 11418.5 218.0 12448.0 250.75
1500 � 950 598.0 23.75 701.5 35.75 18654.5 271.5 19930.5 253.75
1500 � 1000 919.5 20.25 1157.5 31.5 30468.5 580.5 32566.0 595.0
1500 � 1050 925.0 14.75 1653.5 40.25 43891.5 432.5 46450.0 415.25
1500 � 1100 1346.0 29.75 2381.5 71.75 59904.5 823.0 63574.0 839.0
1500 � 1150 1350.0 26.5 3148.5 53.75 74468.0 780.25 78978.0 810.75
1500 � 1200 1841.5 53.25 4257.0 82.75 100842.5 875.5 106945.5 954.25
1500 � 1250 1850.0 39.5 5434.5 72.25 131644.0 887.25 139008.5 954.0
1500 � 1300 2456.0 48.75 6993.5 75.0 164561.0 1592.0 173950.0 1692.5
1500 � 1350 2448.0 40.5 8699.0 94.5 202574.5 1875.5 213649.0 1965.0
1500 � 1400 2455.0 52.75 10314.0 136.0 232618.5 2497.5 245340.0 2487.5
1500 � 1450 2764.0 52.5 12216.0 173.5 265170.5 2146.25 280193.0 2299.75
1500 � 1500 2754.5 53.0 14103.5 150.75 287098.5 2341.75 303919.5 2365.5

Table 7.7: Computing configurations with random sampling techniques
(LIFTCREATE-RS): the column pair “TTP” is the time to compute
prototypes, “TTE” is the time to compute early designs, “TTV” is the
time spent for verification, and “TOT” is the total runtime (all times in
milliseconds); for each pair, column “MEDx” and “IQRx” are the median
and the interquartile range of value x, respectively.
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Shaft Result
Time

SMT OMT

1300 � 800 U 150 226
1300 � 850 S 112 361
1300 � 900 S 106 434
1300 � 950 S 91 691
1300 � 1000 S 92 402
1300 � 1050 S 94 620
1300 � 1100 S 97 557
1300 � 1150 S 93 416
1300 � 1200 S 97 381
1300 � 1250 S 97 519
1300 � 1300 S 93 622
1300 � 1350 S 94 477
1300 � 1400 S 95 421
1300 � 1450 S 94 593
1300 � 1500 S 95 707

Shaft Result
Time

SMT OMT

1500 � 800 U 98 130
1500 � 850 S 115 412
1500 � 900 S 108 807
1500 � 950 S 95 773
1500 � 1000 S 95 633
1500 � 1050 S 96 780
1500 � 1100 S 100 645
1500 � 1150 S 95 674
1500 � 1200 S 109 461
1500 � 1250 S 96 439
1500 � 1300 S 99 444
1500 � 1350 S 106 395
1500 � 1400 S 107 470
1500 � 1450 S 98 499
1500 � 1500 S 94 477

Table 7.8: Computing configurations with SMT techniques (LIFTCREATE-
SMT): “Result" is the answer given by the solver and can be either SAT (S)
or UNSAT (U). “SMT" time is related to feasibility checking and “OMT"
time is related to optimality. All times are in milliseconds.
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Shaft LIFTCREATE-HR
LIFTCREATE-GA LIFTCREATE-SMT

SIM%
Time

Result Time
MEDT IQRT

1300 � 800 1271 – 0 0 U 226
1300 � 850 868 100 725 209.5 S 361
1300 � 900 731 100 1262.5 23.25 S 434
1300 � 950 688 97.37 1976.5 35.5 S 691
1300 � 1000 715 94.12 2627 26.75 S 402
1300 � 1050 766 100 332.5 59.5 S 620
1300 � 1100 633 100 5312 380.5 S 557
1300 � 1150 607 100 5983 401 S 416
1300 � 1200 633 100 5398.5 84.75 S 381
1300 � 1250 598 100 7166.5 161.5 S 519
1300 � 1300 764 96.67 7554 208 S 622
1300 � 1350 716 96.3 8605.5 174 S 477
1300 � 1400 1062 100 8876 203.75 S 421
1300 � 1450 953 100 10452.5 287.25 S 593
1300 � 1500 966 100 11617 212.75 S 707
1500 � 800 1213 – 0 0 U 130
1500 � 850 1304 71.43 1047 45 S 412
1500 � 900 1250 78.13 1801.5 29.5 S 807
1500 � 950 927 83.78 2537.5 35.75 S 773
1500 � 1000 1330 97.92 3186.5 65 S 633
1500 � 1050 1354 84.21 3821.5 49.75 S 780
1500 � 1100 1268 100 5982 98.5 S 645
1500 � 1150 1448 100 6561.5 84 S 674
1500 � 1200 1544 89.39 7906 157.5 S 461
1500 � 1250 1520 98.55 9088.5 240 S 439
1500 � 1300 1742 100 11264 373.75 S 444
1500 � 1350 1683 100 12597.5 230.75 S 395
1500 � 1400 1823 100 12134 290.75 S 470
1500 � 1450 1591 100 13213.5 419 S 499
1500 � 1500 1548 100 14653.5 703.5 S 477

Table 7.9: Comparison among the three techniques proposed,
namely LIFTCREATE-HR, LIFTCREATE-GA (mutation rate 10%)
and LIFTCREATE-SMT. All times are in milliseconds.
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