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Abstract. Let p be an odd prime and K an imaginary quadratic field where p splits. Under
appropriate hypotheses, Bertolini showed that the Selmer group of a p-ordinary elliptic curve
over the anticyclotomicZp-extension of K does not admit any proper�-submodule of finite
index, where� is a suitable Iwasawa algebra. We generalize this result to the plus and minus
Selmer groups (in the sense of Kobayashi) of p-supersingular elliptic curves. In particular,
in our setting the plus/minus Selmer groups have�-corank one, so they are not�-cotorsion.
As an application of our main theorem, we prove results in the vein of Greenberg–Vatsal
on Iwasawa invariants of p-congruent elliptic curves, extending to the supersingular case
results for p-ordinary elliptic curves due to Hatley–Lei.

1. Introduction

When studying Selmer groups in the context of Iwasawa theory, it is often desirable
to show that these Selmer groups have no proper �-submodules of finite index or,
equivalently, that their Pontryagin duals have no nontrivial finite �-submodules,
where � is an appropriate p-adic Iwasawa algebra for a prime number p (to fix
ideas, in this introduction we can take � to be the Zp-algebra Zp[[X ]] of formal
power series over the p-adic integers Zp). For instance, a finitely generated �-
module M (which, in our context, will always be the Pontryagin dual of a suitable
Selmer group) admits a map

M −→ �⊕r ⊕
s⊕

i=1

�/(pai ) ⊕
t⊕

j=1

�
/(

F
n j
j

)
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with finite kernel and cokernel, for integers r, s, t ≥ 0, ai , n j ≥ 1 and irreducible
Weierstrass polynomials Fj ∈ Zp[X ]. If M has no nontrivial finite �-submodules,
then this map is in fact injective.

Such non-existence theorems have played a crucial role in certain strategies for
proving cases of the Iwasawa Main Conjecture, as in [10,14,21], and by now they
have been studied in great generality (see, e.g., [13]), although many specific cases
of interest remain open to inquiry.

In [2] and [3], Bertolini approached this question for the Selmer groups attached
to rational elliptic curves with good ordinary reduction at a prime p along the
anticylotomic Zp-extension of a suitable imaginary quadratic field K , which is the
unique Zp-extension of K that is Galois and non-abelian over Q.

The splitting behavior in K of p and of the prime factors of the conductor N of
E exerts a tremendous influence on the structure of the Selmer groups that one can
attach to E and K∞. In particular, when N is divisible by an odd number of primes
that are inert in K the situation is remarkably similar to the cyclotomic (over Q

or over K ) setting. When the number of such primes is even, however, the sign of
the functional equation for the relevant L-function is −1, which forces the Selmer
groups to grow and thus become more complicated (see, e.g., [2] and [27]).

Another situation in which the Iwawawa theory for elliptic curves is more
delicate is when E has good supersingular reduction at p. In this case, even in the
cyclotomic setting over Q the usual Selmer groups fail to satisfy a control theorem
as in [29], so the Selmer group over the full cyclotomic extension is unable to
provide bounds on Selmer coranks at finite layers of the cyclotomic tower. Thus, for
supersingular primes, it becomes necessary to consider special restricted plus/minus
Selmer groups that turn out to be more amenable to classical arguments. This
general program was first proposed and carried out over Q by Kobayashi in [25]
and has admitted since then many generalizations such as [18] and [22]. It is worth
remarking that the p-adic analytic counterpart of Kobayashi’s theory was provided
by Pollack in [33].

In this paper we take up the task of generalizing Bertolini’s results in [3] to the
case of elliptic curveswith good supersingular reduction at p. Thus, we consider the
complications that arise both fromhaving supersingular reduction and fromworking
over the anticyclotomic Zp-extension of an imaginary quadratic field satisfying the
Heegner hypothesis with respect to the conductor of our elliptic curve.

1.1. Setup and notation

Throughout this article, p will denote an odd prime number. Let E/Q be an elliptic
curve of conductor N with good supersingular reduction at p and ap(E) = 0,
where ap(E) is the p-th Fourier coefficient of the weight 2 newform attached to E
by modularity.

Let K be an imaginary quadratic field such that all the primes dividing pN split
in K (in particular, K satisfies the Heegner hypothesis relative to N ), writeOK for
the ring of integers of K and let

pOK = ppc
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be the factorization of p as a product of (distinct) maximal ideals of OK (here c
denotes the nontrivial element of Gal(K/Q)). Fix algebraic closures Q̄ and Q̄p of
Q and Qp, respectively, write Cp for the completion of Q̄p, choose an embedding
ιp : Q̄ ↪→ Cp and suppose that p is the prime above p that lands inside the valuation
ideal of Cp. Let T denote the p-adic Tate module of E , set V := T ⊗Zp Qp and
A := V/T = E[p∞]. For every integer m ≥ 1, define Am := T/pmT = E[pm].
Moreover, let GQ := Gal(Q̄/Q) be the absolute Galois group of Q.

Let K∞ be the anticyclotomic Zp-extension of K , whose n-th finite layer will
be denoted by Kn , and let � be the associated Iwasawa algebra. We assume that
the two primes of K above p are totally ramified in K∞; this is a natural condition
to require when working in the supersingular setting (cf., e.g., [9, Assumptions 1.7,
(2)], [18, Hypothesis (S)], [34, Theorem 1.2, (2)]) and holds if p does not divide
the class number of K . We shall denote the unique primes (of the finite layers) of
K∞ above p and pc by the same symbols. For more details, see Sect. 2.

Finally, for any compact or discrete �-module M we write M∨ :=
Homcont

Zp
(M, Qp/Zp) for its Pontryagin dual, which may be equipped with the

compact-open topology (here Homcont
Zp

(•, �) denotes continuous homomorphisms
of Zp-modules and Qp/Zp is equipped with the quotient, i.e., discrete, topology).

1.2. Important hypotheses

In this section, we collect some of the hypotheses that we will impose at various
points throughout the paper. We assign labels to these hypotheses for easy recall.
Some of the notation appearing in these hypotheses has not been introduced yet;
we indicate where this notation is defined, as well as the first time each hypotheses
is invoked.

(Heeg) Every prime number dividing Np splits in the imaginary quadratic field
K , where the integer N is understood from context to be the conductor
of some elliptic curve over Q with good supersingular reduction at p.

• This setup already appeared in 1.1, and it is assumed throughout the entirety of
this paper (for various values of N ).

(Tam) Given an elliptic curve E/Q, the prime p does not divide #
(
E/E0

)
.

• This condition ensures that none of the local Tamagawa factors of E are divis-
ible by p. This assumption is necessary in order to obtain an isomorphism in
Proposition 3.9 rather than an injection with bounded cokernel; see, e.g., [11,
Lemma 3.3] and the discussion that immediately follows it.

(Norm) For an elliptic curve E/Q satisfying (Tam), the local norm maps
E(Kn,v) → E(Kv) are surjective for all n ≥ 1 and all primes of K
that do not divide p.

• This assumption is introduced in 5.1 in order to generalize some cohomological
lemmas from [4], where the surjectivity of the local norm maps at primes
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above p is also required (see [4, Assumption 2.15]). However, this additional
assumption guarantees that E is p-ordinary, which is not within the scope of
the present paper.

(mod p) For an elliptic curve E/Q satisfying both ap(E) = 0 and (Norm), we
have E±

n 	= 0 and X±
p (E, Kn+1/Kn) = 0 for all n ∈ N.

• The notation E±
n (which conceals the fact that it depends on E) is defined in

4.2, whileX±
p (E, Kn+1/Kn) is defined in 5.3. This hypothesis first appears in

the statement of Theorem 5.15.

(Cong) Given two elliptic curves E1/Q and E2/Q, both of which satisfy (mod
p), there is an isomorphism E1[p] 
 E2[p] as GQ-modules.

• For pairs of elliptic curves satisfying this assumption,wewill be able to compare
the Iwasawa invariants of their plus/minus Selmer groups in 6.

We emphasize that assumption (Heeg) is always in effect and the other assump-
tions have a cumulative nature:

(Cong) ⇒ (mod p) ⇒ (Norm) ⇒ (Tam).

1.3. Main results

For every n ∈ N we define plus and minus Mordell–Weil groups E±(Kn), which
provide the local conditions in terms of which we introduce our plus and minus
Selmer groups Sel±p∞(E/K∞) à la Kobayashi. It is worth remarking that our con-
struction is inspired by Kim ( [21]); in particular, we define plus/minus Selmer
groups over the finite layers of K∞/K somewhat differently from most of the lit-
erature (see, e.g., [8,9,18], [27]). This construction has the advantage of yielding
a nicer control theorem and also some important duality properties that may be of
independent interest.

Our main result, which corresponds to Theorem 5.15, can be stated as follows.

Theorem 1.1. If (Heeg) and (mod p) hold, then the �-module Sel±p∞(E/K∞) has
no proper �-submodule of finite index.

As a sample application of this result, we are able to prove a theorem regarding
the variation of Iwasawa invariants among p-congruent rational elliptic curves, that
is, rational elliptic curves with Galois-isomorphic p-torsion subgroups.

Theorem 1.2. Assume (Heeg) holds and let E1/Q and E2/Q be elliptic curves
satisfying (Cong). Then

μ
(
Sel±p∞(E1/K∞)∨

) = 0 ⇐⇒ μ
(
Sel±p∞(E2/K∞)∨

) = 0.

Furthermore, if these μ-invariants vanish, then the λ-invariants of the Pontryagin
duals of these Selmer groups are related by an explicit formula.
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This result is in the vein of work by Greenberg–Vatsal ( [14]) and extends to
the supersingular setting results of Hatley–Lei in the p-ordinary case ( [16,17]).
The reader is referred to the introduction to Sect. 6 for the definitions of μ- and
λ-invariants, and to Theorem 6.3 for the full statement.

Remark 1.3. Our arguments for obtaining these results have some significant differ-
ences from the strategy developed byGreenberg in [11], which has been generalized
to many different settings (see, e.g., [15,16,20,22,24,35,37]). In [12], Greenberg
showed that his strategy works for very general Selmer groups that can be defined
by a surjective global-to-local map in cohomology. In the setting studied in this
paper, the plus and minus Selmer groups cannot be defined in this way, since they
fail Greenberg’s so-called CRK hypothesis. On the other hand, both strategies uti-
lize non-primitive Selmer groups, and the influence of Greenberg’s approach is
amply evident in our own.

1.4. Future directions

The original motivation for [3] was to strengthen some of the results from [2]. It
would be interesting to study generalizations of results in [2] in the supersingu-
lar setting. For example, on adapting Bertolini’s strategy in [3] to our plus/minus
case, we have imposed a technical hypothesis on the vanishing of certain rel-
ative Shafarevich–Tate groups of E along finite layers of K∞/K , denoted by
X±

pm (E, Kn+1/Kn) (see Lemma 5.12 for more details). It would be worthwhile
to investigate this assumption further, e.g., to find sufficient conditions and give
explicit examples.

The results of this paper should also have implications for the annihilators of
anticyclotomic plus/minus Selmer groups, in the spirit of [1]; we plan to tackle this
question in a future project.

Finally, the first two named authors recently generalized Bertolini’s results to
the case of p-ordinary modular forms of higher weight [17]; it would be interesting
to make a similar study of non-ordinary modular forms.

2. Anticyclotomic Iwasawa algebras

2.1. The anticyclotomic Zp-extension of K

For every m ∈ N let Hpm denote the ring class field of K of conductor pm , then set
Hp∞ := ∪m∈NHpm . There is an isomorphism

Gal(Hp∞/K ) 
 Zp × �,

where � is a finite group. The anticyclotomic Zp-extension K∞/K is the unique
Zp-extension of K contained in Hp∞ . It can be characterized as the unique Zp-
extension of K that is Galois and non-abelian (in fact, generalized dihedral) over
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Q. We can write K∞ := ∪m≥0Kn , where Kn is the unique subfield of K∞ such
that

Gn := Gal(Kn/K ) 
 Z/pnZ.

In particular, K0 = K . We also define

G∞ := lim←−
m

Gm = Gal(K∞/K ) 
 Zp,

where the inverse limit is taken with respect to the natural restriction maps. Finally,
for all n, n′ ∈ N ∪ {∞} with n ≤ n′ we set

Gn′/n := Gal(Kn′/Kn).

In particular, Gn/0 = Gn for all n ∈ N.

2.2. The Iwasawa algebra �

Throughout our article, we fix a topological generator γ∞ of G∞. Furthermore, we
consider the Iwasawa algebra

� := lim←−
n

Zp[Gn] = Zp[[G∞]]

attached to K∞/K , the inverse limit being taken with respect to the maps that are
induced by restriction. As is well known (see, e.g., [31, Proposition 5.3.5]), γ∞
determines an isomorphism of topological Zp-algebras �


−→ Zp[[X ]] such that
γ∞ �→ 1 + X . In the rest of the paper, we shall tacitly identify � with Zp[[X ]] in
this way.

3. Selmer groups and control theorems

3.1. Plus and minus Selmer groups over K∞

We introduce plus and minus norm groups à la Kobayashi (see [25]). First of all,
define the two sets of indices

S+
n := {0, 1, . . . , n} ∩ 2Z;
S−
n := {0, 1, . . . , n} ∩ (2Z + 1).

Let n ≥ 1 be an integer. For v ∈ {p, pc}, set
Ê±(Kn,v) :=

{
P ∈ Ê(MKn,v )

∣∣∣ Trn/m+1(P) ∈ Ê(MKm,v ) for all m ∈ S±
n

}
,

where we write Ê(MKn,v ) for the formal group of E whose points are defined over
the maximal ideal MKn,v of the valuation ring of Kn,v and

Trn/m+1 : Ê(MKn,v ) −→ Ê(MKm+1,v )



�-submodules of finite index 595

is the trace map on formal groups.
Let v ∈ {p, pc}. Following [21, 3.3], we define

H
±
v :=

⋃

n≥0

Ê±(Kn,v) ⊗ Qp/Zp. (3.1)

For n ∈ N, we also set

H
±
n,v := (

H
±
v

)Gal(K∞,v/Kn,v)
.

Remark 3.1. Using the Kummer map and the fact (shown in the proof of Lemma
3.8 below) that the natural maps

H1(Kn, E[p∞]) → H1(K∞,v, E[p∞])G∞/n

and

H1(Kn,v, E[pm]) → H1(Kn,v, E[p∞])[pm]
are isomorphisms, we may identify H

±
v as a �-submodule of H1(K∞,v, A) :=

lim−→n
H1(Kn,v, A). In turn, we may identify H

±
n,v and H

±
n,v[pm] as submodules of

H1(Kn,v, A) and H1(Kn,v, Am), respectively.

In line with our general notational conventions, let (H±
v )∨ be the Pontryagin

dual of H
±
v .

Proposition 3.2. (a) The �-module (H±
v )∨ is free of rank one.

(b) Let m, n ∈ N. Under the local Tate pairing

H1(Kn,v, Am) × H1(Kn,v, Am) −→ Z/pmZ,

the exact annihilator of H
±
n,v[pm] is H

±
n,v[pm].

Proof. Part (a) is [21, Proposition 3.13] when the sign is −. This has been subse-
quently generalized to the + case in [23, Proposition 2.11], as our ground field is
Qp. Part (b) then follows from the proof of [21, Proposition 3.15]. ��

Now we define Selmer groups for E over K∞ and over the finite layers of
K∞/K . First of all, for every n ∈ N let Sn be the set of places of Kn dividing
Np∞, let Kn,Sn be the maximal extension of Kn unramified outside Sn and write
H1
Sn

(Kn, �) as a shorthand for H1(Kn,Sn/Kn, �). In the following, it is convenient
to set also A∞ := A = E[p∞].
Definition 3.3. Let m ∈ N ∪ {∞} and n ∈ N. The pm-Selmer group of E over Kn

is

Selpm (E/Kn) := ker

(
H1
Sn (Kn, Am) −→

∏

v∈Sn

H1(Kn,v, Am)

E(Kn,v)/pm

)
.

The pm-Selmer group of E over K∞ is

Selpm (E/K∞) := lim−→
n

Selpm (E/Kn),

the direct limit being taken with respect to the restriction maps.
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We also introduce plus/minus Selmer groups à la Kobayashi, along the lines of
[21].

Definition 3.4. Let m ∈ N ∪ {∞} and n ∈ N. The plus/minus Selmer groups of E
over Kn are

Sel±pm (E/Kn) : = ker

(
H1
Sn (Kn, Am) −→

∏

v∈Sn ,v�p

H1(Kn,v, Am)

E(Kn,v)/pm

×
∏

v|p

H1(Kn,v, Am)

H
±
n,v[pm]

)
.

The plus/minus Selmer groups of E over K∞ are

Sel±pm (E/K∞) := lim−→
n

Sel±pm (E/Kn),

the direct limit being taken with respect to the restriction maps.

Remark 3.5. Our definitions are different from those in [18] and [25], unless the
base field is K0 = K or K∞. We have followed [21, 4.4] because we would like
our Selmer conditions at p to satisfy part (b) of Proposition 3.2 for our applications
later.

Remark 3.6. If m = 1, then we omit the superscript and simply write, e.g.,
Sel±p (E/Kn).

The next result deals with the n = 0 case.

Lemma 3.7. For all m ∈ N ∪ {∞}, there is an equality

Sel±pm (E/K ) = Selpm (E/K ).

Proof. In light of Remark 3.1, it suffices to show that H
±
0,v[pm] coincides with

the image of E(Kv)/pmE(Kv) in H1(Kv, Am) under the Kummer map. Indeed,
H

±
0,v[pm], E(Kv)/pmE(Kv) and H1(Kv, Am)

/(
E(Kv)/pmE(Kv)

)
are all free

of rank one over Z/pmZ. On the other hand, E(Kv)/pmE(Kv) is contained in
H

±
0,v[pm], as explained in the proof of [21, Proposition 3.15], and the result follows.

��

3.2. Control theorems

Our goal is to prove a control theorem for the plus and minus Selmer groups in our
context (Proposition 3.9) generalizing the corresponding result in the ordinary case
(see, e.g., [2, 2.3]).
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Lemma 3.8. Let v ∈ {p, pc} and m, n, n′ ∈ N ∪ {∞} with n ≤ n′. The natural
maps

H1(Kn,v, Am)

H
±
n,v[pm] −→ H1(Kn′,v, Am)

H
±
n′,v[pm] ,

H1(Kn,v, Am)

H
±
n,v[pm] −→ H1(Kn,v, A)

H
±
n,v

(3.2)
are injective.

Proof. Since E has supersingular reduction at p, H0(Kn′,v, Am) = 0 by the proof
of [25, Proposition 7] (see also [18, Lemma 4.6]). The inflation-restriction exact
sequence gives an isomorphism

res : H1(Kn,v, Am)

−→ H1(Kn′,v, Am)

Gn′/n . (3.3)

In particular, it gives an injection H1(Kn,v, Am) ↪→ H1(Kn′,v, Am). To show that
the first map in (3.2) is injective, it is enough to show that

H
±
n,v[pm] = H

±
n′,v[pm]Gn′/n . (3.4)

But Proposition 3.2(a) tells us that there is an isomorphism of �-modules

H
±
n,v[pm] 
 (Z/pmZ)[Gn]∨,

and similarly for n′. Thus (3.4) holds.
Now we study the second map in (3.2). Consider the short exact sequence

0 −→ Am −→ A
pm ·−−→ A −→ 0.

The fact that H0(Kn,v, A) = 0 implies that

H1(Kn,v, Am) = H1(Kn,v, A)[pm], (3.5)

which gives the second injection. ��

We are now in a position to prove a strong control theorem for our plus/minus
Selmer groups. In order to obtain an isomorphism (rather than an injection with
bounded cokernel) we need the following hypothesis.

(Tam) Given an elliptic curve E/Q, the prime p does not divide #
(
E/E0

)
.

Proposition 3.9. Let E/Q be an elliptic curve satisfying (Tam). Let m,m′, n, n′ ∈
N ∪ {∞} with m ≤ m′ and n ≤ n′. The restriction map induces an isomorphism of
�-modules

Sel±pm (E/Kn) 
 Sel±
pm′ (E/Kn′)[pm]Gn′/n .
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Proof. Consider the commutative diagram

0 Sel±pm (E/Kn′ ) H1
Sn′ (Kn′ , Am)

∏
v∈Sn′

H1(Kn′ ,v ,Am )

H
±
n′,v [pm ]

δ±
v

0 Sel±
pm′ (E/Kn′ )[pm ] H1

Sn′ (Kn′ , Am′ )[pm ]
(∏

v∈Sn′
H1(Kn′ ,v ,Am′ )

H
±
n′ ,v [pm′ ]

)
[pm ],

wherewehavewrittenH
±
n′,v[pm] andH

±
n′,v[pm

′ ] for E(Kn′,v)/pm and E(Kn′,v)/pm
′

respectively when v � p. The middle map is induced by taking cohomology of the
short exact sequence

0 −→ Am −→ Am′
pm ·−→ Am′−m −→ 0.

As in the proof of Lemma 3.8, we have H0(Kn′ , Am′−m) = 0. In particular, the
middle vertical map is an isomorphism. When v|p, Lemma 3.8 says that δ±

v is
injective. When v � p, the local condition for the plus/minus Selmer group is
the same as that for the “full” Selmer group, so the injectivity follows from [2,
2.3, Lemma 1, (1)]. The snake lemma then shows that the first vertical map is an
isomorphism as claimed.

Now, consider the commutative diagram

0 Sel±pm (E/Kn) H1
Sn

(Kn, Am)
∏

v∈Sn
H1(Kn,v ,Am )

H
±
n,v [pm ]

γ ±
v

0 Sel±pm (E/Kn′ )Gn′/n H1
Sn′ (Kn′ , Am)

Gn′/n
(∏

v∈Sn′
H1(Kn′,v ,Am )

H
±
n′,v [pm ]

)Gn′/n
,

where we have writtenH
±
n,v[pm] andH

±
n′,v[pm] for E(Kn,v)/pm and E(Kn′,v)/pm

respectively when v � p. As before, H0(Kn′ , Am) = 0. Thus, the inflation-
restriction exact sequence says that the middle map is an isomorphism. When
v|p, Lemma 3.8 says that γ ±

v is injective. For v � p, it is well-known (see e.g. [11,
Lemma 3.3] and the discussion immediately following it) that the kernel of γ ±

v is
trivial under hypothesis (Tam). We conclude once again by the snake lemma. ��

4. Plus and minus Heegner points

4.1. Plus/minus Mordell–Weil groups

Let n ≥ 1 be an integer. We define plus and minus norm subgroups of E(Kn) that
are global counterparts of the plus/minus norm groups introduced in 3.1. For all
m ∈ S±

n with m < n, let

Trn/m+1 : E(Kn) −→ E(Km+1)

be the Galois trace map with respect to the group law on E .
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Definition 4.1. The plus/minus Mordell–Weil groups of E over Kn are

E±(Kn) := {
P ∈ E(Kn) | Trn/m+1(P) ∈ E(Km)for allm ∈ S±

n withm < n
}
.

Similar to (3.1), we also define

H
±∞ :=

⋃

n≥0

E±(Kn) ⊗ Qp/Zp, H
±
n := (

H
±∞

)Gal(K∞/Kn).

Remark 4.2. The �-module H
±∞ (respectively, H

±
n ) may be identified with a sub-

module of Sel±p∞(E/K∞) (respectively, Sel±p∞(E/Kn)) via the usual Kummermap
inGalois cohomology. Analogously, given an integerm ≥ 1, wemay viewH

±
n [pm]

as a �-submodule of Sel±pm (E/Kn).

4.2. Plus/minus Heegner points

Let
{
zn ∈ E(Kn)

}
n≥1 be a compatible family of Heegner points as in [27, 4.2].

Following [27, 4.3], we give

Definition 4.3. The plus/minus Heegner points are

z+n :=
{
zn if n is even,
zn−1 if n is odd,

z−n :=
{
zn−1 if n is even,
zn if n is odd.

Since we have assumed that ap(E) = 0, it is a consequence of the formulas in
[32, 3.1, Proposition 1] that the points z±m satisfy the following relations:

(a) trKm/Km−1(z
+
m) = −z+m−1 for every even m ≥ 2;

(b) trKm/Km−1(z
+
m) = pz+m−1 for every odd m ≥ 1;

(c) trKm/Km−1(z
−
m) = pz−m−1 for every even m ≥ 2;

(d) trKm/Km−1(z
−
m) = −z−m−1 for every odd m ≥ 3;

(e) trK1/K0(z
−
1 ) = p−1

2 z−0 = p−1
2 z0.

In particular, we see that z±m ∈ E±(Km).
For all m, n ∈ N, set Rm,n := (Z/pmZ)[Gn]. As in [27, 4.4], we define E±

m,n

to be the Rm,n-submodule of Sel±pm (E/Kn) generated by z±n . This in turn defines
�-submodules

E±∞ := lim−→
m

E±
m,m ⊂ Sel±p∞(E/K∞)

as well as the Pontryagin duals

H±∞ := (E±∞)∨ = lim←−
m

(E±
m,m)∨.

Finally, we introduce the Rm,n-module

E±
m,n := (E±∞)Gal(K∞/Kn)[pm].

When m = 1, we shall omit the index m from the notation and simply write Rn ,
E±
n , E±

n .
We recall the following result on H±∞.
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Proposition 4.4. The �-moduleH±∞ is finitely generated, torsion-free and of rank
one.

Proof. This is [27, Proposition 4.7]. ��
We strengthen this slightly in the following proposition.

Proposition 4.5. The �-module H±∞ is free of rank one.

Proof. By definition, E±
m,m is a cyclic Rm,m-module. Thus, lim←−(E±

m,m)∨ is a cyclic
lim←− Rm,m-module. Thus, H±∞ is cyclic over �. Since it is also torsion-free, and
since � is an integral domain, this implies H±∞ is free of rank 1. ��

We deduce

Corollary 4.6. The Rn-module E±
n is cyclic.

Proof. Immediate from Proposition 4.5. ��
Lemma 4.7. There is an injection of Rn-modules

E±
m,n ↪→ Sel±pm (E/Kn).

Proof. We may identify E±
m,n with a submodule of H1(Kn, Am) via the Kummer

map. On the other hand, the inclusion E±∞ ⊂ H
±∞ induces an inclusion E±

m,n ⊂
H

±
n [pm], and the lemma is proved. ��
From now on we shall view E±

m,n as a submodule of Sel±pm (E/Kn) via
Lemma 4.7 without further notice.

Lemma 4.8. Let n ≥ 1 be an integer. There is a natural injection E±
m,n ↪→ E±

m,n+1

whose image is
(
E±
m,n+1

)Gn+1/n .

Proof. As in the proof of Lemma 4.7, we may identify E±
m,n and E±

m,n+1 as sub-
modules of H1(Kn, Am) and H1(Kn+1, Am), respectively. Furthermore, as in the
proof of Lemma 3.8, the inflation-restriction exact sequence gives an isomorphism

H1(Kn, Am) 
 H1(Kn+1, Am)Gn+1/n ,

and the result follows. ��

5. On proper �-submodules of finite index

5.1. Admissible classes

We prove the supersingular analogues of [4, Theorem 3.2], which will serve as one
of the key ingredients in the proof of Proposition 5.6 below. Throughout, we fix
integers m, n ∈ N. We also assume that the hypothesis (Tam) holds.
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Definition 5.1. A prime v of K is admissible for (E, Kn, pm) if

(1) E has good reduction at v;
(2) v does not divide p;
(3) v splits completely in Kn/K ;
(4) the group E(Kv)/pm is isomorphic to (Z/pm)2.

A set 
 of primes of K is admissible for (E, Kn, pm) if

(1) all v ∈ 
 are admissible for (E, Kn, pm);
(2) the map Selpm (E/K ) → ∏

v∈
 E(Kv)/pm is injective.

We recall from [4, Lemma 2.23] that admissible sets exist. In the rest of this section,
we fix an admissible set 
. We give the following supersingular analogues of
admissible classes defined in [4, Definition 2.24].

Definition 5.2. The group of plus/minus admissible classes with respect to 
 in
H1(Kn, Am) is

H1

,±(Kn, Am) = ker

(
H1(Kn, Am) −→

∏

v /∈
,v�p

H1(Kn,v, Am)

E(Kn,v)/pm
×

∏

v|p

H1(Kn,v, Am)

H
±
n,v[pm ]

)
.

Remark 5.3. Note that H1

,±(Kn, Am) ⊂ H1

Sn
(Kn, Am), as 
 contains no bad

primes.

We can generalize Lemmas 2.25, 2.26, 2.27 and 3.1 of [4] to the supersingular
setting.

Lemma 5.4. (a) The map Sel±pm (E/Kn) → ⊕
v∈
 E(Kn,v)/pm is injective.

(b) The map
∏

v∈

H1(Kn,v ,Am )

E(Kn,v)/pm
→ Hom(Sel±pm (E/Kn), Z/pm) is surjective.

(c) The restriction map H1

,±(K , Am) → H1


,±(Kn, Am)Gn/0 is an isomorphism.
(d) There is an exact sequence

0 −→ Sel±pm (E/Kn) −→ H1

,±(Kn, Am) −→

∏

v∈


H1(Kn,v, Am)

E(Kn,v)/pm

−→ Sel±pm (E/Kn)
∨ −→ 0.

Proof. Part (a) follows from the same proof as [4, Lemma 2.25] once we replace
the control theorem in the ordinary case ( [4, Lemma 2.19]) by Proposition 3.9.

Part (b) follows from part (a), as in the proof of [4, Lemma 2.26]; namely, this
is dual to property (2) in the definition of an admissible set of primes.

Part (c) can be proved in the same way as Proposition 3.9.
Part (d) now follows from part (b) as in the proof of [4, Lemma 3.1]. ��
This allows us to prove the following generalization of [4, Theorem 3.2].

Theorem 5.5. The Rm,n-module H1

,±(Kn, Am) is isomorphic to

(
Rm,n

)2|
|
.

Proof. This follows from the same proof as [4, Theorem 3.2], where we replace
the appropriate lemmas in [4] with their counterparts given in Lemma 5.4. ��
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5.2. Cohomology, universal norms and perfect pairings

For all m, n ∈ N, write Im,n for the augmentation ideal of Rm,n . The following
result generalizes [3, Proposition 6.3] to our plus/minus setting under the following
hypothesis.

(Norm) The local norm maps

E(Kn,v) −→ E(Kv)

are surjective for all n ≥ 1 and all primes of K that are coprime to p.

Note that (Norm) is slightly weaker than [3, Assumption 4] and [4, Assumption
2.15].

Proposition 5.6. Let m, n ∈ N. Suppose that (Norm) holds. There is a perfect
pairing of Tate cohomology groups

〈·, ·〉m,n : Ĥ0(Gn,Sel
±
pm (E/Kn)

) × Ĥ−1(Gn,Sel
±
pm (E/Kn)

) −→ Im,n/I
2
m,n .

Proof. We fix an admissible set of primes for (E, Kn, pm), which we denote by
.
We write Sel±pm (E/Kn)

0 for the kernel of the corestriction map Sel±pm (E/Kn) →
Sel±pm (E/K ). Fix a generator γn of Gn . Recall from Lemma 5.4(d) that

Sel±pm (E/Kn)
0 is contained in H1


,±(Kn, Am), which is a free Rm,n-module by

Theorem 5.5. In particular, the kernel of the corestriction H1

,±(Kn, Am) →

H1

,±(K , Am) is (γn − 1)H1


,±(Kn, Am). Therefore if y ∈ Sel±pm (E/Kn)
0, there

exists z ∈ H1

,±(Kn, Am) satisfying

y = (γn − 1)z. (5.1)

Let zv denote the image of z in H1(Kn,v, Am)/H
±
n,v[pm], where v is a place of Kn

and we denote E(Kn,v)/pm by H
±
n,v[pm] when v � p. Let us denote the pairing

induced by local Tate duality by

[·, ·]v : H
1
n,v[pm] × H1(Kv, Am)/H

1
n,v[pm] −→ Z/pmZ.

The definition of y and (5.1) together imply that

zv ∈
(
H1(Kn,v, Am)/H

±
n,v[pm]

)Gn
.

When v � p, the surjectivity of the norm map given by (Norm) implies that the
restriction map induces an isomorphism

(
H1(Kn,v, Am)/H

±
n,v[pm]

)Gn ∼= H1(K0,v, Am)/H
±
0,v[pm] (5.2)

since the restriction map on these quotients is dual to the norm map

E(Kn,v)/p
m → E(Kv)/p

m
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as given by [·, ·]v . The same is true when v|p since (H±
v )∨ is free of rank one over

� by Proposition 3.2(a).
We define a pairing

[·, ·]m,n : Sel±pm (E/K ) × Sel±pm (E/Kn)
0 −→ Im,n/I

2
m,n

by sending (x, y) to

∑

v

[xv, zv]v(γn − 1) mod I 2m,n,

where the sum runs over all primes of K , xv is the natural image of x in H
±
n,v[pm]

and zv is identified with its image in H1(Kv, Am)/H
±
0,v[pm] as given by the iso-

morphism (5.2). The argument in [3, Proposition 6.3] to show that this pairing
is independent of the choice of z or γn carries over to our setting, as it relies on
algebraic properties of Galois cohomology only.

To check that [·, ·]m,n induces a perfect pairing 〈·, ·〉m,n on the Tate cohomology
groups it is enough to show that we have a right non-degenerate pairing, as the two
groups have the same order.We extend the proof of [30, Lemma 6.15] to our setting.
Consider the commutative diagram

⊕
v∈Sn H

1(Kn,v, Am)

⊕
v∈Sn

H1(Kn,v ,Am )

H
±
n,v[pm ] H1

Sn
(Kn, Am) Sel±pm (E/Kn) 0.

If we take Z/pmZ-linear duals, then Proposition 3.2 gives us a commutative dia-
gram

⊕
v∈Sn H

1(Kn,v, Am)

⊕
v∈Sn H

±
n,v[pm] H1

Sn
(Kn, Am)

∗
Sel±pm (E/Kn)

∗
0.

Let y be an element of the right kernel of [·, ·]m,n and let z ∈ H1

,±(Kn, Am) be

as in (5.1). By Remark 5.3, we may consider it as an element of H1
Sn

(Kn, Am). As

can be checked by a diagram chase, the image of z in
⊕

v∈Sn H
1(Kn,v, Am) splits

as a1 + a2, where a1 is in the image of
⊕

v∈Sn H
±
n,v[pm] and a2 is in the image

of H1
S (K , Am) under the restriction map composed with the localization maps.

Therefore z itself decomposes as z1 + z2, where z1 ∈ Sel±pm (E/Kn) and z2 ∈
im

(
H1
S (K , Am) ↪→ H1

Sn
(Kn, Am)

)
. This shows that y ∈ (γn −1)Sel±pm (E/Kn). In

particular, the image of y in Ĥ−1
(
Gn,Sel

±
pm (E/Kn)

)
is zero. This shows that the

pairing 〈·, ·〉m,n is right non-degenerate, as required. ��
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For every n ∈ N, define

S±
p (E/Kn) := lim←−

m

Sel±pm (E/Kn),

the inverse limit being taken with respect to the multiplication-by-p maps

E[pm+1] p·−→ E[pm]. For all n, n′ ∈ N with n ≤ n′ there is a natural corestriction
map

coresKn′/Kn : S±
p (E/Kn′) −→ S±

p (E/Kn). (5.3)

We can then define the �-module

Ŝ±
p (E/K∞) := lim←−

n

S±
p (E/Kn),

the inverse limit being taken with respect to the corestriction maps in (5.3).
The next propositionwill be used in the proof of ourmain result (Theorem5.15).

Proposition 5.7. There is a canonical isomorphism of �-modules

Ŝ±
p (E/K∞) 
 Hom�

(
Sel±p∞(E/K∞)∨,�

)
.

Proof. One can proceed as in the proof of [32, Lemme 5], replacing the control
theorem used in [32] with Proposition 3.9. ��

The universal norm submodule of S±
p (E/K ) is

US±
p (E/K ) :=

⋂

n≥1

coresKn/K
(
S±
p (E/Kn)

) ⊂ S±
p (E/K ).

The following theorem is the counterpart for plus/minus Selmer groups of [3, The-
orem 6.1].

Theorem 5.8. There is a perfect pairing

〈〈·, ·〉〉 : S±
p (E/K )

/
US±

p (E/K ) × Sel±p∞(E/K∞)G∞ −→ G∞ ⊗Zp Qp/Zp.

Proof. UsingProposition 5.6, this follows as in the proof of [3, Theorem6.1],where
we replace the control theorem used to prove [3, Lemma 6.4] with the plus/minus
analogue provided by Proposition 3.9. ��

This in turn gives the following

Corollary 5.9. The �-module Sel±p∞(E/K∞) admits no proper �-submodule of

finite index if and only if S±
p (E/K )

/
US±

p (E/K ) has no Zp-torsion.

Proof. Using Theorem 5.8 in place of [3, Theorem 6.1], one can proceed exactly
as in the proof of [3, Corollary 6.2], which is completely algebraic in nature and
does not depend on the definition of the Selmer groups involved. ��
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5.3. Computation of universal norms

Under appropriate hypotheses, we now compute the universal norm submodule
US±

p (E/K ), thus extending [3, Theorem 7.1] to our setting. In doing so, we follow
[3, 7] closely. We begin with a generalization of [1, Lemma 9]. Recall that Rn =
R1,n = (Z/pZ)[Gn] and E±

n = E±
1,n .

Lemma 5.10. If E±
n 	= 0, then Sel±p (E/Kn) admits a free Rn-submodule U±

n such
that E±

n ⊂ U±
n .

Proof. For m ∈ {n, n + 1}, fix a generator γm of Gm . Recall from Corollary 4.6
that E±

m is a cyclic Rm-module. Consequently, [1, Lemma 3] says that

E±
m 
 Rm/(γm − 1)p

m−t±m 
 (γm − 1)t
±
m Rm, (5.4)

where t±m = pm −dimFp (E
±
m). Note that Gn+1/n = 〈γ pn

n+1〉, which is cyclic of order
p. Then

(
(γn+1 − 1)s Rn+1

)G =
(
1 + γ

pn

n+1 + · · · + γ
pn(p−1)
n+1

)
(γn+1 − 1)s Rn+1

= (γn+1 − 1)p
n+1−pn+s Rn+1

for all 0 ≤ s ≤ pn+1. In particular, isomorphism deflist(5.4) tells us that

dimFp

(
(γn+1 − 1)s Rn+1

)G = pn − s.

Recall from Lemma 4.8 that
(
E±
n+1

)Gn+1/n = E±
n .

Since dimFp E
±
n+1 = pn+1 − t±n+1, we have

dimFp

(
E±
n+1

)G = pn − t±n+1 = pn − t±n ,

so t±n+1 = t±n . Let us write t± for this common value and define the cyclic Rn+1-
module

U±
n := (γn+1 − 1)p

n+1−pn−t±E±
n+1 
 (γn+1 − 1)p

n+1−pn Rn+1.

Note that U±
n is contained in E±

n+1 by definition and is isomorphic to R
Gn+1/n
n+1 .

Therefore U±
n is invariant under Gn+1/n , which makes it an Rn-module. On the

one hand, U±
n contains (E±

n+1)
Gn+1/n = E±

n ; on the other hand, U±
n is con-

tained in Sel±p (E/Kn+1)
Gn+1/n 
 Sel±p (E/Kn). Finally, we deduce from (5.4)

that dimFp U
±
n = pn , hence U±

n is free of rank one over Rn . ��
Now we introduce plus and minus analogues of Shafarevich–Tate groups over

finite layers of K∞/K and, following [3, 7], relative versions of them as well.
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Definition 5.11. The plus and minus pm-Shafarevich–Tate groups of E over Kn

are

X±
pm (E/Kn) := Sel±pm (E/Kn)

/
H

±
n [pm].

The relative plus and minus pm-Shafarevich–Tate groups are

X±
pm (E, Kn+1/Kn) := ker

(
X±

pm (E/Kn) −→ X±
pm (E/Kn+1)

)
,

where the map on the right is induced by restriction.

LetU±
n be the free Rn-submodule of Sel±p (E/Kn) fromLemma 5.10, and recall

the labels that were assigned to sets of hypotheses in Sect. 1.2.

Lemma 5.12. Suppose that X±
p (E, Kn+1/Kn) = 0 and E±

n 	= 0. Then U±
n ⊂

H
±
n [p].

Proof. Consider the commutative diagram

0 H
±
n [p] Sel±p (E/Kn)




X±
p (E/Kn) 0

0
(
H

±
n+1[p]

)Gn+1/n Sel±p (E/Kn+1)
Gn+1/n X±

p (E/Kn+1)
Gn+1/n 0

in which themiddle vertical isomorphism comes from Proposition 3.9. By applying
the snake lemma, one checks that

H
±
n [p] = (

H
±
n+1[p]

)Gn+1/n
. (5.5)

By construction,U±
n is contained in the module on the right-hand side of (5.5), and

the result follows. ��
Lemma 5.13. There is an equality

S±
p (E/K ) = lim←−

m

H
±
0 [pm].

Proof. By Lemma 3.7, H
±
0 [pm] = E(K )/pmE(K ) and Sel±pm (E/K ) =

Selpm (E/K ), therefore there is a short exact sequence

0 −→ H
±
0 [pm] −→ Sel±pm (E/K ) −→ Xpm (E/K ) −→ 0. (5.6)

But Xpm (E/K ) is finite and bounded independently of m ( [26, Theorem A]),
hence the result follows upon taking inverse limits in (5.6).

Recall from 1.2 the following hypothesis.

(mod p) For an elliptic curve E/Q satisfying both ap(E) = 0 and (Norm), we have
X±

p (E, Kn+1/Kn) = 0 and E±
n 	= 0 for all n ∈ N.
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Remark 5.14. The condition E±
n 	= 0 has been established in some cases which

overlap with our own; see [5, Theorem 4.6].

The following theorem is the main result of this article.

Theorem 5.15. Suppose that hypothesis (mod p) is satisfied. Then US±
p (E/K )

is free of rank one over Zp and the �-module Sel±p∞(E/K∞) admits no proper
�-submodule of finite index.

Proof. We first observe that E(K ) is p-torsion free; this is a consequence of our
hypotheses that E has good supersingular reduction at primes above p and that p is
unramified in K . Thus it follows from the proof of Lemma 5.13 that S±

p (E/K ) 

E(K )⊗Z Zp is a freeZp-module of finite rank. Furthermore, by [27, Theorem 1.4]
(see also [7, TheoremA]), the�-module Sel±p∞(E/K∞)∨ has rank one. Combining
this with Proposition 5.7, and arguing as in [2, 3.2], one sees that

rankZpU S±
p (E/K ) = rank� Ŝ±

p (E/K∞) = 1.

Then it suffices to show thatUS±
p (E/K ) contains a non-trivial element of S±

p (E/K )

not divisible by p. Thiswould imply thatUS±
p (E/K ) 
 Zp and that theZp-module

S±
p (E/K )

/
US±

p (E/K ) is torsion-free. The last statement of the theorem would
then follow from Corollary 5.9.

Thus let us set TH
±
n := lim←−m

H
±
n [pm] for the p-adic Tate module of H

±
n ; then

TH
±
n

/
pTH

±
n = H

±
n [p].

Lemma 5.12 says that the free Rn-moduleU±
n from Lemma 5.10 lies insideH

±
n [p].

Let Ũ±
n be a free Zp[Gn]-submodule of TH

±
n of rank one lifting U±

n modulo p,
generated by an element vn . Then coresKn/K (vn) is not divisible by p, thanks to
the freeness of Ũ±

n . Lemma 5.13 tells us that

coresKn/K (vn) ∈ TH
±
0 = US±

p (E/K ).

By compactness, wemayfind a subsequence
(
coresKni /K

(vni )
)
i≥0 converging to an

element of S±
p (E/K ) that lies inUS±

p (E/K ) and is not divisible by p, as required.
��

6. An application: variation of Iwasawa invariants

6.1. p-congruent elliptic curves

In this section,we illustrate one application of Theorem5.15. Recall that two elliptic
curves E1/Q and E2/Q are p-congruent (or congruent modulo p) if E[p] 
 E ′[p]
as GQ-modules. Accordingly, in 1.2, we gave a name to the following hypothesis.

(Cong) Given two elliptic curves E1/Q and E2/Q, both of which satisfy (mod p),
there is an isomorphism E1[p] 
 E2[p] of GQ-modules.
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In [14], Greenberg and Vatsal showed that the Iwasawa invariants (defined over
the cyclotomic Zp-extension of Q) of p-congruent, p-ordinary elliptic curves are
related by an explicit formula, and they used this to provemany cases of the Iwasawa
Main Conjecture. These results were later extended to Hida families by Emerton,
Pollack and Weston [10], while results in the non-ordinary case were established
for elliptic curves by B. D. Kim [22] and for more general modular forms by the
first two named authors [15].

An analogue for the anticyclotomicZp-extension K∞ of an imaginary quadratic
field K of the results in [10] was obtained by Castella, C.-H. Kim and Longo [6]
under the assumption that the tame level N of the Hida family is divisible by an
odd number of primes that are inert in K ; in this setting, results on the vanishing of
the μ-invariant were obtained by Pollack and Weston [34]. When N satisfies this
divisibility hypothesis, the usual Selmer groups over K∞ are expected to be �-
cotorsion, and the arguments regarding the variation of Iwasawa invariants closely
mirror the cyclotomic case.

As we have seen in previous sections, when all the primes dividing N split in K
the classical Selmer groups are not �-cotorsion, and extra care must be taken (this
happens, more generally, when N is divisible by an even number of inert primes).
Recently, analogues in this setting of the Greenberg–Vatsal result was proved for
p-ordinary modular forms by the first two named authors [16,17]. In this final
section of the paper, we will extend these results to setting of p-supersingular
elliptic curves.

6.2. Definitions of Iwasawa invariants

Let us briefly recall the definition of the Iwasawa invariants. As explained in 2.2,
we identify � with Zp[[X ]] via our fixed topological generator γ∞ of G∞. Let M
be a finitely generated �-module; there is a pseudo-isomorphism, i.e., a map with
finite kernel and cokernel

M ∼ �⊕r ⊕
s⊕

i=1

�/(pai ) ⊕
t⊕

j=1

�
/(

F
n j
j

)
(6.1)

for suitable integers r, s, t ≥ 0, ai , n j ≥ 1 and irreducibleWeierstrass polynomials
Fj ∈ Zp[X ] (see, e.g., [31, Theorem 5.3.8]). The μ-invariant and the λ-invariant
of M are

μ(M) :=
s∑

i=1

ai , λ(M) :=
t∑

j=1

n j deg(Fj ).

Continue to assume that M is a finitely-generated �-module M , and let Mtor
denote the maximal torsion submodule of M . Recall from [19, 1.8 and 3.1] that
there is an exact sequence of �-modules

0 → Mtor → M → M++ → T2(M) → 0, (6.2)

where M++ is the reflexive hull of M , which is free over � and T2(M) is finite. In
the same way as [17, Definition 3.3], we define an integer c(M) as follows.
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Definition 6.1. Let M be a finitely generated module over �. We define c(M) to
be the unique integer satisfying the equation

|T2(M)[p]| = |Fp|c(M).

When M = Sel±p∞(E/K∞)∨ is the Pontryagin dual of the plus/minus Selmer
group associated to an elliptic curve E , we write c±(E) = c(M).

6.3. Variation of Iwasawa invariants

For the rest of this paper, we fix elliptic curves E1 and E2 with square-free con-
ductors N1 and N2, respectively, such that E1[p] 
 E2[p] as GQ-modules and
ap(Ei ) = 0 for i = 1, 2. Moreover, we assume that, taken together, the field K , the
prime p, and the product of the conductors N1N2 satisfy (Heeg). We also assume
that both curves satisfy the hypothesis (Tam).

Our goal is to relate the Iwasawa invariants of Sel±(Ei/K∞) for i = 1, 2 (or
rather, the Pontryagin duals of these Selmer groups). To ease notation, let us write
X±(Ei ) = Sel±p∞(Ei/K∞)∨ for the Pontryagin dual of each Selmer group, and let
us set

μ±(Ei ) := μ
(X±(Ei )

)
and λ±(Ei ) := λ

(X±(Ei )).

Our first step is to observe that the GQ-isomorphism E1[p] 
 E2[p] induces an
isomorphism of Selmer groups

Sel±p (E1/K∞) 
 Sel±p (E2/K∞).

This amounts to showing that we have isomorphisms between the local conditions
defining the Selmer groups. For the places away from p, the local condition is
the unramified condition, so this is clear, and it remains only to check the local
condition at places above p. But we have assumed that p splits in K/Q, hence for
a prime p | p of K above p, we have Kp = Qp, in which case this compatibility is
well-established; see e.g. [22, Proposition 2.8] and the proof of Theorem 4.1.1 of
[36].

Thus, in light of Proposition 3.9, we have an isomorphism

Sel±p∞(E1/K∞)[p] 
 Sel±p∞(E2/K∞)[p].
By duality, we have established the following result.

Proposition 6.2. Suppose E1/Q and E2/Q are elliptic curves satisfying ap(Ei ) =
0 and (Tam) for i = 1, 2 and that E1[p] 
 E2[p] as GQ-modules. Assume further
that the hypothesis (Heeg) holds. Then we have an isomorphism

X±(E1)/p 
 X±(E2)/p.

Recall that, when E is supersingular,μ±(E) is always expected to vanish, and it
is known to vanish in some cases (see, e.g., [28, Theorem B]). Furthermore, when
these μ-invariants vanish, the corresponding λ-invariants can often be related to
each other in an explicit manner, in the spirit of Greenerg-Vatsal [14]. In our present
setting, we have the following result.
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Theorem 6.3. Let E1/Q and E2/Q be elliptic curves for which the hypotheses
(Heeg) and (Cong) hold. Then

μ±(E1) = 0 ⇐⇒ μ±(E2) = 0.

Suppose that μ±(E1) = μ±(E2) = 0. Then

λ±(E1) + c±(E1) = λ±(E2) + c±(E2).

Proof. Our assumptions that E1[p] 
 E2[p] and that (Heeg) holds allow us to
invoke Proposition 6.2 to deduce an isomorphism

X±(E1)/p 
 X±(E2)/p.

By [27, Theorem 1.4], both X±(E1) and X±(E2) have �-rank 1, so we may apply
[16, Corollary 2.4] to conclude that

μ±(E1) = 0 ⇐⇒ μ±(E2) = 0.

Assume that the μ±-invariants vanish. Then since (Cong) holds, we know from
Theorem 5.15 (and duality) that each X±(Ei ) contains no non-trivial finite �-
submodules, sowemay apply [17, Corollary 3.4] to deduce the claimed relationship
between the λ±-invariants, and we are finished. ��
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