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This paper deals with the free propagation problem
of resonant and close-to-resonance waves in one-
dimensional lattice metamaterials endowed with
nonlinearly viscoelastic resonators. The resonators’
constitutive and geometric nonlinearities imply
a cubic coupling with the lattice. The analytical
treatment of the nonlinear wave propagation
equations is carried out via a perturbation approach.
In particular, after a suitable reformulation of the
problem in the Hamiltonian setting, the approach
relies on the well-known resonant normal form
techniques from Hamiltonian perturbation theory. It is
shown how the constructive features of the Lie Series
formalism can be exploited in the explicit computation
of the approximations of the invariant manifolds. A
discussion of the metamaterial dynamic stability,
either in the general or in the weak dissipation case, is
presented.

1. Introduction
Geometric and constitutive nonlinearities are known to
significantly affect the free and forced propagation of
mechanical waves in a variety of periodic microstructured
media, ranging from granular chains to phononic
crystals and mechanical metamaterials [1–4]. From the
theoretical point of view, considering the distinctive
contribution of different nonlinear sources in physical-
mathematical models can substantially enrich the nature
and multiplicity of stable solutions resulting from the
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governing equations of motion. From a methodological and technical point of view,
harnessing the complexity of the nonlinear dynamic phenomena is progressively generating
a paradigm shift in the conception and design of new-generation materials [5]. This
revolutionary approach opens a wealth of opportunities for an entirely novel realm of
functionalities, in which the oscillation amplitude regime is exploited as an extra design
variable to trigger and govern hardening/softening behaviours, dispersion modulations, inertial
amplifications, superharmonic frequency generations, enhanced dissipation mechanisms, non-
reciprocal energy transfers, supertransmission channels, solitary waves propagations and wave
interactions [6].

Within this challenging field, an important issue is determining how the wave oscillation
amplitude modifies the natural dispersion properties (wavefrequencies, but also waveforms,
polarization factors, group velocities and energy flows). From a methodological perspective,
suitable analytical solutions to this problem, albeit affected by asymptotic approximations, can
be obtained by employing perturbation techniques. This approach aligns with a well-established
tradition dating back to the early 1980s [7]. In the past decades, different perturbation methods
have been employed to study the nonlinear dispersion properties of harmonic waves in periodic
systems, including the ordered Harmonic Balance [8,9], Lindstedt-Poincaré [10–13] and the
Method of Multiple Scales [14–18]. Most of the studies in the literature are focused on determining
the amplitude-dependent softening or hardening behaviour of the wavefrequency backbone
curves. Generally, the key motivation is the possibility to regard the oscillation amplitude as
an additional designable variable in the parametric optimization of the spectral band structure
for ad hoc applications [19–21]. Consequently, less attention has been devoted to exploring the
full potential of perturbation methods in assessing the amplitude-dependent waveforms and/or
determining the invariant manifolds in which stable harmonic motions may develop [22–24].
Interest in the nonlinear dynamic phenomena associated with integer or quasi-integer ratios
between multiple wave frequencies, leading to internal resonances or near-resonances, has been
relatively limited. In particular, there are only a few studies, primarily utilizing the Method
of Multiple Scales, dedicated to: (i) describing the emergence of subharmonic bandgaps in the
dispersion spectrum of mechanical metamaterials, resulting from autoparametric mechanisms
that excite the local resonators [25]; (ii) analyse the quadratic and/or cubic interactions between
two internally resonant acoustic waves propagating with different wavelengths in a nonlinear
monoatomic lattice [15,26]; (iii) discuss the localization and exchange of mechanical energy
between a pair of resonant high-frequency or low-frequency modes of a cubic diatomic finite-
size lattice [27]; (iv) study the amplitude modulation, stability and energy transfers between
internally resonant waves in weakly nonlinear lattices and metamaterials [28]; (v) determine
the nonlinear wavefrequencies and waveforms of a diatomic metamaterial equipped with cubic
undamped local resonators under a superharmonic internal resonance between the acoustic and
optical waves [23].

Upon examining the current state of the art on nonlinear harmonic wave propagation in
periodic systems, it becomes evident that a significant portion of the existing perturbation
techniques mostly leverage the dispersion characteristics of the linear undamped system
when crafting their foundational (lowest order) solutions to construct more intricate nonlinear
(higher order) solutions. This approach aligns with conventional assumptions centred around
the presence of weak nonlinearities and minimal or negligible damping effects. In a recent
contribution by Fortunati et al. [29], the nonlinear dispersion properties of a locally resonant
metamaterial endowed with cubic stiffness and damping were described by adopting an
extended Hamiltonian perturbation technique, borrowed from the field of Celestial Mechanics.
Specifically, a perturbation scheme based on Lie series operators (see, e.g. [30]) was devised to
asymptotically approximate the free wave propagation up to the lowest significant perturbation
order, under the assumption of non-resonance conditions. Distinguishing itself through its unique
methodological approach, the implemented perturbation scheme operates on the premise of
using the dispersion characteristics inherent to the linear damped system to create generating
solutions at the lowest order. The resulting nonlinear spectra are then elegantly derived as
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analytical functions, exhibiting a characteristic exponential decay from their initial values, all in
relation to the mechanical parameters and the time-dependent oscillation amplitudes.

Based on this background, the principal objective of the present paper is to remove the
simplifying hypothesis of non-resonant waves, thus applying the Hamiltonian perturbation
scheme to the particular cases of internally resonant waves with acoustic-to-optical
wavefrequency ratios 1 : 3.

2. Hamiltonian perturbation theory
Hamiltonian perturbation theory is typically concerned with the class of dynamic nearly-
integrable problems governed by the Hamiltonian

H = H0 + εK, (2.1)

where H0 is integrable in the classical sense (à la Arnold–Liouville) and ε is a ‘small’ parameter
in such a way the function K plays the role of ‘perturbation’. Either H0 or K are assumed to
be smooth functions. The task consists in finding a canonical transformation T of variables (i.e.
a transformation whose Jacobian is a symplectic matrix) in such a way that the transformed
Hamiltonian H′ := H ◦ T is ‘closer to the integrability than H’. The precise meaning of this
property varies depending on the specific case at hand; however, it is typical to expect H′ − H0 =
O(ε2). Nevertheless, there are classes of problems—including the resonant case treated in this
paper—in which this is not possible. More importantly, a key result of the perturbation theory
(see, e.g. [30]) states that, even in the cases in which H′ − H0 = O(ε2), the iterative procedure, by
which a composition of n transformations (with n arbitrarily large) is sought in such a way that
H(n) − H0 = O(ε2n), is not possible, at least generically.

The non-Hamiltonian case can be easily treated by means of the well-established tools of the
Hamiltonian approach, simply by observing that a system of ODEs in the form ẋ = v(x) with
x ∈ Rn can be always interpreted as (part of the) canonical equations of the Hamiltonian system

H := y · v(x), (2.2)

in the extended phase space M � (x, y), with M ⊂ R2n, as shown, for instance, in [31].
The tools borrowed from the Hamiltonian framework are not limited to the perturbation

scheme, but they also involve some sets of coordinates usually used in this context in order to
simplify the form of the normalized equations, as well as to exploit their geometrical meaning,
as already shown in [29]. More specifically, the main tool employed to construct canonical
transformations consists in the Lie series operator

exp(Lg) := Id +
+∞∑
s=1

1
s!
Ls

g, g ∈ S, (2.3)

where Lχ · := {·, χ}, S is the space of smooth functions defined on M, and

{f̂ , ĝ} ≡
n∑

i=1

[
∂xi f̂∂yi ĝ − ∂yi f̂∂xi ĝ

]
, ∀f̂ , ĝ ∈ S, (2.4)

are the classical Poisson brackets.
A basic result of the theory of Lie series operators consists in the possibility of proving that the

associated transformation of variables

(y, x) := exp(Lg)(Y, X), (2.5)

is canonical, see, e.g. [30]. However, the main advantage of this approach with respect to the
classical generating function method is that the transformation (2.5) possesses an explicit form, so
that no inversions are required. This has a remarkable impact in applications involving machine-
based implementations of the method leading to several remarkable uses especially in the field of
Celestial Mechanics (see, for instance [32]).
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Figure 1. Mechanical metamaterial realized by a one-dimensional crystal lattice featuring a diatomic periodic cell with intra-
cellular nonlinear resonators attached to a nonlinear dashpot and pre-stretched springs.

This constructive feature of the method has been brought to its most general extent in the
so-called Lie transform method, proposed in [33]. This method can be used to carry out the
perturbation algorithm up to an arbitrarily high order. It is important to emphasize that the phase
space extension outlined above not only enables but also facilitates the utilization of the Lie
transform method for the comprehensive study of perturbations in systems, even those that are
non-Hamiltonian, akin to the approach introduced in this paper.

3. Mechanical model
A microstructured one-dimensional crystal lattice, characterized by a diatomic periodic cell,
is considered an archetypal physical realization of a nonlinear one-dimensional mechanical
metamaterial featuring intracellular (local) dissipation, provided by nonlinearly viscoelastic
resonators (figure 1). According to a discrete Lagrangian description, a 2-dof model is formulated
to govern the damped free dynamics of the periodic cell. The free propagation problem for the
nonlinear waves propagating through the dissipative lattice is based on the Floquet–Bloch theory
for periodic structures [29].

The mechanical model is fully described by the minimal set of independent non-
dimensional parameters p = (�2, μ, η, ξ1, ξ2, ξ3), collecting the mass ratio �2 = Mr/M, the geometric
stiffness ratio μ = N0/(KL), the (elastic) stiffness ratio η = Kr/K and the viscosity coefficients
ξ1, ξ2, ξ3. The difference d =: μ − η regulates the hardening (d < 0) or softening (d > 0) behaviour
of the nonlinear resonators. Coefficients ξ1 and ξ2 determine the amplitude and pinching effect
in the hysteresis cycles of dissipated energy [34]. By introducing the non-dimensional time-
dependent displacements u = U/L and w = (V − U)/L and the non-dimensional time t = Ωτ (with
L and Ω being the reference length and frequency, respectively), the governing equations read in
matrix form (see [29])

ż = A z + εn(z), (3.1)

where the non-dimensional state space vector z := (u, w, u̇ + �2(u̇ + ẇ), �2(u̇ + ẇ))
 has been
conveniently introduced and the ε-scaled vector of nonlinear forces is n := (0, 0, 0, g(z))
, with
the only non-trivial component being

g(z) = ξ1ξ2ξ3(z3 − gz4)z2
2 + (μ − η)z3

2 + h.o.t. = h(z3 − gz4)z2
2 + dz3

2 + h.o.t. (3.2)

having used 
 to indicate the transpose and h := ξ1ξ2ξ3. Let us now introduce the auxiliary non-
dimensional quantities g := 1 + ρ−2, accounting for the inertial properties of the metamaterial,
l := (1 − cos β)/2, expressing the wavenumber of the propagating wave and finally m := ξ1(1 − ξ2),
which depends on the viscous property of the resonator. In this way, the non defective matrix A
reads

A :=

⎛
⎜⎜⎜⎝

0 0 1 −1
0 0 −1 g

−2l 0 0 0
0 −2μ m −mg

⎞
⎟⎟⎟⎠ , (3.3)
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and possesses four non-purely imaginary eigenvalues in the form

λ1,2 = α1 ± iβ1 and λ3,4 = α2 ± iβ2, (3.4)

as long as m ∈ R+. Furthermore α1,2 < 0 and – if m is sufficiently small (under damped systems, see
also §4a), also β1,2 ∈ R+, so that λj ∈ C \ {0}. From the physical viewpoint, the real and imaginary
parts α1,2 and β1,2 can be regarded as damping ratio and frequency of the acoustic (subscript 1) and
optical (subscript 2) branches of the complex-valued dispersion spectrum.

After the determination of a basis of eigenvectors vj for A, which can be properly normalized
to have unitary z1-component in the form

vj :=
(

1, λ−2
j (2l − 2gl − gλ2

j ), −λ−1
j 2l, λ−1

j (2l + λ2
j )
)


, (3.5)

it is possible to introduce a set of normal coordinates x and to apply the change of coordinates

z = Cx and C = (v1, v2, v3, v4), (3.6)

casting the linear part of system (3.1) in the canonical diagonal form

ẋ =Λx + εf (x), (3.7)

where Λ= diag(λ1, λ2, λ3, λ4). Neglecting higher order terms, the vector of cubic nonlinearities
reads

f (x) := C−1(0, 0, 0, g[≤3](C x))
 =: g[≤3](C x)(r1, r2, r3, r4)
,

where the complex coefficients r1 = r̄2 and r3 = r̄4 appear. Note that the overbar stands for the
complex-conjugate.

(a) A first-order perturbation analysis
Starting from the governing equation (3.7), it is possible to extend the phase space according to
the Hamiltonian perturbation theory and define the Hamiltonian function

H(y, x) :=
4∑

j=1

λjyjxj + εg̃(x)
4∑

j=1

rjyj, (3.8)

where, in the ε-scaled perturbation term, the quantity

g̃(x) := g[≤3](C x) =
∑
|ν|=3

γνPν (x), Pν (x) :=
4∏

j=1

x
νj

j , (3.9)

with the multi-index ν ∈ N4 and |ν| = ν1 + · · · + ν4. The explicit form of the coefficients γν is
reported in Appendix B. It is immediate to check that the first set of canonical equations

ẋj := ∂yj H, ẏj := −∂xj H, (3.10)

gives exactly the governing equations (3.7) as j = 1, . . . , 4.
According to the classical strategy, a transformation of variables apt to remove ‘as many terms

as possible’ from the perturbation term has to be constructed. The procedure outlined in [29]
reduces the problem to solving the homological equation

{χ ,
4∑

j=1

λjyjxj} = g̃(x)
4∑

j=1

rjyj, (3.11)

where the generating function of the transformation χ is sought of the form

χ = ε

4∑
j=1

yj
∑
|ν|=3

c(j)
ν Pν (x), (3.12)
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in which the coefficients c(j)
ν play the role of unknowns. According to [35], it is possible to prove

that this particular form for χ is the most general choice for Hamiltonians defined as in (3.8).

By substituting the solution (3.12) in equation (3.11), the unknowns c(j)
ν are obtained in closed

form, as analytical functions of the Taylor series coefficients of the perturbation

c(j)
ν = rjγν

λ · ν − λj
. (3.13)

As a minor observation, it is worth noting that equation (3.13) can be derived through
various formulations that do not rely on the Hamiltonian formalism (see, e.g. [36] for a direct
construction).

4. Resonant normal form
For the specific problem under investigation, it must be first remarked that solution (3.13)
might present particular vectors ν for some j such that the denominator, or divisor λ · ν − λj
is zero, regardless of the value of the frequencies. Generally, this happens when the locus of
commensurable frequency pairs Πi,j(σ ) := {(β1, β2) ∈ [0, +∞)2 : βi = σβj, with σ ∈ Q} belongs to the
internal resonance manifold R := Π2,1(0) ∪ Π2,1(1/3) ∪ Π2,1(1) ∪ Π2,1(3) ∪ Π1,2(0). Specifically, it is
possible to find exactly eight vectors ν nullifying the divisor for (β1, β2) ∈ Π2,1(0). Furthermore,
four other vectors ν make the divisor vanish for (β1, β2) ∈ Π2,1(1/3), that is, for a one-to-three
internal resonance. Considering simultaneously both possibilities, the set Sr of ν-values leading
to zero divisors is collected in table 1. The issue concerning the physical activation of the internal
resonance is discussed in the next section. By excluding zero divisors, we can ascertain that the
generating function (3.12) can take the form:

χ = ε

4∑
j=1

yjrj

[ ∑
|ν|=3
ν /∈Sr

γνPν (x)
(λ · ν − λj)

]
, (4.1)

so that the normalized Hamiltonian H̃ := exp(Lχ )H reads

H̃ =
4∑

j=1

λjYjXj + εr1Y1(γ(1,0,1,1)X1X3X4 + γ(2,1,0,0)X
2
1X2 + γ(0,2,1,0)X

2
2X3)

+ εr2Y2(γ(0,1,1,1)X2X3X4 + γ(1,2,0,0)X1X2
2 + γ(2,0,0,1))X

2
1X4)

+ εr3Y3(γ(0,0,2,1)X
2
3X4 + γ(1,1,1,0)X1X2X3 + γ(3,0,0,0)X

3
1)

+ εr4Y4(γ(0,0,1,2)X3X2
4 + γ(1,1,0,1)X1X2X4 + γ(0,3,0,0)X

3
2) + O(ε2), (4.2)

which is equivalent, by the Gröbner Exchange Theorem, to the original Hamiltonian subject to
the transformation via the canonical map N(x,y)→(X,Y) in the form

(x, y) =Lχ (x, y)|(x,y)=(X,Y) + O(ε2). (4.3)

The canonical equations associated with such a normal form are

Ẋ1 = λ1X1 + ε[Γ(1,0,1,1,1)X1X3X4 + Γ(2,1,0,0,1)X
2
1X2 + Γ(0,2,1,0,1)X

2
2X3], (4.4a)

Ẋ2 = λ2X2 + ε[Γ(0,1,1,1,2)X2X3X4 + Γ(1,2,0,0,2)X1X2
2 + Γ(2,0,0,1,2))X

2
1X4], (4.4b)

Ẋ3 = λ3X3 + ε[Γ(0,0,2,1,3)X
2
3X4 + Γ(1,1,1,0,3)X1X2X3 + Γ(3,0,0,0,3)X

3
1] (4.4c)

and Ẋ4 = λ4X4 + ε[Γ(0,0,1,2,4)X2X3X4 + Γ(1,1,0,1,4)X1X2X4 + Γ(0,3,0,0,4)X
3
2], (4.4d)
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where Γ(i,j,k,l,m) := γ(i,j,k,l)rm. For the sake of convenience, the set of standard transformation of
variables RX→V is introduced in the form(

X2j−1
X2j

)
= 1√

2

(
1 i
1 −i

)(
V2j−1
V2j

)
, j = 1, 2, (4.5)

to cast the previous system of equations in its real-valued form

V̇1 = α1V1 − β1V2 + 1
2 ε
[
(M(1)

1,2V1 − N(1)
1,2V2)(V2

1 + V2
2) + (M(1)

3,4V1 − N(1)
3,4V2)(V2

3 + V2
4)

+ M5(V2
1V3 − V2

2V3 + V1V2V4) − N5(V2
1V4 − V2

2V4 − V1V2V3)
]

, (4.6a)

V̇2 = β1V1 − α1V2 + 1
2 ε
[
(N(2)

1,2V3 + M(2)
1,2V4)(V2

1 + V2
2) + (N(2)

3,4V3 + M(2)
3,4V4)(V2

3 + V2
4)

+ N6V1(3V2
2 − V2

1) + M6V2(3V2
1 − V2

2)
]

, (4.6b)

V̇3 = α2V3 − β2V4 + 1
2 ε
[
(M(2)

1,2V3 − N(2)
1,2V4)(V2

1 + V2
2) + (M(2)

3,4V3 − N(2)
3,4V4)(V2

3 + V2
4)

+ M6V1(V2
1 − 3V2

2) + N6V2(3V2
1 − V2

2)
]

, (4.6c)

and V̇4 = β2V3 + α2V4 + 1
2 ε
[
(N(2)

1,2V3 + M(2)
1,2V4)(V2

1 + V2
2) + (N(2)

3,4V3 + M(2)
3,4V4)(V2

3 + V2
4)

+ N6V1(3V2
2 − V2

1) + M6V2(3V2
1 − V2

2)
]

, (4.6d)

where the following auxiliary quantities have been introduced

M(1)
1,2 := �Γ(2,1,0,0,1), N(1)

1,2 := �Γ(2,1,0,0,1), M5 := �Γ(0,2,1,0,1),

M(1)
3,4 := �Γ(1,0,1,1,1), N(1)

3,4 := �Γ(1,0,1,1,1), M6 := �Γ(0,3,0,0,4),

M(2)
1,2 := �Γ(1,1,1,0,3), N(2)

1,2 := �Γ(1,1,1,0,3), N5 := �Γ(0,2,1,0,1)

and M(2)
3,4 := �Γ(0,0,2,1,3), N(2)

3,4 := �Γ(0,0,2,1,3), N6 := �Γ(0,3,0,0,4).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

Therefore, by employing the change of variables

(V2j−1, V2j) = eαjt(U2j−1, U2j), j = 1, 2, (4.8)

and introducing the so-called action-angle coordinates (I,ϕ) through the variable transformation
AU→(I,ϕ) defined as

(U2j−1, U2j) =
√

2Ij(cos ϕj, sin ϕj), j = 1, 2, (4.9)

equations (4.6a)-(4.6d) can be expressed in the form

İ1 = 2εI1

[
M(1)

1,2I1 e2α1t + M(1)
3,4I2 e2α2t

]
− 2ε

√
I3
1I2 [N5 sin θ1 − M5 cos θ1] e(α1+α2)t, (4.10a)

ϕ̇1 = β1 + ε
[
N(1)

1,2I1 e2α1t + N(1)
3,4I2 e2α2t

]
+ 2ε

√
I3
1I2 [M5 sin θ1 + N5 cos θ1] e(α1+α2)t, (4.10b)

İ2 = 2εI2

[
M(2)

1,2I1 e2α1t + M(2)
3,4I2 e2α2t

]
− 2ε

√
I3
1I2 [N6 sin θ1 − M6 cos θ1]e(α1+α2)t (4.10c)

and ϕ̇2 = β2 + ε
[
N(2)

1,2I1e2α1t + N(2)
3,4I2 e2α2t

]
− ε

√
I3
1/I2 [M6 sin θ1 + N6 cos θ1] e(3α1−α2)t, (4.10d)

where the angle coordinates have been reparameterized by introducing the positions

θ1 = −3ϕ1 + ϕ2 and θ2 = ϕ2. (4.11)

As a complementary remark, it can be noted that the choice θ2 = ϕ2 is quite arbitrary and it is
assumed here for the sake of simplicity. In general, any other linearly independent combination
of angles with respect to the coefficient pair (−3, 1) would work. The same is not true in the
Hamiltonian case (i.e. if a symplectic transformation is required). As for the latter, a general
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Table 1. The setSr of ν leading to a zero divisor.

j ν forΠ2,1(0) ν forΠ2,1(1/3)

1 (1,0,1,1), (2,1,0,0) (0,2,1,0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 (0,1,1,1), (1,2,0,0) (2,0,0,1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 (0,0,2,1), (1,1,1,0) (3,0,0,0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 (0,0,1,2), (1,1,0,1) (0,3,0,0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

criterion to choose such a transformation is described, e.g. in [37]. It is interesting to compare
the set of equations (4.10a)–(4.10d) obtained above with [29, Eqs. (33)], i.e. the equations found in
the non-resonant case. In particular, it is immediately noticed that, in this case, some O(ε) extra
terms appear in the right-hand side of (4.10a)–(4.10d). The latter carries the contribution of the
selected 1 : 3 resonance, breaking in this way the remarkable independence upon the angles which
characterizes the related set in [29]. Hence, compared to the non-resonant case equations (4.10a)–
(4.10d) depend on four further functions M5,6 and N5,6, besides M(1,2)

1,2 and N(1,2)
1,2 . The behaviour

of this whole set of functions is depicted in figure 2 as d and h vary. All the functions appear to
depend almost linearly on the varying parameters. Furthermore, the functions can attain either
positive or negative values, with change of sign in the closeness of d = 0.

(a) Resonant loci
The physical activation of the one-to-three internal resonance needs some discussion. To this end,
the governing matrix A has been demonstrated to possess four, pairwise complex-conjugate,
eigenvalues of the form α1,2 ± iβ1,2, for any set of parameters g, l, μ, and sufficiently small m.
Moreover, the following first-order expressions have been proved:

α
[≤1]
1,2 = −m[gD ∓ (gl − 2l − g2μ)]/(4D), β

[≤1]
1,2 =

√
μg + l ∓ D, (4.12)

where D :=
√

(μg + l)2 + 4lμ(1 − g). The associated proofs can be found in [29, Prop.2.1 and
Prop.5.1].

Remark 4.1. It is possible to show that α
[≤1]
1,2 = 0 if m = 0 via a Routh–Hurwitz argument, see

[29, Prop.2.1].

The theoretical issue to be addressed is the existence and analytical definition of resonant
loci, that is, parameter combinations that realize one-to-three internal resonances between
the metamaterial frequencies β1,2. Another important consideration deals with devising an
algorithmic procedure for approximating the spectrum of the resonant metamaterial. In pursuit
of this objective, we can outline the following

Proposition 4.2 (Existence of nearly resonant 1 : 3 eigenvalues). Based on the definition of matrix
A as in equation (3.3), let us choose the parameter μ in the form

μ = l(16 − κ2)/9, κ ∈
(√

346/5, 4
)

, (4.13)

where κ is an auxiliary positive real parameter used to parameterize μ. Then, for any value of the coefficient
l ∈ (0, 1), there exist boundary values m0 > 0 and δ0 > 0 and four functions α1,2(m), β1(δ, m), g(δ, m) → R

satisfying α1,2(0) = 0, and such that λ(δ, m) := αj(m) ± iβj(δ, m) for j = 1, 2, are roots of the characteristic
equation

det(A − λI) = 0, ∀(δ, m) ∈ [0, δ0) × [0, m0), (4.14)

with

β2(δ, m) = (3 + δ) β1(δ, m), 3α1 − α2 < 0. (4.15)
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Figure 2. Plots of the coefficients appearing in (4.19) as functions of d and h. These surfaces have been obtained by setting
β = π/2 with ξ2 = ξ3 = 0.5 (the value of ξ1 is variable because of the variation of h) andμ = 0.0867.

Accordingly, the parameter δ plays the role of internal detuning, and the nearly resonant 1 : 3 eigenvalues
can be referred to as δ-resonant eigenvalues. Furthermore, it can be noted that

α1,2(m) = α
[≤1]
1,2 , (4.16)

while either β1(δ, m) or g(δ, m) can be determined via a convergent algorithm for all (δ, m) ∈ [0, δ0) ×
[0, m0).
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Figure 3. Resonant manifolds constructed by setting: (a)m= δ = 0.001; (b)m= 0.06 and δ = 0.028.

The proof of proposition 4.2 is given in Appendix A.

Remark 4.3. Condition (4.15) is essential for the existence of the exponential terms appearing
in equation (4.10) for all t > 0.

Examples of resonant loci constructed via the algorithm described in Appendix A are
presented in figure 3. As mentioned before, the surfaces shown in figure 3 represent the sets
of parameters for which the eigenvalues of the system are found to be in a 1 : 3 resonance. As is
clear from the caption, those surfaces have been computed for ‘small’ values of m: this possibility
is guaranteed by proposition 4.2. It is important to stress that, as the determination of the
eigenvalues is reduced to the resolvability of the nonlinear system (A 1), there is no guarantee that,
beyond a certain threshold m0, a solution to (A 1) would exist in the first place. Furthermore, the
proof of proposition 4.2, based on the classical Implicit Function Theorem, provides the (efficient)
algorithm (A 4) of a quasi-Newton type for the numerical approximation of the mentioned loci.

(b) Nonlinear frequencies
The aim of this section is to give a first-order expression for the nonlinear spectra. First, recalling
that λj ∈ C \ {0}, the detuning parameter or defect of internal resonance can be expressed as

δ := β−1
1 β2 − 3, (4.17)

and its small variations can be used to span a suitable neighbourhood of the exact 3 : 1 internal
resonance. Second, it can be noticed that equations (4.10b) and (4.10d) imply immediately ϕ̇j =
βj + O(ε), hence the difference

θ1(t) = 3ϕ1(t) − ϕ2(t) = δβ1t + O(ε). (4.18)

Third, the solution Ij(t) = Ij(0) + O(ε) can be immediately obtained from equations (4.10a) and
(4.10c). Consequently, equations (4.10b) and (4.10d) finally read:

ϕ̇1 = β1 + ε[N(1)
1,2I1(0)e2α1t + N(1)

3,4I2(0)e2α2t]

+ 2ε

√
(I1(0))3I2(0)e(α1+α2)t[M5 sin(δβ1t) + N5 cos(δβ1t)] + O(ε2) (4.19a)

and

ϕ̇2 = β2 + ε
[
N(2)

1,2I1(0)e2α1t + N(2)
3,4I2(0)e2α2t

]

− ε

√
(I1(0))3/I2(0)e(3α1−α2)t[M6 sin(δβ1t) + N6 cos(δβ1t)] + O(ε2) (4.19b)

whose solution is clearly reduced to quadratures up to the first order in ε. By neglecting higher
order terms, the uncoupled system of equations (4.19) governs the first-order approximation
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Figure 4. Snapshots of the nonlinear backbone curves at β = π as a function of I :=
√
I21 (0) + I22(0) subjected to the

constraint I1(0)= I2(0). The properties of the material have been chosen as ξ1 = 0.001, ξ2 = ξ3 = 0.5, μ = 0.0867. The
panels (a) and (c) represent the case η = 0.02 while (b) and (d) the case η = 0.1. The values for ε and δ have been set to
0.001 and 0.01, respectively.

of the nonlinear frequencies Sj,ε of the metamaterial. Indeed, the time-dependent and internally
resonant angles ϕ1(t) and ϕ2(t) can be interpreted as nonlinear frequencies, depending on the
assigned initial actions I1(0) and I2(0) that can be regarded as (square of) initial oscillation
amplitudes.

As the main difference with respect to the non-resonant case [29], equation (4.19) is
enriched by the ε-order trigonometric terms, whose effects quantitatively depend on the
coefficients M5, N5, M6, N6. Due to the trigonometric terms sin(δβ1t) and cos(δβ1t), the frequency’s
dependence on amplitude can manifest as a time-dependent oscillatory behaviour, indicating
that the hardening or softening trends do not monotonically diminish with increasing time. The
backbone curves are reported in figure 4. Depending on the stiffness parameter d, the backbone
curves of both frequencies ϕ1(t) and ϕ2(t) can exhibit either a hardening or a softening bending,
corresponding to positive stiffness d > 0 (figure 4a,c) or negative stiffness d < 0 (figure 4b,d),
respectively. Specifically, the backbones of frequency ϕ2 show the oscillatory behaviour caused
by the trigonometric terms (figure 4c,d). However, it should be highlighted that an arbitrarily
slow variation with time can be introduced via a suitable reduction of the detuning parameter
size, and this allows us to control either the speed or even the occurrence of the above mentioned
oscillations. Figure 5 shows the behaviour of the backbones as β varies from zero to π/2.

5. Weak dissipation and invariant manifolds
Proposition 5.1. The following properties hold(

M(1)
j1,j2

, M(2)
j1,j2

, Mj3

)
= O(m). (5.1)
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Figure 5. Backbones surfaces providing the frequencies as functions of the amplitude
√
I and wavenumber β . The material

properties and parameter values have been chosen as in figure 4a,c.

Proof. See [29, Prop. 5.1] for M(1)
j1,j2

and M(2)
j1,j2

. The proof for Mj3 is similar. Another way to prove
(5.1) is to check that they vanish for m = 0 by (B 1), then use their analyticity as functions of m. �

If one sets m = O(ε), the system (4.10) reduces, up to O(ε), to

İ1 = −2εÑ5

√
I3
1I2 sin θ1,

İ2 = −2εÑ6

√
I3
1I2 sin θ1,

θ̇1 = β1δ + ε(Ñ(2)
1,2 − 3Ñ(1)

1,2)I1 + ε(Ñ(2)
3,4 − 3Ñ(1)

3,4)I2 − εI3/2
1

[
6Ñ5

√
I2 + Ñ6√

I2

]
cos θ1

and θ̇2 = (3 + δ)β1 + ε(Ñ(2)
1,2I1 + Ñ(2)

3,4I2) − εÑ6

√
I3
1

I2
cos θ1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

where (Ñj1 , Ñ(1)
j2,j3

, Ñ(2)
j2,j3

) := (Nj1 , N(1)
j2,j3

, N(2)
j2,j3

)|m=0. By using (B 1), they are easily computed as

Ñ(1)
3,4 = −3d�1�

2
2[β1β

4
2 (β2

2 − β2
1 )]−1, Ñ(2)

1,2 = 3d�2
1�2[β4

1β2(β2
2 − β2

1 )]−1,

Ñ(1)
1,2 = −3d�3

1[2β5
1 (β2

2 − β2
1 )]−1 Ñ(2)

3,4 = 3d�3
2[2β5

2 (β2
2 − β2

1 )]−1

Ñ5 = −3d�2
1�2[2β3

1β2
2 (β2

2 − β2
1 )]−1 Ñ6 = −β2d�3

1[2β6
1 (β2

2 − β2
1 )]−1

where �j := 2(g − 1)l − β2
j .

In order to find the first-order approximation of the invariant manifolds we firstly observe that
from the first two equations of (5.2) one gets for all Ñ6 �= 0

I1 = K1 +
(

Ñ5

Ñ6

)
I2, K1 ∈ R. (5.3)

Let us expand Ij(t) = I(0)
j (t) + εI(1)

j (t) + O(ε2). First of all, it is immediate that I(0)
j = const. and

θ1(t) = δβ1t + O(ε). Hence, from the second of (5.2), one obtains, after performing a quadrature,

I(1)
2 (t) = −2Ñ6(I(0)

1 )3/2
√

I(0)
2

(
cos(Θ1) − cos(δβ1t + Θ1)

β1δ

)
, Θ1 ∈ S1. (5.4)

It is now sufficient to reparameterize the latter as a function of θ1 and use (5.3) to get the first-
order expression of the manifolds in the normalized system. In particular, we get that either I1 or
I2 depends on θ1 only, this property will lead to an easily recognizable symmetry in the manifolds
plots, as shown, e.g. in figure 6.

Remark 5.2. The limit δ → 0 exists in (5.4) and it is the well-known secular term, i.e. of the form
t sin(Θ1), which is typical of the exact resonance condition. For this reason, in order to ensure that
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Figure 6. Example of invariant manifolds in the weak dissipation case. The effect of the invariance of the surfaces with respect
to space θ1 = const. is notable.

the manifolds exist and, in particular, are graphs of functions, we shall require that δ > Cε1−s, for
all s ∈ (0, 1).

In other terms, it is possible to represent the invariant manifolds in the normalized system as
the two surfaces

M̃j := {Ij(ϕ) : ϕ ∈ T2}, j = 1, 2,

where Ij(ϕ) are defined via (5.3) and the reparameterization of (5.4), with θ1 as in (4.11) and for
some fixed Θ1 ∈ [0, 2π ].

In order to obtain the desired approximation of the invariant manifolds in the original system,
it is sufficient to map the surfaces back via the normalizing transformation of variables given by
(4.3). More precisely, by defining, for j = 1, 2,

Mj := {((Av→(I,ψ))
−1 ◦ (Rx→v)−1 ◦ Nx→X ◦ RX→V ◦ AV→(I,ϕ)(I(ϕ),ϕ))j, ϕ ∈ T2},

a representation of the invariant manifolds of the original system is obtained. As for the above
definition, recall (4.3), (4.5) and (4.9) (note that we have disregarded the transformation defined
by (4.8) as it reduces to the identity in the weak dissipation case and for t = O(1)).

An example of M1,2 is presented in figure 6.

6. Stability analysis

(a) General case
Let us suppose that m is positive, away from zero and independent from ε. Under the prevailing
assumptions, a global result of asymptotic stability holds.

Proposition 6.1. Suppose m = O(1), m > 0 and let

Dρ := {(V1, . . . , V4) ∈ R4 : |Vj| < ρ}.

Then, for all ρ > 0, there exists ε∗
ρ > 0 such that the system (4.6b) is asymptotically stable on Dρ for all

ε ∈ (0, ε∗
ρ ).
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Proof. (Sketch) Under the assumption m > 0, one can obtain from (4.12), (4.16) and remark 4.1
that α1,2 < 0 hence, it is possible to consider the following function:

W := −α−1
1 (V2

1 + V2
2) − α−1

2 (V2
3 + V2

4). (6.1)

It is easy to check that W is a Lyapunov function for the system (4.6b) on Dρ , in particular,
Ẇ =∑4

j=1 V̇j∂Vj W = −∑4
j=1 V2

j + O(ε). Hence, the latter is strictly negative for all ρ > 0, provided
that ε is sufficiently small. �

(b) Weak dissipation case
Proposition 6.1 states that the system is asymptotically stable. However, this property relies on
the fact that the dissipation has to be bounded away from zero. The aim of this section is to show
that if m approaches zero, some regions of instability may appear.

To this end let us set δ =: εh. Either periodic or quasi-periodic solutions of the original system
are given, up to the first order in ε, by the equilibrium solutions of (5.2).

Firstly, let us focus on the equilibria for which I1,2 are bounded away from zero. By setting
(X, a) := (

√
I1,

√
I2) ∈ (0, +∞)2, these equilibria occur if θ1 = kπ with k ∈ Z, θ2 ∈ S1 and X is a root

of the following equation:
−k3X3 cos θ1 + k2X2 + k0 = 0,

where
k3 = a−1Ñ6 + 6aÑ5, k2 = Ñ(2)

1,2 − 3Ñ(1)
1,2, k0 = (Ñ(2)

3,4 − 3Ñ(1)
3,4)a2 + β1h. (6.2)

Let JII = {jIIkl}k,l=1,2,3 denote the Jacobian matrix (with respect to the variables I1, I2, θ1) of (5.2). In
this case, the latter possesses the form

jIIkl = −ε

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Ñ5

√
I3
1I2, (k, l) = (1, 3)

2Ñ6

√
I3
1I2, (k, l) = (2, 3)

9Ñ5
√

I1I2 +
(

3
2

)
Ñ6

√
I1

I2
− 3Ñ(1)

1,2 + Ñ(2)
1,2, (k, l) = (3, 1)

3Ñ5

√
I3
1

I2
+
(

1
2

)
Ñ6

√(
I1

I2

)3
− 3Ñ(1)

3,4 + Ñ(2)
3,4, (k, l) = (3, 2)

0, otherwise.

Such a structure has also been found in the paper [38]. The spectrum of such a matrix is easily
computed as

spec(JII) = {0,
√

jII23j
II
32 + jII13j

II
31, −

√
jII23j

II
32 + jII13j

II
31}.

As a consequence, the system cannot be stable if (jII23j
II
32 + jII13j

II
31) > 0. Otherwise, we are in the

presence of a marginally stable linearization. This implies that no conclusion can be drawn with
respect to the stability of the original nonlinear system, see, for instance, [39, p. 386]. We shall
refer to this one as a degenerate case.

A completely degenerate case is represented by the instance I1 = 0. In this situation, equilibria
are given by (θ1, θ2) ∈ T2 and I2 satisfying the following equation:

(3Ñ(1)
3,4 − Ñ5)I2 = β1h.

Let us denote with JI = {jIkl}k,l=1,2,3 the Jacobian matrix of the obtained system. The latter,
evaluated on this set of equilibria, easily yields the following entries:

jIkl = ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ñ(2)
1,2 − 3Ñ(1)

1,2, (k, l) = (3, 1)

Ñ(2)
3,4 − 3Ñ(1)

3,4, (k, l) = (3, 2)

0, otherwise
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Figure 7. Bifurcation diagram for β = π/3 and different values ofμ representing the loci of the equilibria of system (5.2)
in the plane (X , a) and their classification: the points belonging to the dashed portions of the branches represent unstable
solutions, while the continuous line denotes the (marginally) stable cases. Asμ is decreased from the value chosen for (a), a
new branch originates in (c) and (d), corresponding to solutions in which θ1 = π (the periodicity is omitted to simplify the
notation). The four values for μ are 0.0496, 0.0475, 0.0433, 0.0402, respectively. The material properties have been set as in
figure 4 with the exception of ξ1 = ε = 0.001 in order to obtainm= O(ε). Furthermore, we have set h= 1, i.e. δ = ε and
η = 0.05.

which clearly possesses the null eigenvalue only, with a multiplicity equal to three. The loci of the
equilibria of system (5.2) in the plane (X, a) and their transitions from the (marginally) stable case
to the unstable case are depicted in the bifurcation diagram of figure 7. The panels describe four
different values of μ. It is clear that a variation of μ not only affects the stability of the solutions
but can also give rise to new branches of equilibria, as in (c) and (d).

7. Conclusion
This study addresses the intriguing problem of free wave propagation in nonlinear dissipative
mechanical metamaterials that incorporate viscoelastic resonators in their periodic cells. More
specifically, our investigation is focused on phenomena associated with waves characterized
by a nearly 1 : 3 acoustic-to-optical frequency ratio which entails an internal (autoparametric)
resonance. This special internal resonance scenario between the acoustic and the optical waves
has deep implications on the bandgap behaviour of metamaterials for which the design variables
allow a suitable tuning.

Our work builds upon and complements the findings presented in [29], where a perturbative
approach was employed within a non-resonant context. To advance our analysis, we first employ
a conventional phase space extension, a technique that has proven its utility in [29]. Subsequently,
we apply a suite of tools and methodologies rooted in Hamiltonian resonant normal forms to
successfully approximate the nonlinear frequency-wavenumber dependence on wave amplitudes
and the invariant manifolds of our one-dimensional metamaterial.
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A notable advantage of the Hamiltonian formulation adopted in this study lies in its capacity
to accommodate perturbation analyses of arbitrarily high order. This versatility is made possible
by leveraging a comprehensive formulation rooted in the contexts of Lie series and Lie transforms.

The equations arising from our resonant normal form are compared directly to those derived
in the non-resonant scenario as presented in [29]. Notably, our equations include an additional
term that characterizes waves in close proximity to the internal resonance. This extra term is
responsible for the well-known secular terms, particularly evident when the distance from the
resonant manifold approaches zero.

The perturbative scheme proposed in this work allows an accurate description of the
propagation of Bloch waves in lattice metamaterials with periodic microstructure and potentially
complex topologies. The approach offers a concise characterization of the dispersion properties of
such waves, by exploiting the key physical aspects of the problem at hand. The outcomes can be
useful for the conceptualization, design and optimization of smart acoustic waveguides as well
as tunable metafilters for advanced technological and engineering applications. More specifically,
it is possible to customize the mechanical properties of the nonlinear metamaterial with the aim
of slowing down the nonlinear wave propagation (hardening case for heavy metamaterials) or
speeding it up (softening case for light ones). The goal is to increase or reduce the effect of those
nonlinear effects via a suitable tuning of the dissipation of the metamaterial.

As an ancillary outcome of our investigation, we establish a criterion for the existence of
resonant loci, especially valid for sufficiently small dissipation values. Moreover, we offer an
efficient numerical algorithm for approximating these loci as a valuable by-product of this work.
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Appendix A

(a) Proof of proposition 4.2
Given A, eigenvalues of the form a1,2 ± i

√
b1,2 are solutions of the characteristic equation for A if

they satisfy the following system of nonlinear equations:

a1 + a2 = −mg,

a2
1 + 4a1a2 + a2

2 + b1 + b2 = 2(μg + l),

a1b2 + a1a2
2 + (b1 + a2

1)a2 = −(g − 1)lm,

and a2
1a2

2 + a2
1b1 + a2

2b2 + b1b2 = 4lμ(g − 1).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 1)
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Given the expressions, let

a1,2 = α
[≤1]
1,2 +

∑
n≥2

a(n)
1,2mn, b1,2 = (β[≤1]

1,2 )2 +
∑
n≥2

b(n)
1,2mn.

By substituting the above expansions into (A 1), it is not difficult to check by induction that, in
particular, α

(n)
1,2 = 0 for all n ≥ 2. This proves (4.16).

Let us now substitute the first of (A 1) into the remaining equations, then define

γ := (3 + δ)2. (A 2)

By setting b2 = γ b1 and defining

F1 := (γ + 1)b1 − 2(gμ + l) + 4−1(g2m2) − gma2 − 2a2
2

F2 := 2−1b1gmγ + b1a2γ − 4−1a2g2m2 − (g − 1)lm − 2−1a2
2gm − b1a2

F3 := 4−1b1g2m2γ + b1a2gmγ + b1a2
2γ + b2

1γ − 4(g − 1)lmu + 4−1a2
2g2m2 + a3

2gm + a4
2 + b1a2

2,

where Fj := Fj(a2, b1, g; l, μ, γ , m), system (A 1) turns out to be equivalent to the condition F = 0. In

order to satisfy the latter, let us firstly observe that, as α
[≤1]
2 and β

[≤1]
1 are solutions to (A 1) up to

the first order in m, we get

Fj(α
[≤1]
2 , (β[≤1]

1 )2, g; l, μ, 9, 0) = 0, j = 1, 2, 3,

provided that g = g±
0 , with

g±
0 = (16 − κ2)−1(10κ ± 41), (A 3)

where we have introduced the parameterization (4.13) for μ. We note that the restriction κ < 4
will be sufficient for the moment. The choice of the g−

0 yields a larger range of variation for g as κ

varies, which is much more convenient for actual applications. This implies that

JF := ∂(F1, F2, F3)
∂(a2, b1, g)

(0, 2l(5 − κ)/9, g−
0 ; ·) =

⎛
⎜⎜⎜⎜⎜⎝

0 25
2l(κ − 4)(κ + 4)

9
16l(5 − κ)

9
0 0

0 4l(5 − κ)
4l2(κ − 4)(κ + 4)

9

⎞
⎟⎟⎟⎟⎟⎠

is invertible under the condition κ < 4. Hence, by the Implicit Function Theorem, see, e.g. [40],
the thesis follows. More precisely, for any given l ∈ (0, 1), κ < 4 and (m, δ) ∈ (0, m0) × (0, δ0), the
sequence Z(k) := (z(k)

1 , z(k)
2 )ᵀ defined by

⎧⎨
⎩

Z(k+1) = Z(k) − MF(Z(k); l, μ, γ , m)

Z(0) = (2l(5 − κ)/9, g−
0 )ᵀ

, M :=

⎛
⎜⎝

(2κ)−1 0 −(4lκ)−1

9(κ − 5)
2lκ(κ − 4)(κ + 4)

0
45

4l2κ(κ − 4)(κ + 4)

⎞
⎟⎠
(A 4)

satisfies the eigenvalue problem, i.e.

F(a2(m), b1(m, δ), g(m, δ); l, μ, γ , m) = 0,

recall (4.13), (4.16) and (A 2), where we have set

(b1, g)(m, δ) := lim
k→+∞

Z(k).

The last step consists in computing the lower bound for κ stated in (4.13). The latter is
obtained by requiring that (4.15) is satisfied. By taking into account (4.12), the first of (A 1) and
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setting
α̃ := μl, (A 5)

this condition is equivalent to require that

F := g2α̃ − g + 2√
g2α̃2 + (4 − 2g)α̃ + 1

− g
2

,

is strictly negative. By substituting g = g−
0 = (9α̃)−1(41 − 10

√
16 − 9α̃), one obtains up to the first

order in m, and for all α̃ ∈ (0, 16/9),

F (α̃) =
5824 − 1476α̃ − 1460

√
16 − 9α̃ +

(
10

√
16 − 9α̃ − 41

)√
−576α̃ − 640

√
16 − 9α̃ + 2624

18α̃
√

−576α̃ − 640
√

16 − 9α̃ + 2624
.

It is easy to check that the latter is monotonically increasing on [1/5, 2/5] and furthermore
F (1/5)F (2/5) < 0, hence it possesses a unique zero on (1/5, 2/5). More precisely, one can verify
that F (α̃) < 0 for all α̃ ∈ (1/5, 6/25) provided that m is sufficiently small. A comparison between
(A 5) and (4.13) completes the proof, after a possible restriction of m0, if necessary.

Appendix B

(a) Expression of the coefficients γν
Let us denote with Ci,j the elements of C and recall the definitions of h and d given in §3. The
coefficients read as follows:

γ(3,0,0,0) = C3
2,1d − hC2

2,1C4,1g + hC2
2,1C2

3,1,

γ(0,3,0,0) = C3
2,2d − hC2

2,2C4,2g + hC2
2,2C2

3,2,

γ(0,0,3,0) = C3
2,3d + hC3

2,3(C3,3 − gC4,3),

γ(0,0,0,3) = C3
2,4d + hC2

2,4(C3,4 − C4,4g),

γ(1,1,1,0) = 6C2,1C2,2C2,3d − 2hg(C2,1C2,2C4,3 − C2,1C2,3C4,2 − C2,2C2,3C4,1)

+ 2h(C2,1C2,2, C3,3 + C2,1C2,3C3,2 + C2,2C2,3C3,1),

γ(1,0,1,1) = 6C2,1C2,3C2,4d − 2hg(C2,1C2,3C4,4 − C2,1C2,4C4,3 − C2,3C2,4C4,1)

+ 2h(C2,1C2,3C3,4 + C2,1C2,4C3,3 + C2,3C2,4C3,1),

γ(0,1,1,1) = 6C2,2C2,3C2,4d − 2hg(C2,2C2,3C4,4 − C2,2C2,4C4,3 − C2,3C2,4C4,2)

+ 2h(C2,2C2,3C3,4 + C2,2C2,4C3,3 + C2,3C2,4C3,2),

γ(0,0,1,2) = 3C2,3C2
2,4d − hg(C2

2,4C4,3 − 2C2,3C2,4C4,4) + h(C2
2,4C3,3 + 2C2,3C2,4C3,4),

γ(0,1,0,2) = 3C2,2C2
2,4d − hg(C2

2,4C4,2 − 2C2,2C2,4C4,4) + h(C2
2,4C3,2 + 2C2,2C2,4C3,4),

γ(1,0,0,2) = 3C2,1C2
2,4d − hg(C2

2,4C4,1 − 2C2,1C2,4C4,4) + h(C2
2,4C3,1 + 2C2,1C2,4C3,4),

γ(0,0,2,1) = 3C2
2,3C2,4d − hg(C2

2,3C4,4 − 2C2,3C2,4C4,3) + h(C2
2,2C3,4 + 2C2,2C2,4C3,2),

γ(2,0,1,0) = 3C2
2,1C2,3d − hg(C2

2,1C4,3 − 2C2,1C2,3C4,1),

γ(2,0,0,1) = 3C2
2,1C2,4d − hg(C2

2,1C4,4 − 2C2,2C2,4C4,2) + h(C2
2,2C3,4 + 2C2,2C2,4C3,2),

γ(0,1,2,0) = 3C2,2C2
2,3d − hg(C2

2,3C4,2 − 2C2,2C2,3C4,3) + h(C2
2,3C3,2 + 2C2,2C2,3C3,3),

γ(1,0,2,0) = 3C2,1C2
2,3d − hg(C2

2,3C4,1 − 2C2,1C2,3C4,3) + h(C2
2,3C3,1 + 2C2,1C2,3C3,3),

γ(0,2,1,0) = 3C2
2,2C2,3d − hg(C2

2,2C4,3 − 2C2,2C2,3C4,2) + h(C2
2,2C3,3 + 2C2,2C2,3C3,2),

γ(2,0,1,0) = 3C2
2,1C2,3d − hg(C2

2,1C4,3 − 2C2,1C2,3C4,1) + h(C2
2,1C3,3 + 2C2,1C2,3C3,1),

γ(1,2,0,0) = 3C2,1C2
2,2d − hg(C2

2,2C4,1 − 2C2,1C2,2C4,2) + h(C2
2,2C3,1 + 2C2,1C2,2C3,2)

and γ(2,1,0,0) = 3C2
2,1C2,2d − hg(C2

2,1C4,2 − 2C2,1C2,2C4,1) + h(C2
2,1C3,2 + 2C2,1C2,2C3,1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 1)
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Remark B.1. Note that h vanishes in the ‘zero dissipation limit’ with ξ1 = 0.

References
1. Romeo F, Ruzzene M. 2013 Wave propagation in linear and nonlinear periodic media: analysis and

applications, vol. 540. Vienna, Austria: Springer Science & Business Media.
2. Hussein MI, Leamy MJ, Ruzzene M. 2014 Dynamics of phononic materials and structures:

historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802.
(doi:10.1115/1.4026911)

3. Muhammad, Lim C. 2022 From photonic crystals to seismic metamaterials: a review via
phononic crystals and acoustic metamaterials. Arch. Comput. Methods Eng. 29, 1137–1198.
(doi:10.1007/s11831-021-09612-8)

4. Andrianov IV, Danishevskyy V, Awrejcewicz J. 2021 Linear and nonlinear waves in
microstructured solids: homogenization and asymptotic approaches. Boca Raton, FL: CRC Press.

5. Fronk M, Fang L, Packo P, Leamy M. 2023 Elastic wave propagation in weakly nonlinear
media and metamaterials: a review of recent developments. Nonlinear Dyn. 111, 10 709–10 741.
(doi:10.1007/s11071-023-08399-6)

6. Patil G, Matlack K. 2022 Review of exploiting nonlinearity in phononic materials to enable
nonlinear wave responses. Acta Mech. 233, 1–46. (doi:10.1007/s00707-021-03089-z)

7. Asfar O, Nayfeh A. 1983 The application of the method of multiple scales to wave propagation
in periodic structures. Siam Rev. 25, 455–480. (doi:10.1137/1025120)

8. Lazarov BS, Jensen JS. 2007 Low-frequency band gaps in chains with attached non-linear
oscillators. Int. J. Non-Linear Mech. 42, 1186–1193. (doi:10.1016/j.ijnonlinmec.2007.09.007)

9. Narisetti RK, Ruzzene M, Leamy MJ. 2012 Study of wave propagation in strongly
nonlinear periodic lattices using a harmonic balance approach. Wave Motion 49, 394–410.
(doi:10.1016/j.wavemoti.2011.12.005)

10. Narisetti RK, Leamy MJ, Ruzzene M. 2010 A perturbation approach for predicting wave
propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132, 031001.
(doi:10.1115/1.4000775)

11. Narisetti RK, Ruzzene M, Leamy MJ. 2011 A perturbation approach for analyzing dispersion
and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. 133, 061020.
(doi:10.1115/1.4004661)

12. Campana MA, Ouisse M, Sadoulet-Reboul E, Ruzzene M, Neild S, Scarpa F. 2020 Impact of
non-linear resonators in periodic structures using a perturbation approach. Mech. Syst. Signal
Process. 135, 106408. (doi:10.1016/j.ymssp.2019.106408)

13. Chen Z, Zhou W, Lim C. 2020 Active control for acoustic wave propagation in
nonlinear diatomic acoustic metamaterials. Int. J. Non-Linear Mech. 125, 103535. (doi:10.1016/
j.ijnonlinmec.2020.103535)

14. Vakakis AF, King ME. 1995 Nonlinear wave transmission in a monocoupled elastic periodic
system. J. Acoust. Soc. Am. 98, 1534–1546. (doi:10.1121/1.413419)

15. Manktelow K, Leamy MJ, Ruzzene M. 2011 Multiple scales analysis of wave–wave
interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193–203.
(doi:10.1007/s11071-010-9796-1)

16. Panigrahi SR, Feeny BF, Diaz AR. 2017 Second-order perturbation analysis of low-amplitude
traveling waves in a periodic chain with quadratic and cubic nonlinearity. Wave Motion 69,
1–15. (doi:10.1016/j.wavemoti.2016.11.004)

17. Jiao W, Gonella S. 2019 Doubly nonlinear waveguides with self-switching functionality
selection capabilities. Phys. Rev. E 99, 042206. (doi:10.1103/PhysRevE.99.042206)

18. Shen Y, Lacarbonara W. 2023 Nonlinearity enhanced wave bandgaps in metamaterial
honeycombs embedding spider web-like resonators. J. Sound Vibration 562, 117821.
(doi:10.1016/j.jsv.2023.117821)

19. Cummer SA, Christensen J, Alù A. 2016 Controlling sound with acoustic metamaterials. Nat.
Rev. Mater. 1, 16001. (doi:10.1038/natrevmats.2016.1)

20. Ronellenfitsch H, Stoop N, Yu J, Forrow A, Dunkel J. 2019 Inverse design of
discrete mechanical metamaterials. Phys. Rev. Mater. 3, 095201. (doi:10.1103/PhysRev
Materials.3.095201)

21. Shen Y, Lacarbonara W. 2023 Nonlinear dispersion properties of metamaterial beams hosting
nonlinear resonators and stopband optimization. Mech. Syst. Signal Process. 187, 109920.
(doi:10.1016/j.ymssp.2022.109920)

http://dx.doi.org/10.1115/1.4026911
https://doi.org/10.1007/s11831-021-09612-8
http://dx.doi.org/10.1007/s11071-023-08399-6
http://dx.doi.org/10.1007/s00707-021-03089-z
http://dx.doi.org/10.1137/1025120
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.09.007
http://dx.doi.org/10.1016/j.wavemoti.2011.12.005
http://dx.doi.org/10.1115/1.4000775
http://dx.doi.org/10.1115/1.4004661
http://dx.doi.org/10.1016/j.ymssp.2019.106408
http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103535
http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103535
http://dx.doi.org/10.1121/1.413419
http://dx.doi.org/10.1007/s11071-010-9796-1
http://dx.doi.org/10.1016/j.wavemoti.2016.11.004
http://dx.doi.org/10.1103/PhysRevE.99.042206
http://dx.doi.org/10.1016/j.jsv.2023.117821
http://dx.doi.org/10.1038/natrevmats.2016.1
http://dx.doi.org/10.1103/PhysRevMaterials.3.095201
http://dx.doi.org/10.1103/PhysRevMaterials.3.095201
http://dx.doi.org/10.1016/j.ymssp.2022.109920


20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230759

..........................................................

22. Georgiou IT, Vakakis AF. 1996 An invariant manifold approach for studying waves in
a one-dimensional array of non-linear oscillators. Int. J. Non-Linear Mech. 31, 871–886.
(doi:10.1016/S0020-7462(96)00104-7)

23. Lepidi M, Bacigalupo A. 2019 Wave propagation properties of one-dimensional acoustic
metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn. 98, 2711–2735.
(doi:10.1007/s11071-019-05032-3)

24. Settimi V, Lepidi M, Bacigalupo A. 2021 Nonlinear dispersion properties of one-
dimensional mechanical metamaterials with inertia amplification. Int. J. Mech. Sci. 201, 106461.
(doi:10.1016/j.ijmecsci.2021.106461)

25. Silva P, Leamy M, Geers M, Kouznetsova V. 2019 Emergent subharmonic band gaps in
nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E
99, 063003. (doi:10.1103/PhysRevE.99.063003)

26. Panigrahi SR, Feeny BF, Diaz AR. 2017 Wave–wave interactions in a periodic chain with
quadratic nonlinearity. Wave Motion 69, 65–80. (doi:10.1016/j.wavemoti.2016.11.008)

27. Andrianov IV, Danishevskyy VV, Rogerson G. 2020 Vibrations of nonlinear elastic lattices:
low-and high-frequency dynamic models, internal resonances and modes coupling. Proc. R.
Soc. A 476, 20190532. (doi:10.1098/rspa.2019.0532)

28. Fronk MD, Leamy MJ. 2019 Internally resonant wave energy exchange in weakly nonlinear
lattices and metamaterials. Phys. Rev. E 100, 032213. (doi:10.1103/PhysRevE.100.032213)

29. Fortunati A, Bacigalupo A, Lepidi M, Arena A, Lacarbonara W. 2022 Nonlinear wave
propagation in locally dissipative metamaterials via Hamiltonian perturbation approach.
Nonlinear Dyn. 108, 765–787. (doi:10.1007/s11071-022-07199-8)

30. Giorgilli A. 2003 Exponential stability of Hamiltonian systems. In Dynamical systems. Part I
Pubbl. Cent. Ric. Mat. Ennio Giorgi, pp. 87–198. Scuola Norm. Sup., Pisa.

31. Berdichevsky V. 2009 Variational principles of continuum mechanics: I. Fundamentals. Berlin,
Heidelberg: Interaction of Mechanics and Mathematics. Springer.

32. Ferraz-Mello S. 2007 Canonical Perturbation Theories: Degenerate Systems and Resonance.
New York, NY: Springer Science & Business Media.

33. Giorgilli A, Galgani L. 1978 Formal integrals for an autonomous Hamiltonian system near an
equilibrium point. Cel. Mech. 17, 267–280. (doi:10.1007/BF01232832)

34. Carboni B, Arena A, Lacarbonara W. 2021 Nonlinear vibration absorbers for ropeway
roller batteries control. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 235, 4704–4718.
(doi:10.1177/0954406220953454)

35. Fortunati A, Wiggins S. 2016 Integrability and strong normal forms for non-
autonomous systems in a neighbourhood of an equilibrium. J. Math. Phys. 57, 092703.
(doi:10.1063/1.4962802)

36. Shilnikov LP, Shilnikov AL, Turaev DV, Chua LO. 1998 Methods of Qualitative Theory in
Nonlinear Dynamics, vol. I. World Scientific Series on Nonlinear Science. Series A.

37. Arnold VI, Kozlov VV, Neishtadt AI. 2006 Mathematical aspects of classical and celestial
mechanics. Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg.

38. Lacarbonara W, Camillacci R. 2004 Nonlinear normal modes of structural systems via
asymptotic approach. Int. J. Solids Struct. 41, 5565–5594. (doi:10.1016/j.ijsolstr.2004.04.029)

39. Braun M. 1993 Differential equations and their applications: an introduction to applied mathematics.
Applied Mathematical Sciences. New York, NY: Springer.

40. Krantz SG, Parks HR. 2013 The implicit function theorem: history, theory, and applications. Modern
Birkhäuser Classics. New York, NY: Springer.

http://dx.doi.org/10.1016/S0020-7462(96)00104-7
http://dx.doi.org/10.1007/s11071-019-05032-3
http://dx.doi.org/10.1016/j.ijmecsci.2021.106461
http://dx.doi.org/10.1103/PhysRevE.99.063003
http://dx.doi.org/10.1016/j.wavemoti.2016.11.008
http://dx.doi.org/10.1098/rspa.2019.0532
http://dx.doi.org/10.1103/PhysRevE.100.032213
https://doi.org/10.1007/s11071-022-07199-8
http://dx.doi.org/10.1007/BF01232832
http://dx.doi.org/10.1177/0954406220953454
http://dx.doi.org/10.1063/1.4962802
http://dx.doi.org/10.1016/j.ijsolstr.2004.04.029

	Introduction
	Hamiltonian perturbation theory
	Mechanical model
	A first-order perturbation analysis

	Resonant normal form
	Resonant loci
	Nonlinear frequencies

	Weak dissipation and invariant manifolds
	Stability analysis
	General case
	Weak dissipation case

	Conclusion
	Proof of proposition 4.2
	Expression of the coefficients bold0mu mumu 

	References



