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1. Introduction 

 
The structural models – ranging from synthetic 

parametric formulations to high-fidelity computational 
descriptions – constitute fundamental tools in modern 
engineering to assess the safety of structures in operating 
and seismic conditions, both through rapid procedures 
(Michel et al. 2012, Iervolino et al. 2014, Spina et al. 2019) 
and refined numerical analyses (see for example Lupoi et 
al. 2004, Derkevorkian et al. 2014). 

Within the field of existing buildings, the definition of 
reliable dynamic models requires the correct interpretation 
of the inertial, dissipative and elastic properties that, 
altogether, may determine the global and local structural 
response, influenced by a variety of materials and structural 
details. Furthermore, a long-dating history of past structural 
modifications and/or retrofitting interventions may play a 
non-negligible role in worsening or improving the present 
performance of aged buildings. The knowledge phase – 
whose process is coded by several national and international 
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regulations (including EN19983 2005, ASCE 41-13 2014, 
NTC 2018, NZSEE 2017) – is currently an interesting 
matter of research, mainly aimed at the conceptual 
development and systematic implementation of standard 
procedures (Jalayer et al. 2010, Kosič et al. 2014, Bracchi 
et al. 2015). The preliminary investigation phase is targeted 
at reducing the unavoidable uncertainties (Haddad et al. 
2019) – regarding the geometry, the structural typology, the 
mechanical properties of the materials, the nature, quality 
and effectiveness of the elements and constraints – and, 
eventually, at guiding the assumption of the modeling 
hypotheses that most accurately describe the actual 
structural behavior. 

Among the others, a common modeling hypothesis 
regards the in-plane behavior of the floor diaphragms 
(Kunnath et al. 1991). Although some structural typologies, 
such as reinforced concrete or steel buildings, can be 
reasonably associated with the hypothesis of perfectly rigid 
diaphragms (Greco et al. 2020), this assumption is much 
more problematic for existing masonry buildings, which 
constitute the principal application field of the present 
article. The difficulties arise, on the one hand, from the 
great variety of diaphragm typologies (timber floors, vaults, 
steel beams and hollow clay blocks, concrete slabs, etc.) 
and, on the other hand, from the role played by the 
connection with the vertical walls in the dynamic response 
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of the structure. Within this framework, the likely 
occurrence of moderate to severe seismic damages may add 
a remarkable source of structural uncertainties, in post-
earthquake scenarios. 

In the field of structural models for seismic analysis, the 
in-plane shear stiffness assigned to the floor diaphragms can 
significantly influence the safety assessment evaluations, 
especially for masonry buildings. Regarding seismic safety, 
the Italian National Building Code NTC 2018 explicitly 
states that a global three-dimensional structural analysis is 
suitable only if the diaphragm stiffness suffices to guarantee 
an efficient redistribution of the horizontal actions among 
the vertical walls in the linear and nonlinear regime. 
Otherwise, additional evaluations regarding possible local 
mechanisms are required. Furthermore, in the safety 
evaluations based on nonlinear static analyses – the most 
common choice for existing masonry buildings – the 
assessment is considerably sensitive to the variation of the 
diaphragm stiffness (Nakamura et al. 2017), with further 
potential repercussions on the definition of the damage limit 
states on the pushover curve (Cattari et al. 2015, Marino et 
al. 2019). 

In this regard, the recent observations of the seismic 
damage caused by the 2009 L’Aquila earthquake – made 
available by the Italian Department of Civil Protection 
through the Da.D.O platform (Dolce et al. 2019) – pointed 
out the importance of the in-plane deformability of floor 
diaphragms in the seismic response of masonry buildings 
(Del Gaudio et al. 2019, Rosti et al. 2020). These research 
studies highlight the greater seismic vulnerability of 
buildings characterized by vaults (aggravated by out-of-
plane actions, often in absence of retaining steel tie-rods) 
and, in general, deformable floors. This finding is also 
indirectly confirmed by the seismic vulnerability reduction 
factors proposed in presence of quasi-rigid floors coupled to 
edge beams (Lagomarsino and Giovinazzi 2006). On the 
contrary, it is well established that the in-plane stiffness of 
floor diaphragms positively influences the global dynamic 
behavior of the structure, ensuring the lateral load 
redistribution and reducing the level of potential damage. 
Thus, deepening the knowledge on this topic is a matter of 
theoretical and applied interest, especially to the purpose of 
formulating or updating consistent analytical, computational 
and experimental models. 

To this end, the support of structural diagnostic 
investigations is fundamental. If several in-situ tests are 
available to investigate the material properties (for the 
masonry see Kržan et al. 2015, Boschi et al. 2019), much 
less are the experimental techniques proposed to evaluate 
the stiffness of floor diaphragms. Some solutions have been 
proposed to investigate the stiffness of timber floors and the 
effectiveness of their connections to the vertical walls 
(Giongo et al. 2015, Dizhur et al. 2020, Rizzi et al. 2020). 
For other floor typologies, such as vaults, these studies are 
usually carried out in a laboratory environment (Rossi et al. 
2016, 2017) or through numerical simulations (Cattari et al. 
2008). Within this context, the use of ambient vibration 
measurements to deduct global information on the structure 
seems increasingly promising. The cost reduction of the 
experimental instruments and the continuous development 

of smart and powerful algorithms of data processing, 
accompanied also by the growing competencies of the 
technicians, makes nowadays economically and 
operationally feasible the rapid diffusion in the current 
engineering practice of evaluation procedures previously 
confined to strategic (Mori and Spina 2015) or monumental 
structures (Karatzetzou et al. 2015, Gattulli et al. 2016). In 
this sense, the number of existing buildings for which 
instrumental data and experimental modal information are 
available is rapidly growing, thanks also to monitoring 
projects at the national scale (Dolce et al. 2017, Astorga et 
al. 2020). It is not utopian the outlook that, in the next 
future, the availability of such information will be extended 
to cover the entire stock of buildings exposed to seismic 
risk. 

Based on the above motivations, the paper postulates the 
initial availability of synthetic spectral data resulting from 
modal experimental analyses (first-level modal identifica-
tion problem), suited to identify and discriminate rigid-
diaphragm modes from deformable ones (Sivori et al. 
2020). Starting from this solid background of information, 
the main objective of the paper is to state and solve the 
inverse structural problem of identifying the diaphragm in-
plane shear stiffness of existing buildings (second-level 
parametric or structural identification problem). The model-
driven nature of the structural problem makes it naturally 
more complex to be inverted, either analytically or 
numerically. Furthermore, the formulation of the direct 
problem (model dimension, mechanical assumptions), as 
well as the methodological tools (exact, approximate) 
employed to solve the governing equations, may 
compromise the existence and uniqueness of the inverse 
problem solution. 

A mature and well-established field of research exists – 
the model updating of high-fidelity finite element models – 
which may serve the purpose. Most of the updating 
techniques attempt to solve an optimization problem, 
seeking for the value of one or more structural parameters 
which minimizes the residual between the model 
predictions and the experimental results (Zárate and 
Caicedo 2008). 

The most recent and successful developments rely on 
the sensitivity method (Jaishi and Ren 2005, Reynders et al. 
2010, Mottershead et al. 2011), which, based on the 
linearization of the residual function, exploits an iterative 
scheme to update the most sensitive parameters. In general, 
the reliability of these techniques depends on several factors 
– the choice of an appropriate objective function, the 
feasibility of the numerical model, the efficiency of the 
optimization algorithm – but, primarily, on the well-
posedness of the inverse problem. That is to say, since the 
number of variables is usually larger than the equations 
available, more than one optimum solution may exist. 

In this paper, the same issue is tackled from a novel 
perspective. Among the other possibilities, a low-dimension 
linear model of the diaphragm is formulated to describe the 
free undamped dynamics of the entire floor or one (or more) 
of its spans (Section 2). An extra dynamically-active 
degree-of-freedom is purposely introduced to account for 
the shear deformability of the diaphragm. The model mass 
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and stiffness matrices are built analytically (Section 2.1) 
and the direct eigenproblem governing the modal properties 
is stated and solved (Section 2.2). The eigensolution is 
obtained in a suited analytic – although asymptotically 
approximate – fashion. In this respect, the multiparameter 
perturbation technique employed can be applied also to 
larger dimension models, described by a generic number of 
mechanical parameters. The low-order approximate solution 
can be properly inverted (Section 2.3) to identify the 
unknown stiffness parameters (Section 2.3.1). Among the 
others, the parameter governing the in-plane shear stiffness 
of the diaphragm is derived analytically, as an explicit 
function only of the experimental frequencies of the rigid 
and deformability modes. This guarantees the existence and 
uniqueness of a solution, within the class of mass and 
stiffness properties described by the low-dimension 
analytical model. Since the solution reliability, however, 
depends on how faithfully the analytical model can 
synthetically describe the real structure, the accuracy of the 
approximation and its range of validity are discussed. In this 
respect, the proposal is verified through pseudo-
experimental data, numerically generated from the finite 
element model of a simple frame structure (Section 3). 
Finally, the effectiveness of the procedure is tested 
experimentally (Section 4), employing firstly experimental 
data from laboratory tests on scaled models (Section 4.1) 
and, lastly, vibration recordings from the full-scale 
monitoring of an existing masonry building (Section 4.2). 

 
 

2. Dynamic model of deformable diaphragm 
 
In the mechanical formulation of analytical or 

computational models for building engineering, the generic 
building floor can be typically and efficiently described as a 
planar, horizontal and massive diaphragm connecting all the 
geometric vertices of the floor plan. From the structural 
viewpoint, the stiffness of the diaphragm in its own plane 
may strongly depend on many different technical aspects, 
including – among the others – the construction typology, 
the building materials and the efficiency of the connections 
among different resistant members (as discussed in NZSEE 
2017 for timber floors and, more in general, in Solarino et 
al. 2019). Within this multifaceted scenario, introducing a 
priori the assumption of infinitely in-plane rigid diaphragms 
to reduce the computational effort of structural analyses can 
turn out to be an inaccurate simplification or, at least, an 

 
 

avoidable loss of generality. 
To properly balance the opposite requirements of model 

synthesis and representativeness, the novel idea is to 
preserve a minimal description of the diaphragm 
deformability, without significantly increasing the 
complexity of the computational analyses. To this purpose, 
a single stationary displacement mode, kinematically 
compatible with a small deformation field, is admitted and 
superimposed to the rigid displacements of the diaphragm. 
To specify, the diaphragm is certainly allowed to move 
rigidly, as well as to develop small deformations according 
to an assigned geometric transformation of its initial 
configuration (referred to as deformability mode and 
assumed to preserve planarity). The amplitude of the 
deformability mode plays the role of an extra degree-of-
freedom of the dynamic model, characterized by its own 
mass and stiffness. Even if – in principle – the 
deformability mode could be fixed arbitrarily, energetic 
criteria could be adopted to select – in practice – the 
transformation of the diaphragm configuration associated 
with the lowest possible elastic energy. In may be worth 
noting that, if necessary, more than one deformability mode 
could be taken into account. 

For the purposes of the present work, a rectangular 
diaphragm with length 2𝐴, width 2𝐵 is considered (Fig. 
1(a)). The translational mass 𝑀 and rotational inertia 𝐽 are 
univocally determined by assuming uniform mass density 
for unit area. The planar rigid motion of the diaphragm is 
fully described by the in-plane time-dependent 
displacements 𝑈 and 𝑉 and rotation 𝜃 of the configurational 
node (central node 𝐺), located at its centroid (Fig. 1(b)). 
Among the other possibilities and on the base of energetic 
considerations, the deformability mode selected to account 
for the diaphragm deformation is the shear mode that 
transforms a rectangle into a parallelogram by stretching the 
rectangle diagonals (the transformation represented in Fig. 
1(c)). The angular defect of verticality assumed by the left 
and right sides of the rectangle, which can also be 
straightforwardly related to the loss of orthogonality 
between the rectangle sides, is chosen as modal amplitude. 
In analogy with the classic nomenclature of solid 
mechanics, it can be also conventionally referred to as shear 
strain Γ. 

In order to accurately represent the mechanical behavior 
of buildings, the diaphragm vertices must be considered 
configurational nodes (peripheral nodes) of the mechanical 
model. The masses and stiffnesses of these nodes may 

 
 

(a) Reference configuration (b) Rigid-body motions (c) Shear deformability
Fig. 1 Deformable mass-spring model of the rectangular diaphragm: (a) reference configuration with geometric, 

inertial and elastic properties; (b) dynamic configuration generated by the rigid-body motions; (c) dynamic 
configuration generated by the shear deformability mode
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depend on a variety of technical aspects, starting from their 
connection degree with the structural members of the three-
dimensional resistant structure of the building. To the 
purposes of the present work, it may be sufficient to 
consider four massive rotation-free peripheral nodes, 
located at the vertices of the rectangular diaphragm (Fig. 
1(a)) and provided with point mass 𝑚𝑖 and linear elastic 
stiffnesses 𝑘𝑥𝑖 and 𝑘𝑦𝑖 along the rectangle sides (𝑖 = 1, …, 
4). The in-plane motion of the 𝑖-th node is fully described 
by the in-plane time-dependent displacements 𝑈𝑖 and 𝑉𝑖. 

According to the mechanical hypotheses, the forced 
dynamics of the deformable diaphragm is governed by a 
discrete elastic model, which can be considered linear as 
long as the displacement and modal amplitude are assumed 
sufficiently small. The model response can more 
conveniently be analyzed by introducing nondimensional 
independent and dependent variables 

 𝜏 = Ω௥𝑡,     𝑢 = 𝑈𝐿௥ ,    𝑣 = 𝑉𝐿௥ , 𝑢௜ = 𝑈௜𝐿௥ ,    𝑣௜ = 𝑉௜𝐿௥ (1)

 
where Ω𝑟 and 𝐿𝑟 are known frequency and length – for 
example, the first (circular) natural frequency of the 
rectangular diaphragm model and the length of its diagonal 
– suited to serve as references for the time and space 
nondimensionalization, respectively. A minimal set 𝝁 of 
nondimensional parameters sufficient to completely 
describe the structural properties of the dynamic model is 

 𝛽 = 𝐵𝐴 ,                𝜚௜ଶ = 𝑚௜𝑀 ,        𝜒ଶ = 𝐽𝑀𝐿௥ଶ ,𝜅௫௜ = 𝑘௫௜𝑀Ω௥ଶ ,       𝜅௬௜ = 𝑘௬௜𝑀Ω௥ଶ ,       𝜅௦ = 𝑘௦𝑀Ω௥ଶ 
(2)

 
where 𝛽 is the aspect ratio of the rectangular diaphragm, 𝜚௜ଶ is the mass ratios between the mass attributed to the 𝑖-th 
peripheral node and the diaphragm mass, 𝜒2 is the 
rotational-to-translational mass of the diaphragm. Finally, 
the parameter 𝜅௦  synthetically accounts for the modal 
stiffness of the deformable diaphragm and can be 
interpreted as the equivalent nondimensional axial stiffness 
of a pair of identical diagonal bracings, elastically retaining 
the deformability mode. 

 
2.1 Equations of motion 
 
The linear equations of motions governing the forced 

dynamics of the mechanical model can be obtained by 
applying the Hamilton Principle for non-dissipative discrete 
systems excited by conservative external forces. Collecting 
the planar degrees-of-freedom of all the configuration nodes 
in the twelve-by-one column vector 𝐮 = (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ, 𝑢ଷ, 𝑣ଷ, 𝑢ସ, 𝑣ସ, 𝑢, 𝑣, 𝜃, 𝛤) , the Hamilton action ℋ  can be 
expressed as 

 ℋ = 𝒦 − 𝒱 = 12 𝐮ሶ ୃ 𝐌𝐮ሶ − ൬12 𝐮ୃ 𝐊𝐮 − 𝐮ୃ 𝐛൰ (3)
 

where 𝒦 and 𝒱 are the nondimensional kinetic and 
potential energies, respectively, depending on the 
symmetric twelve-by-twelve mass and stiffness matrices M 

and K, which are reported in Appendix A.1. The twelve-by-
one vector b collects column-wise the external forces acting 
on all the degrees-of-freedom. 

Introducing a suited partition u = (q, s) to distinguish 
the column subvector q collecting the free degrees-of-
freedom (or Lagrangian coordinates) from the column 
subvector s collecting the slave degrees-of-freedom, the 
kinetic and potential energies can be expressed in 
partitioned form 

 𝒦 = 12 ቀ𝐪ሶ𝐬ሶ ቁୃ ൤𝐌௤௤ 𝐌௤௦𝐌௦௤ 𝐌௦௦൨ ቀ𝐪ሶ𝐬ሶ ቁ 𝒱 = 12 ቀ𝐪𝐬ቁୃ ൤𝐊௤௤ 𝐊௤௦𝐊௦௤ 𝐊௦௦൨ ቀ𝐪𝐬ቁ − ቀ𝐪𝐬ቁୃ ൬𝐛௤𝐛௦ ൰ 
(4)

 

where the relations 𝐌௦௤ୃ = 𝐌௤௦  and 𝐊௦௤ୃ = 𝐊௤௦  hold 
between the submatrices, for the sake of symmetry. 

If the internal constraints between the slave and free 
degrees-of-freedom are linear holonomic, bilateral and 
time-independent, the constraining relations can 
conveniently be expressed in the matrix form s = Vq, where 
V is a rectangular constraint matrix. Consequently, the 
kinetic and potential energies of the constrained system can 
be expressed in the reduced space of the Lagrangian 
coordinates 

 𝒦 = 12 𝐪ሶ ୃ൫𝐌௤௤ + 𝐌௤௦𝐕 + 𝐕ୃ𝐌௦௤ + 𝐕ୃ𝐌௦௦𝐕൯𝐪ሶ  (5)

 𝒱 = 12 𝐪ୃ൫𝐊௤௤ + 𝐊௤௦𝐕 + 𝐕ୃ𝐊௦௤ + 𝐕ୃ𝐊௦௦𝐕൯𝐪−𝐪ୃ൫𝐛௤ + 𝐕ୃ𝐛௦൯ 
(6)

 

and finally, imposing the action stationarity, the 
nondimensional equations of motion read 

 𝐌௤𝐪ሷ + 𝐊௤𝐪 = 𝐟 (7)
 

where 𝐌௤ = 𝐌௤௤ + 𝐌௤௦𝐕 + 𝐕ୃ𝐌௦௤ + 𝐕ୃ𝐌௦௦𝐕  and 𝐊௤ = 𝐊௤௤ + 𝐊௤௦𝐕 + 𝐕ୃ𝐊௦௤ + 𝐕ୃ𝐊௦௦𝐕 are the symmetric 
mass and stiffness matrices of the constrained system, while   𝐟 = 𝐛௤ + 𝐕ୃ𝐛௦ is the column vector of the forces acting on 
the Lagrangian coordinates. 

According to the motivations of the present work, two 
physical alternatives – following from the different 
definitions of the constraint matrix V – are analyzed and 
discussed in the following. The first possibility consists in 
assuming the diaphragm extremely stiff in its own plane. 
Consequently, internal constraints of (ideally) perfect 
rigidity between the central node and the peripheral nodes 
can be imposed on the mechanical model (the 
corresponding twelve-by-three constraint matrix 𝐕௥ is 
reported in Appendix A.1). The resulting constrained model, 
characterized by the three-by-one vector 𝐪௥  = (𝑢, 𝑣, 𝜃) of 
Lagrangian coordinates, can conventionally be referred to 
as rigid model. The three-by-three mass and stiffness 
matrices of the rigid model read 

 𝐌௥ = ൦ 1 + 𝛴దଶ 0 −2𝛽Δద௫ଶ0 1 + 𝛴దଶ 2Δద௬ଶ−2𝛽Δద௫ଶ 2Δద௬ଶ 𝜒ଶ + 𝛴ఏଶ൪, (8)
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𝐊௥ = ቎ 𝛴఑௫ 0 −2𝛽Δ఑௫0 𝛴఑௬ 2Δ఑௬−2𝛽Δ఑௫ 2Δ఑௬ 𝛴఑ఏ ቏ 
 

where the out-of-diagonal matrix terms account for the 
nondimensional mass and stiffness coupling between the 
translation and rotation 𝐪௥ -components. 

The second possibility consists in assuming the 
diaphragm less stiff in its own plane so that the internal 
constraints of perfect rigidity between the central node and 
the peripheral nodes can be relaxed. Consequently, the 
shear-mode deformability is admitted in the mechanical 
model (the corresponding twelve-by-four constraint matrix 𝐕ௗ  is reported in Appendix A.1). The resulting constrained 
model, characterized by the four-by-one vector 𝐪ௗ = (𝑢, 𝑣, 𝜃, 𝛤) of Lagrangian coordinates, conventionally referred to 
as deformable model. The four-by-four mass and stiffness 
matrices of the deformable model read 

 

𝐌ௗ = ⎣⎢⎢
⎢⎢⎡1 + 𝛴దଶ 00 1 + 𝛴దଶ −2𝛽Δద௫ଶ 𝛽Δద௫ଶ2Δద௬ଶ 𝛽Δద௬ଶ−2𝛽Δద௫ଶ 2Δద௬ଶ𝛽Δద௫ଶ 𝛽Δద௬ଶ 𝜒ଶ + 𝛴ఏଶ 00 14 𝛽ଶ(𝜒ଶ + 𝛴ఏଶ)⎦⎥⎥

⎥⎥⎤ ,
𝐊ௗ = ⎣⎢⎢

⎢⎡    𝛴఑௫      00       𝛴఑௬ −2𝛽Δ఑௫     𝛽Δ఑௫2Δ఑௬     𝛽ଶΔ఑௬    −2𝛽Δ఑௫ 2Δ఑௬𝛽Δ఑௫ 𝛽ଶΔ఑௬ 𝛴఑ఏ 𝛽ଶΔ఑௫௬𝛽ଶΔ఑௫௬ 𝛽௰𝜅௦ + 𝛴఑௰ ⎦⎥⎥
⎥⎤
 

(9)

 

where the out-of-diagonal matrix terms account for the 
nondimensional mass and stiffness coupling among the two 
translation, the rotation and the deformation 𝐪௥ - components. 

It may be worth remarking that the deformable model 
can be considered an extension of the rigid model, since the 
mass and stiffness matrices 𝐌௥  and 𝐊௥  can be 
recognized as submatrices of the matrices 𝐌ௗ  and 𝐊ௗ . 
The following auxiliary quantities have been introduced in 
the mass and stiffness matrices 

 𝛴దଶ = 𝜚ଵଶ + 𝜚ଶଶ + 𝜚ଷଶ + 𝜚ସଶ, 𝛴ఏଶ = (1 + 𝛽ଶ)𝛴దଶ, Δద௫ଶ = 12 (𝜚ଵଶ + 𝜚ଶଶ − 𝜚ଷଶ − 𝜚ସଶ), Δద௬ଶ =  12 (𝜚ଵଶ − 𝜚ଶଶ − 𝜚ଷଶ + 𝜚ସଶ), 𝛴఑௫ = 𝜅௫ଵ + 𝜅௫ଶ + 𝜅௫ଷ + 𝜅௫ସ, 𝛴఑௬ = 𝜅௬ଵ + 𝜅௬ଶ + 𝜅௬ଷ + 𝜅௬ସ, Δ఑௫ =  12 (𝜅௫ଵ + 𝜅௫ଶ − 𝜅௫ଷ − 𝜅௫ସ), Δ఑௬ = 12 ൫𝜅௬ଵ − 𝜅௬ଶ − 𝜅௬ଷ + 𝜅௬ସ൯, 𝛴఑ఏ = 𝛴఑௬ + 𝛽ଶ𝛴఑௫, 𝛴఑௰ = 14 𝛽ଶ൫𝛴఑௫ + 𝛽ଶ𝛴఑௬൯, 𝛽௰ = 2𝛽ଶ(1 + 𝛽ଶ), Δ఑௫௬ = 12 (𝛴఑௬ − 𝛴఑௫) 

(10)

 
where (1 + 𝛽ଶ) can be recognized as the nondimensional 

semi-diagonal of the rectangular diaphragm. 
 
2.2 Direct modal analysis 
 
Denoting by Ω and 𝜔 = Ω/Ω௥  the dimensional and 

nondimensional circular frequencies, the free dynamics of 
the diaphragm can be analyzed by imposing a 
monoharmonic solution q = 𝝓 exp(𝚤𝜔𝜏) in the 
homogeneous form of the equation of motion (7). 
Therefore, eliminating the ubiquitous time-dependence, a 
linear eigenproblem can be stated in the so-called non-
standard form 

 ൫𝐊௤ − 𝜆𝐌௤൯𝝓 = 𝟎 (11)
 

where the eigensolutions are the real-valued eigenvalues 𝜆 = 𝜔ଶ (or angular square frequencies) and the associated 
eigenvectors 𝝓 (mode shapes or simply modes). 

Depending on the model dimension 𝑛, the rigid and the 
deformable models of the diaphragm are characterized by 𝑛 
= 3 and 𝑛 = 4 eigenpairs (𝜆, 𝝓), respectively. The set of 
eigenvalues 𝚲 = (𝜆ଵ, … , 𝜆௛, … , 𝜆௡) , sorted in ascending 
order, constitutes the model spectrum. The matrix 𝚽 =[𝝓ଵ, … , 𝝓௛, … , 𝝓௡] collecting column-wise the associated 
modes is the modal matrix. Due to the low model 
dimension, a closed form solution exists for all the 
eigenvalues 𝜆(𝝁) of the spectrum 𝚲(𝝁), and for all the 
eigenvectors 𝝓(𝝁) of the matrix 𝚽(𝝁), as explicit – 
although non polynomial – function of the parameter vector 𝝁. 

From the qualitative viewpoint, if one of the 
eigencomponents dominates over the others, the 
eigenvector can be classified as translation mode 
(dominated by the components u and v), rotation mode 
(dominated by the component 𝜃) and shear mode 
(dominated by the component 𝛤, only for the deformable 
model). Furthermore, particular parameter combinations 
can determine eigenvectors participated by two or more 
eigencomponents in a comparable manner, which can be 
referred to as hybrid modes. From the quantitative 
viewpoint, the assessment of the modal hybridization can be 
based on the energy-based asymptotically approximate 
definition of a modal localization factor (Lepidi and Gattulli 
2014). 

 
2.3 Inverse modal analysis 
 
Although undoubtedly valuable to carry out wide 

parametric analyses, the explicit functions 𝚲(𝝁) and 𝚽(𝝁) 
are seldom employable in solving inverse spectral problems 
of parametric identification. Indeed, parametric 
identification typically consists in searching for an 
unknown parameter set 𝝁∗ (output) describing a particular 
dynamic model characterized by a certain spectrum 𝚲∗ 
and/or a certain modal matrix 𝚽∗, where all or part of the 
eigenvalues 𝜆∗ and eigenvectors 𝝓∗ are known 
experimentally (input). In this respect, it may be worth 
remarking that parametric identification is an advanced 
issue (second-level structural identification problem) that 
differs from modal identification. Specifically, parametric 
identification starts from the experimental knowledge of 
modal information, for instance as the outcome of ambient 
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vibration tests and operational modal analyses (first-level 
modal identification problem). Assuming – for the sake of 
simplicity – that the experimental knowledge is limited to 
the spectrum 𝚲∗ , the exact analytical solution of the 
parametric identification problem would require the 
mathematical inversion of the function 𝚲(𝝁), in order to 
solve the equation 𝚲(𝝁) = 𝚲∗. On the one hand, from the 
mathematical viewpoint, the frequent insufficiency or not-
completeness of data tends to compromise the well-
posedness of the problem, while the inherent nonlinearity of 
the governing equations does not guarantee the existence 
and uniqueness of the solution, in the general case. On the 
other hand, from the operative viewpoint, the non-
polynomial nature of the functions 𝚲(𝝁) and 𝚽(𝝁) reduces 
the possibility to achieve the analytical solution of the 
inverse eigenproblem, expressing the unknown 𝝁∗ as an 
explicit function of the data 𝚲∗. 

Within this challenging scenario, it may be worth 
approaching the modal problem from a slightly different 
perspective. Specifically, building up uniformly valid and 
convergent series approximations of the eigenvalues and 
eigenvectors may allow a sufficiently accurate description 
of the exact spectrum 𝚲 and modal matrix 𝚽, by virtue of 
polynomial functions of the parameters. Furthermore, low-
order polynomial functions are more suitable to be 
analytically inverted. In general, a well-balanced equili-
brium can be found between the competing requirements of: 
(i) approximation accuracy in the direct modal problem, 
calling for high-order approximations, and (ii) availability 
of analytical solutions for the inverse identification 
problem, calling for low-order approximations. Multi-
parametric perturbation methods are the proper mathe-
matical tool to build up the necessary series approximations 
of the eigensolutions. 

 
2.3.1 Multiparameter perturbation method 
Perturbation methods are asymptotic techniques that are 

widely used to perform eigensolution sensitivity analyses in 
a variety of scientific research fields, ranging from 
parametric design and spectral optimization to nonlinear 
modal identification, damping and damage detection, 
dynamic stability and bifurcation (Hajj et al. 2000, 
Kerschen et al. 2006, Lee et al. 2010, Lacarbonara et al. 
2016, Lofrano et al. 2016, Lepidi and Bacigalupo 2018). A 
general multiparametric perturbation technique for the 
eigensensitivity analysis of a discrete conservative dynamic 
system is presented in the following. Therefore, in the next 
paragraph, the technique is specifically applied to the 
deformable diaphragm model to the purpose of structural 
identification and model updating. 

The preliminary requirement is that the structural 
matrices 𝐊ௗ (𝐩)  and 𝐌ௗ (𝐩)  governing the mechanical 
model are analytical functions of a finite set p of 
independent nondimensional parameters (which generally 
coincides with 𝝁, but can also include suited combinations 
of the 𝝁-components, if more convenient). In extreme 
synthesis, the methodological strategy consists in fixing a 
starting (known) set p° of parameters, corresponding to an 
unperturbed (or ideal) mechanical model governed by the 
p°-dependent matrices 𝐊ௗ°  and 𝐌ௗ°  and characterized by a 

known spectrum 𝚲° and known modal matrix 𝚽°. The 
starting set p° can be determined on the base of an order of 
magnitude analysis or by solving an inverse spectral 
problem (Lepidi 2013). Therefore, the generic real (non-
ideal) mechanical models corresponding to the parameter 
set p is assumed as perturbation of the ideal mechanical 
model, originated by a small change in a generic direction 
p′ of the parameter space (namely a multiparameter 
perturbation). The smallness of the multiparameter 
perturbation is regulated by a so-called ordering rule that – 
in the simplest case – can be introduced in the form 

 𝐩 = 𝐩° + 𝜖𝐩ᇱ (12)
 

where 𝜖 ≪  1 is a small nondimensional parameter 
measuring the geometric distance between the ideal and the 
real mechanical models in the parameter space. Although 
not strictly necessary for pointing out the mathematical 
algorithm in the following, higher order perturbation 
schemes p = p° + 𝜖p′ + 𝜖2p″ + … could be considered, 
without conceptual difficulties. Naturally, all and only the 
real mechanical models corresponding to the parameter sets 
p, encircled in a small-radius hypersphere of the parameter 
space centered at the starting set p°, can be described. 
Imposing the parameter ordering, the governing matrices 𝐊ௗ (𝐩) and 𝐌ௗ (𝐩) can be expanded in integer 𝜖 power 
series 

 𝐊ௗ = 𝐊ௗ° + ෍ 𝜖௡𝐊ௗ(௡)௡        = 𝐊ௗ° + 𝜖𝐊ௗᇱ + 𝜖ଶ𝐊ௗᇱᇱ + 𝜖ଷ𝐊ௗᇱᇱᇱ + 𝜖ସ𝐊ௗᇱᇱᇱᇱ + ⋯ 𝐌ௗ = 𝐌ௗ° + ෍ 𝜖௡𝐌ௗ(௡)௡  = 𝐌ௗ° + 𝜖𝐌ௗᇱ + 𝜖ଶ𝐌ௗᇱᇱ + 𝜖ଷ𝐌ௗᇱᇱᇱ + 𝜖ସ𝐌ௗᇱᇱᇱᇱ + ⋯
(13)

 
where the unperturbed matrices 𝐊ௗ°  and 𝐌ௗ°  tend to be 
sparse or even diagonal, if the set p∘ is properly selected. 
The perturbation matrices 𝐊ௗ(௡) and 𝐌ௗ(௡)are symmetric at 
each 𝜖-order and are known functions of the sets p° and p′ 
of mechanical parameters. 

The symmetry of the stiffness and mass matrices 𝐊ௗ°  
and 𝐌ௗ°  ensures that the spectrum 𝚲° does not include 
defective eigenvalues. Therefore, it is possible to postulate 
that the eigenvalues and eigenvectors can be expressed as 
integer 𝜖-power series in the form 

 𝜆 = 𝜆° + ෍ 𝜖௡𝜆(௡)௡    = 𝜆° + 𝜖𝜆ᇱ + 𝜖ଶ𝜆ᇱᇱ + 𝜖ଷ𝜆ᇱᇱᇱ + 𝜖ସ𝜆ᇱᇱᇱᇱ + ⋯ , 𝝓 = 𝝓° + ෍ 𝜖௡𝝓(௡)௡  = 𝝓° + 𝜖𝝓ᇱ + 𝜖ଶ𝝓ᇱᇱ + 𝜖ଷ𝝓ᇱᇱᇱ + 𝜖ସ𝝓ᇱᇱᇱᇱ + ⋯
(14)

 
where the coefficients 𝜆(௡)  and 𝝓(௡)  represent the 𝑛-th 
sensitivities of the eigenvalues and eigenvectors, 
respectively. The 𝑛-th sensitivities of the eigenvalues and 
eigenvectors are collected in the vector 𝚲(௡) and matrix 
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According to the multiparameter perturbation method, the 
eigensensitivities are the unknowns of the modal problem. 

Imposing both the series expansions (13) of the data 
(governing matrices 𝐊ௗ°  and 𝐌ௗ°  and their perturbations) 
and the series expansions (14) of the unknowns 
(eigenvalues and eigenvectors sensitivities) in the 
eigenvalue problem, expanding and collecting terms of the 
same 𝜖-power, an 𝜖-ordered cascade of perturbation 
equations can be formulated 

 𝜖଴ ∶ ൫𝐊ௗ° − 𝜆°𝐌ௗ° ൯𝝓° = 𝟎 𝜖ଵ ∶ ൫𝐊ௗ° − 𝜆°𝐌ௗ° ൯𝝓ᇱ = −൫𝐊ௗᇱ − 𝜆°𝐌ௗᇱ − 𝜆ᇱ𝐌ௗ° ൯𝝓°𝜖ଶ ∶ ൫𝐊ௗ° − 𝜆°𝐌ௗ° ൯𝝓ᇱᇱ         = −൫𝐊ௗᇱᇱ − 𝜆°𝐌ௗᇱᇱ − 𝜆ᇱ𝐌ௗᇱ − 𝜆ᇱᇱ𝐌ௗ° ൯𝝓°             −൫𝐊ௗᇱ − 𝜆°𝐌ௗᇱ − 𝜆ᇱ𝐌ௗ° ൯𝝓ᇱ …  ∶  … 𝜖௡ ∶ (𝐊ௗ∘ − 𝜆∘𝐌ௗ∘ )𝝓(௡)          = − ቌ𝐊ௗ(௡) − ෍ 𝜆(௝)𝐌ௗ(௡ି௝)௡
௝ୀ଴ ቍ 𝝓∘ 

              − ෍ ቎ቌ𝐊ௗ(௞) − ෍ 𝜆(௝)𝐌ௗ(௞ି௝)௞
௝ୀ଴ ቍ 𝝓(௡ି௞)቏௡ିଵ

௞ୀଵ  

(15)

 
where the equation at the 𝜖0-order can be recognized to 
govern the eigenproblem of the ideal mechanical model. 
The corresponding generating eigensolution is known by 
hypothesis and composed by the generating eigenvalues 𝜆௛°   
of the spectrum 𝚲° and the associated generating 
eigenvectors 𝝓௛°  of the modal matrix 𝚽° (with ℎ =1, … , 𝑛). All the generating eigenvalues 𝜆௛°  are supposed to 
be simple (characterized by unitary algebraic multiplicity) 
and well separated (that is, the difference between any two 
eigenvalues is supposed to be at least one order of 
magnitude greater than 𝜖). 

The key assumption of simplicity and well-separation of 
the 𝑛-th generating eigenvalue determined at the lowest 
order (namely 𝜖0-order) ensures that each higher order 
(namely 𝜖𝑛-order with 𝑛 ≥ 1) of the perturbation equations 
allows to determine the 𝑛-th sensitivity 𝜆௛(௡) of the ℎ-th 
eigenvalue and the 𝑛-th sensitivity 𝝓௛(௡)

 of the ℎ -th 
eigenvector. Specifically, the 𝑛-th eigenvalue sensitivity 𝜆௛(௡) is determined by imposing the solvability condition of 
the 𝜖𝑛-order Eq. (15d), yielding 

 𝜆௛(௡) = 𝛼௛° 𝝓௛°ୃ ቌ𝐊ௗ(௡) − ෍ 𝜆௛(௝)𝐌ௗ(௡ି௝)௡ିଵ
௝ୀ଴ ቍ 𝝓௛°  

            +𝛼௛° ෍ ቎𝝓௛°ୃ ቌ𝐊ௗ(௞) − ෍ 𝜆௛(௝)𝐌ௗ(௞ି௝)௞
௝ୀ଴ ቍ 𝝓௛(௡ି௞)቏௡ିଵ

௞ୀଵ
(16)

 
where 𝛼° = (𝝓°ୃ𝐌ௗ° 𝝓° )ିଵ. From the technical viewpoint, 
the solvability has been imposed by requiring the 
orthogonality between the right-hand term of Eq. (15d) and 
the solution 𝝍௛  of the auxiliary homogeneous problem 

(𝐊ௗ° − 𝜆° 𝐌ௗ° )ୃ𝝍 = 𝟎 , according to the Fredholm 
Alternative for discrete linear systems. Furthermore, the 
identity 𝝍௛ = 𝝓௛°  has been employed, as long as the 
symmetry of the matrices 𝐊ௗ°  and 𝐌ௗ°  holds. Once the 𝑛-
th eigenvalue sensitivity 𝜆௛(௡)  is known, the 𝑛-th 
eigenvector sensitivity 𝝓௛(௡) is univocally determined 

 𝝓௛(௡) = −𝐀௛° ൣ𝐀௛°ୃ൫𝐊ௗ° − 𝜆௛° 𝐌ௗ° ൯𝐀௛° ൧ିଵ ෍ ቎𝐀௛°ୃ ቌ𝐊ௗ(௞) − ෍ 𝜆௛(௝)𝐌ௗ(௞ି௝)௞
௝ୀ଴ ቍ 𝝓௛(௡ି௞)቏௡

௞ୀଵ  
(17)

 

where the rectangular matrix 𝐀௛° = [𝝓ଵ° , … , 𝝓௜ஷ௛° , … , 𝝓ே° ] 
is obtained by removing the ℎ-th eigenvector from the 
modal matrix 𝚽°. From the technical viewpoint, the 𝑛-th 
sensitivity of the ℎ-th eigenvector has been expressed as a 
linear combination of all the 𝑖-th eigenvectors 𝝓௜° (with 𝑖 ≠ ℎ), with small (𝑛-th order) combination coefficients 
(Lepidi 2013). 

From the mathematical viewpoint, determining the 𝑛-th 
sensitivities 𝜆௛(௡)

 and 𝝓௛(௡)
 allows the analytical assessment 

of all the coefficients of the power series (14) and, 
therefore, the asymptotic reconstruction of the eigenvalue 
and eigenvector up to the desired approximation order. The 
reconstruction procedure implies the complete reabsorption 
of the 𝜖-parameter. From the mechanical viewpoint, Eqs. 
(16) and (17) allow to obtain closed-form expressions of the 
frequencies and modes of a discrete system as analytical – 
although asymptotically approximate – functions of the 
parameters. As a major remark, the multiparameter 
perturbation method and the analytical formulas (16) and 
(17) are completely general, since they hold for any 
mechanical non-dissipative linear discrete system 
possessing a generic number of degrees-of-freedom and 
described by a generic number of parameters. It may be 
worth recalling that – coherently with the nature of 
perturbation techniques – the accuracy of the eigensolution 
approximations depends on the maximum order of the 
series, while its mathematical consistency holds within the 
limits of the parameter smallness assumptions and within 
the convergence radius of the power series. 

Finally, it is worth to briefly address the advantages and 
potential drawbacks of the proposed perturbation approach 
in the field of model updating. If compared, for example, to 
the well-studied sensitivity method in finite element model 
updating (Jaishi and Ren 2005, Reynders et al. 2010, 
Mottershead et al. 2011), the leading concept is quite 
similar. The linearization of the problem – being it an 
eigenvalue or an optimization problem – is exploited to 
formulate more simple and manageable inverse 
relationships. In this respect, the perturbative derivation has 
the benefit to identify a solution in a proper analytical form, 
within the space of the low-dimensional mass and stiffness 
matrices of the direct model. Indeed, the few parameters 
describing the model can be identified without recurring to 
numerical optimization schemes. On the downside, the 
flexibility of the approach relies on the possibility to 
describe the actual structural behavior through a low-
fidelity model, as discussed in the following with respect to 
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the experimental applications. 
 
2.3.2 Parameter identification and model updating 
To the purpose of the parameter identification problem, 

the multiparameter perturbation method allows determining 
the parametric relations 𝚲(𝝁) and 𝚽(𝝁) (or equivalently 𝚲(p) and 𝚽(p)), required to state the inverse spectral 
problem. It is important to highlight that – according to the 
multiparameter perturbation method – the power series 
approximations of the eigenvalues and eigenvectors are 
polynomial functions of the 𝜖 parameter regulating the 
amplitude of the multiparameter perturbation p′, whereas 
they remain non-polynomial functions of each p′-
component, in the general case. Therefore, the invertibility 
of the spectral problem must be discussed at each order of 
approximation. 

In order to specify the multiparameter perturbation 
method for the deformable model of the planar diaphragm, 
it is first necessary to select and order of the parameter set 
p. Its selection is a key technical point, because the 
perturbation-based inversion of the modal problem – if 
mathematically feasible – does not allow to identify 
unknown parameters other than those included in the set p. 
For the deformable model, a suited set of independent 
parameters is p = (𝛽, 𝜒2, 𝜅௦ , 𝛴దଶ , 𝛴఑௫ , 𝛴఑௬ , 𝛥ద௫ଶ , 𝛥ద௬ଶ , Δ఑௫, Δ఑௬), sufficient to completely and univocally assess 
the mass and stiffness matrices (9). Relying on engineering 
considerations, a proper 𝜖-power ordering of the p-
components is 

 𝛽 = 𝛽଴,                      𝜒ଶ = 𝜒଴ଶ + 𝜖𝜒ଵଶ,     𝛴దଶ = 𝛴ద଴ଶ ,Δద௫ଶ = 𝜖Δద௫ଵଶ ,            Δద௬ଶ = 𝜖Δద௬ଵଶ , 𝜅௦ = 𝜅௦଴ + 𝜖𝜅௦ଵ,     𝛴఑௫ = 𝛴఑௫଴,            𝛴఑௬ = 𝛴఑௬଴,Δ఑௫ = 𝜖Δ఑௫ଵ,           Δ఑௬ = 𝜖Δ఑௬ଵ 

(18)

 
where the subscript indicates the 𝜖-order of the parameter 
perturbation. Thus, it is consistent to assume the dependent 
parameter Δ఑௫௬  to be ordered as Δ఑௫௬ = 𝜖Δ఑௫௬ଵ . After 
substituting the parameter ordering (18) in the mass and 
stiffness matrices 𝐌ௗ  and 𝐊ௗ  reported in Eq. (9), 
expanding and collecting terms of the same 𝜖-power, the 
matrix expansions (13) can be specified for the deformable 
diaphragm. The unperturbed matrices 𝐌ௗ°  and 𝐊ௗ°  
(depending on the zeroth-order parameters only) and the 
first perturbation matrices 𝐌ௗᇱ  and 𝐊ௗᇱ  are reported in 
Appendix A.2. From the physical viewpoint, the matrices 𝐌ௗ°  and 𝐊ௗ°  collect the dominant contributions to the 
model mass and stiffness, whereas the perturbation matrices 𝐌ௗᇱ  and 𝐊ௗᇱ  collect minor or minimal contributions to the 
model mass and stiffness, consistently with the perturbation 
approach. 

Some brief remarks can be pointed out to specify the 
technical range of structural samples satisfying the 
particular order assignment (18). First, square and 
rectangular diaphragms are considered (namely, from the 
mathematical viewpoint, rectangles with aspect ratio 𝛽 = 𝒪(1)). Second, diaphragms with non-negligible rotational 
inertia are taken into account (rotational-to-translational 
mass ratio 𝜒2 = 𝒪(1)). Third, non-rigid but stiff diaphragms 

are assumed (shear stiffness 𝜅௦ = 𝒪(1)). Finally, mass and 
stiffness eccentricities are certainly admitted, as long as 
they are not dominant (mass differences Δద௫ଶ = 𝒪(𝜖) , Δద௬ଶ = 𝒪(𝜖) and stiffness differences Δ఑௫ = 𝒪(𝜖), Δ఑௬ =𝒪(𝜖)) . It is worth remarking that different parameter 
orderings can equally be introduced, if necessary to 
describe other structural cases falling out of this parameter 
range (for instance, highly elongated rectangular 
diaphragms). 

Following the general strategy outlined for the multi-
parameter perturbation method, the zeroth-order analytical 
approximation of the model spectrum 𝚲° = (𝜆ଵ° , 𝜆ଶ° , 𝜆ଷ° , 𝜆ସ° ) 
can be univocally determined. Specifically, the four 
generating eigenvalues and the corresponding eigenvectors 
are 𝜆ଵ° = 𝛴఑௫1 + 𝛴దଶ ,         𝝓ଵ° = (1, 0, 0, 0)

𝜆ଶ° = 𝛴఑௬1 + 𝛴దଶ ,                       𝝓ଶ° = (0, 1, 0, 0) 
𝜆ଷ° = 𝛴఑ఏ𝜒଴ଶ + 𝛴ఏଶ ,                     𝝓ଷ° = (0, 0, 1, 0) 
𝜆ସ° = 4൫𝛽௰𝜅௦଴ + 𝛴఑௰൯𝛽ଶ൫𝜒଴ଶ + 𝛴ఏଶ൯ ,       𝝓ସ° = (0, 0, 0, 1) 

(19)

 
where all the eigenvectors can be recognized to be 
canonical vectors with unitary-amplitude, meaning that 
zeroth order modes of the deformable system are perfectly 
localized on one or the other degrees-of-freedom. The first 
eigenvalue sensitivities are 

 𝜆ଵᇱ = 0𝜆ଶᇱ = 0𝜆ଷᇱ = − 𝜒ଵଶ𝛴఑ఏ൫𝜒଴ଶ + 𝛴ఏଶ൯ଶ 
𝜆ସᇱ = 4𝛽௰𝜅௦ଵ(𝜒଴ଶ + 𝛴ఏଶ) − 4𝛽௰𝜅௦଴𝜒ଵଶ − 4𝛴఑௰𝜒ଵଶ𝛽ଶ൫𝜒଴ଶ + 𝛴ఏଶ൯ଶ  

(20)

 
Higher (second, third) sensitivities could be determined 

up to the desired approximation order. It may be worth 
remarking that the lowest order significant perturbation of 
the eigenvalues 𝜆ଵ  and 𝜆ଶ  is given by the second 
sensitivities 𝜆ଵᇱᇱ and 𝜆ଶᇱᇱ, because the first sensitivities 𝜆ଵᇱ  
and 𝜆ଶᇱ  are identically null. The accuracy of the power-
series approximation (14), reconstructed up to the second 
order by employing the generating eigenvalues (19) and the 
sensitivities (20), must be discussed from a direct 
comparison with the exact eigenvalues. Particularly, the 
qualitative and quantitative agreement between the 
approximate and exact eigenvalues under variation of the 
perturbation parameter 𝜖 can be appreciated in Fig. 2 for 
two different multiparameter perturbations.  The 
multiparameter perturbations are purposely selected to 
introduce small (𝜖-proportional) variations of the mass and 
stiffness matrices, respectively. The approximate solution 
appears quite accurate with respect to mass perturbations 
(Fig. 2(a)), since it closely matches the exact solution. 
Remarkably, the agreement between the approximate and 
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exact solutions persists even beyond the expected range of 
accuracy (namely 𝜖 ≪ 1, according the initial hypothesis 
of the perturbation method). The approximate solution turns 
out to be satisfyingly accurate for stiffness perturbations as 
well (Fig. 2(b)), even if the larger sensitivity of some 
eigenvalues slightly reduce the approximation accuracy (for 𝜖 approaching unity). 

Recalling the modal formulation outlined at the 
beginning of Section 2.3, the parameter identification 
problem consists in inverting the analytical equation 𝚲(𝝁) = 𝚲∗ in order to determine the mechanical parameter set 𝝁 (or 
p) corresponding to the experimental spectrum 𝚲∗. For the 
deformable diaphragm model, the problem can be solved 
straightforwardly by recognizing that the analytical 
expressions (19) of the generating eigenvalues linearly 
depend – with a direct or inverse relationship – on the 
unperturbed mass and stiffness parameters. Similarly, the 
analytical expressions (20) of the eigenvalue sensitivities 
depend on the mass and stiffness perturbations. Therefore, 
by virtue of the multiparameter perturbation method, Eqs. 
(19) and (20) are simple analytical relations in the form 𝚲(p), suited to be easily inverted to determine the 
diaphragm mass and stiffness p-parameters that 
(approximately) correspond to a certain experimental 
spectrum 𝚲∗

 = (𝜆ଵ∗ , 𝜆ଶ∗ , 𝜆ଷ∗ , 𝜆ସ∗ ). 
Considering the availability of four zeroth-order 

equations for the generating eigenvalues and four higher-
order equations for the lowest-order eigenvalue 
perturbations (given by the second sensitivities 𝜆ଵᇱᇱ and 𝜆ଶᇱᇱ 
for the eigenvalues 𝜆ଵ  and 𝜆ଶ  and by the first 
sensitivities 𝜆ଷᇱ  and 𝜆ସᇱ  for the eigenvalues 𝜆ଷ  and 𝜆ସ ), 
the identification problem can be targeted at identifying no 
more than eight unknowns selected in the set of all the 
unperturbed parameters and/or parameter perturbations. 
Consequently, the balance of data and unknowns states that 
some mechanical parameters must be considered known a 
priori. Among the other possibilities, engineering 
considerations suggest assuming – with all likelihood – the 
aspect ratio 𝛽 and the masses 𝛴దଶ, 𝛥ద௫ଵଶ , 𝛥ద௬ଵଶ  as known 
information. 

Based on the above conceptual framework and practical 
assumptions, the parameter identification consists in 
determining the unknown zeroth-order stiffnesses 𝛴఑௫ and 𝛴఑௬, rotational mass 𝜒଴ଶ, and shear stiffness 𝜅௦଴ of the 
deformable diaphragm model by (i) imposing the 

 
 

coincidence between the zeroth-order analytical 
approximation of the model spectrum 𝚲° and the 
experimental spectrum 𝚲∗ (namely 𝜆௜° = 𝜆௜∗ for 𝑖 = 1, …, 
4), and (ii) analytically inverting Eq. (19), yielding 

 𝛴఑௫ = 𝜔ଵ∗ଶ൫1 + 𝛴దଶ൯  𝛴఑௬ = 𝜔ଶ∗ଶ൫1 + 𝛴దଶ൯ 𝜒଴ଶ = (𝛽ଶ𝜔ଵ∗ଶ + 𝜔ଶ∗ଶ)൫1 + 𝛴దଶ൯ − 𝜔ଷ∗ଶ𝛴ఏଶ𝜔ଷ∗ଶ  𝜅௦଴ = 𝛽ଶ𝜔ସ∗ଶ(𝛽ଶ𝜔ଵ∗ଶ + 𝜔ଶ∗ଶ)൫1 + 𝛴దଶ൯4𝛽௰𝜔ଷ∗ଶ  − 𝛽ଶ𝜔ଷ∗ଶ(𝜔ଵ∗ଶ + 𝛽ଶ𝜔ଶ∗ଶ)൫1 + 𝛴దଶ൯4𝛽௰𝜔ଷ∗ଶ  

(21)

 
where 𝜔ଵ∗, 𝜔ଶ∗, 𝜔ଷ∗, 𝜔ସ∗ are the – adimensionalized, 𝜔௜∗ =Ω௜∗/Ω௥  – experimental circular frequencies (square roots of 
the eigenvalues), coming out from operational modal 
analyses. It may be worth noting that the identified zero-
order parameters do not depend on the first order (known) 
parameters accounting for the mass eccentricities Δఘ௫ଵଶ , Δఘ௬ଵଶ . The one-to-one association of the 𝑖-th 
experimental frequency 𝜔௜∗  with the 𝑖-th generating 
eigenvalue 𝜆௜° can be governed by any assurance criterion 
suited to associate the generating eigenvectors with the 
corresponding experimental mode shapes. 

The parameter identification suffices to assess a zeroth-
order structural model of the deformable diaphragm, 
governed by the mass matrix 𝐌ௗ°  and stiffness matrix 𝐊ௗ°  
generated by the identified parameters (21) and matching 
exactly the experimental spectrum 𝚲∗ . Clearly, the 
identified structural model cannot be expected to match 
exactly also the experimental modes 𝚽∗, because they have 
not been involved in the identification process. Once the 
zeroth-order structural model has been identified, the 
structural model can further be refined by determining 
higher order contributions to the mass and stiffness 
matrices. The model refinements can be required to not alter 
the coincidence between the analytical approximation of the 
model spectrum 𝚲° + 𝚲ᇱ + 𝚲ᇱᇱ  and the experimental 
spectrum 𝚲∗ (namely 𝜆௜° + 𝜆௜ᇱ + 𝜆௜ᇱᇱ = 𝜆௜∗ for 𝑖 = 1, …, 4). 

Therefore, the model updating consists in determining 
the unknown higher-order perturbations (updates) of the 
model stiffnesses Δ఑௫ଵ and Δ఑௬ଵ, rotational mass 𝜒ଵଶ, and 

 
(a) Mass perturbations (b) Stiffness perturbations 

Fig. 2 Comparison between the exact and approximate eigenvalue loci (normalized with respect to the unperturbed 
eigenvalue) versus 𝜖-proportional perturbations of (a) the mass matrix; (b) the stiffness matrix of the deformable 
diaphragm (parameters 𝛽 = ଶଷ , 𝜒ଶ = ଵସ , 𝜅௦ = ଵଷ , 𝛴దଶ = 9, 𝛴఑௫ = 2, 𝛴఑௬ = 1, Δద௫ଶ = ଵସ , Δద௬ଶ = ଵଽ , Δ఑௫ = ଵସ , Δ఑௬ = ଵହ) 
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shear stiffness 𝜅௦ଵ. This is obtained by (i) imposing the 
coincidence between the second-order analytical 
approximation of the model spectrum 𝚲° + 𝚲ᇱ + 𝚲ᇱᇱ  and 
the experimental spectrum 𝚲∗ , then (ii) analytically 
inverting the non-polynomial equations expressing the 
spectral coincidence (namely 𝜆௜ᇱ + 𝜆௜ᇱᇱ = 0 for 𝑖 = 1, …, 4) 
to determine the unknown updates Δ఑௫ଵ, Δ఑௬ଵ, 𝜒ଵଶ, 𝜅௦ଵ 
and finally, if the analytical inversion is impossible, (iii) 
approximate the unknown updates Δ఑௫ଵ, Δ఑௬ଵ, 𝜒ଵଶ, 𝜅௦ଵ to 
the lowest order, consistently with the asymptotic 
expansion. Following this strategy, the updating reads 

 Δ఑௫ଵ = 𝛴఑௫Δద௫ଵଶ1 + 𝛴దଶ  
Δ఑௬ଵ = 𝛴఑௬Δద௬ଵଶ1 + 𝛴దଶ  𝜒ଵଶ = 0 + 𝒪(𝜖) 𝜅௦ଵ = 𝜒ଵଶ(𝛽௰𝜅௦଴ + 𝛴఑௰)𝛽௰(𝜒଴ଶ + 𝛴ఏଶ) + 𝒪(𝜖) 

(22)

 
where it can be recognized that the first order parameters 
accounting for the stiffness eccentricities Δ఑௫ଵ, Δ఑௬ଵ 
depend on the first order (known) parameters accounting for 
the mass eccentricities Δఘ௫ଵଶ , Δఘ௬ଵଶ , as expected. Finally, 
from the perspective of engineering applications, it is useful 
to relate the stiffness 𝜅௦ of the two cross bracings to the 
shear stiffness 𝜅ீ of a homogeneous plate with in-plane 
shear modulus 𝐺 and thickness 𝑆. Based on a simple 
equivalence of elastic energy, this is achieved through the 
expression 𝜅ீ = 𝐺௘௤𝑀Ω௥ଶ = 2𝛽𝜅௦1 + 𝛽ଶ (23)

 
where 𝐺𝑒𝑞 = 𝐺𝑆 represents the (equivalent) physical 
stiffness of the diaphragm. 

 
 

3. Numerical simulations 
 
The actual effectiveness of the theoretical framework 

and the reliability of the inverse solutions obtained in the 
previous sections can be firstly verified by employing a 
structural model of known physical parameters. To this 

 
 

purpose, the pseudo-experimental data are generated by 
numerically simulating the free oscillations of a 
computational model describing the linear undamped 
dynamics of a prototypical simple structure. For the sake of 
simplicity, the finite element model (named 1S) of a 
tridimensional one-story, single-bay steel frame with an 
asymmetric distribution of mass and stiffness is employed 
(Fig. 3(a)). 

The dimension of the rectangular frame plan are 2 m 
(along the 𝑥 direction) by 1.5 m (along the 𝑦 direction) and 
the inter-story height is equal to 2 m. The four steel 
columns (HEB 140), oriented with their maximum moment 
of inertia along the 𝑦 direction, are rigidly connected at the 
top by four edge beams (IPE 180). Two additional point 
masses of 145 kg are added to the vertices of the edge along 
the 𝑥 direction, breaking the mass symmetry of the 
structure. The floor in-plane shear stiffness 𝑘𝑠 is provided 
by two diagonal bracings of varying axial stiffness. In 
particular, the rigid, semirigid and deformable models 
considered in the analyses conventionally correspond to the 
pseudo-experimental frequency 𝑓ସ∗  of the shear mode 
being close (same order of magnitude), far (up to one order 
larger) or very far (at least one order larger) with respect to 
the pseudo-experimental rigid modal frequencies 𝑓ଵ∗, 𝑓ଶ∗, 𝑓ଷ∗ 
(Fig. 3(b)). Lastly, concerning the modeling hypotheses, the 
two-nodes beam elements follow the Euler-Bernoulli theory 
and the peripheral nodes of the diaphragm are constrained 
to move in the plane. 

Assuming thus the masses of the columns and of the 
floor beams to be lumped to the diaphragm peripheral nodes 
(145 kg per node), the geometric and mass parameters read 𝐴 = 2 m, 𝐵 = 1.5 m, 𝑀 = 0 kg, 𝑚1 = 𝑚2 = 145 + 145 kg, 𝑚3 
= 𝑚4 = 145 kg. Employing the natural frequencies provided 
by the finite element solution of the eigenproblem as 
pseudo-experimental data, the inverse relationship (21d) 
allows identifying the zeroth-order approximation of the 
shear stiffness parameter  𝑘௦  (Table 1). The results 
highlight the effectiveness of the procedure in identifying 
the order of magnitude of 𝑘s0, committing – from an 
engineering point of view – an acceptable overestimation. 
The difference is at least one order of magnitude smaller 
than the shear stiffness value and tends to increase the 
higher the diaphragm deformability. This behavior, 
however, should be expected and is consistent with the 

 
 

 

  
(a) Model 1S (b) Rigid-body and shear deformability modes

Fig. 3 Scheme of (a) the one-story finite element model 1S, developing (b) two modes dominated by the rigid translation 𝑈, 𝑉 along the 𝑥 and 𝑦 directions at frequencies 𝑓ଵ∗, 𝑓ଶ∗, one mode dominated by the rigid rotation 𝜃 at frequency 𝑓ଷ∗ and one mode dominated by the shear strain 𝛤 at frequency 𝑓ସ∗ 
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 𝜖-ordering previously assumed for the adimensional shear 

stiffness 𝜅௦ (see Eq. (18)), which is suitable for non-rigid 
but still stiff diaphragms. 

 
 

4. Experimental applications 
 
4.1 JetPACS frame 
 
Within an Italian national project targeted at the 

mitigation of the dynamic response of structures to seismic 
actions (ReLUIS 2005-2008, Research Line 7), the 
experimental dynamic testing program JetPACS (Joint 
Experimental Testing on Passive and semiActive Control 
Systems) involved the design and construction of a 2/3 
scaled steel building prototype aimed at testing active and 
passive energy dissipation devices for seismic protection 
(Dolce et al. 2008, Gattulli et al. 2009). A detailed 
description of the geometrical and mechanical properties of 
the two-story, single-bay frame can be found in Ponzo et al. 
(2012). To the purpose of this Section, it is sufficient to 
mention that the three different mass configurations which 
were dynamically tested under ambient vibrations, named 
CB, CS and CN, represent respectively the bare frame (Fig. 
4(a)), the double symmetric and non-symmetric added 
masses arrangements. For the sake of simplicity, the point 
masses added to the diaphragm (335 kg each) are lumped to 

 
 

 
 

the nearest peripheral nodes, together with the column and 
beam masses (Table 2). Finally, a concrete slab with a mass 
of around 3000 kg provides an unknown in-plane equivalent 
shear stiffness 𝐺𝑒𝑞 = 𝐺𝑆, where 𝐺 is the shear modulus of 
the concrete and 𝑆 is the diaphragm out-of-plane thickness. 
A possible energy-based equivalence between 𝑘s and 𝐺𝑒𝑞 is 
reported at the end of Section 2.3.2. 

Dealing with a multi-story structure, different 
possibilities are available to carry out the diaphragm 
stiffness identification. It should be possible, theoretically, 
to analyze the structure story-by-story, employing only the 
corresponding experimental measurements and assigning 
the mass parameters accordingly. However, this approach 
would face several difficulties in identifying the frequencies 
and local mode shapes of a particular story. An alternative 
option, which has been followed in the proposed 
applications, is to consider the structure as a whole, without 
employing any additional information (i.e., higher-
frequency modes). This choice can be justified both from a 
structural point of view, since the stories of the analyzed 
structures present the same mechanical characteristics, and 
from a conceptual point of view, in order to preserve the 
straightforwardness of the procedure. Indeed, a slight 
overestimation of the real diaphragm shear stiffness is 
expected as a trade-off. 

The experimental modes of the frame in each mass 
configuration have been identified by means of output-only 

 
 

 

Table 1 Left side: values of the shear stiffness 𝑘௦ assigned to the rigid, semi-rigid and deformable 1S frame model and 
corresponding natural frequencies of the rigid (𝑓ଵ∗, 𝑓ଶ∗, 𝑓ଷ∗) and shear (𝑓ସ∗) modes. Right side: values of the zeroth-order𝑘s0 shear stiffness approximation structurally identified from the pseudo-experimental frequencies 

1S model 𝑘𝑠 (N m-1) 𝑓ଵ∗ (Hz) 𝑓ଶ∗ (Hz) 𝑓ଷ∗ (Hz) 𝑓ସ∗ (Hz) 𝑘𝑠0 (N m-1) 
Rigid 1.00 × 108 24.56 14.16 18.03 156.00 1.09 × 108 

Semi-rigid 1.00 × 107 24.12 14.16 17.83 55.46 1.21 × 107 
Deformable 1.00 × 106 21.74 14.16 16.38 31.38 3.09 × 106 

 

 
(a) JetPACS frame, CB configuration (b) PSD of the rigid translations, rotation and shear strain

Fig. 4 (a) Picture of the JetPACS frame in the bare configuration CB during the ambient vibration testing carried out 
in the DiSGG structural laboratory of the University of Basilicata. (b) Power spectral densities of the rigid 
translations 𝑈, 𝑉, the rigid rotation 𝜃 and shear strain 𝛤 (adapted from Sivori et al. 2020), estimated from 
ambient vibration data acquired at the second story of the JetPACS frame (CB configuration) 
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modal analysis, employing the well-known frequency 
domain decomposition technique (Brincker et al. 2001), 
estimating the Welch periodograms with a frequency 
resolution of 0.01 Hz. Only the signals – 1800 s at a 
sampling frequency of 200 Hz – coming from two 
orthogonal pairs of monoaxial accelerometers placed at the 
opposite corners of each story have been considered, 
supposing a minimum sensor availability situation which 
still allows discriminating rigid modes from shear-
deformable ones. To this purpose, one of the possible 
approaches consists in identifying the frequencies of the 
two rigid translational modes 𝑓ଵ∗, 𝑓ଶ∗ from the amplification 
peaks of the power spectral density (PSD) of the 
reconstructed rigid translations 𝑈, 𝑉 of the diaphragm 
centroid. As an example, in the reference (bare) 
configuration CB, the rigid translation modes in 𝑥 and 𝑦 can 
be identified at 4.23 Hz and 3.38 Hz respectively (top of 
Fig. 4(b)). Similarly, for what concerns the torsional and the 
shear modes, they can be identified exploiting the 
experimental spectra of the rigid rotation 𝜃 and shear strain 
Γ (Sivori et al. 2020). The Γ-peak at 15.60 Hz highlights the 
frequency 𝑓ସ∗ of the shear mode of the CB configuration 
(bottom of Fig. 4(b)). Significant frequency shifts of the 
experimental modes can be observed in the CS and CN 
configurations due to the presence of added masses, as 
synthetically reported in Table 2. It should be remarked that 
any other output-only identification technique can be 
employed to identify the experimental modes, as wells as 
any correlation can serve for their association with the 
analytical model (see Section 2.3.2). 

Based on known geometric and mass properties of the 
frame (Table 2), the zeroth-order approximation 𝐺𝑒𝑞0 of the 
equivalent shear stiffness parameter 𝐺𝑒𝑞 is structurally 
identified through expression 21d employing the outcome 
of the modal identification (Table 3). The results show a 
good agreement among the three different configurations 
(consistently with the unchanged stiffness properties of the 
diaphragm), confirming the effectiveness of the procedure 
in presence of mass perturbations (previously verified 
analytically, see Fig. 2(a)). On the one hand, from a physical 

 
 

 
 

point of view, the order of magnitude of the identified 
equivalent shear stiffness appears smaller than the one a 
100 mm concrete slab (Ponzo et al. 2012) is expected to 
provide. On the other hand, it is not straightforward to 
evaluate the effectiveness of the diaphragm-to-beams 
connections, given the presence of a HI-bond corrugated 
steel sheet at the interface. 

The finite element model of the JetPACS frame in the 
CN configuration (Table 2) has been employed to further 
investigate the reliability of the structural identification 
procedure for multistory frames with asymmetric 
distributions of mass and stiffness. The 2S model can be 
regarded as the two-story extension of the one-story 
structure already modeled and analyzed in Section 3 (in 
which the in-plane constraints are released). Similarly to the 
previous numerical simulations, the diaphragm shear 
stiffness identification is carried out assuming as known the 
geometry and the mass properties of the frame, employing 
the natural frequencies provided by the finite element 
solution as pseudo-experimental data. The known 
equivalent shear stiffness parameter 𝐺𝑒𝑞 assigned to the 
diaphragm is increased starting from a deformable 
diaphragm condition, which has been manually calibrated to 
be representative of the experimental results (CN modal 
identification of Table 3). Accordingly, the rigid modes and 
the shear mode share neighboring frequencies of the 
spectrum. Increasing the shear stiffness of the diaphragm 
quickly moves the deformability mode to higher 
frequencies, leaving the rigid mode frequencies practically 
unchanged. The identification results, as expected, highlight 
a general worsening in the estimation of 𝐺𝑒𝑞 (Table 4) 
compared to the one-story case. The identified shear 
stiffness of the diaphragm is generally overestimated, but 
still reasonably close (same order of magnitude) to the 
assigned value. The simulations, finally, shed some light on 
the  exper imenta l  ident i f ica t ion ,  sugges t ing  an 
overestimation – compared to the value providing a good 
match between the numerical frequencies and the 
experimental ones – of the diaphragm shear stiffness 
characterizing the experimental model. It should be 

Table 2 Geometrical and mass properties of the JetPACS frame in the bare (CB), symmetric (CS) 
and non-symmetric (CN) configurations 

JetPACS 𝐴 (m) 𝐵 (m) 𝑀 (kg) 𝑚ଵ, 𝑚ଶ (kg) 𝑚ଷ, 𝑚ସ (kg) 
CB 

2 1.5 2 × 3000 
2 × 133 2 × 133 

CS 2 × (133 + 335) 2 × (133 + 335) 
CN 2 × (133 + 335) 2 × 133 

 

Table 3 Left side: natural frequencies 𝑓ଵ∗, 𝑓ଶ∗, 𝑓ଷ∗ of the rigid modes and 𝑓ସ∗
 of the shear mode as 

experimentally identified on the JetPACS frame. Right side: structural identification of the 
zeroth-order approximation 𝐺𝑒𝑞0 of the equivalent shear stiffness from experimental 
frequencies 

JetPACS 𝑓ଵ∗ (Hz) 𝑓ଶ∗ (Hz) 𝑓ଷ∗ (Hz) 𝑓ସ∗ (Hz) 𝐺𝑒𝑞0 (N m-1) 
CB 4.23 3.38 5.89 15.60 2.71 × 106 
CS 3.58 2.85 5.11 13.15 2.49 × 106 
CN 3.84 3.08 5.51 14.08 2.45 × 106 
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remarked that, however, this difference can be partially 
attributed to the conceptual differences between the 
computational and the analytical model. 

 
4.2 Pizzoli town hall building 
 
The Pizzoli town hall is a two-story masonry building 

permanently monitored by the Italian structural seismic 
monitoring network (synthetically referred hereinafter as 
OSS, Dolce et al. 2017). The structure rises in the Pizzoli 
city center (province of L’Aquila, Abruzzo, Italy) with two 
floors above the ground level and a non-habitable attic (Fig. 
5(a)). Externally, the structure shows a certain regularity in 
the arrangement of the openings, which are evenly 
distributed along the walls and vertically aligned. The 
building plan has a rectangular shape of dimensions 36.75 
m × 11.9 m, with the longest side oriented in the EW 
direction (𝑥 direction). The inter-story height increases from 
3.6 m at the ground level to 4.25 m at the first level. Three 

 
 

 
 

 
 

main bearing walls run along the whole length of the 
building, evenly crossed in the front part by three secondary 
walls in the NS direction (𝑦 direction). The masonry piers 
are built with a cut local stone varying in thickness from 65 
cm to 75 cm at the first level, from 30 cm to 65 cm at the 
second level and from 45 cm to 65 cm in the attic. A 
detailed structural survey – together with the documentation 
provided by the Italian Department of Civil Protection 
(made available within the context of the ReLUIS 2017-
2018 Project Task 4.1, Cattari et al. 2019) – suggests the 
floor diaphragms be composed of thin iron beams and 
hollow bricks capped by a concrete slab, whose thickness is 
16.5 cm and 12 cm at the first and the second level 
respectively (Fig. 5(b)). 

The ambient response of the structure has been acquired 
by one monoaxial and three biaxial accelerometers placed at 
the top of each level of the building (Fig. 6(a)), with a 
sampling frequency of 250 Hz for one hour. The 
measurement setup, even if not specifically designed for 

 
 

 

Table 4 Left side: values of the equivalent shear stiffness 𝐺𝑒𝑞 assigned to the rigid, semi-rigid and deformable 2S frame model 
and corresponding natural frequencies of the rigid (𝑓ଵ∗, 𝑓ଶ∗, 𝑓ଷ∗) and shear 𝑓ସ∗ modes. Right side: values of the zeroth-
order 𝐺𝑒𝑞0 approximation structurally identified from the pseudo-experimental frequencies 

2S model 𝐺𝑒𝑞 (N m-1) 𝑓ଵ∗ (Hz) 𝑓ଶ∗ (Hz) 𝑓ଷ∗ (Hz) 𝑓ସ∗ (Hz) 𝐺𝑒𝑞0 (N m-1) 
Rigid 1.75 × 108 4.15 3.30 5.41 122.13 2.67 × 108 

Semi-rigid 1.75 × 107 4.14 3.29 5.39 40.6 2.82 × 107 
Deformable 1.75 × 106 4.07 3.22 5.30 14.1 2.98 × 106 

 

(a) Pizzoli town hall building (b) Concrete floor diaphragm 

Fig. 5 (a) Picture of the front of the Pizzoli town hall building; (b) Detail of the floor diaphragm, highlighting the 
presence of iron beams drowned in the concrete slab

(a) Structural plans (b) Identified natural modes 

Fig. 6 (a) Structural plan of the ground (F0) and first floor (F1) of the Pizzoli town hall building, highlighting the 
position of the sensors at the top of each level; (b) Identified natural modes
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this purpose, comply with the minimum requirements to 
discriminate rigid diaphragm motions from shear-
deformable ones (see Sivori et al. 2020), being present at 
least two biaxial sensors at the opposite vertices of each 
story. To this aim, natural frequencies and mode shapes are 
identified employing the frequency domain decomposition 
technique with a frequency resolution of 0.05 Hz (Fig. 
6(b)). According to the PSD of the reconstructed rigid 
displacements, the rigid translation modes along the 𝑥 and 𝑦 
directions are identified at the frequencies 𝑓ଵ∗ and 𝑓ଶ∗ of 
6.55 Hz and 4.55 Hz respectively (left of Fig. 7). The 
frequency 𝑓ଷ∗ of the torsional mode is localized at 5.70 Hz, 
where the contribution of 𝜃 is significantly greater than the 
one of the shear deformation Γ (right side of Fig. 7). The Γ-
peak with the highest magnitude can be identified at 12.25 
Hz (right side of Fig. 7), which is assumed as the frequency 𝑓ସ∗ of the shear mode (as suggested by the identified mode 
shape, Fig. 6(b)). 

The mass of the building has been estimated assuming a 
masonry density of 2100 kg m-3 and an area density of 400 
kg m-2 for the floor diaphragms. The perimeter walls are 
assumed to be evenly lumped to the diaphragm vertices, 
taking into account the presence of the two projecting 
wings. The geometric and mass parameters are thus 𝐴 = 
18.37 m, 𝐵 = 4.21 m, 𝑀 = 1.10 × 106 kg, 𝑚1 = 𝑚2 = 2.04 × 
105 kg, 𝑚3 = 𝑚4 = 2.04 × 105 + 1.37 × 105 kg. The 
identified value of 𝐺𝑒𝑞 should be representative of the 
equivalent shear stiffness provided at the floor level by a 
concrete slab of average thickness 0.14 m. If we assume a 
concrete grade C20/25 with a Young modulus of elasticity 
of 3 × 1010 Pa and a Poisson ratio of 0.2, the zeroth-order 
approximation of the shear stiffness identified according to 
expression 21d (Table 5) is around one-sixth of the one 
which should be ideally provided by the floor slabs. From 
the experimental point of view, it should be remarked that 
several factors could influence this contribution, including 
but not limited to the quality of the building materials, the 
compliance with the execution standards, the effectiveness 
of the diaphragm-to-masonry connections, the possible 

 
 

 
 

structural aging, deterioration and damage. The last option 
appears the most probable explanation, since the ambient 
response provided by OSS has been acquired on the 1st of 
October 2016, after the first of the several seismic events 
that hit the structure in the following months (Spina et al. 
2019). Nevertheless, as it will be proposed in the following, 
the structural identification procedure can be useful to 
improve the calibration of more detailed computational 
models. 

To this aim, an equivalent-frame (EF) model of the 
building has been employed (Fig. 8(a)) by using the 
software Tremuri (Lagomarsino et al. 2013). Accordingly, 
the resistant masonry walls are described with deformable 
masonry panels (piers and spandrels, respectively in orange 
and green in Fig. 8(a)) in which the deformation and the 
nonlinear response are concentrated, connected to each 
other from rigid portions (rigid nodes, cyan in Fig. 8(a)). 
The vertical resistant elements, whose contribution is 
related to their in-plane strength and stiffness, are 
assembled through orthotropic membranes (plane stress 
regime) representing the floor diaphragms. Thanks to the 
low number of degrees of freedom, this approach has 
limited computational requirements and, thus, it is 
commonly employed in the nonlinear seismic analyses of 
masonry buildings. The building model is based on the 
geometrical and structural characteristics obtained from the 
in-situ survey and the available graphical documentation 
(Cattari et al. 2019). For what concerns the mechanical 
properties of the masonry, in accordance with the values 
suggested by the Italian National Building Code for this 
typology (see the Italian Circular 21/1/19 No. 7), the Young 
elastic modulus is assumed to be equal to 2.7 × 109 Pa for 
the free undamped dynamics of the model to be 
representative of experimental data (left side of Table 5). 
This is also compatible with reference values proposed in 
the literature, derived from experimental data on similar 
masonry typologies (Kržan et al. 2015, Vanin et al. 2017). 

The solution of the eigenvalue problem provided by the 
EF model following the diaphragm stiffness calibration – 

 
Fig. 7 (a) Power spectral densities of the rigid translations 𝑈, 𝑉 and of the rigid rotation 𝜃 and shear strain 𝛤, 

estimated from the ambient response of the second floor of the Pizzoli town hall building 

Table 5 Left side: natural frequencies 𝑓ଵ∗, 𝑓ଶ∗, 𝑓ଷ∗ of the rigid modes and 𝑓ସ∗
 of the shear mode as 

experimentally identified on the Pizzoli town hall building. Right side: structural 
identification of the zeroth-order approximation 𝐺𝑒𝑞0 of the equivalent shear stiffness from 
experimental frequencies 

 𝑓ଵ∗ (Hz) 𝑓ଶ∗ (Hz) 𝑓ଷ∗ (Hz) 𝑓ସ∗ (Hz) 𝐺𝑒𝑞0 (N m-1) 
Pizzoli 6.55 4.55 5.70 12.25 2.74 × 108 
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assuming the identified zeroth-order value 𝐺𝑒𝑞0 reported in 
Table 5 as the equivalent shear stiffness of the floor 
membranes – highlights a good correlation between the 
numerical and the experimental mode shapes (center of 
Table 6). In particular, also the fourth and fifth 
experimentally identified modes, which involve 
respectively the in-plane bending and shear deformation of 
the floor diaphragms (Fig. 6(b)), are correctly reproduced 
by the model (Fig. 8(b)), as highlighted by the high values 
of the modal assurance criterion (MAC, Allemang 2003) 
computed with respect to the experimental mode shapes. It 
should be noted, moreover, how the mode shapes appear to 
be quite sensitive to variations of the diaphragm shear 
stiffness, as shown by the sudden decrease in the MAC 
values for both more deformable and more stiff diaphragms 
(respectively one third and three times the identified shear 
stiffness, left and right side of Table 6). On the other hand, 
the discrepancy between the numerical and the 
experimental frequency of the shear deformability mode 
could be attributed to the mass distribution of the EF frame 
which, at the floor level, is lumped to the perimeter nodes, 
increasing the floor rotational inertia. The reliability of the 
EF model of the Pizzoli town hall building has been further 
discussed in Cattari et al. (2019) and in Degli Abbati et al. 
(2021), referring to the good accordance between the 
simulated seismic response and the acceleration recordings 
acquired on the structure during the 2016/2017 Central Italy 
earthquake sequence. 

It is observed that, in this specific case, the calibration 
of the shear stiffness of the floor diaphragms affects 

 
 

 
 

particularly the frequencies and mode shapes of the high-
frequency natural modes (fourth and fifth modes). Although 
associated with a modest participating mass (Fig. 8(b)) and, 
thus, to a minor influence on the seismic response of the 
structure, these modes can still be significant in the correct 
evaluation of local effects, such as the estimation of local 
deformations at the floor level. This indicator can be 
employed to estimate the expected damage and the related 
economic losses, as studied in recent developments of 
seismic engineering (Del Vecchio et al. 2018, 2020, 
Ottonelli et al. 2020, Cardone et al. 2020) and motivated by 
the heavy social impacts highlighted by Italian seismic 
events (Di Ludovico et al. 2017a, b). 

 
 

5. Conclusions 
 
The mechanical assumption of in-plane rigidity or 

deformability of the floor diaphragms is a fundamental 
issue in the formulation of analytical and computational 
models of buildings. Therefore, the development of reliable 
procedures to quantitatively assess the diaphragm stiffness 
of existing buildings is a topical matter of theoretical and 
practical interest. Unreinforced masonry buildings, in 
particular, may present a large variability range in the 
assessment of the diaphragm stiffness, due to a number of 
technical and constructional configurations. 

Based on these motivations, a model-based technique 
has been proposed to analytically determine the diaphragm 
stiffness in existing buildings, by leveraging the increasing 

 
(a) Equivalent-frame model (b) Natural modes 

Fig. 8 (a) Equivalent frame (EF) model of the Pizzoli town hall building; (b) First five natural frequencies and 
mode shapes assuming the equivalent shear stiffness of the diaphragm structurally identified 

Table 6 Natural frequencies of the EF model of Pizzoli town hall building, varying the equivalent shear stiffness of the 
diaphragm starting from the identified value. Relative difference in frequency 𝛿𝑓 and MAC matrix between the 
numerical and the experimental mode shapes 

 𝐺𝑒𝑞 = 9.1 × 107 N m-1 𝐺𝑒𝑞 = 2.74 × 108 N m-1 𝐺𝑒𝑞 = 8.22 × 108 N m-1 𝑓 (Hz) 4.08 4.77 6.61 6.76 7.56 4.44 5.52 7.06 8.61 10.09 4.55 5.75 7.07 10.39 11.54𝛿𝑓 0.10 0.16 -0.01 0.25 0.38 0.02 0.03 -0.08 0.05 0.18 0 -0.01 -0.08 -0.15 0.06
4.55 0.95 0 0.01 0 0 0.97 0 0 0.01 0 0.96 0.01 0. 0.02 0 
5.70 0.02 0.89 0 0.02 0.60 0.03 0.94 0.01 0.02 0.43 0.04 0.91 0.01 0.01 0 
6.55 0 0.02 0 0.95 0.22 0.01 0.08 0.95 0 0.28 0.01 0.11 0.95 0 0 
9.05 0.01 0.01 0.77 0.01 0.15 0 0.02 0 0.93 0.03 0.02 0.02 0 0.86 0.17
12.25 0.03 0.15 0.01 0.14 0.70 0.01 0.35 0.08 0.05 0.76 0.01 0.42 0.07 0.04 0 

 

187



 
Daniele Sivori, Marco Lepidi and Serena Cattari 

availability of spectral information from operational modal 
analyses (first-level modal identification problem). Starting 
from this knowledge, the inverse problem of parametrically 
identifying the diaphragm in-plane shear stiffness (second-
level parametric or structural identification problem) has 
been attacked. 

First, a low-dimension discrete model of the diaphragm 
has been formulated to describe the linear undamped 
dynamics of the building floor. The shear deformability of 
the diaphragm has been taken into account by adding an 
extra dynamically-active degree-of-freedom. The structural 
matrices of the model have been built analytically. 
Afterward, the direct eigenproblem governing the modal 
properties has been stated and solved. The complete eigen-
solution has been obtained in a suited analytic – although 
asymptotically approximate – fashion (direct problem 
solution). To this purpose, a general asymptotic strategy to 
achieve analytical approximations of the frequencies and 
modes has been outlined, under the assumption of no 
internal resonances. The strategy allows to analytically 
determine the modal quantities as explicit functions of the 
mechanical parameters for dynamic model of generic 
dimensions, up to the desired order of approximation. The 
local validity of the frequency approximations has been 
discussed, and its accuracy has been satisfyingly verified by 
numerical sensitivity analyses under small perturbations of 
the mass and stiffness matrices. 

Second, the low-order approximations have been 
considered in order to state analytically invertible spectral 
relations between the mechanical parameters and the modal 
quantities. Assuming experimentally known part of the 
modal quantities – from operational modal analyses – the 
inversion of the spectral relations has made possible the 
identification of the mechanical parameters (inverse 
problem solution). Specifically, explicit formulas have been 
determined to assess the principal stiffness parameters, 
including the shear stiffness of the diaphragm, as explicit 
functions of the experimental frequencies. Consistently with 
the asymptotic nature of the inverse problem solution, a 
minimal uncoupled structural model has been identified 
considering the lowest order of the inverse solution (model 
identification). Therefore, a refined coupled structural 
model, including mass and stiffness eccentricities, has been 
identified considering higher orders of the inverse solution 
(model updating). 

Third, the accuracy of the structural identification has 
been numerically verified through pseudo-experimental 
data, generated from the finite element model of a simple 
frame structure. Finally, the effectiveness of the procedure 
has been successfully tested experimentally, by employing 
dynamic measurements from laboratory tests on scaled 
models, as well as vibration recordings from the full-scale 
monitoring of an existing masonry building. Results on the 
latter are quite promising from an engineering point of 
view, highlighting the potential of the procedure in the use 
of ambient vibration tests to support, guide or validate the 
modeling choices, as well as to reduce the uncertainties 
intrinsic to the knowledge of existing buildings. 
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Structural identification of the dynamic behavior of floor diaphragms in existing buildings 

A. Appendices 
 
A.1 Governing matrices 
 
With reference to the twelve-by-one displacement vector 

u = (𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑢3, 𝑣3, 𝑢4, 𝑣4, 𝑢, 𝑣, 𝜃, Γ) of the 
unconstrained model, the twelve-by-twelve mass and 
stiffness matrices read 

 𝐌 = ൥𝐌ଵଵ 𝐌ଵଶ 𝐌ଵଷ𝐌ଶଵ 𝐌ଶଶ 𝐌ଶଷ𝐌ଷଵ 𝐌ଷଶ 𝐌ଷଷ൩ ,          𝐊 = ൥𝐊ଵଵ 𝐊ଵଶ 𝐊ଵଷ𝐊ଶଵ 𝐊ଶଶ 𝐊ଶଷ𝐊ଷଵ 𝐊ଷଶ 𝐊ଷଷ൩ 

 
where the not-null mass submatrices are 

 

𝐌ଵଵ = ⎣⎢⎢⎢
⎡𝜚ଵଶ 00 𝜚ଵଶ   0 0  0 00   00   0 𝜚ଶଶ 00 𝜚ଶଶ⎦⎥⎥⎥

⎤ , 
𝐌ଶଶ = ⎣⎢⎢⎢

⎡𝜚ଷଶ 00 𝜚ଷଶ   0 0  0 00   00   0 𝜚ସଶ 00 𝜚ସଶ⎦⎥⎥⎥
⎤ , 

             𝐌ଷଷ = ⎣⎢⎢⎢
⎡1 00 1 0        00        0    0 00 0 𝜒ଶ 00 ଵସ 𝛽ଶ 𝜒ଶ ⎦⎥⎥⎥

⎤
  

 
In particular, the term ଵସ 𝛽ଶ𝜒ଶ relates the shear deformation 
inertia to the rotational inertia 𝜒ଶ trough the expression 

 𝐽௰ = 13 𝐵ଶ𝐴ଶ 𝑀(𝐴ଶ + 𝐵ଶ) = 14 𝐵ଶ𝐴ଶ 𝐽 
 

where 𝑀 is the translational mass. The not-null stiffness 
submatrices are 

 

𝐊ଵଵ =
⎣⎢⎢
⎢⎢⎢
⎡ ఑ೞఉమାଵ + 𝜅௫ଵ ఉ఑ೞఉమାଵఉ఑ೞఉమାଵ ఉమ఑ೞఉమାଵ + 𝜅௬ଵ 0                 00                 0

0                 00                 0 ఑ೞఉమାଵ + 𝜅௫ଶ − ఉ఑ೞఉమାଵ− ఉ఑ೞఉమାଵ ఉమ఑ೞఉమାଵ + 𝜅௬ଶ⎦⎥⎥
⎥⎥⎥
⎤
,  

 

𝐊ଵଶ =
⎣⎢⎢
⎢⎢⎢
⎡− ఑ೞఉమାଵ − ఉ఑ೞఉమାଵ− ఉ఑ೞఉమାଵ − ఉమ఑ೞఉమାଵ

0              00              00              00              0 − ఑ೞఉమାଵ ఉ఑ೞఉమାଵఉ఑ೞఉమାଵ − ఉమ఑ೞఉమାଵ⎦⎥⎥
⎥⎥⎥
⎤
  

 

𝐊ଶଶ =
⎣⎢⎢
⎢⎢⎢
⎡ ఑ೞఉమାଵ + 𝜅௫ଷ ఉ఑ೞఉమାଵఉ఑ೞఉమାଵ ఉమ఑ೞఉమାଵ + 𝜅௬ଷ 0                 00                 0

0                 00                 0 ఑ೞఉమାଵ + 𝜅௫ସ − ఉ఑ೞఉమାଵ− ఉ఑ೞఉమାଵ ఉమ఑ೞఉమାଵ + 𝜅௬ସ⎦⎥⎥
⎥⎥⎥
⎤
  

and, for the sake of symmetry, K21 = K12. 

The rectangular constraint matrices V𝑟 and V𝑑 of the 
rigid model, characterized by the three-by-one vector q𝑟 = (𝑢, 𝑣, 𝜃) of free degrees-of-freedom, and of the deformable 
model, characterized instead by the four-by-one free vector 
q𝑑 = (𝑢, 𝑣, 𝜃, Γ) of free degrees-of-freedom, are 

 

𝐕௥ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
1  0 −𝛽0  1    11  0 −𝛽0   1 −11   0   𝛽0   1 −11   0   𝛽0   1   10   0   0⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ ,       𝐕ௗ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1     0  −𝛽      ଵଶ 𝛽  0      1    1        ଵଶ 𝛽ଶ1     0 −𝛽        ଵଶ 𝛽  0      1   −1   − ଵଶ 𝛽ଶ1    0    𝛽     − ଵଶ 𝛽 0     1   −1   − ଵଶ 𝛽ଶ1    0     𝛽     − ଵଶ 𝛽 0    1     1        ଵଶ 𝛽ଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤
  

 
A.2 Perturbation matrices 
 
The perturbation mass and stiffness matrices introduced 

in Section 2.3.1 are 
 

𝐌ௗ° =
⎣⎢⎢
⎢⎢⎡1 + 𝛴దଶ 00 1 + 𝛴దଶ 0          00         0      

0          00          0 𝜒଴ଶ + 𝛴ఏଶ 00 ଵସ 𝛽ଶ(𝜒଴ଶ + 𝛴ఏଶ)⎦⎥⎥
⎥⎥⎤,  

𝐊ௗ° = ⎣⎢⎢
⎢⎡   𝛴఑௫    00    𝛴఑௬    0            00            0        

   0       00       0    𝛴఑ఏ 00 𝛽௰𝜅ௌ଴ + 𝛴఑௰⎦⎥⎥
⎥⎤, 

𝑴ௗᇱ = ⎣⎢⎢
⎢⎡ 0 0 −2𝛽𝛥ద௫ଵଶ 𝛽𝛥ద௫ଵଶ0 0 2𝛥ద௬ଵଶ 𝛽ଶ𝛥ద௬ଵଶ−2𝛽𝛥ద௫ଵଶ 2𝛥ద௬ଵଶ 𝛽ଶ𝛥ద௬ଵଶ 0𝛽𝛥ద௫ଵଶ 𝛽ଶ𝛥ద௬ଵଶ 0 ଵସ 𝛽ଶ𝜒ଵଶ ⎦⎥⎥

⎥⎤,  

𝐊ௗᇱ = ⎣⎢⎢
⎢⎡    0            00            0 −2𝛽Δ఑௫ଵ     𝛽Δ఑௫ଵ2Δ఑௬ଵ     𝛽ଶΔ఑௬ଵ    −2𝛽Δ఑௫ଵ 2Δ఑௬ଵ𝛽Δ఑௫ଵ 𝛽ଶΔ఑௬ଵ 0 −𝛽ଶΔ఑௫௬ଵ−𝛽ଶΔ఑௫௬ଵ 𝛽௰𝜅ௌଵ ⎦⎥⎥

⎥⎤
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