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Uveal melanoma (UM) is a rare cancer that affects the choroid and, less frequently, the ciliary body 
or the iris (for recent reviews see [1-3]). Despite a profound knowledge of the oncogenic mechanisms 
behind UM tumorigenesis and despite an accurate cytogenetic and molecular prognosis, only limited 
advances have been made in UM therapy. Therapies targeting mitogen-activated protein (MAP)-
kinases have largely failed [4] and immune checkpoint blockers have met with limited success [5,6]. 
The latter is likely explained by the extremely low mutational burden of 0.5 - 1.1 mutations per 
megabase [7,8] which translates to 17 [8] to 30 [9] non-synonymous mutations in protein coding 
sequences per exome and therefore to the generation of few immunogenic neo-antigens. The lack of 
response to therapies that target downstream effectors of the oncogenic mutations is probably due to 
the concomitant GNAQ/11 dependent activation of the yes associated protein 1 gene, YAP1 [10,11] 
that is not inhibited by MAP-kinase inhibitors.

Uveal and cutaneous melanoma are both generated through the transformation of neural crest-
derived melanocytes, yet they show different mutations and chromosomal aberrations that drive 
oncogenesis, a very different mutational burden, low in uveal and high in cutaneous melanoma [12], 
and different mutational signatures indicating a different etiology [13].

UM is driven by hot spot oncogenic mutations that affect the two G-protein α-subunit Q and 
11 genes (GNAQ [14], GNA11 [15]) or, much less frequently [16], the G-protein coupled receptor 
cysteinyl leukotriene receptor 2 gene (CYSLTR2 [17]) or the phospholipase C beta 4 gene (PLCB4) 
[7]. Approximately one third of the tumors also carry mutations in the BRCA1-associated protein 
1 gene (BAP1) [16], a tumor suppressor gene whose function is depleted through mutation of one 
and loss of the other allele [18]. Alternatively, hotspot mutation in the splicing factor 3b subunit 1 
gene (SF3B1) [19,20] or the serine and arginine rich splicing factor 2 (SRSF2) gene [9,21] likely 
affect splicing of various genes, thereby creating oncogenic splice variants [22-24]. Interestingly, the 
splicing factor mutations in UM are different from those observed in the same genes in blood cancers 
[25,26]. BAP1 is associated with a high [18] and SF3B1 with an intermediate metastatic risk [27]. 
Cases without any mutation of these two genes have a low metastatic risk. Further frequent gain-of-
function mutations in the 5’ part of the coding sequence of the eukaryotic translation initiation factor 
1A X-linked gene (EIF1AX) are associated with a low risk of metastasis [20,28]. These mutations likely 
support a specific tumor development path that does not lead to a metastatic potential. 

Chromosomal copy number alterations, mainly monosomy of chromosome 3 and amplification 
of chromosome 8q, are hallmarks of UM at high risk of metastasis. The analysis of the mutations, 
copy number alterations, DNA-methylation and RNA expression performed by The Cancer Genome 
Atlas consortium allows for the identification of two subtypes with different metastatic risks that are 
characterized by profound differences at all levels of molecular characterization [8]. Each subtype can 
further be subdivided albeit with less robust discriminators [29-31,8]. The molecular classification is 
confirmed by data fusion techniques that have been developed for the integration of multi-domain 
molecular data [32]. 

GNAQ, GNA11, CYSLTR2 mutations are, with very few exceptions, mutually exclusive [16,9] and 
are likely to be cancer-initiating mutations. The metastasis drivers BAP1 and SF3B1 are also mutually 
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exclusive with, however, more frequent exceptions [9,16]. PLCB4 
mutations have also been described to occur in a mutually-exclusive 
manner with the other initiating mutations yet the isoforms PLCB1 
and PLCB2 have been found in GNAQ-mutated cases [13]. As a 
consequence, low risk UM carry a single recurrent mutation (GNAQ, 
GNA11, CYSLTR2 or PLCB4), with in some cases, in addition a 
mutation in EIF1AX, and high risk cases carry two recurrent 
mutations, one of the former four and either BAP1 or SF3B1.

The combination of a hotspot mutation in a G-protein α-subunit 
and a protein-truncating mutation in a tumor suppressor gene would 

thus be sufficient to form a highly aggressive metastasized tumor 
that is resistant to chemotherapy, targeted therapy and immune 
checkpoint blockers and causes the death of the patient within a 
year of diagnosis of metastases. In favor of this hypothesis comes 
a genetically engineered mouse model, where the expression of a 
transgenic GNAQ gene carrying the Q209L mutation is driven 
by a melanocyte inducing transcription factor, MITF, responsive 
promoter. In these animals, the single mutation is apparently 
sufficient to drive uveal melanomagenesis with high penetrance 
and short latency despite low expression levels of mutated GNAQ 
[33]. 94% of these animals even presented lung metastases [33]. 

Figure 1: Expression analysis of MYC and ASAP1. Gene expression data were collected from three publicly available cohorts of primary 
UM cases [45-48,8] and merged as previously described [13]. The cases for which copy number alteration data and somatic mutation 
data were available were interrogated for the expression of MYC and ASAP1. A – MYC and ASAP1 expression in cases with and without 
amplification of chr8q, B – MYC and ASAP1 expression in cases with and without BAP1 mutations. Gene expression data are indicated as 
arbitrary intensity units, *** = p<0.001; the horizontal line indicates the mean value.

Figure 2: Graphical abstract of the concept of secondary drivers.
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However, when the expression of mutated GNAQ is induced in 
adult animals it is not sufficient to generate uveal melanomas [33] 
indicating that additional events are required. 

We envisage five possible scenarios: i) at present, there are data 
on sequenced exomes from 139 UM [9] and sequencing many 
more cases might reveal other recurrent mutations that contribute 
to tumorigenesis and/or metastasization; ii) there might be frequent 
mutations that are not evidenced by exome sequencing, such as 
mutations in regulatory elements or non-coding RNAs; iii) copy 
number alterations, especially those affecting so far unknown 
elements on chromosome 3 in addition to BAP1 mutations might 
be necessary; iv) several of the genes that showed mutations in 
only a few or even a single case might act as secondary drivers; v) a 
combination of the above. 

Scenario #1 can be tested by continuing to sequence the exomes 
of UM. Scenario #2 can be tested by whole genome sequencing; 
yet, the first paper on whole genome sequencing did not report 
any specific non-coding mutations [34]. Scenario #3 offers some 
obvious clues given the high frequency and the high impact of 
monosomy of chromosome 3, yet the molecular players in addition 
to BAP1 have not been identified and, given the considerable effort 
dedicated to this aspect, are apparently difficult to identify. The 
sequencing studies would anyway indicate that the missing actor 
on chromosome 3 is not linked to a somatic mutation but to gene 
dosage effects. The MYC Proto-Oncogene has been thought to 
account for the dismal effects of chromosome 8q amplification; yet, 
there is no direct evidence for this claim, which has been challenged 
by a study indicating the ArfGAP With SH3 Domain, Ankyrin 
Repeat And PH Domain 1 gene, ASAP1 (also named DDEF), plays 
this role [35]. In fact, in our merged gene expression dataset [13], 
ASAP1 but not MYC is significantly associated with chr8q gain and 
BAP1 mutation. Given the scattered distribution, even ASAP1 is 
unlikely to explain all of the chr8q amplification effect (Figure 1).

We addressed the fourth scenario by analyzing all the mutations 
identified by exome sequencing in 139 UM (Figure 2). Our 
data show that secondary mutations are significantly enriched in 
the calcium signaling and other pathways in which also the four 
initiating mutations (GNAQ, GNA11, CYSLTR2 and PLCB4) are 
annotated. Almost all nodes of the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) calcium signaling pathway (map04020) 
contain at least one gene that is mutated in at least one of the 139 
UM. This is highly significant (adjusted p<0.0004) despite the fact 
that gene annotations are extremely incomplete and biased towards 
genes for which there is more information available. A similar 
analysis done by a literature search and homology analyses identifies 
many more genes that are likely to act in the same pathway as the 
initiating mutations (our unpublished observation). The analysis of 
potential secondary drivers also led to the identification of several 
oncogenic hot spot mutations and heterozygous tumor suppressor 
gene-truncating mutations [13]. The expression values of many of 
the genes carrying secondary mutations were significantly associated 
with disease free survival [13]. 

Unfortunately, we did not have access to the DNA of the cases 
analyzed by exome sequencing and were therefore unable to validate 
these mutations by Sanger sequencing. We followed up one of 
these mutations, in the protein tyrosine kinase 2β gene (PTK2B). 
In addition to the two mutations identified by exome sequencing, 

we could identify two other ones. Two mutations are in the kinase 
domain and the other two are in the focal-adhesion-targeting 
domain; yet, a potential oncogenic effect of these mutations is not 
evident [13]. 

These observations lead to important conclusions: i) our 
present distinction of driver and passenger mutations is probably 
too simple. In addition to strong primary drivers there are many 
other genes carrying mutations that can affect gene function. If this 
effect is negative, these mutations are selected against, if the effect is 
neutral these mutations are carried on as passenger mutations, and if 
the effect is positive they will be selected. Genetic germline variants 
influence cancer risk, with very few variants showing a strong effect 
[36] and many others having very limited yet measurable effects 
[37]. If this is translated to somatic mutations, we would normally 
expect very few primary drivers with a strong effect on tumorigenesis 
followed by secondary drivers that are selected due to their variably 
positive effect on tumor development; ii) secondary drivers generate 
inter tumor heterogeneity and might determine the complex 
therapy responses observed in the clinics since each tumor contains 
different secondary drivers in addition to a common primary driver; 
iii) in UM, secondary drivers appear to occur in the same pathway 
as the primary drivers, in the calcium-signaling pathway (Figure 
2). If confirmed, this could indicate that a single mutation is not 
sufficient to entirely derange an important intracellular pathway, 
only a second hit in the same pathway determines complete loss 
of control. This makes sense biologically since the hypothesis that 
a single mutation is sufficient, likely determines an exaggerated 
cancer risk, not observed in the real world. 

The hypothesis of secondary driver mutations in the same 
pathway as the primary driver is sustained by a recent analysis of 

Figure 3: Mutational signatures. Mutational signatures were calculated 
applying sparse dictionary learning [43] for uveal (A) and cutaneous (B) 
melanoma considering the actually mutated, the preceding and the following 
nucleotides. For each melanoma type the part of the most informative 
signature that shows the frequency of the mutated triplets with a central 
(mutated) C is shown. 
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35 metastatic UM by sequencing a panel of 500 genes commonly 
involved in cancer. In this study, several additional mutations 
in genes encoding for factors acting in the G-protein signaling 
pathway were identified although the analysis of only 35 cases did 
not allow for enrichment analyses and the limited complexity of the 
gene panel might have missed many mutations [38]. 

We also addressed UM mutations in a more general manner by 
analyzing mutational signatures. Uveal and cutaneous melanoma 
both show a preponderance of C>T transitions yet they occur in 
different sequence contexts. Two methods to classify mutation 
patterns have been developed, and considering the actually mutated 
nucleotide and one or two others, yield 14 [39] or 96 [40] possibilities. 
Since each tumor shows more than one of these possibilities, they 
must be collapsed into a signature. The algorithms used to do this 
are to some extent arbitrary and can be heuristically considered for 
the potential to identify signatures linked to specific tumors and/
or specific etiological factors [40]. Alexandrov’s algorithm correctly 
identifies a signature associated to exposure to ultraviolet light that 
is active in cutaneous [41] but not uveal [8] melanoma indicating 
that the latter is not caused by UV light, which in fact is absorbed by 
the vitreous body [42]. However, Alexandrov’s algorithm does not 
identify any signature that is clearly active in UM [8]. We therefore 
applied an alternative approach to the calculation of mutational 
signatures based on sparse dictionary learning [43]. Two of these 
signatures capture more of the mutational spectrum of UM than 
Alexandrov’s signatures do, due to the fact that the main consensus 
of NCG (where C is the mutated nucleotide, N= any nucleotide) 
was expanded to NCG and CCN. The two UM signatures are not 
active in cutaneous melanoma, further sustaining the hypothesis of 
different etiological factors being at work (Figure 3).

If the double hit in the oncogenic pathway can be confirmed 
for UM there would be no reason to assume that other cancers 
behave differently. The extraordinarily low mutational burden 
of UM makes this analysis easier, yet it should be possible to see 
the same mechanism at work in other cancers. But does this affect 
therapy? Mechanisms of resistance to targeted therapy are manifold 
[44]. Activation of upstream or downstream-signaling nodes and 
parallel-signaling pathways to activate a common downstream 
pathway are among these mechanisms [44] and are prone to 
secondary driver mutations. As a consequence, we are proposing 
to continue to sequence the exomes of primary and metastatic UM 
since a large case collection will eventually highlight secondary 
drivers of low frequency that will allow for a fine dissection of the 
oncogenic pathway driven by GNAQ and GNA11. Future clinical 
trials with targeted therapy should comprise exome sequencing in 
order to allow for a correlation between rare responses and specific 
mutational patterns. 
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