
Formal Requirements Analysis and

Specification-Based Testing in

Cyber-Physical Systems

Simone Vuotto

A thesis submitted in fulfillment

of the requirements of the degree of

Doctor of Philosophy

Advisors:

Professor Armando Tacchella, University of Genoa, Italy

Professor Luca Pulina, University of Sassari, Italy

University of Genoa, Italy

Acknowledgements

This thesis is the result of three challenging years of work that I shared with

the people of AIMS Lab (University of Genoa), and IDEA Lab (University

of Sassari). First of all, I would like to acknowledge and thank my advisors

Armando and Luca for their scientific and personal support that they gave me

along this difficult journey, especially when firmness swayed. Similarly, I am

very much indebted with my coauthors Massimo Narizzano and Laura Pandolfo

for their contribution and precious advices. I would also like to acknowledge

the CERBERO H2020 and the FitOptivis ECSEL EU projects, that sustained

my work, and the great people that participated and contributed to them.

However, aside the scientific aspects there are so many other people that I

would like to thank. First, I have been very lucky to spend lot of this time

in the beautiful Sardinia island and I felt very welcomed by sardinians. A

special mention goes to the IDEA Lab people: Claudio, Francesca, Laura, Luca,

Maria Grazia, Monica, Tiziana and Valentina. Outside the university I also met

fabulous people. In particular, I would like to thank my flatmate Giulia, with

whom I shared the apartment, many delicious dinners and many funny moments

along the way, and the gym group that, although I wasn’t really constant with

my exercises, welcomed me as one of them. Among them, there is one person

that I cannot thank enough: Giovanni. He took me under his protective wing

and he was always there to listen and to give helpful advices on any matter.

Another important person that I met in Sassari is Imèn. The time we shared

was special and she managed to be a constant presence regardless the distance.

I also would like to thank my Genoese friends, and especially Nicolò, Marta,

Pinka and Diego that helped me feel the past lockdown less harsh. The same

applies for my Erasmus friends: Giulia, Margherita, Martina, and Miguel. Many

ii

years passed from our meeting, but distance didn’t affect our friendship and

when we talk it is like we never left.

Another big thanks goes to my historic group of friends in Brescia: Al-

ice, Andrea, Caterina, Chiara, Corrado, Erica, Fabio, Federica, Francesco and

Vanessa. Despite the many years I spent far from my hometown, they have

always been a fix point, a certainty in a world of chaos.

Finally, my gratitude goes to my parents and all my family for their love

and support. I feel lucky to be part of such a large and cohesive family, where

everyone is ready to help each other. Above all, I would like to dedicate this

thesis to my grandma Annunziata, who unfortunately left us at the begging of

this troubled 2020, and my grandpa Bonaventura. They are the two pillars of

the family and, with more than 60 years of marriage, they taught me the real

meaning of love. I hope to always make you proud.

Abstract

Formal requirements analysis plays an important role in the design of safety- and

security-critical complex systems such as, e.g., Cyber-Physical Systems (CPS).

It can help in detecting problems early in the system development life-cycle,

reducing time and cost to completion. Moreover, its results can be employed at

the end of the process to validate the implemented system, guiding the testing

phase. Despite its importance, requirements analysis is still largely carried out

manually due to the intrinsic difficulty of dealing with natural language require-

ments, the most common way to represent them. However, manual reviews are

time-consuming and error-prone, reducing the potential benefit of the require-

ment engineering process. Automation can be achieved with the employment

of formal methods, but their application is still limited by their complexity and

lack of specialized tools.

In this work we focus on the analysis of requirements for the design of CPSs,

and on how to automatize some activities related to such analysis. We first study

how to formalize requirements expressed in a structured English language, en-

code them in linear temporal logic, check their consistency with off-the-shelf

model checkers, and find minimal set of conflicting requirements in case of in-

consistency. We then present a new methodology to automatically generate

tests from requirements and execute them on a given system, without requiring

knowledge of its internal structure. Finally, we provide a set of tools that im-

plement the studied algorithms and provide easy-to-use interfaces to help their

adoption from the users.

Contents

1 Introduction 2

1.1 Research Area, Motivations and Goals 2

1.2 Thesis outline . 5

1.3 Relevant Publications . 6

1.3.1 In preparation . 7

2 Background 8

2.1 ω-languages and Automata . 8

2.2 Linear Temporal Logic . 10

2.2.1 Syntax . 10

2.2.2 Semantics . 11

2.3 Sanity Checking . 12

2.3.1 LTL satisfiability . 13

2.4 Property Specification Patterns 14

2.5 Minimal Unsatisfiable Cores . 17

2.6 Conformance Testing . 18

3 State of the Art and Related Work 20

3.1 Requirements Formalization and Analysis 20

3.1.1 Formalization and Consistency Checking 20

3.1.2 Inconsistency Explanation 22

3.2 Automatic Testing from LTL specification 23

4 Consistency Checking 26

4.1 Constraint Property Specification Patterns 29

vii

4.2 Inconsistency Explanation . 37

4.2.1 Linear Deletion-Based MUC Extraction 38

4.2.2 Dichotomic MUC Extraction 39

4.3 Analysis with Probabilistic Requirement Generation 42

4.3.1 Evaluation of LTL(Dc) Satisfiability 43

4.3.1.1 Evaluation of LTL satisfiability solvers. 43

4.3.1.2 Evaluation of scalability. 44

4.3.2 Evaluation of MUC Extraction 47

4.4 Analysis with a Controller for a Robotic Manipulator 50

5 Requirements-Based Black-Box Testing 54

5.1 Automatic Test Case Generation from LTL specification 56

5.1.1 Requirements and Automata Processing 57

5.1.2 Test Oracle . 57

5.1.3 Input Generator . 59

5.2 Experimental Analysis . 61

5.2.1 Syntcomp Benchmarks . 61

5.2.2 Adaptive Cruise Control 63

5.2.3 Robotic Manipulator . 66

6 Tools 68

6.1 SpecPro . 69

6.1.1 Parse And Translate Requirements 69

6.1.2 Consistency Checking . 70

6.1.3 Testing . 71

6.1.3.1 SUT . 73

6.2 ReqV . 74

6.2.1 Architecture . 74

6.2.2 Workflow . 77

6.3 ReqT . 80

6.3.1 Workflow . 81

7 Conclusion 84

7.1 Summary of Contributions . 84

CONTENTS ix

7.2 Open challenges and future work 86

Chapter 1

Introduction

1.1 Research Area, Motivations and Goals

Requirements Engineering (RE) is the branch of software and system engi-

neering concerned with real-world goals for, functions of, and constraints on

systems [Lap17]. Requirements play an important role in the development life-

cycle of a system; they usually are defined and collected at the beginning of the

design process and influence all the subsequent steps. They are used and shared

among many different stakeholders, namely the set of individuals that have some

interest in the realization of the system, and they can range from high-level ab-

stract statements to formal and mathematically rigorous specifications. For

this reason, requirements are sometimes categorized into three (or more) levels

of abstraction: user requirements, system requirements and design specifica-

tions. Other kinds of taxonomies are also possible, e.g., based on their content

(functional vs non-functional requirements). The definition of a requirements

specification document raises many challenges that have to be undertaken. The

RE process involves a large variety of activities to tackle such problems, such,

for example, requirements elicitation and discovery; management and traceabil-

ity; analysis; modeling; verification and validation; etc. Hence, the RE research

field aims at developing tools and techniques to address these activities in a

more efficient and automatic way. Formal methods proved to be a powerful ally

in tackling many of such activities, providing precise formalism and reasoning

2

CHAPTER 1. INTRODUCTION 3

capabilities [WLBF09].

In this thesis we focus on some of these challenges, addressed in the context

of the “Cross-layer modEl-based fRamework for multi-oBjective dEsign of Re-

configurable systems in unceRtain hybRid envirOnments” (Cerbero) H2020 EU

project [MPM+17, PFS+19] first, and the “From the cloud to the edge – smart

IntegraTion and OPtimisation Technologies for highly efficient Image and VIdeo

processing Systems” (Fitptivis) ECSEL EU Project [AABdB+19] later. In par-

ticular, we deal with system level functional requirements of Cyber-Physical

Systems (CPS), i.e., systems with tightly coupled hardware and software com-

ponents that operate in a physical (unsupervised) environment.

Our first research question is how to represent, formalize and check the con-

sistency of requirements. To deal with this problem, two different strategies

are proposed in the literature: the former involves the application of Natural

Language Processing (NLP) techniques to understand arbitrary requirements

written in unrestricted natural language; the latter define a restricted and con-

trolled language to eliminate ambiguity and to maintain a clear semantics. Ex-

amples of the former strategy are ARSENAL [GEL+16], that performs con-

sistency checking and generates state-machine implementations for consistent

sets of requirements, and [FB16], a general architecture and an evaluation tool

that parses natural-language requirements, interacts with the users for clarifica-

tions, and create initial partial implementations. However, as stated in [FB16],

the state of the art in natural-language processing is still far from what would

be required to fully analyze system requirements. Moreover, [BGST12] argues

against the use of NLP-based tools in Requirement Engineering tasks because

they cannot provide guarantees of completeness and correctness, essential in

safety- and security-critical system, and they could be counter-productive in

practice. In spite of these limitations, they can still be effectively deployed in

early stages of the design process and for non-critical systems, because they do

not require any prior knowledge or restriction from the system engineer point

of view; and they can address the large body of existing unformalized require-

ments. Examples of the latter strategy are Attempto Controlled English (ACE)

[FKK08], that defines a controlled subset of natural language and can unam-

biguously translate text into discourse representation structures, a syntactic

CHAPTER 1. INTRODUCTION 4

variant of first-order logic, and Property Specification Patterns (PSPs), first

introduced in [DAC99]. PSPs are a collection of parameterizable, high-level,

formalism-independent specification abstractions usually based on a restricted

English grammar. Since the original work of Dwyer [DAC99], a considerable

number of property specification pattern systems have been proposed, ground-

ing on different logics. A unified catalog that collects and combines all the

proposed patterns is presented in [AGL+15]. In our work, we embrace PSPs

backed with Linear Temporal Logic (LTL) [Pnu77], and extend them with the

addition of constraint numerical signal. We formally present the proposed en-

coding and we show how to automate the consistency check of requirements

using state-of-the-art tools available in the literature. Moreover, since general

purpose model checkers and satisfiability checkers do not provide useful informa-

tion for debugging in case of inconsistency, we propose two algorithms devoted

to extract minimal subsets of inconsistent requirements.

The second research goal is to determine how to use the formalized and ver-

ified requirements to validate the implemented system. In theory, formal verifi-

cation techniques can be used to automatically check the system against a given

specification, giving strong correctness guarantees. However, these techniques

suffer of known scalability issues and the complete verification of the specifica-

tion becomes impractical or even impossible for complex systems. Moreover, it

is often the case that a complete, explicit and formal model of the system is not

available, making model checking unfeasible. For these reasons, testing is the

preferred technique for hardware and software verification in industry, although

it provides less guarantees; testing can only detect the presence of errors, not

their absence. Nonetheless, a formal specification can still be of great practical

use to automatically generate test suites to show conformance of the model and

the actual implementation, or, just to derive “interesting” test cases to check the

developed system [BJK+05]. A large body of work studied how to automatically

generate tests from LTL specifications, exploiting the model checkers capability

to generate counter examples for violated formulas [FWA09]. However, in our

work we assume that a formal model of the system is not available, and therefore

we need to look for an alternative strategy. Techniques aimed at automated test

generation for black-box reactive systems relying on formal models of the specifi-

CHAPTER 1. INTRODUCTION 5

cations have been explored — see, e.g., [KT04, BBD19, KGHS98, SEG00, JJ05]

— relying on the concept of specification coverage. Following this stream of re-

search, in [AGR13] the authors describe a methodology for online testing of Java

classes by exploiting a monitor derived from LTL specifications to check confor-

mance of the system to stated requirements. In our work, we aim at generalizing

and extending the approach proposed in [AGR13], addressing a more general

class of properties. To validate our approach, we evaluate it in three different

experimental setting, comparing it with other state-of-the-art techniques.

Finally, our third research objective is to make these technologies accessible

to practitioners. To this end, we implemented three different tools:

• SpecPro: it is a Java library containing the implementation of all the

algorithms discussed in this thesis. It also provides utilities to interact

with external tools and it provides simple APIs for the developers. It is

also the core upon which the other two tools are developed.

• ReqV: it is a web application that helps the user to write, manage and

verify the consistency of requirements expressed as PSPs. The user can

interact with the ReqV front-end with any commercial browser and all

the computationally demanding tasks are executed in background on the

back-end.

• ReqT: it is a desktop application that is designed to automatically generate

and execute tests on a given system. It takes in input a formal specification

written as a list of PSPs or LTL requirements and produce a report with

the executed tests and the result of their evaluation.

All of them have been applied in Cerbero [PFS+19] and partially in Fitop-

tivis [AABdB+19] projects.

1.2 Thesis outline

The remainder of this document is organized as follows. Chapter 2 introduces

the necessary background and definitions on the topics we touch in this thesis.

Chapter 4 discuss how to formalize a set of requirements, check their consistency

and find minimal set of conflicting ones in case of inconsistency. Chapter 5

CHAPTER 1. INTRODUCTION 6

present a testing framework for black-box reactive systems that automatically

generate tests from a set of consistent requirements. In Chapter 6 we present

three different tools that implement the algorithms studied in this thesis and

provide easy-to-use interfaces for non-expert users. Finally, in Chapter 7 we

conclude the thesis with a summary of the achieved results and outlining some

possible directions for future research.

1.3 Relevant Publications

Below I list the articles that, together with the fruitful collaboration of my co-

authors, we published in different conferences and journals and that contain the

contributions presented in this thesis.

• [NPTV18] Massimo Narizzano, Luca Pulina, Armando Tacchella, and Si-

mone Vuotto. Consistency of property specification patterns with boolean

and constrained numerical signals. In NASA Formal Methods: 10th Inter-

national Symposium, NFM 2018, Newport News, VA, USA, April 17-19,

2018, Proceedings, volume 10811, pages 383–398. Springer, Springer Ver-

lag, 2018. https://doi.org/10.1007/978-3-319-77935-5 26

• [Vuo18] S. Vuotto. Requirements-driven design of cyber-physical systems.

In Proceedings of the Cyber-Physical Systems PhD & Postdoc Workshop

2018, volume 2208 of CEUR Workshop Proceedings, pages 38–44. CEUR-

WS, 2018. http://ceur-ws.org/Vol-2208/6.pdf

• [NPTV19] M. Narizzano, L. Pulina, A. Tacchella, and S. Vuotto. Property

specification patterns at work: verification and inconsistency explanation.

Innovations in Systems and Software Engineering, 15(3-4):307–323, 2019.

https://doi.org/10.1007/s11334-019-00339-1

• [VNPT19a] S. Vuotto, M. Narizzano, L. Pulina, and A. Tacchella. Au-

tomata based test generation with specpro. In 2019 IEEE/ACM 6th In-

ternational Workshop on Requirements Engineering and Testing (RET),

pages 13–16. IEEE, 2019. https://doi.org/10.1109/RET.2019.00010

• [VNPT19b] S. Vuotto, M. Narizzano, L. Pulina, and A. Tacchella. Poster:

Automatic consistency checking of requirements with reqv. In 2019 12th

CHAPTER 1. INTRODUCTION 7

IEEE Conference on Software Testing, Validation and Verification (ICST),

pages 363–366. IEEE, 2019. https://doi.org/10.1109/ICST.2019.00043

• [Vuo19] S. Vuotto. Automata-based generation of test cases for reactive

systems. In Proceedings of the Cyber-Physical Systems PhD & Postdoc

Workshop 2019, volume 2457 of CEUR Workshop Proceedings, pages 96–

106. CEUR-WS, 2019. http://ceur-ws.org/Vol-2457/10.pdf

• [NPTV20] M. Narizzano, L. Pulina, A. Tacchella, and S. Vuotto. Au-

tomated requirements-based testing of black-box reactive systems. In

NASA Formal Methods: 12th International Symposium, NFM 2020, Mof-

fett Field, CA, USA, May 11–15, 2020, Proceedings, volume 12229, pages

153–169. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-55754-

6 9

1.3.1 In preparation

The following publication is currently under submission and is part of my re-

search activity in the Fitoptivis EU project.

• [PPVon] L. Pandolfo, L. Pulina, and S. Vuotto. Smt-based consistency

checking of configuration-based components specifications. Under sub-

mission

Chapter 2

Background

The goal of this chapter is to give basic definitions and terminology that will

serve as a basis for the concepts presented in later chapters. The content of this

chapter is intended mainly as a reference and it is not meant to be complete.

For a more extensive treatment of the mentioned arguments, the reader can

consult [BK08] and [BJK+05].

2.1 ω-languages and Automata

Given a set of symbols Σ (also called alphabet), a word over Σ is a sequence

A0A1 . . . of symbols, where Ai ∈ Σ, ∀i ≥ 0. A word is finite if it is a sequence of

finite length, or it is infinite otherwise. By convention, we use lowercase Latin

letters w, v, u to denote finite words and the Greek letter σ to denote infinite

words. The Greek letter ε is used to indicate the special case of the empty word.

We also use the notation σ[i] = Ai for the (i+ 1)-th element of σ and σ[j . . .] =

AjAj+1 . . . to denote the suffix of σ starting in the (j + 1)-th symbol Aj .

Σ∗ denotes the set of all finite words over Σ and a subset L ⊆ Σ∗ is a

finite language over Σ. Similarly, Σω is the set of all infinite words over Σ and

any subset Lω ⊆ Σω is a language of infinite words, also called ω-language.

A finite language L1 and an infinite language L2 can be combined using the

concatenation operator L1.L2 to create a new language defined by L1.L2 = {wσ

| w ∈ L1, σ ∈ L2}.

In particular, we are interested in a class of ω-languages called ω-regular

8

CHAPTER 2. BACKGROUND 9

languages, defined below. ω-regular languages are important for verification

because many relevant linear temporal properties fall into this category.

Definition 2.1.1 (ω-Regular Expression). An ω-regular expression G over the

alphabet Σ has the form

G = E1.F
ω
1 + · · ·+ En.F

ω
n

where n ≥ 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that

ε /∈ L(Fi), for all 1 ≤ i ≤ n and + is the union operator.

The semantics of the ω-regular expression G is a language of infinite words,

defined by

Lω(G) = L(E1).L(F1)ω ∪ · · · ∪ L(En).L(Fn)ω

where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular

expression E. For a more detailed presentation of regular expressions we refer

to [HMU01].

Definition 2.1.2 (ω-Regular Language). A language L ⊆ Σω is called ω-regular

if L = Lω(G) for some ω-regular expression G over Σ.

Recognizing ω-regular languages, i.e., deciding if a word σ is part of the ω-

regular language L, requires to check all the infinite symbols of the input word.

A way to achieve this goal is with ω-automta, namely variants of nondeterminis-

tic finite-state automata with a special acceptance criteria for infinite words. In

the literature, different kinds of ω-automata have been proposed. Here we focus

on a specific type of ω-automata called Nondeterministic Büchi Automata.

Definition 2.1.3 (Nondeterministic Büchi Automata). A non deterministic

Büchi Automata (NBA) A is a tuple A = (Q, Σ, δ, Q0, F) where:

• Q is a finite set of states,

• Σ is a finite set of symbols,

• δ : Q× Σ → 2Q is a transition function

• Q0 ⊆ Q is the set of initial states

• F ⊆ Q is a set of accepting states, called acceptance set.

CHAPTER 2. BACKGROUND 10

Definition 2.1.4 (Run). A run for an infinite word σ = A0A1A2... ∈ Σω

denotes an infinite sequence %= q0q1q2... of states in A such that q0 ∈ Q0 and

qi+1 ∈ δ(qi, Ai) for i ≥ 0, with qi, qi+1 ∈ Q.

Notice that each run % in a NBA induces a corresponding word σ ∈ Σω.

Definition 2.1.5 (Accepting run). A run % is accepting if there exist qi ∈ F

such that qi occurs infinitely many times in %.

A different kind of automaton, called monitor, is designed to follow the

execution of a system and move accordingly. An error is detected when the

monitor cannot move, i.e., the system has performed some action, or reached

some state that it was not meant to be. In other words, the monitor reports an

error whenever a bad prefix of the language occurs.

Definition 2.1.6 (Monitor). A monitorM is a tupleM = (Q, Σ, δ, q0) where:

• Q is a finite set of states,

• Σ is an alphabet,

• δ : Q× Σ → 2Q is a transition function

• q0 ∈ Q is the initial state

2.2 Linear Temporal Logic

In this section we introduce the syntax and semantics of Linear Temporal Logic

(LTL), a logical formalism that extend the standard propositional logic with

temporal operators, and we present the concept of LTL satisfiability.

2.2.1 Syntax

Linear temporal logic (LTL) [Pnu77] formulas are built on a finite set Prop of

atomic propositions as follows:

φ = p | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2 | (φ)

where p ∈ Prop, φ, φ1, φ2 are LTL formulas, X is the “next” operator and

U is the “until” operator. In the following, unless specified otherwise using

CHAPTER 2. BACKGROUND 11

parentheses, unary operators have higher precedence than binary operators. We

consider other Boolean connectives like “∧” and “→” with the usual meaning,

and we abbreviate p∨¬p as >, p∧¬p as ⊥. We also take into account additional

temporal operators that can be derived as follow: 3φ (“eventually”) to denote

>U φ, 2φ (“always”) to denote ¬3¬φ, and αW β (“weak until”) defined as

2α ∨ (αU β).

2.2.2 Semantics

An LTL formula can be interpreted either over words or over a computation.

This lead to two equivalent definitions of the LTL semantics, that we report

below.

Definition 2.2.1 (Semantics Over Words). Let φ be an LTL formula over the

set AP and let σ=A0A1A2 . . . be an infinite word over (2AP). We define the

relation “|=” between σ and φ as as the smallest relation with the following

properties:

1. σ |= true

2. σ |= a iff a ∈ σ[0]

3. σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

4. σ |= ¬ φ iff σ 6|= φ

5. σ |= X φ iff σ[1...] |= φ

6. σ |= φ1 U φ2 iff ∃j ≥ 0 such that σ[j...] = AjAj+1... |= φ2 and σ[i...] |= φ1

∀0 ≤ i < j

Definition 2.2.1 allows to interpret the semantics of LTL formula φ as the

language Words(φ) that contains all infinite words over the alphabet 2AP that

satisfy φ.

Definition 2.2.2 (Semantics Over Computations). a computation, i.e., a func-

tion π : N→ 2AP which assigns truth values to the elements of AP at each time

instant (natural number). For a computation π and a time instant i ∈ N:

• π, i |= p for p ∈ AP iff p ∈ π(i)

CHAPTER 2. BACKGROUND 12

• π, i |= ¬α iff π, i 6|= α

• π, i |= (α ∧ β) iff π, i |= α and π, i |= β

• π, i |= X α iff π, i+ 1 |= α

• π, i |= α U β iff for some j ≥ i, we have π, j |= β and for all k, i ≤ k < j

we have π, k |= α

We say that π satisfies a formula φ, denoted π |= φ, iff π, 0 |= φ. If π |= φ for

every π, then φ is valid and we write |= φ.

Definition 2.2.3 (Semantics Over Transition Systems). A transition system

M satisfy a formula φ iff all the computations ΠM generated from M satisfy

φ. Formally:

M |= φ
def
= ∀π ∈ ΠM : π |= φ

2.3 Sanity Checking

Writing formal specifications is a difficult task, which is prone to errors just as

developing the system. However, some automatic activities can be performed

to check the sanity of requirements. Some of these activities are, for example,

vacuity checking, completeness checking and consistency checking [BBB+16].

A specification is satisfied vacuously in a model if it is satisfied in some non-

interesting way; borrowing the example from [RV10], the LTL specification “ev-

ery request is eventually followed by a grant” is satisfied vacuously in a model

with no requests. Vacuity checking can also be performed without the need of

a model, and in this case it is known as inherent vacuity checking [FKSFV08,

RV11]. Completeness checking is equivalent to verify if the set of requirements

covers all reasonable behaviors of a system. Completeness can be checked in

combination with a system model, but in [BBB+16] a proposal for model-free

completeness checking is also presented. Finally, requirements consistency is

about checking whether a real system can be implemented from a given set of

requirements. Therefore, two types of check [RV11] are possible: (i) realizabil-

ity, i.e., testing whether there is an open system that satisfies all the properties

in the set [PR89], and (ii) satisfiability, i.e., testing whether there is a closed

CHAPTER 2. BACKGROUND 13

system that satisfies all the properties in the set. Satisfiability checking ensures

that the behavioral description of a system is internally consistent and neither

over- or under-constrained. If a formal property is valid, namely always true,

or unsatisfiable, i.e. always false, than this is certainly due to an error. Even

if the satisfiability test is weaker than the realizability test, its importance is

widely recognized [RV11].

2.3.1 LTL satisfiability

Recall that a logical formula φ is valid iff its negation ¬φ is not satisfiable.

LTL satisfiability checking, for a given LTL formula φ, consists in determin-

ing if there exists at least a model for which φ holds. In other words, do we

have Words(φ) 6= ∅ ? Among various approaches to decide LTL satisfiability,

reduction to model checking was proposed in [RV07] to check the consistency

of requirements expressed as LTL formulas. Given a formula φ over a set AP

of atomic propositions, a universal model M can be constructed, namely a

model that generates all possible computations over its atomic propositions. In-

tuitively, a universal model encodes all the possible computations over AP as

(infinite) traces, and therefore φ is satisfiable precisely when M does not satisfy

¬φ (see Definition 2.2.3).

In [RV11] a first improvement over this basic strategy is presented together

with the tool PANDA1. Similarly, [CRST07] employs a model checker on propo-

sitional abstractions of the problem in order to determine the satisfiability

of temporal properties. In [LZP+13] an algorithm based on automata con-

struction is proposed to enhance performances even further — the approach

is implemented in a tool called aalta. Further studies along this direction

include [LYP+14] and [LPZ+13]. In the latter, a portfolio LTL satisfiability

solvers called polsat is proposed to run different techniques in parallel and

return the result of the first one terminating successfully.

1https://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html

CHAPTER 2. BACKGROUND 14

2.4 Property Specification Patterns

To deal with the problem of requirements formalization, a common solution

adopte is the use of Property Specification Patterns (PSPs for short), first in-

troduced by [DAC99]. PSPs are a collection of parameterizable, high-level,

formalism-independent specification abstractions usually based on a restricted

English grammar.

They provide an easy way to express properties of a system with an English-

like syntax, while preserving a well-defined semantic and provide expressions

of such behaviors in a range of common formalisms. Since the original work

of [DAC99], a considerable number of property specification pattern systems

have been proposed, grounding on different logics. PSPs have successfully been

applied in many domains, such as automotive [PMHP12], aviation [EKN+12]

and banking [BGPS12].

There are three general types of PSPs: Qualitative, Real-Time and Proba-

bilistic specification patterns. These types aim at representing different aspects

of the system and are based on logics with different properties. [AGL+15] pre-

sented a unified catalog that combines all the qualitative, real-time and proba-

bilistic specification patterns in a single framework, aligning the English gram-

mar and identifying new patterns. They gathered together the translation of

PSPs in different logics on a dedicated website2 and provide a tool to guide

system engineers in the translation process.

In this work, we only focus on qualitative patterns with LTL translation and

we invite the reader to refer to [AGL+15] for a more extensive discussion.

An example of a PSP is given in Figure 2.1 — with some parts omitted

for sake of readability.3 A pattern is comprised of a Name (Response in Fig-

ure 2.1), an (informal) statement describing the behavior captured by the pat-

tern, and a (structured English) statement. The context-free grammar intro-

duced in [KC05] to express qualitative requirements is depicted in Figure 2.2.

The LTL mappings corresponding to different declinations of the pattern are

also given, where capital letters (P , S, T , etc.) stands for Boolean states/events.

2http://ps-patterns.wikidot.com
3We omitted aspects which are not relevant for our work, e.g., translations to other logics

like CTL [DAC99].

CHAPTER 2. BACKGROUND 15

Response

Describe cause-effect relationships between a pair of events/states. An occur-

rence of the first, the cause, must be followed by an occurrence of the second,

the effect. Also known as Follows and Leads-to.

Structured English Grammar

〈scope〉, it is always the case that if P holds, then S eventually holds.

LTL Mappings

Globally, it is always the case that if P holds, then S eventually holds.

2 (P → 3S)

Before R, it is always the case that if P holds, then S eventually holds.

3R → (P → (R U (S ∧R))) U R

After Q, it is always the case that if P holds, then S eventually holds.

2 (Q → 2 (P → 3S))

Between Q and R, it is always the case that if P holds, then S eventually holds.

2 ((Q ∧R ∧3R) → (P → (R U (S ∧R))) U R)

After Q until R, it is always the case that if P holds, then S eventually holds.

2 (Q ∧R → ((P → (R U (S ∧R))) W R)

Example

Globally, it is always the case that if object detected holds , then

moving to target eventually holds.

Figure 2.1: Response Pattern (α stands for ¬α).

CHAPTER 2. BACKGROUND 16

Figure 2.2: Structured Natural Language Specification

In more detail, a PSP is composed of two parts: (i) the scope, and (ii) the body.

The scope is the extent of the program execution over which the pattern must

hold, and there are five scopes allowed: Globally, to span the entire scope exe-

cution; Before, to span execution up to a state/event; After, to span execution

after a state/event; Between, to cover the part of execution from one state/event

to another one; After-until, where the first part of the pattern continues even if

the second state/event never happens. For state-delimited scopes, the interval

in which the property is evaluated is closed at the left and open at the right

end. The body of a pattern, describes the behavior that we want to specify.

In [DAC99], bodies are categorized in occurrence and order patterns. Occur-

rence patterns require states/events to occur or not to occur. Examples of

such bodies are Absence, where a given state/event must not occur within a

scope, and its opposite Existence. Order patterns constrain the order of the

states/events. Examples of such patterns are Precedence, where a state/event

must always precede another state/event, and Response, where a state/event

must always be followed by another state/event within the scope. Moreover,

we included the Invariant pattern introduced in [PH12], and dictating that a

state/event must occur whenever another state/event occurs. Combining scopes

and bodies we can construct 55 different types of patterns.

CHAPTER 2. BACKGROUND 17

2.5 Minimal Unsatisfiable Cores

Usually, inconsistency in a set of requirements is best explained in terms of

minimal subsets of requirements exposing the core issues within the specifica-

tion. The literature does not provide a consistent naming of such cores, and

the terms minimal inconsistency subset (MIS) [Ben17], minimal unsatisfiable

subset [BMS12] (MUS), minimal unsatisfiable core [LS08] (MUC), and also

High-Level MUC (HLMUC) [Nad10] are introduced to refer to the same con-

cept — in the following, and throughout the paper, we denote with MUC a

minimal set of inconsistent requirements. Algorithms for finding MUCs can be

divided in two basic groups: (i) those focusing on the extraction of a single

MUC, and (ii) those focusing on the extraction of all MUCs. These techniques

can be further divided into domain specific, i.e., targeting specific domains such

as propositional satisfiability [BMS11], and general purpose, i.e., high level algo-

rithms that can be applied to any domain provided that a consistency checking

procedure exists for that domain [Dra89]. The most basic general purpose so-

lution for computing a single MUC out of a set of logical constraints, consists

of iteratively removing constraints from an initial set. At each step, the set

of constraints represents an over-approximation of the MUC. This solution is

referred to as the deletion-based approach [Dra89, CD91, BDTW93, DGHP09].

Given a set R of n constraints, the deletion-based approach calls the consistency

checker exactly n times. When examining the i-th constraint, if R \ {ri} re-

mains inconsistent, then there is a MUC that does not include ri, and ri can be

removed; otherwise ri must be part of the MUC. This approach is guaranteed

to produce a set M ⊆ R such that, if a single requirement is eliminated from M ,

then M becomes consistent. However, the approach does not guarantee that

another MUC M ′ ⊆ R such that |M ′| ≤ |M | may not exist. Extraction of all

MUCs has received some attention, also because retrieving MUCs of minimal

size can be done simply by enumerating all MUCs. Finding all the MUCs of

a set of constraints R in a naive way amounts to check the consistency of all

the elements of the power set 2R, but this is clearly untenable in real world

applications. In [LM13], the power set of requirements is implicitly considered

as follows. Given a set of requirements R, if R′ ⊆ R is inconsistent, every

R′′ ⊃ R′ and R′′ ⊂ R is also inconsistent. Furthermore if R′ ⊆ R is consistent,

CHAPTER 2. BACKGROUND 18

every R′′ ⊂ R′ is consistent too. This algorithm can be modified to find a single

MUC by stopping it to the first MUC extracted. In [BBCB16], the algoritm

of [LM13] is improved by constructing some chains beetween elements of the

power set of requirements. The chains implement the notion of super/subset

beetween set of requirements. The main difference is that the search for MUCs

is done in a depth first fashion in [BBCB16], whereas it is done in breadth first

way in [LM13].

2.6 Conformance Testing

Conformance is a relation between the observable behavior of a System Under

Test (SUT) and that of its specification, or model. Therefore, conformance

testing consists in testing the implementation of a system against that system’s

specification. When the specification is given as a precise formal model of the

system being developed, we use the more specific term model-based testing. A

model is an abstraction of a SUT or of its environment, or both. In model-

based testing, a model of the SUT is, among other things, used to determine

the expected output. An important distinction that it is usually made is between

white- and black-box testing. The former takes into account knowledge of the

inner structure of the SUT, the latter does not.

In this work, we focus our attention to systems that can be modeled as Mealy

machines. Mealy machines are finite state machines and allow to model both

inputs and outputs as part of their behavior. Therefore, they are a suitable

abstraction to model reactive systems, i.e., systems that maintain an ongoing

interaction with the environment and react to external stimuli.

Definition 2.6.1 (Mealy machine). A Mealy machine is a tuple M = (S, s0,

I, O, τ) where:

• S is a finite set of states,

• s0 ∈ S is the initial state,

• I is a finite set of symbols called input alphabet,

• O is a finite set of symbols called output alphabet,

CHAPTER 2. BACKGROUND 19

• τ : S × I → S × O is a transition function mapping pairs of states and

input symbols to the corresponding pairs of states and output symbols.

Given an infinite word i0i1 · · · ∈ (2I)ω over the inputs, M can be traversed

applying the transition function τ(sj , ij) = (oj , sj+1) for every j ≥ 0, with

sj , sj+1 ∈ S, ij ∈ I, oj ∈ O and s0 being the initial state. The application of τ

for every input ij , starting from s0, produces an infinite trace (s0 ∪ i0 ∪ o0)(s1 ∪

i1 ∪ o1) · · · ∈ (2S∪I∪O)ω. The projection of a trace to the atomic propositions

is a path w ∈ (2I∪O)ω. We denote the set of all paths generated by a Mealy

machine M as Paths(M). A Mealy machine M realizes an LTL formula ϕ if

Paths(M) ⊆Words(φ).

Chapter 3

State of the Art and

Related Work

In this Chapter we summarize the state of the art and we discuss the research

works that are most closely related to the contributions presented in this thesis.

In particular, in Section 3.1 we review the literature regarding the formaliza-

tion and analysis of requirements for Cyber-Physical Systems, while in Section

3.2 we discuss how state-of-the-art techniques for automatic testing from LTL

specifications compare with our work.

3.1 Requirements Formalization and Analysis

3.1.1 Formalization and Consistency Checking

Regarding the automatic formalization and analysis of requirements, several

approaches have been proposed. In [LMG11] the framework Property Specifi-

cation Pattern Wizard (PSP-Wizard) is presented. Its purpose is the machine-

assisted definition of temporal formulas capturing pattern-based system prop-

erties. PSP-Wizard offers a translation into LTL of the patterns encoded in

the tool, but it is meant to aid specification, rather than support consistency

checking, and it cannot deal with numerical signals.

In [KC05], an extension is presented to deal with real-time specifications,

together with mappings to different real-time logics. Even if this work is not

20

CHAPTER 3. STATE OF THE ART AND RELATED WORK 21

directly connected with ours, it is worth mentioning it since their structured

English grammar for patterns is at the basis of our formalism.

The work in [KC05] also provided inspiration to a recent set of works [DHF16,

DHF15] about a tool, called VI-Spec, to assist the analyst in the elicitation and

debugging of formal specifications. VI-Spec lets the user specify requirements

through a graphical user interface, translates them to MITL formulas and then

supports debugging of the specification using run-time verification techniques.

VI-Spec embodies an approach similar to ours to deal with numerical signals by

translating inequalities to sets of Boolean variables. However, VI-Spec differs

from our work in several aspects, most notably the fact that it performs debug-

ging rather than consistency checking, so the behavior of each signal over time

must be known. Also, VI-Spec handles only inequalities and does not deal with

sets of requirements written using PSPs.

In [FLM+04], the authors present a framework that supports the formal

verification of early requirements expressed in Formal Tropos, a specification

language that consists of a sequence of class declarations such as actors, goals,

and dependencies. Similarly to our approach, they map their high-level specifi-

cations into LTL constraints that are checked with NuSMV[CCG+02]. Likewise,

the work presented in [CRST11] aims at formalizing and validate requirements

represented in a domain specific formalism applied in an industrial project. The

formalism includes class diagrams with fragments of first order logic and tem-

poral logic operators, which allows to reason about object models and their

temporal evolution.

Alike the approach we describe in Chapter 4, where we define LTL(DC) as an

extension of the LTL that supports atomic numerical constraints and provides

an encoding to reduce LTL(DC) formulas to standard LTL, many recent works

extended the LTL expressiveness in different directions. In [CRT09, CRT15], in

order to deal with requirements of hybrid systems, where continuous and discrete

variables are combined, the authors propose the HRELTL logic, a combination

of temporal logic with regular expressions and both discrete and continuous vari-

ables, and demonstrate how to check the satisfiability of requirements expressed

in the polynomial fragment of HRELTL. In [CGM+20], instead, they propose a

first-order LTL logic called LTL-EF, with the “at next” and “at last” operators.

CHAPTER 3. STATE OF THE ART AND RELATED WORK 22

They also provide a reduction to equisatisfiable discrete-time formulas and an

encoding for SMT-based model checking.

3.1.2 Inconsistency Explanation

The problem of finding minimal unsatisfiable subsets, or inconsistency explana-

tions, has been the subject of some attention, e.g., in propositional satisfiability

and constraint programming. The algorithms to be found in the literature can

be either domain specific — see, e.g., [BMS12, MSL11, LS08] — or domain in-

dependent — see, e.g., [Jun01]. They can be further divided into algorithms

that find only one inconsistent subset or all inconsistent subsets.

In particular, we are interested in searching only one minimal unsatisfiable

subset of LTL formulas. To this end, some special purpose algorithms have been

recently proposed:

• in [CRST07], the authors perform extraction of UCs for PSL to accelerate

a PSL satisfiability solver by performing Boolean abstraction;

• [CRST08] introduces the notion of unrealizable cores that have been pro-

posed to help debugging unrealizable specifications. The algorithm is

based on a deletion-based strategy for Generalized Reactivity[PPS06] spec-

ifications, a subset of LTL;

• in [AGTW11], the procmine tool is presented, which uses a tableau-based

solver to obtain an initial subset from an unsatisfiable set of LTL and then

applies deletion-based minimization to that subset.

• pltl-mup [GHST13], built upon the pltl model checker, uses a method

based on Ordered Binary Decision Diagrams to find inconsistent subsets;

• finally, more recently a new algorithm based on resolution graphs has been

implemented in trp++uc [Sch12, Sch16a, Sch16b] to extract minimal

unsatisfiable subsets of requirements.

However, our work differ from all these contributions because it is indepen-

dent from any specific model checker or satisfiability checker implementation.

CHAPTER 3. STATE OF THE ART AND RELATED WORK 23

In fact, our algorithm only needs to know if a given set of requirements is satis-

fiabile or not. In this way, we can easily exploits the most recent state-of-the-art

satisfiability solvers.

3.2 Automatic Testing from LTL specification

In the literature, many techniques for test generation with LTL specifications

follow a model-based strategy, as depicted in Figure 3.1. The general idea is to

generate a set of trap properties, i.e., LTL formulae designed to expose a specific

behavior of the model, and use a model checker to find counterexamples, which

are then interpreted as test cases. The main challenge is to force the model

checker to systematically create sets of such counterexamples (see [FWA09] for

a survey of such techniques). The main disadvantage of this strategy is that it

Figure 3.1: Model-Based test generation with LTL requirements

requires a formal (abstract) model of the system under test (SUT), which is not

always available.

Techniques aimed at automated test generation for black-box reactive sys-

tems relying on formal models of the specifications have been explored — see,

e.g., [KT04, BBD19, KGHS98, SEG00, JJ05] — and they seem more promising

than classical techniques when both efficiency of test generation and effective-

ness in covering the specification are considered.

Runtime verification [BLS11] techniques can be seen as a form of oracle-based

testing [BGM91]: each test is executed on the system implementation and the

test oracle, i.e., the monitor in runtime verification jargon, observes the system

CHAPTER 3. STATE OF THE ART AND RELATED WORK 24

and checks whether its executions are behaviors allowed by the specification or

not. Following this stream of research, a technique based on the use of monitors

as test oracles is proposed in [AGR13] for online testing of Java classes. The key

idea is to exploit a monitor derived from LTL specifications to check conformance

of the system to stated requirements, with a focus on safety properties. Their

approach can test for safety properties (“something bad will never happen”),

but it does not deal with liveness properties (“something good will happen

infinitely often”). While liveness properties are not amenable to monitoring on

finite executions, their proper subclass of co-safety properties (“something good

will happen”) consists of formulas that can be monitored on finite traces and

that we wish to consider in our work when testing a system for conformance.

Another work related to ours is presented in [KT04] where the authors de-

scribe a methodology for specification based testing of black-box systems. They

assume that the specification of the system is given as a non-blocking input/out-

put timed automaton, and the system itself — whose model need not to be

known — is also a timed automaton. The two main differences between their

methodology and ours are (i) the capability of dealing with real-time require-

ments and (ii) the form of the specification: ours is “declarative”, in the form of

a set of LTL requirements, whereas theirs is “operational” in the form of an au-

tomaton. We thus incur into one additional step, i.e., extracting an automaton

from the requirements, after which the two methodologies proceed in a similar

way. However, given the different form and expressivity of the requirements, a

direct comparison is not easily feasible, and might be even misleading.

More recently in [BBD19], another approach based on timed automata to

specify input signals constraints has been proposed. Also this approach bears

some similarity with ours and with that of [KT04], but in our opinion it is not di-

rectly comparable, at least in the settings that we consider for our experimental

analysis.

Other research which is closely related to ours appears in a series of pa-

pers [TSL04, ZT16, ZT15] where the authors present a test-case generation

methodology that (i) translates LTL requirements into Generalized Büchi Au-

tomata, (ii) builds trap properties from them — using different criteria — and

(iii) performs model checking of negated trap properties against the system

CHAPTER 3. STATE OF THE ART AND RELATED WORK 25

model in order to extract test cases. The main difference with our work is that

such methodology relies on a model of the system under testing, a model that

must be verified against the system specification. Failing to do so, may generate

conflicting tests, i.e., a test which fulfills a requirement, and violates another.

To the extent of our knowledge there is no other recent work on formally-

grounded methods for requirement based testing, while there is some not-so-

recent work mentioning conformance testing to specification, such as, for exam-

ple [KGHS98, SEG00, JJ05]. However, in these works specifications are mostly

“operational” in the form, e.g., of finite state machines and thus a direct com-

parison with our methodology is not possible.

Chapter 4

Consistency Checking

In the context of safety- and security-critical Cyber-Physical Systems (CPSs),

checking the sanity of functional requirements is an important, yet challeng-

ing task. Requirements written in natural language call for time-consuming

and error-prone manual reviews, whereas enabling automated sanity verifica-

tion often requires overburdening formalizations. Given the increasing per-

vasiveness of CPSs, their stringent time-to-market and product budget con-

straints, practical solutions to enable automated verification of requirements

are in order. Property Specification Patterns (PSPs) [DAC99] offer a viable

path towards this target. PSPs are a collection of parameterizable, high-level,

formalism-independent specification abstractions, originally developed to cap-

ture recurring solutions to the needs of requirement engineering. Each pat-

tern can be directly encoded in a formal specification language, such as Linear

Temporal Logic (LTL) [PM92], Computational Tree Logic (CTL) [CES86], or

Graphical Interval Logic (GIL) [DKM+94]. Because of their features, PSPs

may ease the burden of formalizing requirements, yet enable verification of

their sanity using current state-of-the-art automated reasoning tools — see,

e.g., [LPZ+13, LZPV15, Sch98, CCG+02, HK03].

In this work, we restrict our attention to sanity checking as satisfiability

checking. We speak of (internal) consistency of requirements written using PSPs

having in mind that PSPs can be translated to LTL formulas whose satisfiability

can be checked using methods and tools available in the literature.

26

CHAPTER 4. CONSISTENCY CHECKING 27

The original formulation of PSPs caters for temporal structure over Boolean

variables, but for most practical applications such expressiveness is too re-

stricted. This is the case of the embedded controller for robotic manipulators

that is under development in the context of the EU project CERBERO [MPM+17]1

and provides the main motivation for this work. As an example, consider the

following statement: “The angle of joint1 shall never be greater than 170 de-

grees”. This requirement imposes a safety threshold related to some joint of

the manipulator (joint1) with respect to physically-realizable poses, yet it can-

not be expressed as a PSP unless we add atomic numerical assertions in some

constraint system D. We call Constraint PSP, or PSP(D) for short, a pattern

which has the same structure of a PSP, but contains atomic propositions from

D. For instance, using PSP(R, <,=) we can rewrite the above requirement as

a universality pattern: “Globally, it is always the case that θ1 < 170 holds”,

where θ1 is the numerical signal (variable) for the angle of joint1. In principle,

automated reasoning about Constraint PSPs can be performed in Constraint

Linear Temporal Logic, i.e., LTL extended with atomic assertions from a con-

straint system [DD07]: in our example above, the encoding would be simply

2 (θ1 < 170). Unfortunately, this approach does not always lend itself to a

practical solution, because Constraint Linear Temporal Logic is undecidable in

general [CC00]. Restrictions on D may restore decidability [DD07], but they in-

troduce limitations in the expressiveness of the corresponding PSPs. We propose

a solution which ensures that automated verification of consistency is feasible,

yet enables PSPs mixing both Boolean variables and (constrained) numerical

signals. Our approach enables us to capture many specifications of practical

interest, and to pick a verification procedure from the relatively large pool of

automated reasoning systems currently available for LTL. In particular, we re-

strict our attention to a constraint systems of the form (R,<,=), and atomic

propositions of the form x < c or x = c, where x ∈ R is a variable and c ∈ R is

a constant value. In the following, we write DC to denote such restriction.

Knowing that a set of requirements written with PSPs(DC) is (in)consistent

is only the first step in writing a correct specification. In case of inconsistent

1Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems

in unceRtain hybRid envirOnments — http://www.cerbero-h2020.eu/

CHAPTER 4. CONSISTENCY CHECKING 28

requirements, obtaining a minimal set of such requirements would be desirable

to help designers avoid manual checks to pinpoint problems in a specification.

Since for practical reasons in requirement engineering it is better to have a

quick turnaround time rather than a complete answer, we present a method to

look for inconsistencies in an incremental fashion, i.e., stopping the search once

at least one (minimal) inconsistency subset is found. In particular, given a set of

inconsistent requirements, we extract a minimal (irreducible) subset from them

that it is still inconsistent. The set is guaranteed to be minimal in the sense

that, if we remove one of the elements, the remaining set becomes consistent.

Overall, our contribution can be summarized as follows:

• We extend basic PSPs over the constraint system DC .

• We provide an encoding from any PSP(DC) into a corresponding LTL

formula.

• We propose algorithms devoted to extract minimal subsets of inconsistent

requirements, and we implement them in the tool mentioned above.

• We provide an open-source tool, described in details in Chapter 6, that im-

plements the encoding and algorithms proposed to automatically analyze

requirements expressed as PSPs(DC).

• We implement a generator of artificial requirements expressed as PSPs(DC);

the generator takes a set of parameters in input and emits a collection of

PSPs according to a parameterized probability model.

• Using our generator, we run an extensive experimental evaluation aimed at

understanding (i) which automated reasoning tool is best at handling set

of requirements as PSPs(DC), and (ii) whether our approach is scalable.

• Finally, we analyze the specification of the embedded controller to be

dealt with in the context of CERBERO project, experimenting also with

the addition of faulty requirements.

Verification and inconsistency explanation of requirements written in PSP(DC)

are carried out using tools and techniques available in the literature [RV10,

RV11, LPZ+13]. With those, we demonstrate the scalability of our approach

CHAPTER 4. CONSISTENCY CHECKING 29

by checking the consistency of up to 1920 requirements, featuring 160 variables

and up to 8 different constant values appearing in atomic assertions, within

less than 500 CPU seconds. A total of 75 requirements about the embedded

controller for the CERBERO project is checked in a matter of seconds, even

without resorting to the best tool among those we consider.

4.1 Constraint Property Specification Patterns

Let us start by defining a constraint system D as a tuple D = (D,R1, . . . , Rn, I),

where D is a non-empty set called domain, and each Ri is a predicate symbol

of arity ai, with I(Ri) ⊆ Dai being its interpretation. Given a finite set of

variables X and a finite set of constants C such that C ∩ X = ∅, a term is a

member of the set T = C ∪X; an (atomic) D-constraint over a set of terms is

of the form Ri(t1, . . . , tai) for some 1 ≤ i ≤ n and tj ∈ T for all 1 ≤ j ≤ ai

which we call constraint when D is understood from the context. We define

linear temporal logic modulo constraints — LTL(D) for short — as an extension

of LTL with additional atomic constraints. Given a set of Boolean propositions

AP , a constraint system D = (D,R1, . . . , Rn, I), and a set of terms T = C ∪X,

an LTL(D) formula is defined as:

φ = p | Ri(t1, . . . , tai) | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2 | (φ)

where p ∈ AP , φ, φ1, φ2 are LTL(D) formulas, and Ri(·) with 1 ≤ i ≤ n is an

atomic D-constraint. Additional Boolean and temporal operators are defined as

in LTL with the same intended meaning. Notice that the set of LTL(D) formulas

is a (strict) subset of those in constraint linear temporal logic — CLTL(D) for

short — as defined, e.g., in [DD07]. LTL(D) formulas are interpreted over

computations of the form π : N → 2AP plus additional evaluations of the form

ν : T ×N→ D such that, for all i ∈ N, ν(c, i) = ν(c) ∈ D for all c ∈ C, whereas

ν(x, i) ∈ D for all x ∈ X. In words, the function ν associates to constants c ∈ C

a value ν(c) that does not change in time, and to variables x ∈ X a value ν(x, i)

that possibly changes at each time instant i ∈ N. LTL semantics is extended to

LTL(D) by handling constraints:

π, ν, j |=D Ri(t1, . . . , tai) iff (ν(t1, j), . . . , ν(tai , j)) ∈ I(Ri)

CHAPTER 4. CONSISTENCY CHECKING 30

We say that π and ν satisfy a formula φ, denoted π, ν |=D φ, iff π, ν, 0 |= φ. A

formula φ is satisfiable as long as there exist a computation π and a valuation

ν such that π, ν |=D φ. We further restrict our attention to the constraint

system DC = (R,<,=, I), with atomic constraints of the form x < c and x = c,

where c is a constant corresponding to some real number — hereafter we abuse

notation and write c ∈ R instead of ν(c) ∈ R — and the interpretation I of

the predicates “<” and “=” is the usual one. For example, 3(x < 100) is a

valid LTL(DC) formula, while 3(x < y) can be expressed in LTL(D) but not

in LTL(DC). Similarly, the formula 3(x < X y) can be expressed in CLTL(D)

but not in LTL(D).

While CLTL(D) is undecidable in general [DD07, CC00], LTL(DC) is decid-

able since, as we show in this paper, it can be reduced to LTL satisfiability.

We introduce the concept of constraint property specification pattern, de-

noted PSP(D), to deal with specifications containing Boolean variables as well

as atoms from a constraint system D. In particular, a PSP(DC) features only

Boolean atoms and atomic constraints of the form x < c or x = c (c ∈ R). For

example, the requirement:

The angle of joint1 shall never be greater than 170 degrees

can be re-written as a PSP(DC):

Globally, it is always the case that θ1 < 170

where θ1 ∈ R is the variable associated to the angle of joint1 and 170 is the

limiting threshold. While basic PSPs only allow for Boolean states/events in

their description, PSPs(DC) also allow for atomic numerical constraints. It is

straightforward to extend the translation of [DAC99] from basic PSPs to LTL

in order to encode every PSP(DC) to a formula in LTL(DC). Consider, for

instance, the set of requirements:

R1 Globally, it is always the case that v ≤ 5.0 holds.

R2 After a, v ≤ 8.5 eventually holds.

R3 After a, it is always the case that if v ≥ 3.2 holds, then z eventually

holds.

CHAPTER 4. CONSISTENCY CHECKING 31

where a and z are Boolean states/events, whereas v is a numeric signal. These

PSPs(DC)2 can be rewritten as the following LTL(DC) formula:

2(v < 5.0 ∨ v = 5.0) ∧

2(a→ 3(v < 8.5) ∨ (v = 8.5)) ∧

2(a→ 2(¬(v < 3.2)→ 3z))

(4.1)

Therefore, to reason about the consistency of sets of requirements written using

PSPs(DC) it is sufficient to provide an algorithm for deciding the satisfiability

of LTL(DC) formulas.

To this end, consider an LTL(DC) formula φ, and let V ar(φ) be the set

of variables and C(φ) be the set of constants that occur in φ. We define the

set of thresholds Sx(φ) ⊆ C(φ) as the set of constant values against which

some variable x ∈ V ar(φ) is compared to; more precisely, for every variable

x ∈ V ar(φ) we construct a set Sx(φ) = {c1, .., cn} such that, for all ck ∈ R

with 1 ≤ k ≤ n, φ contains a constraint of the form x < ck or x = ck. For

convenience, we always consider each threshold set Sx(φ) ordered in ascending

order, i.e., ck < ck+1 for all 1 ≤ k < n. For instance, in example (4.1), we

have V ar = {v} and the corresponding set of threshold is Sv = {3.2, 5.0, 8.5}.

Given an LTL(DC) formula φ, and some variable x ∈ V ar(φ), let Sx(φ) =

{c1, . . . , cn} be the set of thresholds for which we define the corresponding sets of

inequality propositions Qx(φ) = {q1, . . . , qn} and equality propositions Ex(φ) =

{e1, . . . , en}. Informally, inequality propositions should be true exactly when a

variable x ∈ V ar(φ) is below or between some value in the threshold set Sx(φ),

whereas equality propositions should be true exactly when x is equal to some

value in Sx(φ). Because of this, in our encoding we must ensure that for every

computation π and time instant i ∈ N exactly one of the following cases is true

(1 ≤ j ≤ n):

• qj ∈ π(i) for some j, ql 6∈ π(i) for all l 6= j and ej 6∈ π(i) for all j;

• ej ∈ π(i) for some j, el 6∈ π(i) for all l 6= j and qj 6∈ π(i) for all j;

• qj 6∈ π(i) and ej 6∈ π(i) for all j.

2Strictly speaking, the syntax used is not that of DC , but a statement like v ≤ 5.0 can be

thought as syntactic sugar for the expression (v < 5.0) ∨ (v = 5.0).

CHAPTER 4. CONSISTENCY CHECKING 32

The first case above corresponds to a value of x that lies between some thresh-

old value in Sx(φ) or before its smallest value; the second case occurs when a

threshold value is equal to x, and the third case is when x exceeds the highest

threshold value in Sx(φ).

Given the definitions above, an LTL(DC) formula φ over the set of Boolean

propositions AP and the set of terms T = C ∪V ar, can be converted to an LTL

formula φ′ over the set of Boolean propositions AP ∪
⋃
x∈V ar(φ)(Qx(φ)∪Ex(φ)).

We obtain this by considering, for each variable x ∈ V ar(φ) and associated

threshold set Sx(φ), the corresponding propositions Qx(φ) = {q1, . . . qn} and

Ex = {e1, . . . , en}; then, for each ck ∈ Sx(φ), we perform the following substi-

tutions:

x < ck ;

k∨
j=1

qj ∨
k−1∨
j=1

ej and x = ck ; ek. (4.2)

Replacing atomic numerical constraints is not enough to ensure equisatisfiability

of φ′ with respect to φ. In particular, for every x ∈ V ar(φ), we must encode the

informal observation made above about “mutually exclusive” Boolean valuations

for propositions in Qx(φ) and Ex(φ) as corresponding constraints:

φM =
∧

x∈V ar(φ)

 ∧
a,b∈Mx(φ),a6=b

2¬(a ∧ b)

 (4.3)

where Mx(φ) = Qx(φ) ∪ Ex(φ).

For instance, given example (4.1), we have Qv = {q1, q2, q3} and Ev =

{e1, e2, e3} and the mutual exclusion constraints are written as:

φM =2¬(q1 ∧ q2) ∧2¬(q1 ∧ q3) ∧2¬(q1 ∧ e1) ∧2¬(q1 ∧ e2)∧

2¬(q1 ∧ e3) ∧2¬(q2 ∧ q3) ∧2¬(q2 ∧ e1) ∧2¬(q2 ∧ e2)∧

2¬(q2 ∧ e3) ∧2¬(q3 ∧ e1) ∧2¬(q3 ∧ e2) ∧2¬(q3 ∧ e3)∧

2¬(e1 ∧ e2) ∧2¬(e1 ∧ e3) ∧2¬(e2 ∧ e3).

(4.4)

Therefore, the LTL formula to be tested for assessing the consistency of the

requirements is

φM ∧ (2(q1 ∨ q2 ∨ e1 ∨ e2)∧

2(a→ 3(
∨3
i=1 qi ∨ ei))∧

2(a→ 2(¬q1 → 3z))).

(4.5)

We can now state the following:

CHAPTER 4. CONSISTENCY CHECKING 33

Theorem 1. Let φ be an LTL(DC) formula on the set of proposition AP and

terms T = V ar(φ) ∪ C(φ); for every x ∈ V ar(φ), let Sx(φ), Qx(φ) and Ex(φ)

be the corresponding set of thresholds, inequality propositions and equality

propositions, respectively; let φ′ be the LTL formula on the set of proposition

AP ∪
⋃
x∈V ar(φ)Qx(φ)∪Ex(φ) obtained from φ by applying substitutions (4.2)

for every x ∈ V ar(φ) and ck ∈ Sx(φ), and let φM be the LTL formula obtained

as in (4.3); then, the LTL(DC) formula φ is satisfiable if and only if the LTL

formula φM ∧ φ′ is satisfiable.

Proof. First, we prove that if φ is satisfiable the same holds for φM ∧ φ′. Since

φ is satisfiable, then there exists a computation π and an evaluation ν such

that π, ν |=DC
φ. Let us consider a generic variable x ∈ V ar(φ), for which

the corresponding set of thresholds is Sx(φ) = {c1, . . . , cn}. Considering that

thresholds are ordered in ascending order, we construct the following sets of

time instants:

Nx<c1 = {i ∈ N | π, ν, i |=DC
x < c1}

Nx=c1 = {i ∈ N | π, ν, i |=DC
x = c1}

Nc1<x<c2 = {i ∈ N | π, ν, i |=DC
x > c1 ∧ x < c2}

. . .

Ncn−1<x<cn = {i ∈ N | π, ν, i |=DC
x > cn−1 ∧ x < cn}

Nx=cn = {i ∈ N | π, ν, i |=DC
x = cn}

Nx>cn = {i ∈ N | π, ν, i |=DC
x > cn}

which, given the standard semantics of “<” and “=”, are a partition of N. Let

Nx denote such partition for a specific variable x ∈ V ar(φ). We construct a

computation π′ such that, for all time instants i ∈ N and propositions p ∈ AP ,

we have p ∈ π′(i) exactly when p ∈ π(i) and, for each variable x ∈ V ar(φ),

given Qx(φ) = {q1, . . . qn} and Ex(φ) = {e1, . . . en}, we have also

• q1 ∈ π′(i) exactly when i ∈ Nx<c1 ;

• e1 ∈ π′(i) exactly when i ∈ Nx=c1 ;

• q2 ∈ π′(i) exactly when i ∈ Nc1<x<c2 ;

• . . .

• qn ∈ π′(i) exactly when i ∈ Ncn−1<x<cn ;

CHAPTER 4. CONSISTENCY CHECKING 34

• en ∈ π′(i) exactly when i ∈ Nx=cn .

Notice that for all i ∈ Nx>cn , we have that π′(i) ∩Mx(φ) = ∅, where Mx(φ) =

Qx(φ) ∪ Ex(φ). Since Nx is a partition of N for each variable x ∈ V ar(φ), it

follows that π′ |= φM because for all a, b ∈Mx(φ), there is no time instant i ∈ N

such that π′, i |= a∧ b. Now we show that for every i ∈ N, π′, i |= φ′ if and only

if π, ν, i |=DC
φ by induction on the set of subformulas of φ. Let ψ and ψ′ be

two subformulas of φ and φ′, respectively. For every i ∈ N:

• if ψ ≡ p for p ∈ AP then ψ′ ≡ p; therefore, for any given i ∈ N, we have

π, ν, i |=DC
p if and only if π′, i |= p by construction of π′.

• if ψ ≡ (x < ck) for some variable x ∈ V ar(φ) and some constant ck ∈

Sx(φ) then, according to (4.2),

ψ′ ≡
k∨
j=1

qj ∨
k−1∨
j=1

ej .

Let Nx,k be the set defined as

Nx,k = Nx<c1 ∪Nx=c1 ∪ . . . ∪Nck−1<x<ck

There are two cases: either i ∈ Nx,k or i 6∈ Nx,k. In the former case, we

have that π, ν, i |=DC
(x < ck) and, by construction of π′, this happens

exactly when π′, i |= qj for some 1 ≤ j ≤ k or π′, i |= ej for some 1 ≤ j <

k which, by the semantics of disjunction and construction of π′, is also

exactly when π′, i |= ψ′. In the second case, π, ν, i 6|=DC
(x < ck) and, by

construction of π′, this happens exactly when π′, i 6|= qj for all 1 ≤ j ≤ k

and π′, i 6|= ej for all 1 ≤ j < k which, by the semantics of disjunction, is

also exactly when π′, i 6|= ψ′.

• if ψ ≡ x = ck for some variable x ∈ V ar(φ) and some constant ck ∈ Sx(φ)

then, according to (4.2), ψ′ ≡ ek. The time instants i ∈ N in which

π, ν, i |=DC
x = ck are contained in the set Nx=ck , so there are two

cases: either i ∈ Nx=ck or i 6∈ Nx=ck . In the former case, we have that

π, ν, i |=DC
(x = ck) and, by construction of π′, this happens exactly when

π′, i |= ek. In the second case, π, ν, i 6|=DC
(x = ck) and, by construction

of π′, this happens exactly when π′, i 6|= ek.

CHAPTER 4. CONSISTENCY CHECKING 35

• if ψ = ¬α then ψ′ = ¬α′; by induction, we can assume that for every i,

we have π, ν, i |=DC
α if and only if π′, i |= α′, and thus π, i 6|=DC

α if

and only if π′, i 6|= α′. By the semantics of negation, we have that for any

given i ∈ N, π, i, ν |=DC
¬α if and only if π, i, ν 6|=DC

α and this happens

exactly when π′, i 6|= α′, i.e., π′, i |= ¬α′;

• if ψ ≡ (α ∨ β) then ψ′ ≡ α′ ∨ β′; by induction, we can assume that for

all i ∈ N we have that π, ν, i |=DC
α and π, ν, i |=DC

β if and only if

π′, i |= α′ and π′, i |= β′, respectively. By the semantics of disjunction, we

have that, for any given i ∈ N, π, i, ν |=DC
α ∨ β exactly when π, ν, i |= α

or π, ν, i |= β′ and this happens exactly when π′, i |= α′ or π′, i |= β′, i.e.,

by the semantics of disjunction, π′, i |= α′ ∨ β′.

• if ψ ≡ X α then ψ′ ≡ X α′; by induction, we can assume that for all j ∈ N

we have π, ν, j |=DC
α if and only if π′, j |= α′. By the semantics of the

“next” operator we have that, for any given i ∈ N, π, i, ν |=DC
X α if and

only if π, ν, i + 1 |=DC
α which happens exactly when π′, i + 1 |= α′, i.e.,

π′, i |= X α.

• if ψ ≡ α U β then ψ′ = α′ U β′; by induction, we can assume that,

for all j ∈ N, we have π, ν, j |=DC
β if and only if π′, j |= β′ and that

π, ν, j |=DC
α if and only if π′, j |= α′. By the semantics of the “until”

operator we have that, for any given i, π, i, ν |=DC
α U β if and only if for

some j ≥ i we have π, ν, j |=DC
β and for all k such that i ≤ k < j we

have π, ν, k |=DC
α. However, the former happens exactly when for the

same j ∈ N we have π′, j |= β′ and for all k such that i ≤ k < j we have

π′, k |=DC
α′, i.e., π′, i |= α′ U β′.

We now prove that the satisfiability of φM∧φ′ in LTL implies the satisfiability

of φ in LTL(DC). First we observe that, for a generic variable x ∈ V ar(φ), and

for all time instants i ∈ N, every computation π′ such that π′ |= φM has at

most one proposition p ∈Mx(φ) for which p ∈ π(i). Therefore, for all variables

x ∈ V ar(φ) and for every time instant i ∈ N, we have the following cases only

(where n = |Sx(φ)| = |Ex(φ)| = |Qx(φ)|):

1. π′, i |= ek for some ek ∈ Ex(φ); consequently, as long as k < n, also

π′, i |=
∨k+1
j=1 qj ∨

∨k
j=1 ej holds.

CHAPTER 4. CONSISTENCY CHECKING 36

2. π′, i |= qk for some qk ∈ Qx(φ), and thus π′, i |=
∨k
j=1 qj ∨

∨k−1
j=1 ej holds.

3. π′, i 6|= p for every p ∈ Mx(φ); consequently, for all k it is also the case

that π′, i 6|=
∨k
j=1 qj ∨

∨k−1
j=1 ej and π′, i 6|= ek.

A computation π and an evaluation ν such that π, ν |=DC
φ can be constructed

as follows. For every p ∈ AP , and time instant i ∈ N, let p ∈ π(i) exactly when

p ∈ π′(i). As for the evaluation ν, for a generic variable x ∈ V ar(φ), and for

every time instant i ∈ N, we can construct ν considering that π′ is bound to

satisfy the three cases above :

1. ν(x, i) = ck for the same k s.t. π′, i |= ek; consequently, as long as k < n,

both π, ν, i |= x < ck+1 and π, ν, i |= x = ck hold.

2. ν(x, i) = v and, for the same k s.t. π′, i |= qk, if k > 1, then ck−1 < v < ck,

else if k = 1, then v < c1; consequently π, ν, i |= x < ck holds and, in case

k > 1, π, ν, i 6|= x < cj for all j < k.

3. ν(x, i) = v with v > cn; consequently π, ν, i 6|= x < ck and π, ν, i 6|= x = ck

for all k

An induction proof analogous to the one provided for the “if” part can be

provided to show that if π′ |= φ′, then also π, ν |= φ, with π and ν constructed

as shown above.

The proposed translation from LTL(DC) to a LTL formula is also quite com-

pact, i.e., the number of symbols in the LTL encoding grows at most quadrati-

cally with the number of symbols in the original formula. Let us define the size

of a formula φ, denoted as |φ|, in the usual way, i.e., by counting the number of

symbols in it. We can state the following:

Theorem 2. Let φ be an LTL(DC) formula on the set of propositions AP and

terms T = V ar(φ) ∪ C(φ); for every x ∈ V ar(φ), let Sx(φ), Qx(φ) and Ex(φ)

be the corresponding set of thresholds, inequality propositions and equality

propositions, respectively; let φ′ be the LTL formula on the set of proposition

AP ∪
⋃
x∈V ar(φ)Qx(φ)∪Ex(φ) obtained from φ by applying substitutions (4.2)

for every x ∈ V ar(φ) and ck ∈ Sx(φ), and φM be the LTL formula obtained as in

(4.3); the size of φ′∧φM is at most quadratic in the size of φ, i.e., O(|φ′∧φM |) =

O(|φ|2).

CHAPTER 4. CONSISTENCY CHECKING 37

Proof. From Equation (4.3), for each variable x ∈ V ar(φ), all combinations of

two elements from the set Mx(φ) = Qx(φ) ∪ Ex(φ) are required to build φM .

Therefore, if n = |Sx(φ)|, the number of conjuncts of the form 2¬(a∧ b) in φM

is (
2n

2

)
=

2n!

2!(2n− 2)!
=

2n(2n− 1)

2
= n(2n− 1) (4.6)

If we consider m = maxx∈V ar(φ) |Sx(φ)| and the number of conjuncts derived in

equation (4.6), it follows that

|φM | = O(|V ar(φ)| ·m(2m− 1)) = O(|V ar(φ)| ·m2). (4.7)

Now it remains to show the effect of substitution (4.2) in φ. For every variable

x ∈ V ar(φ) and for each constant ck ∈ Sx(φ) in φ we have:

• one proposition in φ′ for each occurrence of the term x = ck in φ;

• a formula of size 2k− 1 in φ′ for each occurrence of the term x < ck in φ.

Let m = maxx∈V ar(φ) |Sx(φ)|, and p be the maximum number of occurrences in

φ of any condition x = c or x < c for specific values of x ∈ V ar(φ) and c ∈ C(φ).

Then we can write

|φ| = O(|V ar(φ)| · p ·m+ r) (4.8)

where r is the number of symbols that are not terms. Since each term in φ is

translated to a formula of size O(m) in φ′, we have that

|φ′| = O(|V ar(φ)| · p ·m2 + r) (4.9)

Considering (4.7) together with (4.9) we obtain

O(|φ′ + φM |) = O(|V ar(φ)| ·m2) +O(|V ar(φ)| · p ·m2 + r)

= O(|V ar(φ)| ·m2 · (1 + p) + r)
(4.10)

Given (4.8) and the fact that the values of the parameters |V ar(φ)|, p and r

do not depend on the translation, from (4.10) we conclude that O(|φ′+φM |) =

O(|φ|2).

4.2 Inconsistency Explanation

Given a set R = {r1, . . . , rn} of inconsistent requirements written as PSP(DC),

the aim of the algorithms proposed in this Section is to compute a Minimal Un-

satisfiable Core (MUC), i.e., a subset I ⊆ R such that removing any element ri

CHAPTER 4. CONSISTENCY CHECKING 38

ri PSP

r1 Globally, it is always the case that A holds.

r2 Globally, it is never the case that A holds.

r3 Globally, it is always the case that B holds.

r4 Globally, it is always the case that if B holds, then C holds as well.

r5 Globally, it is never the case that C holds.

r6 Globally, it is always the case that A and B holds.

r7 After B, D eventually holds.

Table 4.1: Set R of inconsistent PSPs.

from I makes the set consistent again. Table 4.1 shows an inconsistent specifica-

tion as a set R = {r1, . . . r7} of seven requirements. Looking at the table, we can

see that there are 4 different MUCs in R, namely {r1, r2}, {r2, r6}, {r3, r4, r5},

{r4, r5, r6}. In the remainder of the section we present two algorithms devoted

to the extraction of MUC for PSPs.

4.2.1 Linear Deletion-Based MUC Extraction

The first algorithm we present is based on a deletion-based strategy, and its

pseudo-code is depicted in Algorithm 1. The procedure works as follows. If the

set R′ ← R \ {r} with r ∈ R is inconsistent, then r is not in the MUC. On the

other hand, if R′ is consistent, then r is part of a MUC and cannot be removed.

Such operation is repeated iteratively and the algorithm terminates when all

requirements have been checked for inclusion in the MUC.

It is easy to see that, with |R| = n, the loop iterates n times, and that

at each iteration the isConsistent function is called once. The input of the

function is R′ and its size is given by |R′|. The number of elements in R′

is reduced by one at each iteration, but ri could be added back again in R′,

depending on the result of isConsistent. The worst case is obtained when

all requirements are part of the MUC, i.e., each requirement ri is first removed

and then reinserted again. In this case the model checker is called each time

with n− 1 requirements. The overall complexity is therefore O(n ·C(n)), where

n is the number of elements initially in R and C(n) is the complexity for the

consistency check of n requirements. The algorithm is therefore linear in the

CHAPTER 4. CONSISTENCY CHECKING 39

Algorithm 1: Linear Deletion-Based MUC Extraction Algorithm

1: function findInconsistency(R)

2: R′ ← R

3: for ri ∈ R do

4: R′ ← R′ \ {ri}

5: if isConsistent(R′) then

6: R′ ← R′ ∪ {ri}

7: end if

8: end for

9: return R′

10: end function

number of calls to the model checker.

Example 1. Considering the set R in Table 4.1, Algorithm 1 works along the

following steps.

Step ri R′ isConsistent(R′)

1: r1 {r2, r3, r4, r5, r6, r7} false

2: r2 {r3, r4, r5, r6, r7} false

3: r3 {r4, r5, r6, r7} false

4: r4 {r5, r6, r7} true

5: r5 {r4, r6, r7} true

6: r6 {r4, r5, r7} true

7: r7 {r4, r5, r6} false

The final result is R′ = {r4, r5, r6}. It is worth to notice that this result depends

on the extraction order of the requirements. It is easy to see that processing

the requirements in reverse order would yield R′ = {r1, r2} as a result instead.

4.2.2 Dichotomic MUC Extraction

Algorithm 2 is based on the same general-purpose structure of algorithm 1, but

it also exploits the fact that the dimension of the MUC is often much smaller

than |R|. Therefore, it is possible to exploit a “divide and conquer” strategy to

reduce the search space. Considering Algorithm 2, R is split in two halves R1

CHAPTER 4. CONSISTENCY CHECKING 40

and R2, such that R1 ∪R2 = R and R1 ∩R2 = ∅. If one of the two halves (plus

I) is inconsistent, then there is no need to explore the other one and we can

proceed recursively. Otherwise it means that the MUC has been split in the two

halves and further search is needed. This is done by means of two recursive calls

(lines 21–22); The former performs the search on R2 considering the whole set

R1 as inconsistent, while the latter continues the search on R1, removing from I

the requirements that still need to be checked. The algorithm terminates when

R has 1 or 0 elements.

As for the complexity of the algorithm the best case occurs when the MUC

is always in the first half of R. In such a case, half of the requirements are

discarded at each iteration, and it is easy to see that complexity is Ω(log |R|).

The worst case occurs when the set of inconsistent requirements I coincides with

R. For example, let R be comprised of {r1, r2, r3, r4} and let MUC be R itself.

At the first step, the algorithm checks R′1 = {r1, r2} and R′2 = {r3, r4} but both

sets are consistent. Therefore findInconsistency is called recursively with

R = {r3, r4} and I = {r1, r2}. At this point we have R′′1 = {r3} and R′′2 = {r4}.

The algorithm checks the consistency of {r1, r2, r3} and {r1, r2, r4} and returns

to the previous recursive call. This time findInconsisntency is called again,

but with R = {r1, r2} and I = {r3, r4} and the same process is applied. In

general, if |R| = n and C(n) is the complexity for the consistency check of n

requirements, then the worst case complexity of this algorithm is O(n ·C(n)) –

the same as the previous one. However, as we will show in Section 4.3.2, when

|I| � |R| it is noticeable faster than the linear version.

Example 2. Considering again the set R reported in Table 4.1, in the following

we report step-by-step how Algorithm 2 works. For lack of space in the table

we replace isConsistent(R) with C(R).

Step R R1 R2 I C(R1 ∪ I) C(R2 ∪ I)

1: {r1, . . . , r7} {r1, r2, r3} {r4, r5, r6, r7} {} False −

2: {r1, r2, r3} {r1} {r2, r3} {} True True

3: {r2, r3} {r2} {r3} {r1} − −

4: {r2} − − {r1} − −

5: {r1} − − {r2} − −

CHAPTER 4. CONSISTENCY CHECKING 41

Algorithm 2: Dichotomic MUC Extraction Algorithm

1: function findInconsistency(R)

2: return findInconsistency(R, ∅)

3: end function

4: function findInconsistency(R, I)

5: if |R| ≤ 1 then

6: if isConsistent(I) then

7: return I ∪R

8: else

9: return I

10: end if

11: end if

12: (R1, R2)← split(R)

13: if |R1| > 1 and |R2| > 1 then

14: if ¬ isConsistent(R1 ∪ I) then

15: return findInconsistency(R1, I)

16: end if

17: if ¬ isConsistent(R2 ∪ I) then

18: return findInconsistency(R2, I)

19: end if

20: end if

21: I ← findInconsistency(R2, I ∪R1)

22: I ← findInconsistency(R1, I \R1)

23: return I

24: end function

In the first step, the algorithm splits the initial set R in two subset R1 and

R2, and checks the consistency of the first one. Since R1 is inconsistent, the

algorithm automatically discards R2 and continue with step 2. Also in this case

the new set R = {r1, r2, r3} is split in two, but this time both are consistent and

so the two recursive calls in line 21–22 are executed: the first one is resolved in

step 3 and 4, while the second one in step 5. In the last two steps, the basic

CHAPTER 4. CONSISTENCY CHECKING 42

case is reached (lines 5–11), and since the call to isConsistent(I) returns true

in both cases, r1 and r2 are added to I. Therefore, I = {r1, r2} is returned as

final answer. In this case isConsistent is called 6 times instead of 7 as in the

previous example, and with smaller instances.

4.3 Analysis with Probabilistic Requirement Gen-

eration

The aim of this Section is twofold; On the one hand, we evaluate the scalability

of our approach for consistency checking, experimenting the encoding proposed

in Section 4.1 with a pool of state-of-the-art LTL model checkers. On the other

hand, we assess the performance of the MUC extraction algorithms described

in Section 4.2, in order to evaluate the possibility of their usage in contexts of

practical interest.

Since we want to have control over different dimensions of the specifications

– namely, the kind of requirements, the number of constraints, and the size of

the corresponding domains – we generate artificial specifications using a prob-

abilistic model that we devised and implemented specifically to carry out the

experiments herein presented.

In particular, the following parameters can be tuned in our generator of

specifications:

• The number of requirements generated (#req).

• The probability of each different body to occur in a pattern.

• The probability of each different scope to occur in a pattern.

• The size (#vars) of the set from which variables are picked uniformly at

random to build patterns.

• The size (dom) of the domain from which the thresholds of the atomic

constraints are chosen uniformly at random.

CHAPTER 4. CONSISTENCY CHECKING 43

4.3.1 Evaluation of LTL(Dc) Satisfiability

The goal of this experiment is to evaluate the performance – in terms of cor-

rectness, efficiency, and scalability – of LTL model checkers for the consistency

checking task described in Section 4.1. To this end, we evaluate the perfor-

mances of state-of-the-art tools for LTL satisfiability, and then we consider the

best among such tools to assess whether our approach can scale to sets of require-

ments of realistic size. All the experiments here reported ran on a workstation

equipped with 2 Intel Xeon E5-2640 v4 CPUs and 256GB RAM running Debian

with kernel 3.16.0-4.

4.3.1.1 Evaluation of LTL satisfiability solvers.

The tools considered in our analysis are the ones included in the portfolio solver

polsat [LPZ+13], namely aalta [LZPV15], NuSMV [CCG+02], pltl [Sch98],

and trp++ [HK03]. We also consider leviathan [BGMR16], a tableaux-based

system for consistency checking that has been recently published. Notice that

in the case of NuSMV, we consider two different encodings. With reference to

Property 1, the first encoding defines φM as an invariant — denoted as NuSMV-

invar — and φ′ is the property to check; the second encoding considers φM ∧φ

as the property to check — denoted as NuSMV-noinvar. Finally, concerning

aalta, we slightly modified its default version in order to be able to evaluate

large formulas. In particular, we modified the source code increasing of two

orders of magnitude the input size buffer.

In our experimental analysis we set the range of the parameters as follows:

#vars ∈ {16, 32}, dom ∈ {2, 4, 8, 16}, and #req ∈ {8, 16, 32, 64}. For each

combination of the parameters with v ∈ #vars, r ∈ #req and d ∈ dom, we

generate 10 different benchmarks. Each benchmark is a specification containing

r requirements where each scope has (uniform) probability 0.2 and each body

has (uniform) probability 0.1. Then, for each atomic numerical constraint in

the benchmark, we choose a variable out of v possible ones, and a threshold

value out of d possible ones. In Table 4.2 we show the results of the analysis.

Notice that we do not show the results of trp++ because of the high number of

failures obtained. Looking at the table, we can see that aalta is the tool with

the best performances, as it is capable of solving two times the problems solved

CHAPTER 4. CONSISTENCY CHECKING 44

dom 2 4 8 16

#vars 16 32 16 32 16 32 16 32

Tool S T S T S T S T S T S T S T S T

aalta 16 0.0 27 0.1 22 0.1 29 0.4 26 0.6 29 1.4 25 2.8 31 4.9

leviathan 4 0.1 6 0.3 7 0.8 5 0.2 0 – 7 2.3 4 47.7 7 12.8

NuSMV-invar 11 30.4 10 185.1 10 804.2 9 881.3 11 68.1 8 402.9 10 1172.6 8 1001.9

NuSMV-noinvar 11 65.0 10 489.7 7 303.6 7 505.5 11 92.4 10 1277.6 8 660.0 9 1394.5

pltl 8 25.0 11 108.1 9 1.2 10 0.6 10 19.6 11 0.1 11 14.5 14 3.5

Table 4.2: Evaluation of LTL satisfiability solvers on randomly generated re-

quirements. The first line reports the size of the domain (dom), while the second

line reports the total amount of variables (vars) for each domain size. Then,

for each tool (on the first column), the table shows the total amount of solved

problems and the CPU time (in seconds) spent to solve them (columns “S” and

“T”, respectively).

by other solvers in most cases. Moreover, aalta is up to 3 orders of magnitude

faster than its competitors. Considering unsolved instances, it is worth noticing

that in our experiments aalta never reaches the granted time limit (10 CPU

minutes), but it always fails beforehand. This is probably due to the fact that

aalta is still in a relatively early stage of development and it is not as mature

as NuSMV and pltl. Most importantly, we did not find any discrepancies in

the satisfiability results of the evaluated tools, with the noticeable exception of

trp++, for which we did not report performance in Table 4.2.

4.3.1.2 Evaluation of scalability.

The analysis involves 2560 different benchmarks generated as in the previous

experiment. The initial value of #req has been set to 15, and it has been doubled

until 1920, thus obtaining benchmarks with a total amount of requirements

equals to 15, 30, 60, 120, 240, 480, 960, and 1920. Similarly has been done for

#vars and #dom; the former ranges from 5 to 640, while the latter ranges from

4 to 32. At the end of the generation, we obtained 10 different sets composed of

256 benchmarks. In Figure 4.1 and Figure 4.2 we present the results, obtained

running aalta. The Figure is composed by 8 plots, one for each value of #vars.

Looking at the plots in Figures 4.1 and 4.2, we can see that the difficulty of the

problem increases when all the values of the considered parameters increase,

CHAPTER 4. CONSISTENCY CHECKING 45

Figure 4.1: Scalability Analysis (Part 1). On the x-axes (y-axes resp.) we report

#req (CPU time in seconds resp.). Axis are both in logarithmic scale. In each

plot we consider different values of #dom. In particular, the diamond green line

is for #dom = 4, the light blue line with stars is for #dom = 8, the blue crossed

lines and red circled ones denote #dom = 16 and #dom = 32, respectively.

CHAPTER 4. CONSISTENCY CHECKING 46

Figure 4.2: Scalability Analysis (Part 2). Plots are organized as in Figure 4.1.

CHAPTER 4. CONSISTENCY CHECKING 47

#req N

8 16

16 38

32 65

60 83

120 147

240 210

Table 4.3: Synopsis of the pool of benchmarks involved in the analysis of MUC

extraction algorithms. The table is organized in two columns, namely the total

amount of requirements for each benchmark (column “#req”) and the total

amount of benchmarks falling in the related category (column “N”).

and this is particularly true considering the total amount of requirements. The

parameter #dom has a higher impact of difficulty when the number of variables

is small. Indeed, when the number of variables is less then 40 there is a clear

difference between solving time with #dom = 4 and #dom = 32. On the other

hand when the number of variables increases, all the plots for various values of

#dom are very close to each other. As a final remark, we can see that even

considering the largest problem (#vars = 640, #dom = 32), more than the

60% of the problems are solved by aalta within the time limit of 10 minutes.

4.3.2 Evaluation of MUC Extraction

In order to evaluate the algorithms proposed in Section 4.2, we consider the

pool of inconsistent benchmarks resulting from the experiment presented in

Section 4.3.1, for a total amount of 559, having different requirements set di-

mension as reported in Table 4.3. All the experiments reported in this section

ran on a workstation equipped with an Intel Xeon E31245 @ 3.30GHz CPU and

16GB RAM running Ubuntu 14.04 LTS.

In Figure 4.3 we report the results obtained from the experiment described

above. For each plot, we report the median CPU time (in seconds) over 10 runs

of the same benchmark, granting for each run 600 CPU seconds. aalta has

been used for the satisfiability check.

CHAPTER 4. CONSISTENCY CHECKING 48

Figure 4.3: Performance of the algorithms for MUC extraction. On the x-axes

we report the number of benchmarks, and on the y-axes we report the time in

logarithmic scale. In each plot we consider different values of #req. The green

and blue lines shows median times of the dichotomic and linear algorithms,

respectively.

CHAPTER 4. CONSISTENCY CHECKING 49

Looking at the plots, we can see that the dichotomic algorithm is, as ex-

pected, overall faster than the linear one. Despite the fact that they show

similar performance for benchmarks having 8 and 16 requirements (top-most

plots in Figure 4.3), looking at the plots in the middle of Figure 4.3 we can see

that the dichotomic algorithm is at least one order of magnitude faster than the

linear one for benchmarks having 32 and 60 requirements. Moreover, we report

that the latter was able to return MUCs only for 62 out of 65 and 43 out of 83,

while the former returned a solution for all instances with 32 requirements and

81 out of 83 for instances with 60 requirements.

Considering the plots in the bottom of Figure 4.3, we can see that the gap

between the two algorithms increases even further: the linear one was able

to return MUCs only for 34 and 12 benchmarks of 120 and 240 requirements

respectively, while the dichotomic one returned a MUC for 138 out of 147 and

168 out of 210 benchmarks. In addition, it is worth noticing that the MUCs

found are usually small in size; indeed, in all 6 configurations, the median size

of the MUCs found by the two algorithms is 2.

Finally, we report that we involved in our analysis also benchmarks composed

of 480 requirements, but our algorithms were not able to return a solution within

the considered CPU time limit.

As a final remark, notice that we limit the presentation of the results to the

algorithms presented in Section 4.2 because state-of-the-art tools able to cope

with this task, namely pltl-mup [GHST13] and trp++uc [Sch16b], report

the same correctness and scalability issues of their counterparts presented in

Section 4.3.1. For instance, considering the benchmark with 60 requirements –

the first one for which we can see a noticeable difference between the performance

of the linear and the dichotomic algorithm – we report that pltl-mup was not

able to solve any instance, while trp++uc tops its performance at 37% of our

worst algorithm (the linear one solved 43 instances out of 83). We also involved

in our preliminary analysis also procmine [AGTW11], but we do not report its

results for similar motivations.

CHAPTER 4. CONSISTENCY CHECKING 50

Figure 4.4: WidowX robotic arm (left) and the simulated arm moving a grabbed

object in the bucket on the left (right).

4.4 Analysis with a Controller for a Robotic Ma-

nipulator

In this Section, as a basis for our experimental analysis, we consider a set of

requirements from the design of an embedded controller for a robotic manip-

ulator. The controller should direct a properly initialized robotic arm — and

related vision system — to look for an object placed in a given position and

move to such position in order to grab the object; once grabbed, the object is to

be moved into a bucket placed in a given position and released without touching

the bucket. The robot must stop also in the case of an unintended collision with

other objects or with the robot itself — collisions can be detected using torque

estimation from current sensors placed in the joints. Finally, if a general alarm

is detected, e.g., by the interaction with a human supervisor, the robot must

stop as soon as possible. The manipulator is a 4 degrees-of-freedom Trossen

Robotics WidowX arm3 equipped with a gripper: Figure 4.4 shows a snapshot

of the robot in the intended usage scenario taken from CoppeliaSim4 simula-

tor. The design of the embedded controller was part of the activities related to

the “Self-Healing System for Planetary Exploration” use case [MPM+17] in the

context of the EU project CERBERO.

In this case study, constrained numerical signals are used to represent re-

quirements related to various parameters, namely angle, speed, acceleration,

and torque of the 4 joints, size of the object picked, and force exerted by the

3http://www.trossenrobotics.com/widowxrobotarm.
4http://www.coppeliarobotics.com/

CHAPTER 4. CONSISTENCY CHECKING 51

Pattern Specification Fault injections

after after until globally after after until globally

Absence – 12 14 [F4] – [F3]

Existence 9 – – – [F5] [F4, F6]

Invariant – – 29 – – [F2, F6]

Precedence – – 1 – – –

ResponseChain – – 2 – – –

Response 1 – 4 – – [F1]

Universality 2 – 1 – – –

Table 4.4: Robotic use case requirements synopsis. The table is organized as

follows: the first column reports the name of the patterns and it is followed by

two groups of three columns denoted with the scope type: the first group refers

to the intended specification, the second to the one with fault injections. Each

cell in the first group reports the number of requirements grouped by pattern

and by scope type. Cells in the second group categorize the 6 injected faults,

labeled with F1, . . . , F6.

end-effector. We consider 75 requirements, including those involving scenario-

independent constraints like joints limits, and mutual exclusion among states,

as well as specific requirements related to the conditions to be met at each state.

The set of requirements involved in our analysis includes 14 Boolean signals and

20 numerical ones. In Table 4.4 we present a synopsis of the requirements, to

give an idea of the kind of patterns used in the specification.5 While most re-

quirements are expressed with the Invariant pattern, e.g., mutual exclusiveness

of states and safety conditions, the expressivity of LTL is required to describe

the evolution of the system. Indeed, as shown in [DAC99] and [PH12], it is often

the case that few PSPs cover the majority of specifications whereas others are

sparsely used.

Our first experiment6 is to run NuSMV-invar on the intended specifica-

tion translated to LTL(DC). The motivation for presenting the results with

5The full list of requirements and the fault injection examples are available at https:

//github.com/SAGE-Lab/robot-arm-usecase.
6Experiments herein presented ran on a PC equipped with a CPU Intel Core i7-2760QM

@ 2.40GHz (8 cores) and 8GB of RAM, running Ubuntu 14.04 LTS.

CHAPTER 4. CONSISTENCY CHECKING 52

NuSMV-invar rather than aalta is twofold: While its performances are worse

than aalta, NuSMV-invar is more robust in the sense that it either reaches

the time limit or it solves the problem, without ever failing for unspecified rea-

sons like aalta does at times; second, it turns out that NuSMV-invar can deal

flawlessly and in reasonable CPU times with all the specifications we consider in

this Section, both the intended one and the ones obtained by injecting faults. In

particular, on the intended specification, NuSMV-invar is able to find a valid

model for the specification in 37.1 CPU seconds, meaning that there exists at

least a model able to satisfy all the requirements simultaneously. Notice that

the translation time from patterns to formulas in LTL(DC) is negligible with

respect to the solving time. Our second experiment is to run NuSMV-invar

on the specification with some faults injected. In particular, we consider six

different faults, and we extend the specification in six different ways consider-

ing one fault at a time. The patterns related to the faults are summarized in

Table 4.4. In case of faulty specifications, NuSMV-invar concludes that there

is no model able to satisfy all the requirements simultaneously. In particular, in

the case of F2 and F3, NuSMV-invar returned the result in 2.1 and 1.7 CPU

seconds, respectively. Concerning the other faults, the tools was one order of

magnitude slower in returning the satisfiability result. In particular, it spent

16.8, 50.4, 12.2, and 25.6 CPU seconds in the evaluation of the requirements

when faults 1, 4, 5 and 6 are injected, respectively.

The noticeable difference in performances when checking for different faults

in the specification is mainly due to the fact that F2 and F3 introduce an initial

inconsistency, i.e., it would not be possible to initialize the system if they were

present in the specification, whereas the remaining faults introduce inconsisten-

cies related to interplay among constraints in time, and thus additional search is

needed to spot problems. In order to explain this difference, let us first consider

fault 2:

Globally, it is always the case that if state init holds,

then not arm idle holds as well.

It turns out that in the intended specification there is one requirement specifying

exactly the opposite, i.e., that when the robot is in state init, then arm idle

must hold as well. Thus, the only models that satisfy both requirements are

the ones preventing the robot arm to be in state init. However, this is not

CHAPTER 4. CONSISTENCY CHECKING 53

possible because other requirements related to the state evolution of the system

impose that state init will eventually occur and, in particular, that it should

be the first one. On the other hand, if we consider fault 6:

Globally, it is always the case that if arm moving holds,

then joint1 speed > 15.5 holds as well.

Globally, arm moving and proximity sensor = 10.0

eventually holds.

we can see that the first requirement sets a lower speed bound at 15.5 deg/s

for joint1 when the arm is moving, while there exists a requirement in the

intended specification setting an upper speed bound at 10 deg/s when the prox-

imity sensor detects an object closer than 20 cm. In this case, the model checker

is still able to find a valid model in which proximity sensor < 20.0 never hap-

pens when arm moving holds, but the second requirements in fault 6 prohibits

this opportunity. It is exactly this kind of interplay among different temporal

properties which makes NuSMV-invar slower in assessing the (in)consistency

of some specifications.

Chapter 5

Requirements-Based

Black-Box Testing

In Chapter 4 we presented a way to formalize and check the consistency of a set

of requirements, using LTL(DC) as the underline formal logic. In this Chapter

we deal with the problem of checking whether a reactive system, i.e. a system

that maintains an ongoing interaction with its environment [MP12], conforms to

such requirements through testing. The work presented in this chapter refers to

standard LTL as the underling specification logic (see Definition 2.2.1), keeping

in mind that LTL(DC) can be reduced to LTL with the encoding presented in

the previous chapter. Furthermore, we assume the SUT to be accessible for

testing, i.e., we can execute inputs and observe outputs, but that no internal

representation of the system is available. This problem arises in a variety of

contexts, e.g., when a system is developed by integrating commercial off-the-

shelf (COTS) components [LCB+09]. In these scenarios, techniques such as

model checking [BK08] or (white-box) model-based testing [UL07] are ruled out.

Also, classical black-box techniques like random testing, equivalence partitioning

or boundary analysis [Bur06] either do not take into account the specification

or require manual effort to assemble meaningful test suites.

Our approach is inspired by [AGR13], but aims to deal with a more general

class of properties. Our methodology is based on a visit of the Büchi automaton

corresponding to the requirements. The visit starts from the initial state of

54

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 55

the automaton and generates a sequence of input values with which the black-

box system is fed to obtain a corresponding sequence of output values. We

check such input/output sequence against the automaton, i.e., we check whether

there exists at least one state in the automaton that can be reached along the

sequence. If there is no such state, then the system is not conformant to the

requirements and the sequence provides a counterexample. Otherwise, we can

continue the generation of the sequence by iterating the above steps until either

(i) an acceptance state of the automaton is reached with a sequence of length

at least kmin or (ii) an acceptance state cannot be reached with a sequence

of length at most kmax, where kmin and kmax are two parameters such that

kmin < kmax. Multiple tests can be obtained by iterating this procedure until

all the reachable transitions have been visited at least once.

We evaluate our approach in three different experimental settings. In the

first one we consider benchmarks taken from the LTL Track of the 2018 edition of

the Reactive Synthesis Competition (SYNTCOMP 2018)1 and we compare our

approach with the one described in [AGR13]. In the second setting we use the

Adaptive Cruise Control (ACC) prototype implemented in [AHDR18] and we

compare the tests generated by our approach with those generated with a model-

based generation strategy. In the third setting we test the model of a robotic arm

controller in order to evaluate our approach on a large set of requirements coming

from an industry-grade prototype. In the two former settings we use a mix of

fault-injection [HTI97] and mutation analysis [ABLN06] in order to compare

different approaches. In the third setting we inject faults manually. The results

we obtained with our experiments show that our approach can outperform the

one in [AGR13] by finding more induced faults. Furthermore, generating tests

based on the specification can be as effective as approaches based on the system

model, discovering almost the same number of faults. Finally, our approach can

be effective in finding faults in small-to-medium sized industry-grade systems.

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 56

Figure 5.1: The main workflow of our approach.

5.1 Automatic Test Case Generation from LTL

specification

In order to test black-box systems, our approach adopts the workflow presented

in Figure 5.1. We assume that the specification is composed of a list of LTL

formulas, the declaration of the set I of input propositions, and the set O of

output propositions such that I∪O = AP and I∩O = ∅. The “Test Generator”

pipeline in Figure 5.1 has the goal to produce a set of valid tests to execute on

the system under test (SUT). The pipeline comprises four components:

• Parser reads the input specification, creates the intermediate data struc-

tures and builds the conjunction of requirements.

• Automata Builder builds a Büchi or equivalent automaton representation

of the input specification.

• Input Generator chooses which inputs to execute on the SUT.

• Test Oracle evaluates the output produced by the SUT and checks if it

satisfies the specifications.

Testing Environment is responsible for orchestrating the interaction between the

components. It queries Input Generator for new inputs to test and it executes

them on the SUT. Testing Environment collects the output and passes it to Test

Oracle for evaluation. If the test is complete, Testing Environment stores the

final verdict and resets the environment to start a new test. Moreover, the Test

Oracle provides to the Input Generator the set of possible states in which the

1http://www.syntcomp.org/

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 57

automaton can currently be, given the executed trace. Notice that the SUT

is supposed to run synchronously with the Testing Environment and it should

return to its initial state when a reset command is received. Where necessary,

the user can provide a software layer to abstract the real SUT and implement

these features (see Section 6.1.3.1 for more details).

In the following, we present each step of our implementation in more detail.

5.1.1 Requirements and Automata Processing

The input of the test generator algorithm is a set R = {φ1, . . . , φn} of LTL

formulas along with the list of input and output variables. The parser reads the

input formulas as a conjunction Φ = φ1∧· · ·∧φn to build the corresponding au-

tomaton. We rely on spot [DLLF+16] to perform the construction of the Büchi

automaton represented as a directed graph. Before test generation starts, we

preprocess the automaton by expanding the edges where spot groups different

equivalent assignments to move from one state another, to obtain exactly one

assignment for each edge. During preprocessing, variables are omitted if they

are not relevant for a particular transition, e.g., if the transition is enabled inde-

pendently from their value. In such cases, we set the input variables to false by

default, while we leave the outputs unchanged. This is because we want to have

a fully defined and deterministic input, but we do not want to impose additional

constraints that are not specified by the requirements on the outputs. Other

choices are possible; for example, one could set the undefined inputs randomly

or could copy the value of such variables from previous assignments, if any.

5.1.2 Test Oracle

The aim of the test oracle is to decide if a trace τ , composed of input and output

variables, is correct with respect to the given LTL specification Φ. A more per-

missive check, often considered for runtime monitoring, consists in verifying that

τ is a valid prefix of the language Words(Φ). This can be done by checking that

there exists a run induced by τ on the automaton AΦ, or, equivalently, using

monitors. This kind of check is useful to identify violations of safety properties,

but it is ineffective for liveness ones, even for the the co-safety subclass. For

example, we cannnot detect violations of the formula φ = 3 a with a monitor,

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 58

because every prefix is valid as long as the proposition a becomes true eventually.

In order to solve this issue, a number of different LTL semantics for finite traces

have been proposed, such as FLTL[MP12], LTL∓[EFH+03], LTL3[BLS06] and

LTL-RV [BLS10]. In [BBNR18] the authors propose a counting semantics mak-

ing predictions based on the number of steps necessary to witness the satisfaction

or violation of a formula. Evaluations under such semantics can range from a

2-valued verdict – namely True (>) or False (⊥) – to a 5-value one; True (>),

Presumably True (>P), Inconclusive (?), Presumably False (⊥P) and False (⊥).

The choice of the semantics defines the specific kind of conformance to the spec-

ification adopted and implemented by the test oracle. In the following, we rely

on the FLTL semantics, formalized below in Definition 5.1.1 — for a discussion

of different semantics, we refer the reader to [BLS10].

Definition 5.1.1. Given a finite word (or trace) τ of length n and an FLTL

formula φ, τ(= τ, 0) satisfies φ, denoted as τ |= φ, under the following conditions

(s.t. 0 ≤ i < n):

τ, i |= p ∈ AP iff a ∈ τ [i]

τ, i |= ¬φ iff τ, i 6|= φ

τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2

τ, i |= X φ iff (i+ 1 < n) and τ, i+ 1 |= φ

τ, i |= Nφ iff (i+ 1 ≥ n) or τ, i+ 1 |= φ

τ, i |= φ1 U φ2 iff ∃i ≤ j < n.(τ, j |= φ2 ∧ ∀i ≤ m < j.(τ,m |= φ1))

τ, i |= 3φ iff ∃i ≤ j < n.(τ, j |= φ)

τ, i |= 2φ iff ∀i ≤ j < n.(τ, j |= φ)

Regarding the boolean operators, FLTL semantics coincides with the stan-

dard LTL semantics on infinite words. However, with temporal operators, such

as X and U , there is a difference concerning the maximum length of the word.

In particular, the semantics distinguishes between a strong next operator X ,

which require a next time step to exists, and a weak version N , which it is

always satisfied at the last step of a trace. In our requirements, however, we

only make use of the strong variant. In our approach, the FLTL oracle is im-

plemented on an automaton and traces are checked directly on the generated

Büchi Automa. We posit that every trace τ ending in an acceptance state q∗

of the Automata AΦ, also satisfies the formula Φ from which the automaton is

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 59

built.

5.1.3 Input Generator

The main idea behind the generation of input sequences for testing the SUT

consists in exploring different paths of the automaton AΦ that represents the

specification. Given a choice of (i) an exploration strategy to prioritize paths

and (ii) a termination condition to end the search, we obtain our algorithm

Guided Depth First Search (GDFS) presented in Algorithm 3. As the name

suggests, it is a variant of the classical depth-first search algorithm on directed

graphs.

The algorithm takes as input the automaton AΦ, the interval kmin and kmax,

i.e., the minimum and the maximum length of each trace, the oracle object and

the environment env object. The algorithm starts with the initialization of the

visitCounter map, that counts how many times an edge has been explored (lines

2-5). Notice that only the outgoing edges from the initial state are initialized,

while the other ones are incrementally added during the exploration (lines 11

- 13). The algorithm terminates when all the edges in visitCounter have been

visited at least once. At the beginning of each test, the trace τ is initialized

to an empty word and the current state sc is initialized to the initial state of

the automaton (lines 7-8). Then the enviroment is reset to start at the initial

state (line 9). The test is computed by iteratively choosing an edge (line 14),

extracting the input on its label (line 15), executing it on the SUT by means

of the env object (line 19) and using the output to choose the successor state,

if any, and to build the trace τ (lines 20 - 21). The function selectNextEdge

chooses the next state to execute by selecting the edge with less visits so far.

In case of multiple edges with the same score, it sorts them with an heuristics

that takes into account the distance from the nearest acceptance state and the

degree of the target state. Moreover, the visitCounter is updated after each

choice (lines 16 - 18) by increasing the counter of all edges leaving sc that

present the input i. This is a small optimization to reduce the number of steps

necessary to terminate, because many edges could produce the same input but

expect different accepted outputs. From an input point of view, these edges are

equivalent, but only one of them will be traversed, depending on the produced

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 60

Algorithm 3: Guided Depth First Search

1: function GDFS(AΦ, kmin, kmax, oracle, env)

2: visitCounter ← emptyMap()

3: for e ∈ AΦ.outgoingEdges(AΦ.initState) do

4: visitCounter[e]← 0

5: end for

6: while ∃e ∈ visitCounter.(visitCounter[e] == 0) do

7: τ ← {}

8: sc ← AΦ.initState

9: env.reset()

10: while oracle.validPrefix(τ) ∧ |τ | < kmax do

11: for e ∈ AΦ.outgoingEdges(sc) ∧ e /∈ visitCounter do

12: visitCounter[e]← 0

13: end for

14: e← selectNextEdge(AΦ, sc, visitCounter)

15: i← getInput(e)

16: for e ∈ AΦ.outgoingEdges(sc) ∧ getInput(e) == i do

17: visitCounter[e]← visitCounter[e] + 1

18: end for

19: o← env.performAction(i)

20: sc ← getSuccessor(AΦ, sc, i ∪ o)

21: τ.append(i ∪ o)

22: if |τ | ≥ kmin ∧ sc ∈ AΦ.acceptanceStates then

23: break

24: end if

25: end while

26: res← oracle.evaluate(τ)

27: env.addTest(τ, res)

28: end while

29: end function

output. Termination of a test occurs exactly when one of the following three

cases is true: (i) τ is no more a valid prefix of L(AΦ) and therefore the test

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 61

failed; (ii) the length τ reached the maximum length kmax; (iii) the length of

τ is greater than kmin and the exploration reached an acceptance state. At the

end of each test, the oracle gives its final verdict and the result is stored in the

env object (lines 26 - 27).

5.2 Experimental Analysis

We present the results of three experiments2 involving the framework previously

introduced. In the first one, we aim to assess the quality of the generated test

suite involving a set of benchmarks borrowed by the LTL Track of the Reac-

tive Synthesis Competition 20183 (SYNTCOMP 2018). The second experiment

aims to compare the effectiveness of our approach with respect to model-based

strategies; in order to do that, we consider the use case of an Adaptive Cruise

Control System made available in [AHDR18] and we compare our algorithm

with state-of-the-art model-based approaches when it comes to spotting erro-

neous mutants. Finally, our last experiment aims to evaluate the scalability of

our approach in a real world use case. So, we consider a set of requirements

from the design of an embedded controller for a robotic manipulator used in the

context of the EU project CERBERO4 [MPM+17, PFS+19]. The experiments

described in the following ran on a workstation equipped with an Intel Xeon

E31245 @ 3.30GHz CPU and 32GB RAM running Lubuntu 18.10 64bits. For

all the experiments, we granted a time limit of 600 CPU seconds (10 minutes)

and a memory limit of 30GBs.

5.2.1 Syntcomp Benchmarks

The set of benchmarks we consider is the one provided for the LTL Track of

the Reactive Synthesis Competition 2018. We first translate the TLSF [JKS16]

specifications into equivalent LTL ones accepted by our tool. Note that we do

not use SyFCo, a tool for manipulating and transforming TLSF specifications in

other existing specification formats for synthesis, because we handle ASSUME

formulae in a different way. In particular, SyFCo would translate ASSUME

2All benchmarks are available at https://gitlab.sagelab.it/sage/benchmarks-tests
3http://www.syntcomp.org/
4http://cerbero-h2020.eu

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 62

formulae as preconditions (left-hand side of an implication) and the ASSERT

and GUARANTEE formulae as postconditions (right-hand side of an implica-

tion). Therefore, if an ASSUME formula is violated, the system is not required

to satisfy the given requirements. This behavior would lead to many useless

tests, because whenever an assumption is falsified during the test execution, the

specification would be trivially satisfied and no constraint would be enforced on

the output. In order to solve this problem, we require the ASSUME part to be

satisfied together with the ASSERT and GUARANTEE part, i.e., we replace

implication with conjuction. We refer the reader to [JKS16] for more details

on the standard translation from TLSF to LTL. We exclude benchmarks whose

output assignments appear in the ASSUME part of the specification. This is

because, as explained before, we require the assumptions to hold during the

execution of the test, but assumptions containing outputs can always be falsi-

fied, thus failing the test. We sysntesize Mealy machines for the specifications

with Strix [ML18], the winner of the SYNTCOMP 2018 competition, and we

exclude benchmarks for which Strix times out in 600 CPU seconds. For each

synthesized Mealy machine, we compute 100 mutants randomly applying one of

the following rules:

• change the target state of a random transition to a different one;

• flip the output value of a variable on a random transition, namely setting

it to false if it was true and vice-versa.

We apply only one mutation per mutant because the synthesized models are

usually small in size and one variation is often enough to expose a violation of the

specification. However, some of the resulting mutants may still be correct with

respect to the corresponding specification. At the end of this process we have

128 different benchmarks, each of those with 100 mutants. In the experiment,

we compare the results obtained with 5 different algorithms. GDFS-1, GDFS-3

and GDFS-5 are the algorithm described in Section 5.1 with kmin set to 1, 3

and 5, respectively. For comparison purpose, we also re-implemented, – and

generalized to fit our framework – the algorithm presented in [AGR13]. Briefly,

the algorithm traverses the monitor automaton of the specification during the

test execution, and stops when a coverage criteria is fulfilled. A test is concluded

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 63

either when an objective is reached or when the maximum length kmax of the

trace is reached. In [AGR13] two strategies are proposed, namely Random Walk

(RW) and Guided Walk (GW) and we implemented and tested both of them.

As for the coverage criteria, we implemented what they call Atomic Proposition

Coverage (APC), i.e., each atomic proposition on each transition of the monitor

must be covered. For each algorithm we set kmax equal to 100 and we stop

the execution as soon as a test fails and the mutant is killed. Notice that 600

CPU seconds are alloted to each benchmark, including automata processing and

evaluation of all mutants.

Figure 5.2 (left) shows the number of mutants killed per benchmark by each

algorithm, ranging from 0 to 100. Figure 5.2 (right) shows the average number

of steps executed, namely the sum of the length of each test, averaged over the

mutants. In both charts, the abscissa represents the number of benchmarks,

while the ordinate shows the number of mutants killed (left) and the number of

steps executed (right). Notice that, since the results of RW and GW can vary

due to non-deterministic behaviors, we execute the test 3 times and we report

the median value as reference for these two algorithms. The results reveal that

GDFS-5 clearly outperform all the other algorithms in terms of total amount of

mutants killed, and that the number of executed steps is only slightly higher than

GDFS-1 and GDFS-3. However, only for two benchmarks all the 100 mutants

have been killed. Moreover, in 25 cases it did not kill any mutant, 15 of which

due to timeouts. Regarding RW and GW, they both revealed totally ineffective

for 73 of the 129 benchmarks, although only 2 timeouts occurred. However,

looking at Figure 5.2 (right) we notice that in 59 of these benchmarks, the

two algorithms did not perform any testing at all. This phenomenon is due to

the nature of the benchmarks involved, where the specification only contains

liveness properties and the monitor is a single state automaton accepting all

prefixes.

5.2.2 Adaptive Cruise Control

In our second experiment we consider the Adaptive Cruise Control (ACC) pro-

totype implemented in [AHDR18]. The ACC system adjusts the current velocity

of the vehicle towards a target cruise velocity defined by driver. If the vehicle

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 64

Figure 5.2: Total amount of mutants killed (left) and average number of steps

(right) computed by the considered algorithms in the set of SYNTCOMP 2018

benchmarks.

gets too close to the forward vehicle, the ACC system must adjust the current

distance between the two and maintain a certain safety distance. Additionally,

the driver can intervene by: (1) activating the system via an ACC button; (2)

deactivating the system via the ACC button; and (3) deactivating the system

by braking or accelerating the car. The authors of [AHDR18] also generated

test cases from LTL requirements using three different requirements coverage

criteria: requirements coverage (RC), antecedent coverage (AC), and unique

first cause coverage (UFC). Tests are generated with a model-based generation

strategy: trap-properties are built from requirements, and a counterexample is

produced with a model checker. The algorithms are evaluated with 524 mutants

of the correct implementation.

The goal of the experiment here described is to compare the performance of

our algorithm with respect to model-based techniques that make explicit use of

a model to generate test cases. We modified slightly the set of requirements,

reducing numerical comparisons and enums (available in the NuSMV [CCG+02]

models used in [AHDR18]) to boolean variables. This is a mere syntactic vari-

ation to represents LTL formulae in the default syntax as described in Section

2.2. The resulting specification is composed of 12 requirements, 6 input and

10 output variables. The results are depicted in Table 5.1. In order to ease

the comparison with the model-based approach, we also report the results from

[AHDR18]. The results show that the GDFS algorithm performances are com-

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 65

RC AC UFC GDFS-1 GDFS-3 GDFS-5

Number of Test Cases 6 7 18 26 4912 2597

Branch Coverage (%) 78.3 78.3 86.7 45.0 70.0 71.7

Number of Killed Mutants 488 488 488 414 480 480

Killed Mutants (%) 93.1 93.1 93.1 79.0 91.6 91.6

Table 5.1: Experimental results on the ACC use case.

parable to the model-based algorithms, with a difference of only 8 mutants

(1.5% of the total) for kmin equal 3 or 5, at the expense of many more tests.

Notice however that the test generation and execution is still quite small; it

takes about 1 second to run GDFS-1, 11 seconds for GDFS-3 and 5 seconds for

GDFS-5. Moreover, the whole test suite is executed only if all tests succeed, but

if a failure is detected it can terminate much earlier. In the case of GDFS-5, for

example, the average number of tests executed per mutant is 329, much lower

than the test suite size (2597). However, despite the large test suite, GDFS

reaches a lower branch coverage than the model-based counterparts, stopping

at 71.7%. Also notice that, in this context, with all requirements being safety

properties, the RW algorithm described in the previous experiment performs

well, achieving similar results to GDFS-5 (although with some variation due to

randomness). These results show that the black-box testing with the framework

presented in Section 5.1 can be almost as effective as model-based techniques,

where more manual work is required to model the system. A final remark on

the kmin and kmax parameters of the GDFS algorithm is in order. As shown in

Table 5.1, kmin plays an important role in the test suite size and performance.

In our experience, the longer the test, the more the automaton is covered and

the less transitions close to the initial state are repeated. Similarly, also kmax

can influence a test suite size and performance: an excessively small value could

lead to some false positive tests, while an excessively large value could produce

unnecessarily long tests before declaring them failed. However, the generated

test suite depends not only on the algorithm and the specification, but also on

the SUT behavior. The optimal values of such parameters is context dependent,

and may require some fine tuning.

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 66

5.2.3 Robotic Manipulator

Our last experiment considers a set of requirements from the design of an em-

bedded controller for a robotic manipulator. The controller should direct a

properly initialized robotic arm — and related vision system — to look for an

object placed in a given position and move to such position in order to grab the

object; once grabbed, the object has to be moved and released into the bucket

without touching it. The robot must stop also in the case of an unintended

collision with other objects or with the robot itself — collisions can be detected

using torque estimation from current sensors placed in the joints. Finally, if a

general alarm is detected, e.g., by the interaction with a human supervisor, the

robot must stop as soon as possible. The manipulator is a 4 degrees-of-freedom

Trossen Robotics WidowX arm5 equipped with a gripper. The design of the em-

bedded controller is part of the activities related to the “Self-Healing System for

Planetary Exploration” use case in the context of the EU project CERBERO.

In this case the specification is composed of 31 requirements, 3 inputs and 11

outputs. The SUT is implemented as an smv model. With GDFS-5 (kmin =

5 and kmax = 30), we obtain 1441 tests and a total of 12867 steps executed

in 1171 seconds. At each step, NuSMV [CCG+02] is called in order to deter-

mine the evolution of the system. Then, we manually inject faults by removing

some constraints in the guards (forcing the system to evolve from one state to

another) or by modifying value assignments of some variables. At the end, we

obtain 10 different NuSMV faulty models. We show the results of this analysis

in Table 5.2. First, we report that a failed test has been detected in all consid-

ered cases. Looking at the Table, we can observe that, for each bugged system,

a small number of tests is necessary to discover the failure. Therefore, in most

cases, it is not necessary to perform a complete exploration of the automaton

and an early stopping strategy can save substantial time when debugging an

application.

5http://www.trossenrobotics.com/widowxrobotarm.

CHAPTER 5. REQUIREMENTS-BASED BLACK-BOX TESTING 67

Injection # Tests # Steps Time(s)

1 1 2 7.64

2 2 14 8.61

3 2 14 8.74

4 1 2 7.75

5 1 7 8.15

6 4 25 8.61

7 56 502 25.23

8 1 3 8.15

9 1 6 7.84

10 2 10 8.17

Table 5.2: Fault-Injection results on the robotic manipulator use case.

Chapter 6

Tools

The use of formal methods in requirements engineering is an enabler to achieve

automation and formal guarantees along the system design life-cycle. In Chapter

4 and Chapter 5 we have seen how to automatically check the consistency of a

set of requirements, find inconsistent ones, and use them to test a system that

is supposed to implement them. However, formal methods require a high degree

of specialization and training, making it difficult to apply them in practice. In

order to help non-expert users to adopt these techniques, we need to provide

tools to ease their job. To this end, we designed and developed a suite of

tools that implements the algorithms presented before and provides easy to use

interfaces to guide the user along the process.

The rest of the chapter is structured as follow. In Section 6.1 we introduce

the SpecPro library, containing the implementation of the main algorithms

described in the previous chapters, and we illustrate some of its available APIs.

In Section 6.2 we present ReqV, a tool for the management and analysis of

requirements expressed as PSPs. Finally, in Section 6.3 we present ReqT, a

tool for the automatic test generation and evaluation on a provided system

under test.

68

CHAPTER 6. TOOLS 69

6.1 SpecPro

SpecPro is an open-source1 Java library that implements all the algorithms

presented in this work and provides classes and data structures for an easy access

to the core functionalities. It is meant to ease the application of formal methods

for the analysis of requirements, from a developer perspective. Requirements

can be expressed either as Property Specification Patterns (PSPs) (defined in

Section 2.4) with numerical constraints (see Section 4.1 for more details) or as

LTL formulae (defined in Section 2.2).

6.1.1 Parse And Translate Requirements

With SpecPro it is possible to easily perform a variety of tasks involving LTL

requirements. First of all, in order to parse input requirements, and build a

LTLSpec object, we have to instantiate an object implementing the abstract

class AbstractLTLFrontEnd. SpecPro provides two default implementations:

PSPFrontEnd and LTLFrontEnd to read Property Specification Patterns (PSPs)

and Linear Temporal Logic (LTL) formulae, respectively.

Listing 6.1: Parse file with requirements in PSP format

AbstractLTLFrontEnd fe = new PSPFrontEnd ();

LTLSpec spec = fe.parseFile("input.req");

The AbstractLTLFrontEnd class also provides other ausiliary methods such

as parseString and parseStream to parse a specification stored in a String or

a generic InputStream. The LTLSpec class is a very important component into

the SpecPro library because it contains many data structures that are helpful

to perform all the other tasks. Moreover, PSPFrontEnd produces a object of

type LTLDcSpec, which directly inherit from LTLSpec, that provides additional

data structures and methods to handle the numerical constraints and facilitate

the conversion between numeric and boolean variables.

An LTLSpec instance can be translated into a variety of formats for off-the-

shelf model checkers and LTL satisfiability solvers. For example, to translate a

LTLSpec into a NuSMV specification we instantiate a NuSMVTranslator object:

1https://gitlab.sagelab.it/sage/SpecPro

CHAPTER 6. TOOLS 70

Listing 6.2: Translate a LTLSpec object into a NuSMV specification file

LTLSpec spec = ...

PrintStream outStream = new PrintStream("output.smv");

NuSMVTranslator translator = new NuSMVTranslator ();

translator.translate(outStream , spec);

Other available translators are AALTATranslator, SpotTranslator,

PandaTranslator, PltlMupTranslator and TRPUCTranslator. The user can

add new translators simply extending the LTLToolTranslator abstract class

and implementing the translate method.

6.1.2 Consistency Checking

It is possible to check the consistency of requirements directly in Java, imple-

menting the ModelChcker abstract class and instantiating the ConsitencyChecker

class provided by the library. SpecPro provides also two default implementa-

tions of ModelChecker: NuSMV and Aalta. In order to use them, it is necessary

to set SPECPRO AALTA and SPECPRO NUSMV environment variables, respectively,

indicating the paths of the model checkers location in the file system.

Listing 6.3: Check the consistency of an LTLSpec object

LTLSpec = ...

ModelChecker mc = new Aalta();

ConsistencyChecker consistencyChecker = new

ConsistencyChecker(mc, spec , "out.temp");

ConsistencyChecker.Result result =

consistencyChecker.run();

if(result == Consistency.Result.CONSISTENT) {

System.out.println("Requirements are consistent");

} else {

System.out.println("Requirements are inconsistent");

}

Similarly, if a specification is inconsistent, SpecPro provides the abstract

class InconsistencyFinder that aims at findinding a minimal subsets of re-

quirements that explain the inconsistency, also called Minimal Unsatisfiable

CHAPTER 6. TOOLS 71

Core (MUC). SpecPro provides two implementations of this class (a detailed

explanation of the two algorithms and their performances is provided in Section

4.2): LinearInconsistencyFinder and BinaryInconsistencyFinder.

Listing 6.4: Find a MUC of an inconsistent LTLSpec object

LTLSpec = ...

ModelChecker mc = new Aalta();

ConsistencyChecker consistencyChecker = new

ConsistencyChecker(mc, spec , "out.temp");

InconsistencyFinder muc = new

BinaryInconsistencyFinder(consistencyChecker);

List <InputRequirement > reqs = muc.run();

if(reqs == null) {

System.out.println("Fail occured during model

checking call.");

System.out.println(mc.getMessage ());

} else {

System.out.println("# MUC of " + reqs.size() + "

elements found: ");

for (InputRequirement r : reqs) {

System.out.println(r.getText ());

}

}

6.1.3 Testing

In order to test black-box systems, SpecPro implements the framework pre-

sented in Chapter 5. The System Under Test (SUT) is the system we want

to test, and SpecPro interacts with it during execution, probing some inputs

and evaluating the produced output. The tests are generated starting from a

LTLSpec that is assumed to be consistent. In addition to the list of require-

ments, the specification has to indicate the list of input and output atomic

variables. To generate test cases for a model or a system, we have to implement

the following steps:

CHAPTER 6. TOOLS 72

1. Build the LTLSpec and an automaton representation of it, using the LTL2BA

class. This operation requires spot to be installed on the machine in which

the code is running.

Listing 6.5: Build a Büch Automaton from a LTLSpec

LTLFrontEnd fe = new LTLFrontEnd ();

LTLSpec spec = fe.parseFile("file.ltl");

LTL2BA ltl2ba = new LTL2BA ();

ltl2ba.setType(LTL2BA.AutomatonType.NBA);

BuchiAutomaton automaton = ltl2ba.translate(spec);

automaton.expandEdges ();

2. Instantiate the class responsible for the tests generation. It requires the

Büchi Automaton built in the previous step and a list of input variables

(the algorithm is described in Section 5.1)

Listing 6.6: Istantiate a GDFSTestGenerator class and set kmin

GDFSTestGenerator testGenerator = new

GDFSTestGenerator(automaton ,

spec.getInputVariables ());

testGenerator.setMinLength (2);

3. Create an instance of SUT, i.e., an interface for the System Under Test.

SpecPro provides the MealyMachineSUT default implementation to test

models in the KISS format. However, it is usually preferable to implement

your own SUT (see Section 6.1.3.1).

Listing 6.7: Istantiate a SUT implemented as a Mealy machine

MealyMachine mealy =

MealyMachineBuilder.parseKISSFile(modelFile);

SUT sut = new MealyMachineSUT(mealy);

4. Finally, instantiate a TestingEnvironment and start the testing genera-

tion on the SUT previously instantiated.

CHAPTER 6. TOOLS 73

Listing 6.8: Istantiate the TestingEnvironment and generate tests

TestingEnvironment environment = new

TestingEnvironment(testGenerator , sut);

environment.setMaxTraceLength (10);

Map <Trace , TestOracle.Value > result =

environment.runTests ();

At the end of the process, TestingEnvironment will produce a map con-

taining the executed traces and their evaluation. TestingEnvironment also

provides the setStopIfError method that immediately stops the testing if a

test fails during execution.

6.1.3.1 SUT

SpecPro provides a flexible framework that allows to test any reactive system.

In order to connect a custom SUT to the testing framework, the developer only

have to provide an implementation of the SUT abstract class, defining its two

methods.

Listing 6.9: Implementation of a custom SUT

import it.sagelab.specpro.models.ltl.Atom;

import it.sagelab.specpro.models.ltl.assign.Assignment

import it.sagelab.specpro.testing.SUT;

public class CustomSUT extends SUT {

@Override

public void reset() {

}

@Override

public Assignment exec(Assignment input) {

boolean inputVar =

input.getAssignments ().get("inputVar");

...

Assignment output = new Assignment ();

CHAPTER 6. TOOLS 74

output.add(new Atom("outputVar"), false);

return output;

}

}

The two methods to be implemented are:

• reset: it is called at the beggining of each test and it is meant to reset

the SUT to its initial state;

• exec: it is called at every step of each test and takes in input an Assigment

object containing the value for every input variable. The method’s objec-

tive is to execute such input on the SUT and to return a new assignment

containing the output values of the system.

6.2 ReqV

ReqV is an open source2 tool for the formal consistency checking of require-

ments. The main goal of the tool is to provide an easy-to-use environment to

enable users with no background knowledge of formal methods and logic lan-

guages to write and verify requirements, expressed as a list of properties spec-

ification patterns (PSPs). It provides an intuitive interface, accessible within

a web browser, and can automatically translate requirements in a formal rep-

resentation and checks their inner consistency. In case of inconsistency, ReqV

can also extracts a minimal set of conflicting requirements to help designers in

correcting the specification.

6.2.1 Architecture

In order to provide an easy setup and usage, ReqV has been designed as a

web application. ReqV’s implementation relies on different open-source tools

and frameworks and its architecture is outlined in Figure 6.1. The two main

components are:

• front-end: it is a web application implemented in Typescript, using the

2Source code available at https://gitlab.sagelab.it/sage/ReqV

CHAPTER 6. TOOLS 75

Figure 6.1: ReqV architecture diagram.

CHAPTER 6. TOOLS 76

Angular3 framework. It provides a graphical user interface for the user

and performs asynchronous calls to the back-end.

• back-end: it is a Java server application based on the Spring Boot4

framework and PostgreSQL5 database engine. It provides a set of

endpoints REST APIs with JSON format for data exchange. In order

to access services and user’s own data, ReqV employ the JWT[JBS15]

open standard for authentication over HTTPS. The back-end also employs

SpecPro and the NuSMV model checker to provide the main functional-

ities, upon which it builds an additional layer of functionalities.

ReqV’s back-end can be accessed by multiple users at the same time and

provides access to four main resources:

• User: contains basic information about the logged user.d;

• Projects: list of saved projects. Each project has a title, a description

and some configuration data, and it is associated with one user.

• Requirements: list of requirements saved in a project. Each requirement

contains its textual representation, its state (after the syntax check is

executed) and other application dependent information.

• Tasks: list of completed and executing tasks for a given project. A task

contains information about its state (i.e. if it is still running, or succeed-

ed/failed), log information and type.

Each resource can be accessed, modified or deleted with the usual HTTP meth-

ods calls. In particular, there are three types of tasks that can be created for

each project:

• Translate: the requirement specification is translated into a LTL satisfi-

ability problem and a file with the encoded specification is returned.

• ConsistencyCheck: a consistency check of the specification is executed

in background. It consists of variable type checking, i.e, ensuring that no

3https://angular.io/
4https://spring.io/projects/spring-boot
5https://www.postgresql.org/

CHAPTER 6. TOOLS 77

variable is used both as a Boolean and numerical value, and of an LTL

satisfiability check of the encoded requirements;

• FindInconsistency: it executes in background a research of a minimal

set of requirements that can help explain the inconsistency, if any. The

algorithm iteratively removes some requirements and performs the satisfi-

ability check of the remaining set, keeping only a minimal subset of them

that maintain the inconsistency.

Only one task per project at a time is allowed: if a task is still running, further

requests to instantiate a new task will be aborted. For a full list of APIs, the

reader is redirected to https://reqv.sagelab.it/api/swagger-ui.html.

6.2.2 Workflow

Figure 6.2: ReqV login page.

In the workflow of ReqV, the first step is authentication; when connecting

for the first time to the ReqV front-end, the user is redirected to the login

page (shown in Figure 6.2). In order to continue, the user has to insert a

valid username and password pair. If the login succeed, ReqV shows the list

of projects that are associated with the authenticated user. It is possible to

create a new project simply by clicking the “New Project” button and filling

the information required by the form, as illustrated in Figure 6.3. The form

requires:

• Name: the name of the project;

CHAPTER 6. TOOLS 78

Figure 6.3: ReqV page to create a new project.

• Description: an optional description of the project;

• Type: the type of requirements used in the project. At the moment only

the option PSP is available, but new kind of requirements may be added

in future releases of the software.

Clicking on the name of a project, the user opens a new page with the

details of the chosen project. By default, the Requirements tab is selected,

showing the list of requirements added in the project, as illustrated in Figure 6.4

(initially the list is empty). The user can select one or more requirements and

use the top menu to delete, disable or enable previously disabled requirements.

A disabled requirement won’t be considered during the analysis of consistency.

Clicking the “Add Requirement” button, it is possible to create and add a new

requirement to the list. ReqV provides a wizard to help the user write a PSP

with the right syntax, as illustrated in Figure 6.5. It allows to choose the type

of scope and pattern of the requirement, and provides an adequate number of

fields to fill the gaps and complete the PSP.

Once the user is satisfied with the inserted requirements, he can switch to

the Tasks tab and press the “Validate” button to start a check of consistency

of the active requirements. The task may take some time, depending on the

amount of requirements involved, running asynchronously on the back-end side.

When it terminates, ReqV will report the result (see Figure 6.6. If the specifi-

cation results inconsistent, the user can launch another task to search a minimal

CHAPTER 6. TOOLS 79

Figure 6.4: List of requirements inserted by the user in a project. Requirements

colored in green are syntactically correct, the ones in red are not. A grey

requirement indicates it has been disabled and therefore not considering during

the analysis.

insatiable core. As before, the task can take some time to run, and a report

with a MUC will be provided at completion (see Figure 6.7).

Finally, the Settings tab allows the user to change some project’s data (e.g.,

the title and description) and to import/export requirements with different file

formats.

CHAPTER 6. TOOLS 80

Figure 6.5: ReqV page for requirements creation.

Figure 6.6: Report of the consistency checking task in ReqV.

6.3 ReqT

ReqT is an open-source tool6 for the automatic testing of reactive black-box

systems. It uses a formal specification to choose which action to perform on

a system and to evaluate its response. Like ReqV, it aims at providing an

easy to use interface for non-expert users. ReqT is designed as a java desktop

application, with a simple graphical user interface that allows the user to set up

the environment, run the testing and explore the executed tests. ReqT exploits

the SpecPro’s API described in Section 6.1.3. For this reason, it requires spot

to be installed on the computer in which it is running.

6Source code available at https://gitlab.sagelab.it/sage/ReqT

CHAPTER 6. TOOLS 81

Figure 6.7: Report of the inconsistency explanation task. In the example ReqV

returns a MUC of 2 requirements.

6.3.1 Workflow

Figure 6.8: ReqT’s configuration window.

When executing ReqT, it starts by showing to the user a configuration

window, as depicted in Figure 6.8. In order to start the testing generation and

execution on the SUT, the user has to fill the following information:

• Requirements File: The text file containing the requirements that the

SUT must implement. The file should also contain the list of input and

output variables, so that ReqTknows how to build a test. ReqT is able to

process both requirements in PSP and LTL format, using the file extension

to infer the type.

• SUT Type: the type of SUT to test. Currently three types are supported:

– Custom (Default): the SUT is provided as a Java class implement-

ing the SUT abstract class, as explained in Section 6.1.3.1. The class

CHAPTER 6. TOOLS 82

Figure 6.9: ReqT’s tests report window.

can use other classes and libraries, as long as they are in the same

directory of the SUT class.

– KISS: the SUT is provided as a Mealy Machine model saved in the

KISS2 format [Yan91].

– NuSMV: the SUT is provided as a NuSMV [CCG+02] model. In this

case, also the SPECPRO NUSMV environment variable must be defined

with the path to the NuSMV model checker.

• SUT: The file containing the SUT expressed in the format indicated in

the SUT Type field.

• Min Length: indicates the minimum length for a test. It correspond to

the kmin parameter described in Section 5.1.

• Max Length: indicates the maximum length for a test. It correspond to

the kmax parameter described in Section 5.1.

When all the fields have been filled, the user can press the “Run” to start

the test generation on the indicated SUT. The task may take some time, and

a progress bar shows the number of tests executed so far. When the algorithm

terminates, a new window appear, showing the tests report, ad depicted in Fig-

CHAPTER 6. TOOLS 83

Figure 6.10: ReqT’s test details window.

ure 6.9. The window presents the list of generated tests, with an icon indicating

the result – a green icon for successful test and a red one for failed ones – and

a summary of the executed trace. Double clicking on one row, the user can

see the details of the test, as shown in Figure 6.10. The new window shows

the test number, the status of the test and a table displaying the detailed test

execution. Each row of the table represents a step of the test, and each column

represents the value of a variable, the name of which is indicated in the header

of the table. ReqT distinguishes the input and output variables, coloring the

former in green and the latter in yellow. Finally, each cell contains a value; T

for true and F for false.

Chapter 7

Conclusion

7.1 Summary of Contributions

We conclude this thesis with a summary of our contributions and a discussion

of potential lines of research that might follow this work.

The first contribution (Chapter 4) consists in a study regarding the for-

malization and consistency checking of a set of requirements. To achieve this

goal, we have extended basic PSPs over the constraint system DC , and we have

provided an encoding from any PSP(DC) into a corresponding LTL formula.

This enables us to deal with the satisfiability of specifications of practical inter-

est, and to verify them using state-of-the-art reasoning tools currently available

for LTL. Noticeably, even considering the largest problem in our experiments

(#vars = 640, #dom = 32), more than the 60% of the problems are solved (by

aalta) within the time limit of 10 minutes. Overall, using the specifications

generated with our probabilistic model we have shown that our approach imple-

mented on the tool aalta scales to problems containing more than a thousand

requirements over hundreds of variables. Considering a real-world case study

in the context of the EU project CERBERO, we have shown that it is feasible

to check specifications and uncover injected faults, even with tools other than

aalta. Moreover, we present and compare two algorithms for the extraction of

high-level Minimal Unsatisfiable Cores (MUCs), namely any irreducible subset

of requirements that is still unsatisfiable, from an inconsistent specification. In

84

CHAPTER 7. CONCLUSION 85

particular, we show that our proposed dichotomic deletion-based algorithm is

generally faster than the standard linear deletion-based one for specifications

that contains small MUCs. A MUC could be extracted for all, but the largest

specifications in our benchmark base.

The second contribution (Chapter 5) is a new approach to conformance test-

ing of black-box reactive systems. We consider system specifications written as

linear temporal logic formulas to generate tests as sequences of input/output

pairs: inputs are extracted from the Büchi automaton representing to the spec-

ification, and outputs are obtained by feeding the inputs to the system. Confor-

mance is checked by comparing input/output sequences with automata traces

to detect violations of the specifications. In particular, the GDFS algorithm

implements a variant of the deep-first search method, counting the visited tran-

sitions to evenly explore the automaton. A test is considered successful only

if it can reach an acceptance state of the automaton with length in the inter-

val between kmin and kmax, two parameters of the algorithm. We evaluated

our approach across three different experimental settings. In the first setting

we synthesized a set of benchmarks taken from the SYNTCOMP 2018 compe-

tition and we showed that our approach is better at finding mutants than (a

generalization of) two different algorithms presented in [AGR13]. In the second

setting, we showed that our approach compares favorably with state-of-the-art

model-based techniques. Finally, in the third setting we tested a controller for

a robotic manipulator modeled in smv and we showed that our approach is able

to find some manually injected faults.

Finally, the third contribution (Chapter 6) of this work consist in the im-

plementation of three tools: SpecPro, ReqV and ReqT. SpecPro ia a Java

library that contains the implementation of all the algorithms discussed in this

thesis and provides simple APIs for the developers. ReqV and ReqT build

uponl the capabilities provided by SpecPro, implementing an additional layer

of functionalities to provide a friendly interface to the end user. In particular,

ReqV is a web application that helps the user to write, manage and verify

the consistency of requirements with minimal effort; while ReqT is a desktop

application which is designed to help the user execute automated testing on a

given SUT, using a formal specification to drive the test generation.

CHAPTER 7. CONCLUSION 86

7.2 Open challenges and future work

During the study and realization of the work described in this thesis, we collected

useful insights and ideas for possible extensions that have still to be explored.

Therefore, we detail in the following some observations and ideas that could be

useful for other researchers considering venturing in this field.

Logic Expressiveness In our work, we adopted linear temporal logic as our

underline formalism for requirements. This choice was taken as a compromise

between the logic expressiveness and the availability of off-the-shelf tools that

are able to deal with this logic. In order to improve its expressiveness with

atomic numeric constraints, we also proposed the LTL(DC) encoding. However,

during our study we found difficult to formalize in such logic some relevant

properties for cyber-physical systems. For example, defining mutually exclusive

states is possible but cumbersome, reducing the readability of the specification.

Similarly, constraining some properties to be fulfilled within a given amount of

time is not supported by standard LTL, but it can be achieved with some of

its extensions (e.g., see MLTL [LVR19]). Furthermore, the atomic numerical

constraints defined in LTL(DC) resulted sufficient to formalize many relevant

requirements, but more general linear arithmetic constrains are sometimes nec-

essary. However, this easily leads to undecidability, as discussed in Section 4.1,

so more research is needed in order to find the best trade-off. In particular,

we think it may be interesting to investigate the extension of our work to some

decidable fragments of first-order logic.

Structured Language The use of Property Specification Patterns (PSPs)

is common in the literature because they can both provide a good level of

readability and maintain a formal and unambiguous semantics. However, we

found them a bit cumbersome and onerous for non-expert users to write such

properties without the aid of a tool like ReqV. We think that the language

can still be improved without compromising its formal semantics. On the other

hand, we believe that a full unrestricted natural language is not suited for the

kind of tasks presented in this thesis, due to its intrinsic ambiguity that makes

impossible to give formal guarantees.

CHAPTER 7. CONCLUSION 87

Knowledge Base Sometimes requirement engineers rely on some common

knowledge that is not always made explicit in the requirements document. In-

cluding domain specific knowledge bases at need would improve the effectiveness

of our work, reducing at the same time redundant information and helping the

engineer focusing on the specific problem at hand. Moreover, in some contexts,

it could be useful to incorporate information from sources other than require-

ments. Therefore, we believe that the integration of an external knowledge base

in the formalization and consistency checking of requirements can both improve

the user experience and provide useful insights for debugging.

Testing Framework The testing framework presented in Chapter 5 showed

to be effective and competitive with other state-of-the-art methods. Nonethe-

less, many aspects of the framework components can be customized and more

research may lead to better results. In particular, we think that it could be in-

teresting to implement and compare more test oracles, involving different finite

LTL semantics, and new exploration strategies of the automaton.

Testing with Numeric Constraints It is possible to incorporate the encod-

ing presented in Chapter 4 in the testing framework introduced in Chapter 5, to

test SUTs with numeric input and output variables. We already implemented

a prototype in SpecPro that is able to automatically convert from numeric

to Boolean constraints, and viceversa. However, we discovered that there is a

scalability issue during the Büchi Automaton generation, limiting its applica-

tion to small specifications. The process could be improved by splitting the

requirements in subsets and dealing with multiple automata, but this direction

has not been extensively explored yet.

Bibliography

[AABdB+19] Zaid Al-Ars, Twan Basten, Ad de Beer, Marc Geilen, Dip

Goswami, Pekka Jääskeläinen, Jǐŕı Kadlec, Marcos Martinez

de Alejandro, Francesca Palumbo, Geran Peeren, et al. The fi-

toptivis ecsel project: highly efficient distributed embedded im-

age/video processing in cyber-physical systems. In Proceedings of

the 16th ACM International Conference on Computing Frontiers,

pages 333–338, 2019.

[ABLN06] James H Andrews, Lionel C Briand, Yvan Labiche, and Ak-

bar Siami Namin. Using mutation analysis for assessing and com-

paring testing coverage criteria. IEEE Transactions on Software

Engineering, 32(8):608–624, 2006.

[AGL+15] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione,

and Antony Tang. Aligning qualitative, real-time, and prob-

abilistic property specification patterns using a structured en-

glish grammar. IEEE Transactions on Software Engineering,

41(7):620–638, 2015.

[AGR13] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. On-

line testing of ltl properties for java code. In Haifa Verification

Conference, pages 95–111. Springer, 2013.

[AGTW11] Ahmed Awad, Rajeev Goré, James Thomson, and Matthias

Weidlich. An iterative approach for business process template

synthesis from compliance rules. In International Conference

88

BIBLIOGRAPHY 89

on Advanced Information Systems Engineering, pages 406–421.

Springer, 2011.

[AHDR18] Adina Aniculaesei, Falk Howar, Peer Denecke, and Andreas

Rausch. Automated generation of requirements-based test cases

for an adaptive cruise control system. In 2018 IEEE Workshop

on Validation, Analysis and Evolution of Software Tests (VST),

pages 11–15. IEEE, 2018.

[BBB+16] Jǐŕı Barnat, Petr Bauch, Nikola Beneš, Luboš Brim, Jan Be-

ran, and Tomáš Kratochv́ıla. Analysing sanity of requirements

for avionics systems. Formal Aspects of Computing, 28(1):45–63,

2016.

[BBCB16] Jaroslav Bend́ık, Nikola Benes, Ivana Cerná, and Jiri Bar-

nat. Tunable online mus/mss enumeration. arXiv preprint

arXiv:1606.03289, 2016.

[BBD19] Benôıt Barbot, Nicolas Basset, and Thao Dang. Generation of

signals under temporal constraints for CPS testing. In Julia M.

Badger and Kristin Yvonne Rozier, editors, NASA Formal Meth-

ods - 11th International Symposium, NFM 2019, Houston, TX,

USA, May 7-9, 2019, Proceedings, volume 11460 of Lecture Notes

in Computer Science, pages 54–70. Springer, 2019.

[BBNR18] Ezio Bartocci, Roderick Bloem, Dejan Nickovic, and Franz Roeck.

A counting semantics for monitoring ltl specifications over finite

traces. In International Conference on Computer Aided Verifica-

tion, pages 547–564. Springer, 2018.

[BDTW93] René R Bakker, F Dikker, Frank Tempelman, and

Petronella Maria Wognum. Diagnosing and solving over-

determined constraint satisfaction problems. In IJCAI,

volume 93, pages 276–281, 1993.

[Ben17] Jaroslav Bend́ık. Consistency checking in requirements analysis.

In Proceedings of the 26th ACM SIGSOFT International Sym-

BIBLIOGRAPHY 90

posium on Software Testing and Analysis, pages 408–411. ACM,

2017.

[BGM91] Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. Software

testing based on formal specifications: a theory and a tool. Soft-

ware Engineering Journal, 6(6):387–405, 1991.

[BGMR16] Matteo Bertello, Nicola Gigante, Angelo Montanari, and Mark

Reynolds. Leviathan: A new ltl satisfiability checking tool

based on a one-pass tree-shaped tableau. In Proceedings of the

Twenty-Fifth International Joint Conference on Artificial Intel-

ligence, IJCAI’16, pages 950–956. AAAI Press, 2016. URL:

http://dl.acm.org/citation.cfm?id=3060621.3060753.

[BGPS12] Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso, and Patrick

Senti. Specification patterns from research to industry: a case

study in service-based applications. In 2012 34th International

Conference on Software Engineering (ICSE), pages 968–976.

IEEE, 2012.

[BGST12] Daniel Berry, Ricardo Gacitua, Pete Sawyer, and Sri Fatimah

Tjong. The case for dumb requirements engineering tools. In

International Working Conference on Requirements Engineering:

Foundation for Software Quality, pages 211–217. Springer, 2012.

[BJK+05] Manfred Broy, Bengt Jonsson, J-P Katoen, Martin Leucker, and

Alexander Pretschner. Model-based testing of reactive systems.

In Volume 3472 of Springer LNCS. Springer, 2005.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model

checking. MIT press, 2008.

[BLS06] Andreas Bauer, Martin Leucker, and Christian Schallhart. Mon-

itoring of real-time properties. In International Conference on

Foundations of Software Technology and Theoretical Computer

Science, pages 260–272. Springer, 2006.

BIBLIOGRAPHY 91

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Com-

paring ltl semantics for runtime verification. Journal of Logic and

Computation, 20(3):651–674, 2010.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-

time verification for ltl and tltl. ACM Transactions on Software

Engineering and Methodology (TOSEM), 20(4):14, 2011.

[BMS11] Anton Belov and Joao Marques-Silva. Accelerating mus ex-

traction with recursive model rotation. In Formal Methods in

Computer-Aided Design (FMCAD), 2011, pages 37–40. IEEE,

2011.

[BMS12] Anton Belov and Joao Marques-Silva. Muser2: An efficient mus

extractor. Journal on Satisfiability, Boolean Modeling and Com-

putation, 8:123–128, 2012.

[Bur06] Ilene Burnstein. Practical software testing: a process-oriented

approach. Springer Science & Business Media, 2006.

[CC00] Hubert Comon and Véronique Cortier. Flatness is not a weak-

ness. In International Workshop on Computer Science Logic,

pages 262–276, 2000.

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto

Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani,

and Armando Tacchella. NuSMV 2: An OpenSource Tool for

Symbolic Model Checking. In 14th International Conference on

Computer Aided Verification (CAV 2002), pages 359–364, 2002.

[CD91] John W Chinneck and Erik W Dravnieks. Locating minimal in-

feasible constraint sets in linear programs. ORSA Journal on

Computing, 3(2):157–168, 1991.

[CES86] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Au-

tomatic verification of finite-state concurrent systems using tem-

poral logic specifications. ACM Transactions on Programming

Languages and Systems (TOPLAS), 8(2):244–263, 1986.

BIBLIOGRAPHY 92

[CGM+20] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco

Roveri, and Stefano Tonetta. Smt-based satisfiability of first-order

ltl with event freezing functions and metric operators. Informa-

tion and Computation, 272:104502, 2020.

[CRST07] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Stefano

Tonetta. Boolean abstraction for temporal logic satisfiability. In

International Conference on Computer Aided Verification, pages

532–546. Springer, 2007.

[CRST08] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Andrei

Tchaltsev. Diagnostic information for realizability. In Interna-

tional Workshop on Verification, Model Checking, and Abstract

Interpretation, pages 52–67. Springer, 2008.

[CRST11] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano

Tonetta. Formalizing requirements with object models and tem-

poral constraints. Software & Systems Modeling, 10(2):147–160,

2011.

[CRT09] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Require-

ments validation for hybrid systems. In International Conference

on Computer Aided Verification, pages 188–203. Springer, 2009.

[CRT15] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Hreltl:

A temporal logic for hybrid systems. Information and Computa-

tion, 245:54–71, 2015.

[DAC99] Matthew B Dwyer, George S Avrunin, and James C Corbett.

Patterns in property specifications for finite-state verification. In

Proceedings of the 21st International conference on Software en-

gineering, pages 411–420, 1999.

[DD07] Stéphane Demri and Deepak D’Souza. An automata-theoretic

approach to constraint LTL. Information and Computation,

205(3):380–415, 2007.

BIBLIOGRAPHY 93

[DGHP09] Christian Desrosiers, Philippe Galinier, Alain Hertz, and Sandrine

Paroz. Using heuristics to find minimal unsatisfiable subformulas

in satisfiability problems. Journal of combinatorial optimization,

18(2):124–150, 2009.

[DHF15] A Dokhanchi, B Hoxha, and GE Fainekos. Metric interval tem-

poral logic specification elicitation and debugging. In 13th ACM-

IEEE International Conference on Formal Methods and Models

for Codesign, pages 21–23, 2015.

[DHF16] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. Formal re-

quirement debugging for testing and verification of cyber-physical

systems. arXiv preprint arXiv:1607.02549, 2016.

[DKM+94] Laura K Dillon, George Kutty, Louise E Moser, P Michael

Melliar-Smith, and Y Srinivas Ramakrishna. A graphical interval

logic for specifying concurrent systems. ACM Transactions on

Software Engineering and Methodology (TOSEM), 3(2):131–165,

1994.

[DLLF+16] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille,

Thibaud Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 —

a framework for LTL and ω-automata manipulation. In Proceed-

ings of the 14th International Symposium on Automated Technol-

ogy for Verification and Analysis (ATVA’16), volume 9938 of Lec-

ture Notes in Computer Science, pages 122–129. Springer, 2016.

https://doi.org/10.1007/978-3-319-46520-3 8.

[Dra89] Erik Willy Dravnieks. Identifying minimal sets of incon-

sistent constraints in linear programs: Deletion, squeeze

and sensitivity filtering. M.Sc. Thesis, Department of Sys-

tems and Computer Engineering, Carleton University, 1989.

https://doi.org/10.22215/etd/1989-01696.

[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, An-

thony McIsaac, and David Van Campenhout. Reasoning with

BIBLIOGRAPHY 94

temporal logic on truncated paths. In International conference

on computer aided verification, pages 27–39. Springer, 2003.

[EKN+12] Marie-Aude Esteve, Joost-Pieter Katoen, Viet Yen Nguyen, Bart

Postma, and Yuri Yushtein. Formal correctness, safety, depend-

ability, and performance analysis of a satellite. In 2012 34th In-

ternational Conference on Software Engineering (ICSE), pages

1022–1031. IEEE, 2012.

[FB16] Yishai A Feldman and Henry Broodney. A cognitive journey for

requirements engineering. In INCOSE International Symposium,

volume 26, pages 430–444. Wiley Online Library, 2016.

[FKK08] Norbert E Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto

controlled english for knowledge representation. In Reasoning

Web, pages 104–124. Springer, 2008.

[FKSFV08] Dana Fisman, Orna Kupferman, Sarai Sheinvald-Faragy, and

Moshe Y Vardi. A framework for inherent vacuity. In Haifa

Verification Conference, pages 7–22. Springer, 2008.

[FLM+04] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco

Roveri, and Paolo Traverso. Specifying and analyzing early re-

quirements in tropos. Requirements Engineering, 9(2):132–150,

2004.

[FWA09] Gordon Fraser, Franz Wotawa, and Paul E Ammann. Testing

with model checkers: a survey. Software Testing, Verification and

Reliability, 19(3):215–261, 2009.

[GEL+16] Shalini Ghosh, Daniel Elenius, Wenchao Li, Patrick Lincoln,

Natarajan Shankar, and Wilfried Steiner. Arsenal: automatic

requirements specification extraction from natural language. In

NASA Formal Methods Symposium, pages 41–46. Springer, 2016.

[GHST13] Rajeev Goré, Jinbo Huang, Timothy Sergeant, and Jimmy Thom-

son. Finding minimal unsatisfiable subsets in linear temporal logic

using bdds, 2013.

BIBLIOGRAPHY 95

[HK03] Ullrich Hustadt and Boris Konev. TRP++ 2.0: A temporal res-

olution prover. In 19th International Conference on Automated

Deduction, pages 274–278, 2003.

[HMU01] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Intro-

duction to automata theory, languages, and computation. Acm

Sigact News, 32(1):60–65, 2001.

[HTI97] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault

injection techniques and tools. Computer, 30(4):75–82, 1997.

[JBS15] Michael Jones, John Bradley, and Nat Sakimura. Json web token

(jwt). Technical report, 2015. https://tools.ietf.org/html/

rfc7519.

[JJ05] Claude Jard and Thierry Jéron. Tgv: theory, principles and algo-

rithms. International Journal on Software Tools for Technology

Transfer, 7(4):297–315, 2005.

[JKS16] Swen Jacobs, Felix Klein, and Sebastian Schirmer. A high-level

ltl synthesis format: Tlsf v1. 1. arXiv preprint arXiv:1604.02284,

2016.

[Jun01] Ulrich Junker. Quickxplain: Conflict detection for arbitrary con-

straint propagation algorithms. In IJCAI’01 Workshop on Mod-

elling and Solving problems with constraints, 2001.

[KC05] Sascha Konrad and Betty HC Cheng. Real-time specification

patterns. In Proceedings of the 27th international conference on

Software engineering, pages 372–381, 2005.

[KGHS98] Beat Koch, Jens Grabowski, Dieter Hogrefe, and Michael Schmitt.

Autolink-a tool for automatic test generation from sdl specifica-

tions. In Proceedings. 2nd IEEE Workshop on Industrial Strength

Formal Specification Techniques, pages 114–125. IEEE, 1998.

[KMMP93] Yonit Kesten, Zohar Manna, Hugh McGuire, and Amir Pnueli. A

decision algorithm for full propositional temporal logic. In Inter-

BIBLIOGRAPHY 96

national Conference on Computer Aided Verification, pages 97–

109. Springer, 1993.

[KT04] Moez Krichen and Stavros Tripakis. Black-box conformance test-

ing for real-time systems. In International SPIN Workshop on

Model Checking of Software, pages 109–126. Springer, 2004.

[Lap17] Phillip A Laplante. Requirements engineering for software and

systems. CRC Press, 2017.

[LCB+09] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano,

Odd Petter N Slyngstad, and Maurizio Morisio. Development

with off-the-shelf components: 10 facts. IEEE software, 26(2):80–

87, 2009.

[LM13] Mark H Liffiton and Ammar Malik. Enumerating infeasibility:

Finding multiple muses quickly. In International Conference on

AI and OR Techniques in Constriant Programming for Combina-

torial Optimization Problems, pages 160–175. Springer, 2013.

[LMG11] Markus Lumpe, Indika Meedeniya, and Lars Grunske. PSPWiz-

ard: machine-assisted definition of temporal logical properties

with specification patterns. In Proceedings of the 19th ACM SIG-

SOFT symposium and the 13th European conference on Founda-

tions of software engineering, pages 468–471, 2011.

[LPZ+13] Jianwen Li, Geguang Pu, Lijun Zhang, Yinbo Yao, Moshe Y

Vardi, et al. Polsat: A portfolio LTL satisfiability solver. arXiv

preprint arXiv:1311.1602, 2013.

[LS08] Mark H Liffiton and Karem A Sakallah. Algorithms for com-

puting minimal unsatisfiable subsets of constraints. Journal of

Automated Reasoning, 40(1):1–33, 2008.

[LVR19] Jianwen Li, Moshe Y Vardi, and Kristin Y Rozier. Satisfiabil-

ity checking for mission-time ltl. In International Conference on

Computer Aided Verification, pages 3–22. Springer, 2019.

BIBLIOGRAPHY 97

[LYP+14] Jianwen Li, Yinbo Yao, Geguang Pu, Lijun Zhang, and Jifeng

He. Aalta: an LTL satisfiability checker over infinite/finite traces.

In Proceedings of the 22nd ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering, pages 731–734,

2014.

[LZP+13] Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y Vardi, and Jifeng

He. LTL satisfiability checking revisited. In 20th International

Symposium on Temporal Representation and Reasoning, pages

91–98, 2013.

[LZPV15] Jianwen Li, Shufang Zhu, Geguang Pu, and Moshe Y Vardi. Sat-

based explicit ltl reasoning. In 11th Haifa Verification Conference,

pages 209–224, 2015.

[ML18] Salomon Sickert Michael Luttenberger, Philipp J. Meyer. Strix,

2018. [Online; accessed 27-June-2019]. URL: \url{https://

strix.model.in.tum.de/}.

[MP12] Zohar Manna and Amir Pnueli. Temporal verification of reactive

systems: safety. Springer Science & Business Media, 2012.

[MPM+17] Michael Masin, Francesca Palumbo, Hans Myrhaug,

JA de Oliveira Filho, M Pastena, Maxime Pelcat, Luigi

Raffo, Francesco Regazzoni, AA Sanchez, Antonella Toffetti,

et al. Cross-layer design of reconfigurable cyber-physical systems.

In Proceedings of the Conference on Design, Automation & Test

in Europe, pages 740–745. European Design and Automation

Association, 2017.

[MSL11] Joao Marques-Silva and Ines Lynce. On improving mus extraction

algorithms. In International Conference on Theory and Applica-

tions of Satisfiability Testing, pages 159–173. Springer, 2011.

[Nad10] Alexander Nadel. Boosting minimal unsatisfiable core extrac-

tion. In Proceedings of the 2010 Conference on Formal Methods

in Computer-Aided Design, pages 221–229. FMCAD Inc, 2010.

BIBLIOGRAPHY 98

[NPTV18] Massimo Narizzano, Luca Pulina, Armando Tacchella, and Si-

mone Vuotto. Consistency of property specification patterns

with boolean and constrained numerical signals. In NASA

Formal Methods: 10th International Symposium, NFM 2018,

Newport News, VA, USA, April 17-19, 2018, Proceedings, vol-

ume 10811, pages 383–398. Springer, Springer Verlag, 2018.

https://doi.org/10.1007/978-3-319-77935-5 26.

[NPTV19] M. Narizzano, L. Pulina, A. Tacchella, and S. Vuotto. Prop-

erty specification patterns at work: verification and inconsis-

tency explanation. Innovations in Systems and Software Engi-

neering, 15(3-4):307–323, 2019. https://doi.org/10.1007/s11334-

019-00339-1.

[NPTV20] M. Narizzano, L. Pulina, A. Tacchella, and S. Vuotto. Au-

tomated requirements-based testing of black-box reactive sys-

tems. In NASA Formal Methods: 12th International Symposium,

NFM 2020, Moffett Field, CA, USA, May 11–15, 2020, Pro-

ceedings, volume 12229, pages 153–169. Springer Nature, 2020.

https://doi.org/10.1007/978-3-030-55754-6 9.

[PFS+19] Francesca Palumbo, Tiziana Fanni, Carlo Sau, Luca Pulina, Luigi

Raffo, Michael Masin, Evgeny Shindin, Pablo Sanchez de Rojas,

Karol Desnos, Maxime Pelcat, et al. Cerbero: Cross-layer model-

based framework for multi-objective design of reconfigurable sys-

tems in uncertain hybrid environments: Invited paper: Cerbero

teams from uniss, unica, ibm research, tase, insa-rennes, upm, usi,

abinsula, ambiesense, tno, s&t, crf. In Proceedings of the 16th

ACM International Conference on Computing Frontiers, pages

320–325. ACM, 2019.

[PH12] Amalinda Post and Jochen Hoenicke. Formalization and analysis

of real-time requirements: A feasibility study at BOSCH. Verified

Software: Theories, Tools, Experiments, pages 225–240, 2012.

[PM92] Amir Pnueli and Zohar Manna. The temporal logic of reactive

and concurrent systems. Springer, 16:12, 1992.

BIBLIOGRAPHY 99

[PMHP12] Amalinda Post, Igor Menzel, Jochen Hoenicke, and Andreas

Podelski. Automotive behavioral requirements expressed in a

specification pattern system: a case study at bosch. Requirements

Engineering, 17(1):19–33, 2012.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations

of Computer Science, 1977., 18th Annual Symposium on, pages

46–57. IEEE, 1977.

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive

(1) designs. In International Workshop on Verification, Model

Checking, and Abstract Interpretation, pages 364–380. Springer,

2006.

[PPVon] L. Pandolfo, L. Pulina, and S. Vuotto. Smt-based consistency

checking of configuration-based components specifications. Under

submission.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive

module. In Proceedings of the 16th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 179–

190. ACM, 1989.

[RV07] Kristin Y Rozier and Moshe Y Vardi. LTL satisfiability checking.

In Spin, volume 4595, pages 149–167. Springer, 2007.

[RV10] Kristin Y Rozier and Moshe Y Vardi. LTL satisfiability checking.

International Journal on Software Tools for Technology Transfer

(STTT), 12(2):123–137, 2010.

[RV11] Kristin Y Rozier and Moshe Y Vardi. A multi-encoding approach

for LTL symbolic satisfiability checking. In International Sympo-

sium on Formal Methods, pages 417–431. Springer, 2011.

[Sch98] Stefan Schwendimann. A new one-pass tableau calculus for pltl. In

International Conference on Automated Reasoning with Analytic

Tableaux and Related Methods, pages 277–291. Springer, 1998.

BIBLIOGRAPHY 100

[Sch12] Viktor Schuppan. Towards a notion of unsatisfiable and unre-

alizable cores for ltl. Science of Computer Programming, 77(7-

8):908–939, 2012.

[Sch16a] Viktor Schuppan. Enhancing unsatisfiable cores for ltl with in-

formation on temporal relevance. Theoretical Computer Science,

655:155–192, 2016.

[Sch16b] Viktor Schuppan. Extracting unsatisfiable cores for ltl via tem-

poral resolution. Acta Informatica, 53(3):247–299, 2016.

[SEG00] Michael Schmitt, Michael Ebner, and Jens Grabowski. Test gen-

eration with autolink and testcomposer. In Proc. 2nd Workshop

of the SDL Forum Society on SDL and MSC-SAM, volume 2000,

2000.

[TSL04] Li Tan, Oleg Sokolsky, and Insup Lee. Specification-based testing

with linear temporal logic. In Conference on Information Reuse

and Integration, pages 483–498, 2004.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Test-

ing: A Tools Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2007.

[VNPT19a] S. Vuotto, M. Narizzano, L. Pulina, and A. Tacchella.

Automata based test generation with specpro. In 2019

IEEE/ACM 6th International Workshop on Requirements En-

gineering and Testing (RET), pages 13–16. IEEE, 2019.

https://doi.org/10.1109/RET.2019.00010.

[VNPT19b] S. Vuotto, M. Narizzano, L. Pulina, and A. Tacchella. Poster:

Automatic consistency checking of requirements with reqv.

In 2019 12th IEEE Conference on Software Testing, Vali-

dation and Verification (ICST), pages 363–366. IEEE, 2019.

https://doi.org/10.1109/ICST.2019.00043.

[Vuo18] S. Vuotto. Requirements-driven design of cyber-physical systems.

In Proceedings of the Cyber-Physical Systems PhD & Postdoc

BIBLIOGRAPHY 101

Workshop 2018, volume 2208 of CEUR Workshop Proceedings,

pages 38–44. CEUR-WS, 2018. http://ceur-ws.org/Vol-2208/

6.pdf.

[Vuo19] S. Vuotto. Automata-based generation of test cases for reactive

systems. In Proceedings of the Cyber-Physical Systems PhD &

Postdoc Workshop 2019, volume 2457 of CEUR Workshop Pro-

ceedings, pages 96–106. CEUR-WS, 2019. http://ceur-ws.org/

Vol-2457/10.pdf.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John

Fitzgerald. Formal methods: Practice and experience. ACM com-

puting surveys (CSUR), 41(4):1–36, 2009.

[Wol85] Pierre Wolper. The tableau method for temporal logic: An

overview. Logique et Analyse, pages 119–136, 1985.

[Yan91] S Yang. Logic synthesis and optimization bench marks user guide.

technical report-microelectronic center of north carolina. 1991.

[ZT15] Bolong Zeng and Li Tan. Test reactive systems with buchi au-

tomata: acceptance condition coverage criteria and performance

evaluation. In 2015 IEEE International Conference on Informa-

tion Reuse and Integration, pages 380–387. IEEE, 2015.

[ZT16] Bolong Zeng and Li Tan. Test reactive systems with büchi-

automaton-based temporal requirements. In Theoretical Infor-

mation Reuse and Integration, pages 31–57. Springer, 2016.

