Sound Regular Corecursion in coFJ

Davide Ancona
DIBRIS, University of Genova, Italy
davide.ancona@unige.it

Pietro Barbieri
DIBRIS, University of Genova, Italy
pietro.barbieri@edu.unige.it

Francesco Dagnino
DIBRIS, University of Genova, Italy
francesco.dagnino@dibris.unige.it

Elena Zucca
DIBRIS, University of Genova, Italy
elena.zucca@unige.it

—— Abstract

The aim of the paper is to provide solid foundations for a programming paradigm natively supporting
the creation and manipulation of cyclic data structures. To this end, we describe COFJ, a Java-like
calculus where objects can be infinite and methods are equipped with a codefinition (an alternative
body). We provide an abstract semantics of the calculus based on the framework of inference systems
with corules. In COFJ with this semantics, F'J recursive methods on finite objects can be extended
to infinite objects as well, and behave as desired by the programmer, by specifying a codefinition.
We also describe an operational semantics which can be directly implemented in a programming
language, and prove the soundness of such semantics with respect to the abstract one.

2012 ACM Subject Classification Theory of computation — Operational semantics; Software and
its engineering — Recursion; Software and its engineering — Semantics

Keywords and phrases Operational semantics, coinduction, programming paradigms, regular terms
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2020.1
Related Version A full version of the paper is available at https://arxiv.org/abs/2005.14085.

Funding Davide Ancona: Member of GNCS (Gruppo Nazionale per il Calcolo Scientifico), INdAM
(Istituto Nazionale di Alta Matematica “F. Severi”)

Introduction

Applications often deal with data structures which are conceptually infinite, such as streams
or infinite trees. Thus, a major problem for programming languages is how to finitely
represent something which is infinite, and, even harder, how to correctly manipulate such
finite representations to reflect the expected behaviour on the infinite structure.

A well-established solution is lazy evaluation, as, e.g., in Haskell. In this approach, the
conceptually infinite structure is represented as the result of a function call, which is evaluated
only as much as needed. Focusing on the paradigmatic example of streams (infinite lists)
of integers, we can define two_one = 2:1:two_one, or even represent the list of natural
numbers as from O, where from n = n:from(n+1). In this way, functions which only need
to inspect a finite portion of the structure, e.g., getting the i-th element, can be correctly
implemented. On the other hand, functions which need to inspect the whole structure, e.g.,
min getting the minimal element, or allPos checking that all elements are positive, have an
undefined result (that is, non-termination, operationally).

© Davide Ancona, Pietro Barbieri, Francesco Dagnino, and Elena Zucca;
37 licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).

Editors: Robert Hirschfeld and Tobias Pape; Article No. 1; pp. 1:1-1:28

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6297-2011
mailto:davide.ancona@unige.it
https://orcid.org/0000-0003-3193-5549
mailto:pietro.barbieri@edu.unige.it
https://orcid.org/0000-0003-3599-3535
mailto:francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0002-6833-6470
mailto:elena.zucca@unige.it
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://arxiv.org/abs/2005.14085
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

Sound Regular Corecursion in coFJ

More recently, a different, in a sense complementary!, approach has been considered
[17, 8, 3], which focuses on cyclic structures (e.g., cyclic lists, trees and graphs). They can
be regarded as a particular case of infinite structures: abstractly, they correspond to regular
terms (or trees), that is, finitely branching trees whose depth can be infinite, but contain only
a finite set of subtrees. For instance, the list two_one is regular, whereas the list of natural
numbers is not. Typically, cyclic data structures are handled by programming languages by
relying on imperative features or ad hoc data structures for bookkeeping. For instance, we
can build a cyclic object by assigning to a field of an object a reference to the object itself,
or we can visit a graph by marking already encountered nodes. In this approach [17, 8, 3],
instead, the programming language natively supports regular structures, as outlined below:

Data constructors are enriched by allowing equations, e.g., x=2:1:1z.

Functions are regularly corecursive, that is, execution keeps track of pending function

calls, so that, when the same call is encountered the second time, this is detected, avoiding

non-termination as with ordinary recursion. For instance, when calling min on the list

r=2:1:z, after an intermediate call on the list y = 1:2:y, the same call is encountered.
Regular corecursion originates from co-SLD resolution [20, 21, 7], where already encountered
goals (up to unification), called coinductive hypotheses, are considered successful. However,
co-SLD resolution is not flexible enough to to correctly express certain predicates on regular
terms; for instance, in the min example, the intuitively correct corecursive definition is not
sound, because the predicate succeeds for all lower bounds of [, as shown in the following.

When moving from goals to functions calls, the same problem manifests more urgently
because a result should always be provided for already encountered calls. To solve this issue,
the mechanism of flexible regular corecursion can be adopted to allow the programmer to
correctly specify the behaviour of recursive functions on cyclic structures. For instance, for
function min, the programmer specifies that the head of the list should be returned when
detecting a cyclic call; in this way, on the list z=2:1: z, the result of the cyclic call is 2, so
that the result of the original call is 1, as expected.

Flexible regular corecursion as outlined above has been proposed in the object-oriented
[8], functional [17], and logic [3] paradigms (see Section 7 for more details). However, none
of these proposals provides formal arguments for the correctness of the given operational
semantics, by proving that it is sound with respect to some model of the behaviour of
functions (or predicates) on infinite structures. The aim of this paper is to bridge this gap,
by providing solid foundations for a programming paradigm natively supporting cyclic data
structures. This is achieved thanks to the recently introduced framework of inference systems
with corules [4, 13], allowing definitions which are neither inductive, nor purely coinductive.
We present the approach in the context of Java-like languages, namely on an extension of
Featherweight Java (FJ) [15] called cOFJ, outlined as follows:

FJ objects are smoothly generalized from finite to infinite by interpreting their definition
coinductively, and methods are equipped with a codefinition (an alternative body).

We provide an abstract big-step semantics for COFJ by an inference system with corules.
In coFJ with this semantics, FJ recursive methods on finite objects can be extended
to infinite objects as well, and behave as desired by the programmer, by specifying a
codefinition. For instance, if the codefinitions for min and allPos are specified to return
the head, and true, respectively, then min returns 1 on z=2:1:z, and 0 on the list of
the natural numbers, whereas allPos returns true on both lists.

1 As we will discuss further in the Conclusion.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

Then, we provide an operational (hence, executable) semantics where infinite objects are

restricted to regular ones and methods are regularly corecursive, and we show that such

operational semantics is sound with respect to the abstract one.
At https://person.dibris.unige.it/zucca-elena/coFJ_implementation.zip we pro-
vide a prototype implementation of COFJ, briefly described in the Conclusion. A preliminary
version of the operational semantics, with no soundness proof with respect to a formal model,
has been given in [10]. An extended version of the paper including proofs can be found at
https://arxiv.org/abs/2005.14085.

Section 1 is a quick introduction to inference systems with corules. Section 2 describes
FJ and informally introduces our approach. In Section 3 we define cOFJ and its abstract
semantics, in Section 4 the operational semantics, in Section 5 we show some advanced
examples, and in Section 6 we prove soundness. Finally, we discuss related work and draw
conclusions in Section 7 and Section 8, respectively.

1 Inference systems with corules

First we recall standard notions on inference systems [1, 19]. Assuming a universe U of

Pr
judgments, an inference system I is a set of (inference) rules, which are pairs —, with

c
Prc U the set of premises, and ¢ € U the consequence (a.k.a. conclusion). A rule with an
empty set of premises is an aziom. A proof tree (a.k.a. derivation) for a judgment j is a tree

whose nodes are (labeled with) judgments, j is the root, and there is a node ¢ with children

Pr only if there is a rule =

The inductive and thec coinductive interpretation of Z, denoted Ind(Z) and Colnd(T),
are the sets of judgments with, respectively, a finite?, and a possibly infinite proof tree. In
set-theoretic terms, let Fr : p(U) - p(U) be defined by Fr(S) ={c| Prc S, br €T}, and say
that a set S is closed if Fz(S) ¢ S, consistent if S € Fr(S). Then, it can %e proved that
Ind(Z) is the smallest closed set, and Colnd(Z) is the largest consistent set. We write Z+j
when j has a finite derivation in Z, that is, j € Ind(Z).

An inference system with corules, or generalized inference system, is a pair (Z,Z¢°) where
T and Z°° are inference systems, whose elements are called rules and corules, respectively.
Corules can only be used in a special way, as defined below.

For a subset S of the universe, let Zs denote the inference system obtained from Z by
keeping only rules with consequence in S. Let (Z,Z°°) be a generalized inference system.
Then, its interpretation Gen(Z,Z°) is defined by Gen(Z,Z°°) = CoInd(Znma(zuzee))-

In proof-theoretic terms, Gen(Z,Z¢°) is the set of judgments that have a possibly infinite
proof tree in Z, where all nodes have a finite proof tree in Z uZ*°, that is, the (standard)
inference system consisting of rules and corules. We write (Z,Z¢°)+j when j is derivable in
(Z,Z¢°), that is, j € Gen(Z,Z¢°). Note that (Z,o)+j is the same as Z+j.

We illustrate these notions by a simple example. As usual, sets of rules are expressed by
meta-rules with side conditions, and analogously sets of corules are expressed by meta-corules
with side conditions. (Meta-)corules will be written with thicker lines, to be distinguished
from (meta-)rules. The following inference system defines the minimum element of a list,
where [z] is the list consisting of only z, and x: u the list with head z and tail w.

min(u,y)

min([z], z) min(x:u,z)z = min(z,y).

2 Under the common assumption that sets of premises are finite, otherwise we should say well-founded.

1:3

ECOOP 2020

https://person.dibris.unige.it/zucca-elena/coFJ_implementation.zip
https://arxiv.org/abs/2005.14085

1:4

Sound Regular Corecursion in coFJ

The inductive interpretation gives the correct result only on finite lists, since for infinite lists
an infinite proof is clearly needed. However, the coinductive one fails to be a function. For
instance, for L the infinite list 2:1:2:1:2:1:..., any judgment min(L,x) with x <1 can
be derived, as shown below.

min(L, 1) min(L,0)
min(1:L, 1) min(1:L,0)
min(2:1:L,1) min(2:1:L,0)

By adding a corule (in this case a coaxiom), wrong results are “filtered out”:

min(u,y)

- — % =min(z,y)
min(x:e,x) min(zu, z) min(zu,)
Indeed, the judgment min(2:1:L,1) has the infinite proof tree shown above, and each node
has a finite proof tree in the inference system extended by the corule:

min(L, 1) —_—
min(1:L, 1) min(1:L, 1)
min(2:1:L,1) min(2:1:L, 1)

The judgment min(2:1:L,0), instead, has the infinite proof tree shown above, but has no finite
proof tree in the inference system extended by the corule. Indeed, since 0 does not belong to
the list, the corule can never be applied. On the other hand, the judgment min(L,2) has a
finite proof tree with the corule, but cannot be derived since they it has no infinite proof
tree. We refer to [4, 5, 6, 13] for other examples.

As final remark, note that requiring the existence of a finite proof tree with corules only
for the root is not enough. For regular proof trees, the requirement to have such a proof tree
for each node can be simplified in two ways:

either requiring a sufficiently large finite proof-with-corules for the root, that is, a finite

proof tree for the root which includes all the nodes of the regular proof tree

or requiring a finite proof-with-corules for one node taken from each infinite path.

Let (Z,Z°°) be a generalized inference system. The bounded coinduction principle [4], a
generalization of the standard coinduction principle, can be used to prove completeness of
(Z,Z°°) w.r.t. a set S (for “specification”) of valid judgments.

» Theorem 1 (Bounded coinduction). If the following two conditions hold:

1. Sc Ind(ZuZ), that is, each valid judgment has a finite proof tree in TUZL;

2. SSF7(S), that is, each valid judgment is the consequence of a rule in T with premises in S
then Sc Gen(Z,Z).

2 From FJ to coFlJ

We recall FJ, and informally explain its extension with infinite objects and codefinitions.

Featherweight Java. The standard syntax and semantics in big-step style of F'J are shown
in Figure 1. We omit cast since this feature does not add significant issues. We adopt a
big-step, rather than a small-step style as in the original FJ definition, since in this way the
semantics is directly defined by an inference system, denoted Zy; in the following, which
will be equipped with corules to support infinite objects. We write cd as metavariable for
cdy . ..cdy, n >0, and analogously for other sequences. We sometimes use the wildcard __
when the corresponding metavariable is not relevant.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

cd w= class C extends C’ { fd md} class declaration
fd = Cf; field declaration
md == Cm(Cim,...,Chx,) {e} method declaration
ec€ == z|ef|new C(e)|em(e) expression
veV u= new C(7) (finite) object
v=new C(v1,...,v,) e
ellv elv
J-FIELD) =~ ld C = ceeJn J-NEW

")e.vai fields(C) = fr...f e e C(e)|new C(v)

f=fi,iel.n

eollvg €l e[v/this][/Z]|v vy =new C()
eo.m(€) v mbody(C,m) = (7, e)

(FJ-INVK)

Figure 1 FJ syntax and big-step rules.

A sequence of class declarations cd is called a class table. Each class has a canonical
constructor whose parameters match the fields of the class, the inherited ones first. We
assume standard FJ constraints, e.g., no field hiding and no method overloading. The only
variables occurring in method bodies are parameters (including this). Values are objects,
that is, constructor invocations where arguments are values in turn.

The judgment el v is implicitly parameterized on a fixed class table. In the rules we use
standard FJ auxiliary functions, omitting their formal definition. Notably, fields(C') returns
the sequence fi ... f, of the field names® of the class, in declaration order with the inherited
first, and mbody(C, m), for method m of the class, the pair of the sequence of parameters and
the definition. Substitution e[€/Z], for € and T of the same length, is defined in the customary
manner. Finally, for €=e;...¢e, and = v ...v,, €] is an abbreviation for e; | v1 ... e, vp.

Rule (FJ-rFieLD) models field access. If the selected field is actually a field of the receiver’s
class, then the corresponding value is returned as result. Rule (FJ-NEw) models object
creation: if the argument expressions e evaluate to values v, then the result is an object of
class C. Rule (FJ-invk) models method invocation. The receiver and argument expressions
are evaluated first. Then, method look-up is performed, starting from the receiver’s class, by
the auxiliary function mbody. Lastly, the definition e of the method, where this is replaced
by the receiver, and the parameters by the arguments, is evaluated, and its result is returned.

Infinite objects and codefinitions. We take as running example the following FJ imple-
mentation of lists of integers, equipped with some typical methods: isEmpty tests the
emptiness, incr returns the list where all elements have been incremented by one, allPos
checks whether all elements are positive, member checks whether the argument is in the list,
and min returns the minimal element.

3 We omit types since not relevant here. We discuss about type systems for COFJ in the conclusion.

1:5

ECOOP 2020

1:6

Sound Regular Corecursion in coFJ

class List extends Object {
bool isEmpty () {truel}
List incr () {mnew EmptyList ()}
bool allPos() {true}
bool member (int x) {falsel}
}
class EmptyList extends List { }
class NonEmptyList extends List {
int head; List tail;
bool isEmpty () {false}
List incr() {new NonEmptyList (this.head+1,this.tail.incr())}
bool allPos() {if (this.head<=0) false else this.tail.allPos()}
bool member (int x) {if (this.head==x) true else this.tail.member(x)}
int min() {
if (this.tail.isEmpty()) this.head
else Math.min(this.tail.min(),this.head)
}
}

We used some additional standard constructs, such as conditional and primitive types bool
and int with their operations; to avoid to use abstract methods, List provides the default
implementation on empty lists, overridden in NonEmptyList, except for method min which
is only defined on non empty lists.

In FJ we can represent finite lists. For instance, the object

new NonEmptyList (2, new NonEmptyList(l, new EmptyList()))

which we will abbreviate [2,1], represents a list of two elements, and it is easy to see that all
the above method definitions provide the expected meaning on finite lists.

On the other hand, since the syntactic definition for objects is interpreted, like the
others, inductively, in F'J objects are finite, hence we cannot represent, e.g., the infinite
list of natural numbers [0,1,2,3,...], abbreviated [0..], or the infinite list [2,1,2,1,2,1,...],
abbreviated [2,1]¥. To move from finite to infinite objects, it is enough to interpret the
syntactic definition for values coinductively, so to obtain infinite terms as well. However, to
make the extension significant, we should be able to generate such infinite objects as results
of expressions, and to appropriately handle them by methods.

To generate infinite objects, e.g., the infinite lists mentioned above, a natural approach is
to consider method definitions as corecursive, that is, to take the coinductive interpretation
of the inference system in Figure 1. Consider the following class:

class ListFactory extends Object {
NonEmptyList from(int x) {new NonEmptyList(x, this.from(x+1)}
NonEmptyList two_one() {new NonEmptyList(2, this.one_two())}
NonEmptyList one_two() {new NonEmptyList(l, this.two_one ())}
}

With the standard FJ semantics, given by the inductive interpretation of the inference system
in Figure 1, the method invocation new ListFactory().from(0) (abbreviated fromg in
the following) has no result, since there is no finite proof tree for a judgment of shape
fromg | _. Taking the coinductive interpretation, instead, such call returns as result the
infinite list of natural numbers [0..], since there is an infinite proof tree for the judgment
fromg || [0..]. Analogously, the method invocation new ListFactory().two_one() returns
[2,1]“. Moreover, the method invocations [0..].incr() and [2,1]¥.incr() correctly return
as result the infinite lists [1..] and [3,2]“, respectively.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

However, in many cases to consider method definitions as corecursive is not satisfact-
ory, since it leads to non-determinism, as shown for inference systems in Section 1. For
instance, for the method invocation [0..].a11Pos() both judgments [0..].a11Pos() | true and
[0..].a11Pos() || false are derivable, and analogously for [2,1]¥.allPos(). In general, both
results can be obtained for any infinite list of all positive numbers. A similar behavior is
exhibited by method member: given an infinite list L which does not contain z, both judg-
ments L.member(z) | true and L.member(z)||false are derivable. Finally, for the method
invocation [2,1]¥min(), any judgment [2,1]“.min() |z with £< 1 can be derived.

To solve this problem, COFJ allows the programmer to control the semantics of corecursive
methods by adding a codefinition®, that is, an alternative method body playing a special role.
Depending on the codefinition, the purely coinductive interpretation is refined, by filtering
out some judgments. In the example, to achieve the expected meaning, the programmer
should provide the following codefinitions.

class ListFactory extends Object {
NonEmptyList from(int x) {
new NonEmptyList(x, this.from(x+1)} corec {anyl}
NonEmptyList one_two () {
new NonEmptyList (1, this.two_one())} corec {anyl}
NonEmptyList two_one() {
new NonEmptyList (2, this.one_two())} corec {any}
}
class NonEmptyList extends List {
int head; List tail;
bool isEmpty() {false}
List incr() {
new NonEmptyList (this.head+1,this.tail.incr())} corec {anyl}
bool allPos () {
if (this.head <= 0) false else this.tail.allPos()} corec {truel}
bool member (int x) {
if (this.head == x) true else this.tail.member(x)} corec {falsel}
int min() {
if (this.tail.isEmpty()) this.head
else Math.min(this.tail.min() ,this.head)
} corec {this.head}

For the three methods of ListFactory and for the method incr the codefinition is any.
This corresponds to keeping the coinductive interpretation as it is, as is appropriate in these
cases since it provides only the expected result. In the other three methods, instead, the
effect of the codefinition is to filter the results obtained by the coinductive interpretation.
The way this is achieved is explained in the following section. Finally, for method isEmpty
no codefinition is added, since the inductive behaviour works on infinite lists as well.

3 coFJ and its abstract semantics

We formally define COFJ, illustrate how the previous examples get the expected semantics,
and show that, despite its non-determinism, COFJ is a conservative extension of F.J.

4 The term “codefinition” is meant to suggest “alternative definition used to handle corecursion”.

1:7

ECOOP 2020

1:8

Sound Regular Corecursion in coFJ

cd n= class C extends C' { fd md} class declaration
fd = COf; field declaration
md n= C m(Cim,...,Cpnan) {€} [corec {€'}] method declaration with codefinition
e = z| e.f |new C(e) | e.m(e) expression
veV* =y new C() possibly infinite object
ec&* u= z| e.f |new C(€) | e.m(e) | v runtime expression
v=new C(v1,...,vn) i
ellv elv
(ABS-FIELD) ————— ﬁelds(C) = f1 . -fn (ABS-NEW) — —
e.f v f=fiieln new C(e)|new C(7)

eollvo elv e[w/this][v/Z]|v wo =new C(_) o
eo.m(e) v mbody(C, m) = (T, €) (apscoa) v

(ABS-INVK)

eollvo elv €[/this][v/z][v/any] | veo v =new C(_)
co-mbody(C,m) = (7, ')

(ABS-CO-INVK)
e0-m(€) | veo

Figure 2 cOFJ syntax and abstract semantics.

Formal definition of coFJ. The cOFJ syntax is given in Figure 2. As the reader can note,
the only difference is that method declarations include now, besides a definition e, an optional
codefinition €, as denoted by the square brackets in the production. Furthermore, besides
this, there is another special variable any, which can only occur in codefinitions. The
codefinition will be used to provide an abstract semantics through an inference system with
corules, where the role of any is to be a placeholder for an arbitrary value. For simplicity, we
require the codefinition €' to be statically restricted to avoid recursive (even indirect) calls
to the same method (we omit the standard formalization). Note that FJ is a (proper) subset
of cOFJ: indeed, an FJ class table is a COF'J class table with no codefinitions.

The syntactic definition for values is the same as before, but is now interpreted coin-
ductively, as indicated by the symbol :=¢,. In this way, infinite objects are supported. By
replacing method parameters by arguments, we obtain runtime expressions admitting infinite
objects as subterms. The sets V and £ of FJ objects and expressions are subsets of V* and
&?, respectively. The judgment el v, with e € £* and v e V?, is defined by an inference system
with corules (Zy,,Z%) where the rules Z;, are those® of FJ, as in Figure 1, and the corules
Z50 are instances of two metacorules.

Corule (aBs-co-vaL) is needed to obtain a value for infinite objects, as shown below.
Corule (aBs-co-INVK) is analogous to the standard rule for method invocation, but uses
the codefinition, and the variable any can be non-deterministically substituted with an
arbitrary value. The auxiliary function co-mbody is defined analogously to mbody, but it
returns the codefinition. Note that, even when mbody(C, m) is defined, co-mbody(C, m) can
be undefined since no codefinition has been specified. This can be done to force a purely
inductive behaviour for the method.

5 To be precise, meta-rules are the same, with meta-variables e and v ranging on £2, and V2, respectively.
However, we could have taken this larger universe in FJ as well without affecting the defined relation.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

(N-VAL)

n{n Tn
(ABS-NEW) (N-VAL) ——— (ABS-NEW)
new LF() |new LF() nln new NEL(n,new LF().from(n+1))|[n..]

fromy, || [n..]

Tn =(ABS-INVK)

(N-VAL)

P n+lln+tl Topo

4

new LF() Unew LF(Q) n+1Un+1 new NEL(n+1,new LF().from(n+1+1))u[n+l..]
new LF().from(n+1) ||[n+1..]

(ABS-NEW) (ABS-NEW)

Tn+1 =(ABS-INVK)

(ABS-NEW) (N-vAL) — (ABS-CO-VAL)

new LF() Jnew LF() nin [n..] = any[new LFQ)/this][[n..]/any]{[n..]

(ABS-CO-INVK)

fromy, | [n..]

Figure 3 Infinite (top) and finite (bottom) proof trees for from, | [n..].

Examples. As an example, we illustrate in Figure 3 the role of the two corules for the call
new ListFactory().from(0). For brevity, we write abbreviated class names. Furthermore,
from, stands for the call new ListFactory().from(n) and [n..] for the infinite object new
NonEmptyList(n,new NonEmptyList(n+l,...))).

In the top part of Figure 3, we show the infinite proof tree T,, which can be constructed,
for any natural number n, for the judgment from,, || [n..] without the use of corules. We use
standard rules (N-vaL) and (+) to deal with integer constants and addition.

To derive the judgment in the inference system with corules, each node in this infinite
tree should have a finite proof tree with the corules. Notably, this should hold for nodes of
shape from, || [n..], and indeed the finite proof tree for such nodes is shown in the bottom
part of the figure. Note that, in this example, the result for the call from, is uniquely
determined by the rules, hence the role of the corules is just to “validate” this result. To this
end, the codefinition of the method from is the special variable any, which, when evaluating
the codefinition, can be replaced by any value, hence, in particular, by the correct result
[n..]. Corule (aBs-co-vaL) is needed to obtain a finite proof tree for the infinite objects of
shape [n..]. Analogous infinite and finite proof trees can be constructed for the judgments
new ListFactory().two_one() |[2,1]¥, [0..].incr() [1..] and [2,1]*.incx() | [3,2]~.

For the method call [0..].al1Pos(), instead, both judgments [0..].al1Pos() || true and
[0..].a11Pos() | false have an infinite proof tree. However, no finite proof tree using the
codefinition can be constructed for the latter, whereas this is trivially possible for the
former. Analogously, given an infinite list L which does not contain z, only the judgment
L.member(z) |} false has a finite proof tree using the codefinition.

Finally, for the method invocation [2,1]¥.min(), for any v <1 there is an infinite proof
tree built without corules for the judgment [2,1]¥.min() || v as shown in Figure 4. However,
only the judgment [2,1]“.min()|}1 has a finite proof tree using the codefinition (Figure 5).
For space reasons in both figures ellipses are used to omit the less interesting parts of the
proof trees; we use the standard rule (1r-F) for conditional, and the predefined function
Math.min on integers.

Non-determinism and conservativity. The COFJ abstract semantics is inherently non-
deterministic. Indeed, depending on the codefinition, the non-determinism of the coinductive
interpretation may be kept. For instance, consider the following method declaration:

1:9

ECOOP 2020

1:10

Sound Regular Corecursion in coFJ

(N-VAL

y——
(B 1)1 To
To T TMare T 2]e L 2]
(ABS-INVK) ——————————————— TO =(ABS-NEW)
[2,1]*min() }v (2,1]«¥[2,1]«

15

: [2,1]*.tailmin() v [2,1].headl}2
T [2,1]¢.tail.isEmpty() | false Math.min([2,1]¥.tailmin(),[2,1] .head)|v
""" [2, 1] tail.isEmpty() then [2,1]* head else Mathmin([2, 1]~ tailmin(), |2, 1]* head) | v

T1

: [1,2]@.tailmin() v [1,2]«.headll
T [1,2]w.tail.isEmpty() | false Mathmin([1,2]¥.tail.min(),[1,2]«.head)|v
=(1F-¥)
274 [1,2]% tail.isEmpty() then [1,2]“ head else Mathmin([1,2]* tailmin(),[1,2]* head) | v

Figure 4 Infinite proof tree for [2,1]“.min() |} v with v< 1 (main tree at the top left corner).

(ABS-CO-VAL) me—
[1,2]“[1,2]«
[1,2]@.head |1

(ABS-CO-INVK) .
: [2,1]w.tailmin() |1 [2,1]“ head|2
- [2,1]w.tail.isEmpty() | false Mathmin([2,1]¥.tail.min(),[2,1]« .head) |1
To if [2,1]*.tail.isEmpty() then [2,1]“ head else Math.min([2,1]*.tail.min(),[2,1]* .head) |1
[2,1]¢min() 1

(ABS-INVK)

Figure 5 Finite proof tree with codefinition for [2,1]%.min() |1 (7o as in Figure 4).

class C {
C m() { this.m() } corec { any 1}
}

Method m() recursively calls itself. In the abstract semantics, the judgment new C().m() | v
can be derived for any value v. In the operational semantics defined in Section 4, such
method call evaluates to (z,z:), that is, the representation of undetermined.

However, determinism of FJ evaluation is preserved. Indeed, COFJ abstract semantics is
a conservative extension of F.J semantics, as formally stated below.

» Theorem 2 (Conservativity). If Z,+ el v, then (Zy,, I el v/ iff v= 1.

Proof. Both directions can be easily proved by induction on the definition of Zy;+ e} v. For
the left-to-right direction, the fact that each syntactic category has a unique applicable
meta-rule is crucial. <

This theorem states that, whichever the codefinitions chosen, COFJ does not change the
semantics of expressions evaluating to some value in FJ. That is, COFJ abstract semantics
allows derivation of new values only for expressions whose semantics is undefined in standard
FJ, as in the examples shown above. Note also that, if no codefinition is specified, then the
COFJ abstract semantics coincides with the F'J one, because corule (ABS-cO-INVK) cannot be
applied, hence no infinite proof trees can be built for the evaluation of FJ expressions.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

4 Operational semantics

We informally introduce the operational semantics of COFJ, provide its formal definition,
and prove that it is deterministic and conservative.

Outline. In contrast to the abstract semantics of the previous section, the aim is to define a
semantics which leads to an interpreter for the calculus. To obtain this, there are two issues
to be considered:

1. infinite (regular) objects should be represented in a finite way;

2. infinite (regular) proof trees should be replaced by finite proof trees.

In the following we explain how these issues are handled in the COFJ operational semantics.

To obtain (1), we use an approach based on capsules [16], which are essentially expressions
supporting cyclic references. In our context, capsules are pairs (e,0) where e is an FJ
expression and o is an environment, that is, a finite mapping from variables into FJ
expressions. Moreover, the following capsule property is satisfied: writing F'V(e) for the set
of free variables in e, FV(e) € dom(c) and, for all x € dom(o), FV(c(z)) € dom(c). An
FJ source expression e is represented by the capsule (e, @), where @ denotes the empty
environment. In particular, values are pairs (v,o) where v is an open FJ object, that is, an
object possibly containing variables. In this way, cyclic objects can be obtained: for instance,

(%, x:new NEL(2,new NEL(1,))) represents the infinite regular list [2,1]* considered before.

To obtain (2), methods are regularly corecursive. This means that execution keeps track
of the pending method calls, so that, when a call is encountered the second time, this is
detected®, avoiding non-termination as it would happen with ordinary recursion. Regular
corecursion in COFJ is flexible, since the behaviour of the method when a cycle is detected is
specified by the codefinition.

Consider, for instance, the method call new ListFactory() .two_one(); thanks to regular
corecursion, the result is the cyclic object (,z:new NEL(2,new NEL(1,z))). Indeed, the
operational semantics associates a fresh variable, say, x, to the initial call, so that, when the
same call is encountered the second time, the association z: x is added in the environment,
and the codefinition is evaluated where any is replaced by z. Hence, (x,z: x) is returned as
result, so that the result of the original call is (z, z: new NEL(2,new NEL(1,z))). The call new
ListFactory() .from(0), instead, does not terminate in the operational semantics, since no
call is encountered more than once (the resulting infinite object is non-regular).

Consider now the call [2,1]¥.al1Pos(). In this case, when the call is encountered the
second time, after an intermediate call [1,2]“.al1Pos(), the result of the evaluation of the
codefinition is true, so that the result of the original call is true as well.” If the codefinition
were any, then the result would be (z,z: x), that is, undetermined. Note that, if the list is
finite, then no regular corecursion is involved, since the same call cannot occur more than
once; the same holds if the list is cyclic, but contains a non-positive element, hence the
method invocation returns false. The only case requiring regular corecursion is when the
method is invoked on a cyclic list with all positive elements, as [2,1]“.

In the case of [2,1]“.min(), when the call is encountered the second time the result of
the evaluation of the codefinition is 2, so that the result of the intermediate call [1,2]“.min()
is 1, and this is also the result of the original call.

6 The semantics detects an already encountered call by relying on capsule equivalence (Figure 7).
7 To be rigorous, a capsule of shape (true,).

1:11

ECOOP 2020

1:12

Sound Regular Corecursion in coFJ

Formal definition. To formally express the approach described above, the judgment of the
operational semantics has shape e, 0,7 || v,0’ where: (e,0) is the capsule to be evaluated; T
is a call trace, used to keep track of already encountered calls, that is, an injective map from
calls vo.m(V) to (possibly tagged) variables, and (v,o") is the capsule result. Variables in the
codomain of the call trace have a tag ck during the checking step for the corresponding call,
as detailed below. The pair (e,0) and (v,0’) are assumed to satisfy the capsule property.

The semantic rules are given in Figure 6. We denote by o{z:v} the environment which
gives v on z, and is equal to o elsewhere, and analogously for other maps. Furthermore, we
use the following notations, formally defined in Figure 7.

unfold(v,o) is the unfolding of v in o, that is, the corresponding object, if any.

o1Uog is the union of environments, defined if they agree on the common domain.

(v,0)=(v',0') is the equivalence of capsules. As will be formalized in the first part of

Section 6, equivalent capsules denote the same sets of abstract objects. This equivalence

is extended by congruence to expressions, in particular to calls vo.m(¥).

Too is Obtained by extending 7 up to equivalence in o. That is, detection of already

encountered calls is performed up-to equivalence in the current environment.

Rule (vaL) is needed for objects which are not FJ objects. Rule (FIELD) is similar to that
of FJ except that the capsule (v,o’) must be unfolded to retrieve the corresponding object.
Furthermore, the resulting environment is that obtained by evaluating the receiver. Rule
(NEW) is analogous to that of FJ. The resulting environment is the union of those obtained
by evaluating the arguments.

There are four rules for method invocation. In all of them, as in the FJ rule, the receiver
and argument expressions are evaluated first to obtain the call ¢ = v.m(¥). The environment &
is the union of those obtained by these evaluations. Then, the behavior is different depending
whether such call (meaning a call equivalent to ¢ in &) has been already encountered.

Rules (1NvK-0K) and (INVK-cHECK) handle® a call ¢ which is encountered the first time, as
expressed by the side condition ¢ ¢ dom(7.z). In both, the definition e, where the receiver
replaces this and the arguments replace the parameters, is evaluated. Such evaluation is
performed in the call trace 7 updated to associate the call ¢ with an unused variable z (in
these two rules “z fresh” means that z does not occur in the derivations of e;,0,7 | v;, 0},
for all 7 € 0..n), and produces the capsule (v,0’). Then there are two cases, depending on
whether z € dom(o’) holds.

If ¢ dom(c"), then the evaluation of the definition for ¢ has been performed without
evaluating the codefinition. That is, the same call has not been encountered, hence the result
has been obtained by standard recursion, and no additional check is needed.

If € dom(o'), instead, then the evaluation of the definition for ¢ has required to evaluate
the codefinition. In this case, an additional check is required (third premise). That is,
e[vo/this][v/z] is evaluated once more under the assumption that v is the result of the call.
Formally, evaluation takes place in an environment updated to associate x with v, and the
variable z corresponding to the call is tagged with ck. The capsule result obtained in this
way must be (equivalent to) that obtained by the first evaluation of the body of the method.
In Section 5 we discuss in detail the role of this additional check, showing an example where
it is necessary. If the check succeeds, then the final result is the variable x in the environment
updated to associate z with v. Otherwise, rule (INVK-CHECK) cannot be applied since the last
premise does not hold. For simplicity, we assume the result of ¢ to be undefined in this case;
an additional rule could be added raising a runtime error in case the result is different from
the expected one, as should be done in an implementation.

8 The two rules could be merged together, but we prefer to make explicit the difference for sake of clarity.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:13

veV?P = new C(V)|z open object
o H= X iVie.. Tn:ivy, (n20) environment
c z= v.m(V) call
t n= [ck] optional checking tag
T t= cp:dll, e iafr (n20) call trace
e.0.rlv.o! unfold(v,c’) =new C(vy,...,vp)
(van) ——————— ey —————— fields(C') = fi...fn
v,o,7|v,o ef,o,7|vi,o fefiicln
e, 0,7vi, ol Viel.n
" hew C(e1,...,en),0,7new C(vi,...,vpn),Uic1..n 0}

e= €1,...,€En

V=Vi...Vp
In all the following rules: ¢ =vq.m(V)

G = I_lieo..n 0'1(

unfold(vo,c() =new C(_)

e, 0,7vi, ol VieO.n
e[vo/this][v/z],T, 7{c:z} |v,o’

¢ ¢ dom(7uz)
x fresh

(INVK-OK)

eg.m(e€),o,7lv, o’

e,0,7|vi, 0l Viel.n

e[vo/this][v/z],7, 7{c:a}|v, o’

mbody(C,m) = (7, e)
x ¢ dom(o")

c ¢ dom(7s3)

e[vo/this][¥/z],uo’{z:v},7{c: 2™} v/, 0" * fresh

(INVK-CHECK)

e,0,7|v;, 0l Viel.n

ep.m(e),o, 7|z, 0'{x:v}

mbody(C, m) = (7, e)
x € dom(a’)
(z,0{z:v})~ (v, 0")

¢[vo/this][v/z][z/any],G{z:a}, Tdv,0" 15(c)=x

(COREC)

eg-m(e),o, v, o'{x:x}

e, 0,7vi, 0l VielO.n

(LOOK-UP)

ep-m(e),o, 7| z,7

Figure 6 cOFJ operational semantics.

T (C) =

co-mbody(C,m) = (T,)

ZL’Ck

ECOOP 2020

1:14

Sound Regular Corecursion in coFJ

new C(V) if v=new C(¥)
unfold(o(v),o) ifv=z
undet(o) = {z € dom(o) | unfold(z,o) 1}

unfold(v,o) =

For o1 and o2 such that o1(z) = o2(z) for all x € dom(o1) ndom(o2)

o1(z) zedom(or)

(o1u02) () ={

o2(z) z€dom(oz)

Set < the least equivalence relation on undet(c) such that z < y if o(x) = y, [2] the equivalence
class of z, and undet.. (o) the quotient. A relation « ¢ undet(o1) x undet(o2) is a o1, 02-renaming
if it induces a (partial) bijection from undet. (o1), still denoted «, to undet (o2). Given « a
o1, 02-renaming, the relation (z,01)~q (7', 02) is coinductively defined by:

o (vi,0)ma(Vi,0') Viel.n wunfold(v,o) =new C(v1,..,vn)
(z,0)~a(2,0") (v,0)=a(V/,0") unfold(v',c") = new C(vi,..,vy)

A 01, 09-renaming o is strict if, for ,y € undet(o1) N undet(o2), [z]afy] iff 253 y and 23 y.
We write (v,0)~(v',0") if (v,0)~a(v',c") for some strict a.

Tuo (¢") = 7(c) for each ¢’ such that (¢',0)~(c,0)

Figure 7 cOFJ auxiliary definitions.

The remaining rules handle an already encountered call ¢, that is, 7.z (c¢) is defined. The
behaviour is different depending on whether the corresponding variable z is tagged or not.

If x is not tagged, then rule (corec) evaluates the codefinition where the receiver object
replaces this, the arguments replace the parameters, and, furthermore, the variable z found
in the call trace replaces any. In addition, & is updated to associate z with z. In this way,
the semantics keeps track of the application of rule (corec).

If z is tagged, instead, then we are in a checking step for the corresponding call. In this
case, rule (Look-UP) simply returns the associated variable for a call; by definition of the
operational semantics, in this case such a variable is always defined in the environment.

Figure 7 contains the formal definitions of the notations used in the rules.

Note that unfold, being inductively defined, can be undefined, denoted 1, in presence
of unguarded cycles among variables. Capsule equivalence, instead, is defined coinduct-
ively, so that, e.g., (z,z:new C(z)) is equivalent to (z,z:new C(new C(z))). Capsule
equivalence implicitly subsumes a-equivalence of variables whose unfolding is defined, e.g.,
(z,z:new C(z)) is equivalent to (y,y :new C(y)). Instead, a-equivalence of undetermined
variables is given by an explicit renaming, which should preserve disjointness of cycles. For
instance, (new C(z,y),(z:y,y: x)) is equivalent to (new C(z,z),z: z), but is not equivalent
to (new C(x,y),(z:z,y:y)). Indeed, in the latter case x and y can be instantiated independ-
ently. We will prove in Section 6 (Theorem 10) that the relation »,, for some o1, 09-renaming
«, is the operational counterpart of the fact that two capsules denote the same set of abstract
values. The stronger strictness condition prevents erroneous identification of objects during
evaluation, e.g., (new C(z,y), (z:x,y:y)) is not equivalent to (new C(y,x), (y:y,z:x)).

Determinism and conservativity. In contrast to COFJ abstract semantics, but like FJ,
CcOF J operational semantics is deterministic.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

» Theorem 3 (Determinism). If e,o,7 || vi,01 and e,0,72 || va,00 hold and dom(ry) =
dom(7z), then (vi,01) and (va,02) are equal up-to a-equivalence.

Proof. The proof is by induction on the derivation for e, 0,71 | v1,01. The key point is that,
once fixed e, o and dom(7y), there is a unique applicable rule, hence both e, o, 7 | vi, 01 and
e,0,72 || vo, 09 are derived by the same rule. <

As the abstract one, the operational semantics is a conservative extension of the standard
FJ semantics. This result follows from soundness with respect to the abstract semantics in
next section, however the direct proof below provides some useful insight.

» Theorem 4 (Conservativity). If Z.,—ellv, then e, @, @ v, holds iff v=v and o = @.

For the proof, we need some auxiliary lemmas and definitions. First, we note that F.J has
the strong determinism property: each expression has at most one finite proof tree in Z,.

» Lemma 5 (FJ strong determinism). If Z,+ el vy by a proof tree t1 and Zp,+ellvs by a
proof tree to, then ty =to and vy = vy.

Proof. By induction on the definition of el v;. The key point is that each judgement is the
consequence of exactly one rule. <

By relying on strong determinism, it is easy to see that in F'J a proof tree for an expression
cannot contain another node labelled by the same expression. In other words, if the evaluation
of e requires to evaluate e again, then the F'J semantics is undefined on e, as expected.

» Lemma 6. A proof tree in I, for ellv cannot contain any other node el v/, for any v'.

Proof. By Lemma 5, there is a unique proof tree ¢ for the expression e. Hence, a node el} v/
in ¢t would be necessarily the root of a subtree of ¢ equal to ¢, that is, it is the root of t. <«

» Definition 7. Let Z.,~e|v. A call trace T is disjoint from el v if in its proof tree® there
are no instances of (FJ-INVK) where vo.m(7) € dom(T).

» Lemma 8. IfZ,,+elv, then, for all T disjoint from ellv, we have e,&,7 | v, @.

Proof. The proof is by induction on the definition of el} v.

(FJ-field) Let 7 be a call trace disjoint from e.f |} v;. Since Zg; - ell v, with v = new C(vy,. .., v,),
holds by hypothesis, and 7 is, by definition, also disjoint from e} v, we get e, @, 7| v, @ by
induction hypothesis. Then, since unfold(v, @) = v, we get e.f, @, 7| v;,@ by rule (FIELD).

(FJ-new) Let 7 be a call trace disjoint from new C(ey,...,¢e,) |new C(vy,...,v,). For all
i € 1..n, since Iy, + ey | v; holds by hypothesis, and 7 is, by definition, also disjoint from
e; |} v;, we get ¢;, @, 7| v;, @ by induction hypothesis. Then, we get new C(ey,...,e,),a,7|
new C(vy,...,v,),d by rule (NEW).

(FJ-invk) Let 7 be a call trace disjoint from ey.m(es,...,e,) |} v. For all i € 0..n, since
Iy + il v; holds by hypothesis, and 7 is, by definition, also disjoint from e; || v;, we
get e, @, 7 |} v;,@ by induction hypothesis. Set ¥ = v;...v, and ¢ = e[vy/this][v/T].
By hypothesis, Z;, + € || v and, by definition, 7 is also disjoint from ¢’ |} v; furthermore,
by Lemma 6, ¢ cannot occur twice in the proof tree for ¢ || v, hence 7{vy.m(7) :z} is
disjoint from €' || v, for any fresh variable z. Then, by induction hypothesis, we have
e, @, m{vg.-m(v) :z} | v, @, thus we get eg.m(ey,...,e,),d,7|v,@ by rule (INVK-0K). <

9 Unique thanks to Lemma 5.

1:15

ECOOP 2020

1:16

Sound Regular Corecursion in coFJ

We can now prove the conservativity result for COFJ operational semantics.

Proof of Theorem 4. The right-to-left direction follows from Lemma 8, since @ is disjoint
from any expression, while the other direction follows from the right-to-left one and Theorem 3.
<

For cOF'J operational semantics we can prove an additional result, characterizing derivable
judgements which produce an empty environment. The meaning is that all results obtained
without using the codefinitions are original FJ results.

» Lemma 9. If e, &, 7| v, & holds, then v is an FJ value v, and Zy,+ el v.

5 Advanced examples

This section provides some more complex examples to better understand the operational
semantics of COFJ in Section 4 and its relationship with the abstract semantics in Section 3.

Examples on lists. We first show an example motivating the additional checking step (third
premise) in rule (INVK-CHECK). Essentially, the success of this check for some capsule result
corresponds to the existence of an infinite tree in the abstract semantics, whereas the fact
that this capsule result is obtained by assuming the codefinition as result of the cyclic call
(second premise) corresponds to the existence of a finite tree which uses the codefinition .

Assume to add to our running example of lists of integers a method that returns the sum
of the elements. For infinite regular lists, that is, lists ending with a cycle, a result should be
returned if the cycle has sum 0, for instance for a list ending with infinitely many 0Os, and no
result if the cycle has sum different from 0. This can be achieved as follows.

class List extends Object {
int sum() {0}
}
class NonEmptyList extends List {
int sum() {this.head + this.tail.sum()} corec {0}
}

It is easy to see that the abstract semantics of the previous section formalizes the expected
behavior. For instance, an infinite tree for a judgment [2,1]¥.sum() || v only exists for
v=2+1+ v, and there are no solutions of this equation, hence there is no result. In the
operational semantics, by evaluating the body assuming the codefinition as result of the
cyclic call (second premise of rule (INVK-CHECK)) the spurious result 3 would be returned.
This is avoided by the third premise, which evaluates the method body assuming 3 as result
of the cyclic call. Since we do not get 3 in turn as result, evaluation is stuck, as expected.

Note that the stuckness situation is detected: the last side-condition of rule (INVK-CHECK)
fails, and a dynamic error (not modeled for simplicity, see the comments to the rule) is raised,
likely an exception in an implementation. On the other hand, computations which never
reach (a base case or) an already encountered call still do not terminate in this operational
semantics, exactly as in the standard one, and the fact that this does not happen should be
proved by suitable techniques, see the Conclusion.

All the examples shown until now have a constant codefinition. We show now an example
where this is not enough. Consider the method remPos () that removes positive elements. A
first attempt at a COF'J definition is the following:

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

class NonEmptyList extends List {
List remPos () {
if (this.head > 0) this.tail.remPos ()
else new NonEmptyList(this.head,this.tail.remPos ())}
corec {new EmptyList ()}

Is this definition correct? Actually, it provides the expected behavior on finite lists,
and cyclic lists where the cycle contains only positive elements. However, when the cycle
contains at least one non positive element, there is no result. For instance, consider the
method call [0,1]*.remPos(). In the abstract semantics, an infinite tree can be constructed
for the judgment [0,1]“.remPos() | v only if v=0: v, and this clearly only holds for v=[0].
However, no finite tree can be constructed for this judgment using the codefinition. Note
that, in the operational semantics, without the additional check (third premise of rule
(INVK-CHECK)), we would get the spurious result [0]. In order to have a COFJ definition
complete with respect to the expected behavior, we should provide a different codefinition
for lists with infinitely many non-positive elements.

class NonEmptyList extends List {
List remPos () {
if (this.head > 0) this.tail.remPos ()
else new NonEmptyList(this.head,this.tail.remPos())}
corec {if (this.allPos() then new EmptyList() else anyl}

Arithmetic with rational and real numbers. All real numbers in the closed interval {0..1}
can be represented by infinite lists [dy,ds,...] of decimal digits; more precisely, the infinite
list [dy,ds,...] represents the real number which is the limit of the series .5, 107"d;.

It is well-known that all rational numbers in {0..1} correspond to either a terminating or
repeating decimal, hence they can be represented by infinite regular lists of digits, where
terminating decimals end with either an infinite sequence of 0 or an infinite sequence of 9;
for instance, the terminating decimal % can be represented equivalently by either [5,0,0,...]
or [4,9,9,...], while the repeating decimal % is represented by [3,3,...].

Therefore, in cOFJ all rational numbers in {0..1} can be effectively represented with
infinite precision at the level of the operational semantics; to this aim, we can declare a class
Number with the two fields digit of type int and others of type Number: digit contains
the leftmost digit, that is, the most significant, while others refers to the remaining digits,
that is, the number we would obtain by a single left shift (corresponding to multiplication by
10). Since also non-regular values are allowed, in the abstract semantics class Number can be
used to represent also all irrational numbers in {0..1}.

We now show how it is possible to compute in COFJ the addition of rational numbers in
{0..1} with infinite precision. We first define the method carry which computes the carry of
the addition of two numbers: its result is 0 if the sum belongs to {0..1}, 1 otherwise.

class Number extends Object { // numbers in {0..1}
int digit; // leftmost digit
Number others; // all other digits

int carry (Number num){ // returns O if this+num<=1, 1 otherwise
if (this.digit+num.digit!=9) (this.digit+num.digit)/10
else this.others.carry(num.others)

} corec {0}

1:17

ECOOP 2020

1:18

Sound Regular Corecursion in coFJ

The two numbers this and num are inspected starting from the most significant digits: if
their sum is different from 9, then the carry can be computed without inspecting the other
digits, hence the integer division by 10 of the sum is returned. Corecursion is needed when
the sum of the two digits equals 9; in this case the carry is the same obtained from the
addition of this.others and num.others.

Finally, in the codefinition the carry 0 is returned; indeed, the codefinition is evaluated
only when the sum of the digits for all positions inspected so far is 9 and the same patterns
of digits are encountered for the second time. This can only happen for pairs of numbers
whose addition is [9,9,...], that is, 1, hence the computed carry must be 0.

Based on method carry, we can define method add which computes the addition of two
numbers, excluding the possible carry in case of overflow.

class Number extends Object { ... // declarations as above
Number add(Number num){ // returns this+num
new Number (
(this.digit+num.digit+this.others.carry(num.others))%10,
this.others.add (num.others))} corec {any}
}

For each position, the corresponding digits of this and num are added to the carry computed
for the other digits (this.others.carry(num.others)), then the reminder of the division
by 10 gives the most significant digit of the result, whereas the others are obtained by
corecursively calling the method on the remaining digits (this.others.add(num.others)).
Since this call is guarded by a constructor call, the codefinition is any.

Note that, in the abstract semantics, methods carry and add correctly work also for
irrational numbers.

Method add above is simple, but has the drawback that the same carries are computed
more times; hence, in the worst case, the time complexity is quadratic in the period!® of
the two involved repeating decimals. To overcome this issue, we present a more elaborate
example where carries are computed only once for any position; this is achieved by method
all_carries below, which returns the sequence of all carries (hence, a list of binary digits).

Method simple_add corecursively adds all digits without considering carries, while
method add, defined on top of simple_add and all_carries, computes the final result.
This new version of add is not recursive and, hence. does not need a codefinition.

class Number extends Object { ... // declarations as above

Number all_carries (Number num){ // carries for all positions
this.simple_carries (num).complete ()

}

Number simple_carries (Number num){ // carries computed immediately
if (this.digit+num.digit!=9)

new Number ((this.digit+num.digit)/10,
this.others.simple_carries (num.others))

else new Number (9,this.others.simple_carries (num.others))

} corec {any}

Number complete(){ // computes missing carries marked with 9
if (this.digit!=9) new Number (this.digit,this.others.complete())
else this.fill(this.carry_lookahead()).complete ()

} corec {any}

10Tndeed, the worst case scenario is when the carry propagates over all digits because their sum is always
9, and this can happen only if the two numbers have the same period.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

Number fill(int dig){ // fills with dig all next missing carries
if (this.digit!=9) this else new Number(dig,this.others.fill(dig))
} corec {any}

int carry_lookahead(){ // returns the next computed carry
if (this.digit!=9) this.digit else this.others.carry_lookahead()
} corec {0}

Number simple_add (Number num){ // addition without carries
new Number ((this.digit+num.digit)¥%10,
this.others.simple_add (num.others))
} corec {any}

Number add (Number num){
this.simple_add (num).simple_add(this.all_carries (num).others)

}

Distances on graphs. The last example of this section involves graphs, which are the
paradigmatic example of cyclic data structure. Our aim is to compute the distance, that
is, the minimal length of a path, between two vertexes''. Consider a graph (V, adj) where
V is the set of vertexes and adj : V — p (V) gives, for each vertex, the set of the adjacent
vertexes. Each vertex has an identifier id assumed to be unique. We assume a class Nat®°,
with subclasses Nat with an integer field, and Infty with no fields, for naturals and oo
(distance between unconnected nodes), respectively. Such classes offer methods succ () for
the successor, and min(Nat® n) for the minimum, with the expected behaviour (e.g., succ
in class Nat® returns oo).

class Vertex extends Object {
Id id; AdjList adjVerts;
Nat®dist (Id id) {
this.id==id?new Nat (0):this.adjVerts.dist (id).succ(O}
corec {new Infty()}
}

class AdjList extends Object { }
class EAdjList extends AdjList {
Nat™dist (Id id) { new Infty() 1}
}
class NEAdjList extends AdjList {
Vertex vert; AdjList adjVerts;
Nat®*dist (Id id) {this.vert.dist(id).min(this.adjVerts.dist(id))}
}

Clearly, if the destination id and the source node coincide, then the distance is 0.

Otherwise, the distance is obtained by incrementing by one the minimal distance from an
adjacent to id, computed by method dist () of AdjList called on the adjacency list. The
codefinition of method dist () of class Vertex is needed since, in presence of a cycle, oo is
returned and non-termination is avoided. The same approach can be adopted for visiting a
graph: instead of keeping trace of already encountered nodes, cycles are implicitly handled
by the loop detection mechanism of COFJ.

1 The example can be easily adapted to weighted paths.

1:19

ECOOP 2020

1:20

Sound Regular Corecursion in coFJ

6 Soundness

Soundness of the operational semantics with respect to the abstract one means, roughly, that
a value derived using the rules in Figure 6 can also be derived by those in Figure 2. However,
this statement needs to be refined, since values in the two semantics are different: possibly
infinite objects in the abstract semantics, and capsules in the operational semantics.

We define a relation from capsules to abstract objects, formally express soundness through
this relation, and introduce an intermediate semantics to carry out the proof in two steps.

From capsules to infinite objects. Intuitively, given a capsule (v,0), we get an abstract
value by instantiating variables in v with abstract values, in a way consistent with . To
make this formal, we need some preliminary definitions.

A substitution 6 is a function from variables to abstract values. We denote by ef the
abstract expression obtained by applying 6 to e. In particular, if e is an open value v, then
v is an abstract value. Given an environment o and a substitution 6, the substitution o[6]
is defined by:

o(z)0 xze€dom(o)

al0](x) =
)(@) {9(3:) z ¢ dom(o)

Then, a solution of o is a substitution 6 such that o[6] = 8. Let Sol(c) be the set of solutions
of o. Finally, if (e,0) is a capsule, we define the set of abstract expressions it denotes as
[e,o] = {ef |6 € Sol(c)}. Note that [v,o] € V?, for any capsule (v,0). We now show an
operational characterization of the semantic equality.

» Theorem 10. [vy,01]=[va,02] iff (v1,01)%a(v2,02), for some o1, 09-renaming .

To prove this result we need some auxiliary definitions and lemmas. The tree expansion
of a capsule (v,0) is the possibly infinite open value coinductively defined as follows:

x v =z and unfold(z,o) 1

fiwa)- {new C(T(V1,0)..... T(vn. @) unfold(v,0) =new C(vi,...,v,)

The next proposition shows relations between solutions and tree expansion of a capsule.

» Proposition 11. Let (v,0) be a capsule and 0 € Sol(c), then

1. if unfold(v,0) 1 then v =z and <

2. FV(T(v,0)) c{ze dom(o) |z z}

3. if xSy then 6(x) = 0(y)

4. if unfold(v,c) = new C(v1,...,vy) then vO =new C(v10,...,v,0)
5. v0=T(v,0)0

Given a relation « on variables, we will denote by a° the opposite relation and by =, the
equality of possibly infinite open values up-to «, coinductively defined by the following rules:

ti =a Si Viel.n

Ty
T=qy new C(t1,...,tn) = new C(S1,...,8,)
It is easy to check that
« is a 01, 09-renaming iff o° is a g9, 01-renaming,
(vi,01)7a(ve, 02) iff (va,02)~ac (v1,01),
t1 =q to iff tg =40 1.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

We have the following lemmas:
» Lemma 12. (vi,01)~a(va,02) iff T(v1,01)=aT(v2,02), for each o1,02-renaming c.
Proof. The proof is immediate by coinduction in both directions. |
» Lemma 13. If T'(vy,01)=4 T (v2,02), where v is a 01, oa-renaming, then [v1,01] = [v2, 02].

» Proposition 14. If [vi,01] = [va, 02] then

1. if unfold(vy,01) 1 then unfold(va,02) 1,

2. if unfold(vy,01) = new C(v11,...,V1,n) then unfold(ve,02) = new C(va1,...,v2,) and,
fOT all i€ 1..71, [[Vu,crl]] = IIVQJ‘,O'QH.

» Lemma 15. If [vy,01]=[v2,02] then T(v1,01) = T(va,02), for some o1,09-renaming .

Proof of Theorem 10. The right-to-left direction follows from Lemma 12 and Lemma 13,
while the other direction follows from Lemma 15 and Lemma 12. |

Since by definition ~ is equal to ~, for some «, applying Lemma 12 and Lemma 13 we
get that if (v, 01)~(va,02) then [vi,01] = [va, 02]. Actually we can prove a stronger result:

» Lemma 16. If (vi,01)~o(va,02) for some strict o1, 02-renaming «, then, for each solution
0 € Sol(og1 N oy3), there are 01 € Sol(o1) and 05 € Sol(o2) such that vi 01 = vo s and, for all
xz€ dom(o1 No3), 01(x) = 6(x) = 02(x).

Soundness statement. We can now formally state the soundness result:
» Theorem 17. If e,@, 3| v,0, then, for all ve [v,o], (Zp,, I)F el v.

This main result is about the evaluation of source expressions, hence both the environment
and the call trace are empty. To carry out the proof we need to generalize the statement.

» Theorem 18 (Soundness). If e,0,@|v,o’, then, for all 6 € Sol(c"), (Zp;, ZE2)-eO v 0.

J

To show that this is actually a generalization, set o1 < o3 if dom(o1) € dom(o3), and, for all
ze dom(oy), o1(x) = o2(x). We use the following lemmas.

» Lemma 19. If 01 < 0, then Sol(os) € Sol(o1).
» Lemma 20. Ife,0,7|v,0’, then o <o’.

In the statement of Theorem 18, thanks to Lemma 20, we know that o < ¢, hence, by
Lemma 19, 6 € Sol(o), thus ef € [e,o]. Theorem 18 implies Theorem 17, since, when o = &,
e is closed, hence ef = e, and all elements in [v,c’] have shape v with 6 € Sol(o”").

Proof through intermediate semantics. In order to prove Theorem 18, we introduce a new
semantics called intermediate, defined in Figure 8. Values are those of the abstract semantics,
hence calls are of shape v.m() (abstract calls). The judgment has shape e, p, S |}ix v,.S’, with
S, 58" sets of abstract calls, p map from abstract calls to values. Comparing with e, o, 7| v, o’
in the operational semantics, no variables are introduced for calls; p and S play the role of the
ck and non ck part of 7, respectively, keeping trace of already encountered calls. Moreover, p
directly associates to a call its value to be used in the checking step, which in ¢ is associated
to the corresponding variable. Finally, S’ plays the role of ¢’, tracing the calls for which the
codefinition has been evaluated, hence the checking step will be needed. This correspondence
is made precise below. The rules are analogous to those of Figure 6, with the difference that,

1:21

ECOOP 2020

1:22

Sound Regular Corecursion in coFJ

for an already encountered call ¢ € S, either rule (IN-iNvK-0K) or rule (IN-COREC) can be
applied. In other words, evaluation of the codefinition is not necessarily triggered when the
first cycle is detected. This non-determinism makes the relation with the abstract semantics
simpler.

By relying on the intermediate semantics, we can prove Theorem 18 by two steps:

1. The operational semantics is sound w.r.t. the intermediate semantics (Theorem 21).

2. The intermediate semantics is sound w.r.t. the abstract semantics (Theorem 23).

At the beginning of Section 4, we mentioned two issues for an operational semantics:
representing infinite objects in a finite way, and replacing infinite (regular) proof trees by
finite proof trees. This proof technique nicely shows that the two issues are orthogonal:
notably, detection of cyclic calls is independent from the format of values.

To express the soundness of the operational semantics w.r.t. the intermediate one, we
need to formally relate the two judgments. First of all, a call trace 7 is the disjoint union of
two maps 7% and 7 into tagged and non-tagged variables, respectively. Then, given an
environment o, we define the following sets of (operational) calls:

S™ = dom(77%)

ST = dom(o o 77), where o is the composition of partial functions

ST,U,U' _ ST,U' < S§TO
For S set of calls and # substitution, we abbreviate by Sy the set of abstract calls S 8. Note
that S;7 € S7 and, if 1 < 09, then 537" € 572, Finally, pj(c0) = v iff v=0(7%(c)).

Then, the soundness result can be stated as follows:

» Theorem 21 (Soundness operational w.r.t. intermediate). If e,o,7 || v,0’ then, for all
6 € Sol(c”), there exists S such that Sy”° ¢S < Sy and, e, py,Sglinv6,S.

In particular, the bounds on S ensure that it is empty when 7 = @. Hence, if e,0,2 | v,o’
(hypothesis of Theorem 18), then e, , @ |inv 6, d, that is, the hypothesis of Theorem 23
below holds.

The proof of the theorem uses the following corollary of Lemma 16.

» Corollary 22. If (vi,01)~(v2,032), 01€Sol(c1), 01 < 02, then there is 65 € Sol(oa) such that
v1 61 =va s and, for all x € dom(o1), 01(x) = 02(x). Moreover, if o1 = o2, then v 6y = v 0;.

We now state the second step of the proof: the soundness result of the intermediate
semantics with respect to the abstract semantics.

» Theorem 23 (Soundness intermediate w.r.t. abstract). If e, @, @ |inv, @, then (L, Z50) el v.

The proof uses the bounded coinduction principle (Theorem 1), and requires some lemmas.
Recall that Z,,uZ:? + el v means that the judgment e | v has a finite proof tree in the
(standard) inference system consisting of FJ rules and cOFJ corules.

» Lemma 24. If e, @, S|inv, S’ then I, UL+ ell v holds.
» Lemma 25. If e,p, Su{c}inv, S holds, and c ¢ S’, then e, p,S|ivv, S .
» Lemma 26. If ¢, p{c:v'},Sinv,S" and ¢,p, SNV, @, then e,p,S|ivv, S’ .

We can now prove Theorem 23.

Proof of Theorem 23. We take as specification the set A = {(e,v) | e,@, | inv, T}, and we
use bounded coinduction (Theorem 1). We have to prove the following:

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:23

veV* =y mnew C(0) possibly infinite object
= v.m() abstract call

€1 ... ¢n (n20) set of abstract calls
iV ... Cpiuy (n20)

e.p, Sl v, S v=new C(v1,...,v,)

2 2INDD G(O) = fi
>U7paSUINU7@ ")e-fvpaSUINUiysl ?:f(le)l Tle f

(IN-vAL
ei,PaSUIN vi,Sl(Viel.n
new C(er,...,en),p,Sinnew C(vi,...,vn),Uicr. n S;

(IN-NEW)

€=e1,...,6p
In all the following rules: U=11... 1in

¢ = vy.m(70)

vo =new C(_)

ei,p, Slinvi, S; VieO.n
e[v/this][v/z], p, Su{c} v, S" ¢S orceS
eo-m(e), p, SIinv,Ujeo.., S{US" mbody(C,m) = (Z, €)

(IN-INVK-OK)

ei,p7S’U1N Vi, Sll VieO.n
e[vo/this][7/Z], p, S U {c} linv, S’
e[wo/this][3/3], plc v}, Sy v, S” C’éfj o) - (3.0
mbo ,m) = (7, e
60~m(5)ap75UIN v, Use0..n SZ, U (S, N {C}) Y

(IN-INVK-CHECK)

ceS’
e, p,Slinvi, S, VieO.n
¢[vo/this][t/a][u/any], p, Sl v, S" € €O B
(IN-conc) WG STOS co-mbody(C,m) = (7,)
60~m(€)7p7 UIN v, UiGO..TL i U U {C} C¢ dOm(p)

€i, P, SUIN Vi, Sl, Vie0..n
e0-m(€), p, SN v, Uieo..n S

p(c)=v

(IN-LOOK-UP)

Figure 8 cOFJ intermediate semantics.

ECOOP 2020

1:24

Sound Regular Corecursion in coFJ

Boundedness For all (e, v) € A, Z,,UZ:%+ ell v holds.

Consistency For all (e, v) € A, there exist a rule in the abstract semantics having el v as
consequence, and such that all its premises are elements of A.

Boundedness follows immediately from Lemma 24. We now prove consistency.

Consider a pair (e, v) € A, hence we know that e, &, @ |}in v, @ is derivable. We proceed by
case analysis on the last applied rule in the derivation of this judgement.

(IN-val) We know that e = v =new C(vy,...,v,). We choose as candidate rule (ABS-NEW).
We have to show that, for all ¢ € 1..n, (v;,v;) € A, that is, v;, @, @ |in v;, @ holds We can
get the thesis thanks to rule (IN-vaL).

(IN-field) We know that e=¢'.f and ¢, @, @ |innew C(v;...v,),8. We choose as candidate
rule (ABs-FIELD), with conclusion ¢'.f |} v;. We have to show that (¢/,new C(vy...v,)) € A,
that is, ¢/, @, linnew C(v1...v,), holds, but this is true by hypothesis.

(IN-new) We know that e;, @, @ |in vi, @ holds for all 7 € 1..n. We choose as candidate rule
(aBs-NEW). We have to show that, for all i € 1..n, (e;,v;) € A, that is, ¢;, 3, @ |in v;, @
holds, but this is true by hypothesis.

(IN-invk-ok) We know that e = ey.m(€), ¢;, 3, d Jin v;, @ holds for all i € 0..n, ¢ = vo.m(v),
mbody(C,m) = (z,€¢), and €'[vy/this][v/Z],2,{c} lin v,@ holds. We choose as can-
didate rule (aBs-invk). We have to show that, for all ¢ € 0.m, (e,v;) € A, and
(¢'[vo/this][v/z],v) € A. That is, that the following judgments hold: ¢;, @, @ |in vi, @
for all i € 0..n, and €'[vg/this][v/Z], @, @ |in v, @. The judgments in the first set hold by
hypothesis. The last judgment holds thanks to Lemma 25, where S’ = @.

(IN-invk-check) We know that e = ey.m(€), ;, @, @ }ix v;, @ holds for all i € 0..n, ¢ = vy.m(7),
mbody(C,m) = (T,¢), and € [v/this][v/Z],{c : v},2 |ix v,@ holds. We choose as
candidate rule (aBs-iNvk). We have to show that for all i € 0..n, (e;,v;) € A, and
(€'[v/this][v/z],v) € A. That is, that the following judgments hold: e;, @, @ N v;, @
for all 4 € 0..n, and €'[vy/this][7/Z],d, @ |in v, 2. The judgments in the first set hold by
hypothesis. The last judgment holds thanks to Lemma 26, since from the hypothesis we
easily get ¢, @, @ | in v, D.

(IN-corec) Empty case since to apply the rule it should be S # @.

(IN-look-up) Empty case since to apply the rule it should be p # @.

7 Related work

As already mentioned, the idea of regular corecursion (keeping track of pending method
calls, so to detect cyclic calls), originates from co-SLD resolution [20, 21, 7]. Making regular
corecursion flexible means that the programmer can specify the behaviour in case a cycle is
detected. Language constructs to achieve such flexibility have been proposed in the logic
[2, 3], functional [17], and object-oriented [8, 9] paradigm.

Logic paradigm. The above mentioned co-SLD resolution [20, 21, 7] is a sound resolution
procedure based on cycle detection. That is, the interpreter keeps track of resolved atoms and
an atom selected from the current goal can be resolved if it unifies with an atom that has been
already resolved. In this way it is possible to define coinductive predicates. Correspondingly,
models are subsets of the complete Herbrand basis, that is, the set of ground atoms built on
arbitrary (finite or infinite) terms, and the declarative semantics is the greatest fixed point
of the monotone function associated with a program. Structural resolution [18, 14] (a.k.a.
S-resolution) is a proposed generalization for cases when formulas computable at infinity are

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

not regular; infinite derivations that cannot be built in finite time are generated lazily, and
only partial answers are shown. More recently, a comprehensive theory has been proposed
[11] to provide operational semantics that go beyond loop detection.

Anyway, in coinductive logic programming, only standard coinduction is supported. The
notion of finally clause, introduced in [2], allows the programmer to specify a fact to be
resolved when a cycle is detected, instead of simply accepting the atom. The approach has
been refined in [3], following the guidelines given by the formal framework of generalized
inference systems. That is, the programmer can write special clauses corresponding to corules,
so that, when an atom is found for the second time, standard SLD resolution is triggered
in the program enriched by the corules. However, this paradigm is very different from the
object-oriented one, since based on relations rather than functions: cycles are detected on
the same atom, where input and output are not distinguished, by unification.

Functional paradigm. CoCaml (www.cs.cornell.edu/Projects/CoCaml) [17, 16] is a
fully-fledged extension of OCaml supporting non-well-founded data types and corecurs-
ive functions. CoCaml, as OCaml, allows programmers to declare regular values through the
let-rec construct, and, moreover, detects cyclic calls as in our approach. However, whereas
coFJ immediately evaluates the cyclic call by using the codefinition, the CoCaml approach
is in two phases. First, a system of equations is constructed, associating with each call
a variable and partially evaluating the body of functions, where calls are replaced with
associated variables. Then, the system of equations is given to a solver specified in the
function definition. Solvers can be either pre-defined or written by the programmer in order
to enhance flexibility. An advantage that we see in our approach is that the programmer has
to write the codefinition (standard code) rather than working at the meta-level to write a
solver, which is in a sense a fragment of the interpreter. A precise comparison is difficult for
the lack of a simple operational model of the CoCaml mechanism. In future work, we plan
to develop such model, and to relate the two approaches on a formal basis.

Object-oriented paradigm. A previous version of COFJ has been proposed in [8]. At this
time, however, the framework of inference systems with corules was still to come, so there
was no formal model against which to check the given operational semantics, which, indeed,
derived spurious results in some cases, as illustrated in Section 4 at page 16. The operational
semantics provided in the current paper solves this problem, and is proved to be sound with
respect to the abstract semantics. Moreover, we adopt a simpler representation of cyclic
objects through capsules [16]. A type system has been proposed [9] for the previous version
of cOFJ to prevent unsafe use of the “undetermined” value. We leave to further work the
investigation of typing issues for the approach presented in this paper.

8 Conclusion

The Java-like calculus presented in this paper promotes a novel programming style, which
smoothly incorporates support for cyclic data structures and coinductive reasoning, in the
object-oriented paradigm. Our contribution is foundational: we provide an abstract semantics
based on corules and show that it is possible to define a sound operational model; such
operational semantics is inductive, syntax-directed and deterministic, hence can be directly
turned into an interpreter. In order to get a “real-world” language, of course many other
issues should be taken into account.

1:25

ECOOP 2020

www.cs.cornell.edu/Projects/CoCaml

1:26

Sound Regular Corecursion in coFJ

Our prototype implements the abstract semantics on top of a Prolog meta-interpreter
supporting flexible regular corecursion [3]. In this way, the inference system is naturally
translated in Prolog!'?, cyclic terms are natively supported, and their equality handled by
unification. A fully-fledged interpreter of the operational semantics should directly handle
these issues and, moreover, attempt at some optimization.

The current paper does not deal with types: an important concern is to guarantee type
soundness, statically ensuring that an undetermined value never occurs as receiver of field
access or method invocation, as investigated in [9] for the previous cOFJ version [8].

Another issue is how to train developers to write codefinitions. Standard recursion is
non-trivial as well for beginners, whereas it becomes quite natural after understanding its
mechanism. For regular corecursion the same holds, with is the additional difficulty of
reasoning on infinite structures. Intuitively, the codefinition can be regarded as a base case
to be applied when a loop is detected. Moreover, again as for standard recursion, this novel
programming style could be integrated with proof techniques to show the correctness of
algorithms on cyclic data structures. Such proofs could be mechanized in proof assistants, as
Agda, that provide built-in support for coinductive definitions and proofs by coinduction.

Finally, a non-trivial challenge is how to integrate regular corecursion, requiring to detect
“the same call”, with the notion of mutable state. Likely, some immutability constraints will be
needed, or a variant of the model where such a check requires a stateless computation. Another
solution is to consider the check as an assertion that can be disabled if the programmer has
verified the correctness of the method by hand or assisted by a tool.

The semantics of flexible regular corecursion in the paper is the operational counterpart of
that obtained by considering recursive functions as relations, and recursive definitions (with
codefinition) as inference systems (with corules). We prove that the operational semantics is
sound with respect to that interpretation. Obviously, completeness does not hold in general,
since the abstract semantics deals with not only cyclic data structures (such as [2,1]“), but
arbitrary non-well-founded structures (such as the list of natural numbers). Even considering
only regular proof trees in the abstract semantics, in some subtle cases there is more than
one admissible result!®, whereas the operational semantics, being deterministic, finds “the
first” among such results, as reasonable in an implementation . We plan to investigate such
completeness issues in further work, also in the more general framework of inference systems,
that is, to characterize judgments which have a regular proof tree.

We also plan to study how to deal with flexible corecursion in other programming
paradigms, notably in the functional paradigm, and to compare on a formal basis this
approach with the CoCaml approach relying on solvers, rather than codefinitions.

As already discussed in the Introduction, lazy evaluation and regular corecursion are
complementary approaches to deal with infinite data structures. With the lazy approach,
arbitrary (computable) non-well-founded data structures are supported. However, we cannot
compute results which need to explore the whole structure, whereas, with regular corecursion,
this becomes possible for cyclic structures: for instance we can compute allPos one_two,
which diverges in Haskell. A natural question is then whether it is possible to extend
the regular corecursion approach to manage also non-regular objects, thus overcoming the
principal drawback with respect to the lazy approach. A possible interesting direction,
exploiting the work of Courcelle [12] on infinite trees, could be to move from regular to
algebraic objects.

12 A logic program can be seen as an inference system where judgments are atoms.
13 For instance, the list with no repetitions extracted from [1,2]* can be either [1,2] or [2,1].

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca

—— References

1

10

11

12

13

14

15

16

17

18

P. Aczel. An introduction to inductive definitions. In Handbook of Mathematical logic. North
Holland, 1977.

Davide Ancona. Regular corecursion in Prolog. Computer Languages, Systems € Structures,
39(4):142-162, 2013.

Davide Ancona, Francesco Dagnino, and Elena Zucca. Extending coinductive logic program-
ming with co-facts. In Ekaterina Komendantskaya and John Power, editors, First Workshop on
Coalgebra, Horn Clause Logic Programming and Types, CoALP-Ty’16, volume 258 of Electronic
Proceedings in Theoretical Computer Science, pages 1-18. Open Publishing Association, 2017.
doi:10.4204/EPTCS.258.1.

Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by
coaxioms. In Hongseok Yang, editor, 26th European Symposium on Programming, ESOP
2017, volume 10201 of Lecture Notes in Computer Science, pages 29-55. Springer, 2017.
d0i:10.1007/978-3-662-54434-1_2.

Davide Ancona, Francesco Dagnino, and Elena Zucca. Reasoning on divergent computations
with coaxioms. PACMPL, 1(OOPSLA):81:1-81:26, 2017.

Davide Ancona, Francesco Dagnino, and Elena Zucca. Modeling infinite behaviour by corules.
In ECOOP’18 - Object-Oriented Programming, pages 21:1-21:31, 2018.

Davide Ancona and Agostino Dovier. A theoretical perspective of coinductive logic program-
ming. Fundamenta Informaticae, 140(3-4):221-246, 2015.

Davide Ancona and Elena Zucca. Corecursive Featherweight Java. In FTfJP’12 - Formal
Techniques for Java-like Programs, pages 3—10. ACM Press, 2012.

Davide Ancona and Elena Zucca. Safe corecursion in coFJ. In FTfJP’18 - Formal Techniques
for Java-like Programs, page 2. ACM Press, 2013.

Pietro Barbieri, Francesco Dagnino, Elena Zucca, and Davide Ancona. Corecursive Feather-
weight Java revisited. In Alessandra Cherubini, Nicoletta Sabadini, and Simone Tini, editors,
ICTCS’19 - Italian Conf. on Theoretical Computer Science, volume 2504 of CEUR Workshop
Proceedings, pages 158-170. CEUR-WS.org, 2019. URL: http://ceur-ws.org/Vol-2504/
paper19.pdf.

Henning Basold, Ekaterina Komendantskaya, and Yue Li. Coinduction in uniform: Foundations
for corecursive proof search with Horn clauses. In Programming Languages and Systems -
28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, pages 783-813, 2019.

B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95-169,
1983.

Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Logical
Methods in Computer Science, 15(1), 2019. URL: https://1lmcs.episciences.org/5277.
E.Komendantskaya et al. A productivity checker for logic programming. Post-proc. LOPSTR’16,
2017. arXiv:1608.04415.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming: Systems, Languages
and Applications 1999, pages 132—146. ACM Press, 1999. doi:10.1145/320384.320395.
Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. Journal of Automata,
Languages and Combinatorics, 17(2-4):185-204, 2012. doi:10.25596/jalc-2012-185.
Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Cocaml: Functional programming
with regular coinductive types. Fundamenta Informaticae, 150:347-377, 2017.

E. Komendantskaya et al. Coalgebraic logic programming: from semantics to implementation.
J. Logic and Computation, 26(2):745, 2016. doi:10.1093/logcom/exu026.

1:27

ECOOP 2020

https://doi.org/10.4204/EPTCS.258.1
https://doi.org/10.1007/978-3-662-54434-1_2
http://ceur-ws.org/Vol-2504/paper19.pdf
http://ceur-ws.org/Vol-2504/paper19.pdf
https://lmcs.episciences.org/5277
http://arxiv.org/abs/1608.04415
https://doi.org/10.1145/320384.320395
https://doi.org/10.25596/jalc-2012-185
https://doi.org/10.1093/logcom/exu026

1:28 Sound Regular Corecursion in coFJ

19 X. Leroy and H. Grall. Coinductive big-step operational semantics. Information and Compu-
tation, 207(2):284-304, 2009.

20 L. Simon. Ezxtending logic programming with coinduction. PhD thesis, University of Texas at
Dallas, 2006.

21 L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending logic
programming with coinduction. In ICALP 2007, pages 472—-483, 2007.

	Inference systems with corules
	From FJ to coFJ
	coFJ and its abstract semantics
	Operational semantics
	Advanced examples
	Soundness
	Related work
	Conclusion

